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Time Domain:
The General Linear Process and its

Approximation
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The Environment

Time series Yt (doubly infinite)

Realization yt (again doubly infinite)

Sample path yt , t = 1, ..., T
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Strict Stationarity

Joint cdfs for sets of observations
depend only on displacement, not time.
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Weak Stationarity

(Covariance stationarity, second-order stationarity, ...)

Eyt = µ, ∀t

γ(t, τ) = E (yt − Eyt) (yt−τ − Eyt−τ ) = γ(τ), ∀t

0 < γ(0) < ∞
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Autocovariance Function

(a) symmetric
γ(τ) = γ(−τ), ∀τ

(b) nonnegative definite
a′Σa ≥ 0, ∀a

where Toeplitz matrix Σ has ij-th element γ(i − j)

(c) bounded by the variance
γ(0) ≥ |γ(τ)|, ∀τ

7 / 357



Autocovariance Generating Function

g(z) =
∞∑

τ=−∞
γ(τ) zτ
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Autocorrelation Function

ρ(τ) =
γ(τ)

γ(0)
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White Noise

White noise: εt ∼ WN(µ, σ2) (serially uncorrelated)

Zero-mean white noise: εt ∼ WN(0, σ2)

Independent (strong) white noise: εt

iid
∼ (0, σ2)

Gaussian white noise: εt

iid
∼ N(0, σ2)

10 / 357



Unconditional Moment Structure of Strong White Noise

E (εt) = 0

var(εt) = σ2
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Conditional Moment Structure of Strong White Noise

E (εt |Ωt−1) = 0

var(εt |Ωt−1) = E [(εt − E (εt |Ωt−1))2|Ωt−1] = σ2

where

Ωt−1 = εt−1, εt−2, ...
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Autocorrelation Structure of Strong White Noise

γ(τ) =

{
σ2, τ = 0
0, τ ≥ 1

ρ(τ) =

{
1, τ = 0
0, τ ≥ 1
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An Aside on Treatment of the Mean

In theoretical work we assume a zero mean, µ = 0.

This reduces notational clutter and is without loss of generality.

(Think of yt as having been centered around its mean, µ,
and note that yt − µ has zero mean by construction.)

(In empirical work we allow explicitly for a non-zero mean,
either by centering the data around the sample mean

or by including an intercept.)
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The Wold Decomposition

Under regularity conditions,
every covariance-stationary process {yt} can be written as:

yt =
∞∑
i=0

biεt−i

where:

b0 = 1

∞∑
i=0

b2
i <∞

εt = [yt − P(yt |yt−1, yt−2, ...)] ∼ WN(0, σ2)
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The General Linear Process

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼WN(0, σ2)

b0 = 1

∞∑
i=0

b2
i <∞
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Unconditional Moment Structure
(Assuming Strong WN Innovations)

E (yt) = E

( ∞∑
i=0

biεt−i

)
=

∞∑
i=0

biEεt−i =
∞∑
i=0

bi · 0 = 0

var(yt) = var

( ∞∑
i=0

biεt−i

)
=

∞∑
i=0

b2
i var(εt−i ) = σ2

∞∑
i=0

b2
i

(Do these calculations use the strong WN assumption? If so, how?)
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Conditional Moment Structure
(Assuming Strong WN Innovations)

E (yt |Ωt−1) = E (εt |Ωt−1)+b1E (εt−1|Ωt−1)+b2E (εt−2|Ωt−1)+...

(Ωt−1 = εt−1, εt−2, ...)

= 0 + b1εt−1 + b2εt−2 + ... =
∞∑
i=1

biεt−i

var(yt |Ωt−1) = E [(yt − E (yt |Ωt−1))2|Ωt−1]

= E (ε2
t |Ωt−1) = E (ε2

t ) = σ2

(Do these calculations use the strong WN assumption? If so, how?)
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Autocovariance Structure

γ(τ) = E

[( ∞∑
i=−∞

biεt−i

) ( ∞∑
h=−∞

bhεt−τ−h

)]

= σ2
∞∑

i=−∞
bibi−τ

(where bi ≡ 0 if i < 0)

g(z) = σ2 B(z) B(z−1)
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Approximating the Wold Representation, I:
Finite-Ordered Autoregressions

AR(p) process

(Stochastic difference equation)

We now study AR(1) (heavy detail)
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Approximating the Wold Representation II:
Fintite-Ordered Moving Average Processes

MA(q) process
(Obvious truncation)

We now study MA(1) (light detail)
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Wiener-Kolmogorov Prediction

yt = εt + b1 εt−1 + ...

yT+h = εT+h + b1 εT+h−1 + ...+ bhεT + bh+1εT−1 + ...

Project on ΩT = {εT , εT−1, ...} to get:

yT+h,T = bh εT + bh+1 εT−1 + ...

Note that the projection is on the infinite past
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Wiener-Kolmogorov Prediction Error

eT+h,T = yT+h − yT+h,T =
h−1∑
i=0

biεT+h−i

(An MA(h − 1) process!)

E (eT+h,T ) = 0

var(eT+h,T ) = σ2
h−1∑
i=0

b2
i
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Wold’s Chain Rule for Autoregressions

Consider an AR(1) process:
yt = φyt−1 + εt

History:
{yt}Tt=1

Immediately,
yT+1,T = φyT

yT+2,T = φyT+1,T = φ2yT
...

yT+h,T = φyT+h−1,T = φhyT

Extension to AR(p) and AR(∞) is immediate.
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Multivariate (Bivariate)

Define yt = (y1t , y2t)
′ and µt = (µ1t , µ2t)

′

yt is covariance stationary if:

E (yt) = µt = µ, ∀ t
where µ = (µ1, µ2)′ is a vector of constants

“mean does not depend on time”

Γy1y2(t, τ) = E (yt − µt)(yt+τ − µt+τ )′

=

(
γ11(τ) γ12(τ)
γ21(τ) γ22(τ)

)
, τ = 0, 1, 2, ...

“autocovariance depends only on displacement, not on time”

var(y1) <∞, var(y2) <∞
“finite variance”
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Cross Covariances

Cross covariances not symmetric in τ :

γ12(τ) 6= γ12(−τ)

Instead:

γ12(τ) = γ21(−τ)

Γy1y2(τ) = Γ′y1y2
(−τ), τ = 0, 1, 2, ...

Covariance-generating function:

Gy1y2(z) =
∞∑

τ=−∞
Γy1y2(τ)zτ
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Cross Correlations

Ry1y2(τ) = D−1
y1y2

Γy1y2(τ) D−1
y1y2

, τ = 0, 1, , 2, ...

D =

(
σ1 0
0 σ2

)
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The Multivariate General Linear Process

yt = B(L) εt =
∞∑
i=0

Bi εt−i

E (εt ε
′
s) =

{
Σ if t = s
0 otherwise

B0 = I
∞∑
i=0

‖Bi‖2 <∞

Bivariate case:(
y1t

y2t

)
=

(
B11(L) B12(L)
B21(L) B22(L)

)(
ε1t

ε2t

)
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Autocovariance Structure

Γy1y2(τ) =
∞∑

i=−∞
Bi Σ B ′i−τ

(where Bi ≡ 0 if i < 0)

Gy (z) = B(z) Σ B ′(z−1)

29 / 357



Wiener-Kolmogorov Prediction

yt = εt + B1εt−1 + B2εt−2 + ...

yT+h = εT+h + B1εT+h−1 + B2εT+h−2 + ...

Project on Ωt = {εT , εT−1, ...} to get:

yt+h,T = BhεT + Bh+1εT−1 + ...
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Wiener-Kolmogorov Prediction Error

εT+h,T = yT+h − yT+h,T =
h−1∑
i=0

BiεT+h−i

E [εT+h,T ] = 0

E [εT+h,T ε
′
T+h,T ] =

h−1∑
i=0

BiΣB ′i
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Vector Autoregressions (VAR’s)

N-variable VAR of order p:

Φ(L)yt = εt

εt ∼ WN(0,Σ)

where:

Φ(L) = I − Φ1L− ...− ΦpLp
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Bivariate VAR(1) in “Long Form”

(
y1t

y2t

)
=

(
φ11 φ12

φ21 φ22

)(
y1t−1

y2t−1

)
+

(
ε1t

ε2t

)
(
ε1t

ε2t

)
∼ WN

((
0
0

)
,

(
σ2

1 σ12

σ12 σ2
2

))

– Two sources of cross-variable interaction.
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MA Representation of a VAR

Φ(L)yt = εt

yt = Φ−1(L)εt = Θ(L)εt

where:

Θ(L) = I + Θ1L + Θ2L2 + ...
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MA Representation of Bivariate VAR(1) in Long Form

((
1 0
0 1

)
−
(
φ11 φ12

φ21 φ22

)
L

)(
y1t

y2t

)
=

(
ε1t

ε2t

)

(
y1t

y2t

)
=

(
ε1t

ε2t

)
+

(
θ1

11 θ1
12

θ1
21 θ1

22

)(
ε1t−1

ε2t−1

)
+ ...
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Understanding VAR’s: Granger-Sims Causality

Is the history of yj useful for predicting yi ,
over and above the history of yi?

– Granger non-causality corresponds to exclusion restrictions

– In the simple 2-Variable VAR(1) example,(
y1t

y2t

)
=

(
φ11 φ12

φ21 φ22

)(
y1t−1

y2t−1

)
+

(
ε1t

ε2t

)
,

y2 does not Granger cause y1 iff φ12 = 0
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Understanding VAR’s: Impulse Response Functions (IRF’s)

(I − Φ1L− ...− ΦpLp)yt = εt

εt ∼WN(0,Σ)

The impulse-response question:
How is yit dynamically affected by a shock to yjt (alone)?

(N × N matrix of IRF graphs (over steps ahead))

Problem:
Σ generally not diagonal, so how to shock j alone?
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Graphic: IRF Matrix for 4-Variable U.S. Macro VAR
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Understanding VAR’s: Variance Decompositions (VD’s)

(I − Φ1L− ...− ΦpLp)yt = εt

εt ∼WN(0,Σ)

The variance decomposition question:
How much of the h-step ahead (optimal) prediction-error variance

of yi is due to shocks to variable j?

(N × N matrix of VD graphs (over h).
Or pick an h and examine the N × N matrix of VD numbers.)

Problem:
Σ generally not diagonal, which makes things tricky, as the

variance of a sum of innovations is not the sum of the variances in
that case.
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Orthogonalizing VAR’s by Cholesky Factorization
(A Classic Identification Scheme)

Original:

(I − Φ1L− ...− ΦpLp)yt = εt , εt ∼WN(0,Σ)

Equivalently:

(I − Φ1L− ...− ΦpLp)yt = Pvt , vt ∼WN(0, I )

or

(P−1 − [P−1Φ1]L− ...− [P−1Φp]Lp)yt = vt , vt ∼WN(0, I )

where Σ = PP ′, for lower-triangular P
(Cholesky factorization)

Now we can proceed with IRF’s and VD’s.
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IRF’s and VD’s from the Orthogonalized VAR

IRF comes from the
orthogonalized moving-average representation:

yt = (I + Θ1L + Θ2L2 + ...) P vt

= (P + Θ1P L + Θ2P L2 + ...) vt

IRFij is {Pij , (Θ1P)ij , (Θ2P)ij , ...}

VDij comes similarly from the
orthogonalized moving-average representation.
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Bivariate IRF Example (e.g., IRF12)

yt = Pvt + Θ1Pvt−1 + Θ2Pvt−2 + ...

vt ∼ WN(0, I )

yt = C0vt + C1vt−1 + C2vt−2 + ...

(
y1t

y2t

)
=

(
c0

11 c0
12

c0
21 c0

22

)(
v1t

v2t

)
+

(
c1

11 c1
12

c1
21 c1

22

)(
v1t−1

v2t−1

)
+ ...

IRF12 = c012, c
1
12, c

2
12, ...

(Q : What is c0
12?)
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Bivariate VD Example (e.g., VD12 for h = 2)

εt+2,t = C0vt+2 + C1vt+1

vt ∼WN(0, I )

(
ε1
t+2,t

ε2
t+2,t

)
=

(
c0

11 c0
12

c0
21 c0

22

)(
v1t+2

v2t+2

)
+

(
c1

11 c1
12

c1
21 c1

22

)(
v1t+1

v2t+1

)

ε1
t+2,t = c0

11v1t+2 + c0
12v2t+2 + c1

11v1t+1 + c1
12v2t+1

var(ε1
t+2,t) = (c0

11)2 + (c0
12)2 + (c1

11)2 + (c1
12)2

Part coming from v2: (c0
12)2 + (c1

12)2

VD12(2) =
(c0

12)2 + (c1
12)2

(c0
11)2 + (c0

12)2 + (c1
11)2 + (c1

12)2
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Frequency Domain

“Spectral Analysis”
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Remember...

z = a + bi (rectangular)

z = re iω = r(cosω + i sinω) (polar)

cos(ω) =
e iω + e−iω

2

sin(ω) =
e iω − e−iω

2

P =
2π

ω

zz̄ = |z |2
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Recall the General Linear Process

yt = B(L)εt =
∞∑
i=0

biεt−i

Autocovariance generating function:

g(z) =
∞∑

τ=−∞
γ(τ) zτ

= σ2B(z)B(z−1)

γ(τ) and g(z) are a z-transform pair
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Spectrum

Evaluate g(z) on the unit circle, z = e−iω :

g(e−iω) =
∞∑

τ =−∞
γ(τ) e−iωτ , − π < ω < π

= σ2B(e iω) B(e−iω)

= σ2 | B(e iω) |2
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Spectrum

Trigonometric form:

g(ω) =
∞∑

τ=−∞
γ(τ)e−iωτ

= γ(0) +
∞∑
τ=1

γ(τ)
(
e iωτ + e−iωτ

)

= γ(0) + 2
∞∑
τ=1

γ(τ) cos(ωτ)
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Spectral Density Function

f (ω) =
1

2π
g(ω)

f (ω) =
1

2π

∞∑
τ=−∞

γ(τ)e−iωτ (−π < ω < π)

=
1

2π
γ(0) +

1

π

∞∑
τ=1

γ(τ) cos(ωτ)

=
σ2

2π
B
(
e iω
)

B
(
e−iω

)

=
σ2

2π
| B
(
e iω
)
|2
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Properties of Spectrum and Spectral Density

1. symmetric around ω = 0

2. real-valued

3. 2π-periodic

4. nonnegative
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A Fourier Transform Pair

g(ω) =
∞∑

τ=−∞
γ(τ)e−iωτ

γ(τ) =
1

2π

∫ π

−π
g(ω)e iωτdω
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A Variance Decomposition by Frequency

γ(τ) =
1

2π

∫ π

−π
g(ω)e iωτdω

=

∫ π

−π
f (ω)e iωτdω

Hence

γ(0) =

∫ π

−π
f (ω)dω
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White Noise Spectral Density

yt = εt

εt ∼WN(0, σ2)

f (ω) =
σ2

2π
B
(
e iω
)

B
(
e−iω

)
=
σ2

2π
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AR(1) Spectral Density

yt = φyt−1 + εt

εt ∼WN(0, σ2)

f (ω) =
σ2

2π
B(e iω)B(e−iω)

=
σ2

2π

1

(1− φe iω)(1− φe−iω)

=
σ2

2π

1

1− 2φ cos(ω) + φ2

How does shape depend on φ? Where are the peaks?
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Figure: Granger’s Typical Spectral Shape of an Economic Variable
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Robust Variance Estimation

ȳ =
1

T

T∑
t=1

yt

var(ȳ) =
1

T 2

T∑
s=1

T∑
t=1

γ(t − s)

(“Add row sums”)

=
1

T

T−1∑
τ=−(T−1)

(
1− |τ |

T

)
γ(τ)

(“Add diagonal sums,” using change of variable τ = t − s)
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Robust Variance Estimation, Continued

⇒
√

T (ȳ − µ) ∼

0,
T−1∑

τ=−(T−1)

(
1− |τ |

T

)
γ(τ)



√
T (ȳ − µ)

d
→ N

(
0,

∞∑
τ=−∞

γ(τ)

)

√
T (ȳ − µ)

d
→ N (0, g(0))
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Estimation: Sample Spectral Density

f̂ (ω) =
1

2π

T−1∑
τ=−(T−1)

γ̂(τ)e−iωτ ,

where

γ̂(τ) =
1

T

T∑
t=1

(yt − ȳ)(yt−τ − ȳ)

(Use frequencies ωj = 2πj
T , j = 0, 1, 2, ..., T2 )

– Inconsistent, unfortunately
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Historical and Computational Note:
The FFT and Periodogram

f̂ (ω) =
1

2π

T−1∑
τ=−(T−1)

γ̂(τ)e−iωτ

=

(
1√

2πT

T∑
t=1

yte
−iωt

)(
1√

2πT

T∑
t=1

yte
iωt

)
(FFT) · (FFT)

=
1

4π
I (ω) (I is the “periodogram”)

– Again: Inconsistent, unfortunately
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Properties of the Sample Spectral Density

Under conditions:

I f̂ (ωj) asymptotically unbiased

I But var(f̂ (ωj)) does not converge to 0 (d.f. don’t accumulate)

I Hence f̂ (ωj) is inconsistent. What’s true is that:

2f̂ (ωj)

f (ωj)

d
→ χ2

2,

where the χ2
2 random variables are uncorrelated across

frequencies ωj = 2πj
T , j = 0, 1, 2, ..., T2
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Consistent (“Lag Window”) Spectral Estimation

f̂ (ω) =
1

2π

T−1∑
τ=−(T−1)

γ̂(τ)e−iωτ

f ∗(ω) =
1

2π

T−1∑
τ=−(T−1)

λ(τ)γ̂(τ)e−iωτ

(Weight the sample autocovariances.)

Common “lag windows” with “truncation lag” MT :

λ(τ) = 1, |τ | ≤ MT and 0 otherwise (rectangular, or uniform)

λ(τ) = 1− |τ |
MT

, τ ≤ MT and 0 otherwise
(triangular, or Bartlett, or Newey-West)

Consistency: MT →∞ and MT
T → 0 as T →∞
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Consistent (“Autoregressive”) Spectral Estimation

“Model-based estimation”

Fit AR(pT ) model (using AIC, say)

Calculate spectrum of the fitted model at the fitted parameters

Consistency: pT →∞ and pT
T → 0 as T →∞
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Multivariate Frequency Domain

Covariance-generating function:

Gy1y2(z) =
∞∑

τ=−∞
Γy1y2(τ)zτ

Spectral density function:

Fy1y2(ω) =
1

2π
Gy1y2(e−iω)

=
1

2π

∞∑
τ=−∞

Γy1y2(τ) e−iωτ , − π < ω < π

(Complex-valued)
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Consistent Multivariate Spectral Estimation

Spectral density matrix:

Fy1y2(ω) =
1

2π

∞∑
τ=−∞

Γy1y2(τ)e−iωτ , −π < ω < π

Consistent (lag window) estimator:

F ∗y1y2
(ω) =

1

2π

(T−1)∑
τ=−(T−1)

λ(τ)Γ̂y1y2(τ) e−iωτ , −π < ω < π

Or do autoregressive (VAR) spectral estimation.
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Co-Spectrum and Quadrature Spectrum

Fy1y2(ω) = Cy1y2(ω) + iQy1y2(ω)

Cy1y2(ω) =
1

2π

∞∑
τ=−∞

Γy1y2(τ) cos(ωτ)

Qy1y2(ω) =
−1

2π

∞∑
τ=−∞

Γy1y2(τ) sin(ωτ)
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Cross Spectrum

fy1y2(ω) = gay1y2(ω)exp(i phy1y2(ω)) (generic cross spectrum)

gay1y2(ω) = [c2
y1y2

(ω) + q2
y1y2

(ω)]
1
2 (gain)

phy1y2(ω) = arctan
(
qy1y2 (ω)

cy1y2 (ω)

)
(phase shift in radians)

(Phase shift in time units is ph(ω)
ω )

cohy1y2(ω) =
|fy1y2(ω)|2

fy1y1(ω)fy2y2(ω)
(coherence)

Squared correlation decomposed by frequency
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Useful Spectral Results for Filter Analysis

If y1t = B(L) y2t , then:

fy1y1(ω) = |B(e−iω)|2 fy2y2(ω)
fy1y2(ω) = B(e−iω) fy2y2(ω)

B(e−iω) is the filter’s frequency response function
———————————————————————————–

If y1t = A(L)B(L)y2t , then:

fy1y1(ω) = |A(e−iω)|2|B(e−iω)|2fy2y2(ω)
fy1y2(ω) = A(e−iω)B(e−iω)fy2y2(ω)

———————————————————————————-
If y =

∑N
i=1 yi , and the yi are independent, then:

fy (ω) =
N∑
i=1

fyi (ω)
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Nuances...

Note that

B(e−iω) =
fy1y2(ω)

fy2y2(ω)

=⇒ B(e−iω) =
gay1y2(ω)e i phy1y2 (ω)

fy2y2(ω)
=

(
gay1y2(ω)

fy2y2(ω)

)
e i phy1y2 (ω)

Gains of fy1y2(ω) and B(e−iω) are closely related.

Phases are the same.
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Filter Analysis Example I:
A Simple (but Very Important) High-Pass Filter

y1t = (1− L)y2t = y2t − y2,t−1

B(L) = (1− L) =⇒ B(e−iω) = 1− e−iω

Hence the filter gain is:∣∣B(e−iω)
∣∣ =

∣∣1− e−iω
∣∣ = 2(1− cos(ω))
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Gain of the First-Difference Filter, B(L) = 1− L

How would the gain look if the filter were
B(L) = 1 + L rather than B(L) = 1− L?
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Filter Analysis Example II

y2t = .9y2,t−1 + ηt

ηt ∼WN(0, 1)

y1t = .5y2,t−1 + εt

εt ∼WN(0, 1)

where ηt and εt are orthogonal at all leads and lags
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Spectral Density of y2

y2t =
1

1− .9L
ηt

=⇒ fy2y2(ω) =
1

2π

(
1

1− .9e−iω

)(
1

1− .9e iω

)
=

1

2π

1

1− 2(.9) cos(ω) + (.9)2

=
1

11.37− 11.30 cos(ω)

Shape?
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Spectral Density of y1

y1t = 0.5Ly2t + εt

(So B(L) = .5L and B(e−iω) = 0.5e−iω)

=⇒ fy1y1(ω) =| 0.5e−iω |2 fy2y2(ω) +
1

2π

= 0.25fy2y2(ω) +
1

2π

=
0.25

11.37− 11.30 cos(ω)
+

1

2π

Shape?
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Cross Spectrum Gain and Phase

B(L) = .5L

B(e−iω) = .5e−iω

fy1y2(ω) = B(e−iω) fy2y2(ω)
= .5e−iω fy2y2(ω)

= (.5fy2y2(ω)) e−iω

gy1y2(ω) = .5fy2y2(ω) =
.5

11.37− 11.30 cos(ω)

Phy1y2(ω) = −ω
(In time units, Phy1y2(ω) = −1, so y1 leads y2 by -1)
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Cross Spectrum Coherence

Cohy1y2(ω) =
| fy1Y2(ω) |2

fy2y2(ω)fy1y1(ω)
=

.25f 2
y2y2

(ω)

fy2y2(ω)fy1y1(ω)
=
.25fy2y2(ω)

fy1y1(ω)

=
.25 1

2π
1

1−2(.9) cos(ω)+.92

.25 1
2π

1
1−2(.9) cos(ω)+.92 + 1

2π

=
1

8.24 + 7.20 cos(ω)

Shape?
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Filter Analysis Example III: Kuznets’ Filters

Low-frequency fluctuations in aggregate real output growth.
Low-frequency “Kuznets cycle”: 20-year period

Filter 1 (moving average):

y1t =
1

5

2∑
j=−2

y2,t−j

=⇒ B1(e−iω) =
1

5

2∑
j=−2

e−iωj =
sin(5ω/2)

5sin(ω/2)

Hence the filter gain is:

∣∣B1(e−iω)
∣∣ =

∣∣∣∣sin(5ω/2)

5sin(ω/2)

∣∣∣∣
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Kuznets’ Filters, Continued

Figure: Gain of Kuznets’ Filter 1
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Kuznets’ Filters, Continued

Filter 2 (fancy difference):

y3t = y2,t+5 − y2,t−5

=⇒ B2(e−iω) = e i5ω − e−i5ω = 2sin(5ω)

Hence the filter gain is:∣∣B2(e−iω)
∣∣ = |2sin(5ω)|

78 / 357



Kuznets’ Filters, Continued

Figure: Gain of Kuznets’ Filter 2
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Kuznets’ Filters, Continued

Composite gain:

∣∣B1(e−iω)B2(e−iω)
∣∣ =

∣∣∣∣sin(5ω/2)

5sin(ω/2)

∣∣∣∣ |2sin(5ω)|
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Kuznets’ Filters, Continued

Figure: Composite Gain of Kuznets’ two Filters
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Gains All Together for Comparison
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So The Kuznets Procedure may Induce a Spurious
“Long-Wave” Cycle

Let’s apply the Kuznets filter to WN:

εt ∼WN(0, 1)

fε(w) =
1

2π

ε̃t = BKuznets(L)εt ,

fε̃t (w) = |BKuznets(e iw )|2fε(w)
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Compare the Two Spectra!
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Markovian Structure, State Space,
and the Kalman Filter
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Part I: Markov Processes
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Discrete-State, Discrete-Time Stochastic Process

{yt}, t = 0, 1, 2, . . .

Possible values (”states”) of yt : 1, 2, 3, . . .

First-order homogeneous Markov process:

Prob(yt+1 = j |yt = i , yt−1 = it−1, . . . , y0 = i0)

= Prob(yt+1 = j |yt = i) = pij
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Transition Probability Matrix P

1-step transition probabilities:

[time (t + 1)]

[time t]

P ≡


p11 p12 · · ·
p21 p22 · · ·
· · · · ·
· · · · ·

·



pij ≥ 0,
∑∞

j=1 pij = 1
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Chapman-Kolmogorov

m-step transition probabilities:

p
(m)
ij = Prob(yt+m = j | yt = i)

Let P(m) ≡
(

p
(m)
ij

)
.

Chapman-Kolmogorov theorem:

P(m+n) = P(m)P(n)

Corollary: P(m) = Pm
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Lots of Definitions...

State j is accessible from state i if p
(n)
ij > 0, for some n.

Two states i and j communicate (or are in the same class)
if each is accessible from the other.

We write i ↔ j .

A Markov process is irreducible if there exists only one class
(i.e., all states communicate).

State i has period d if p
(n)
ii = 0 ∀n such that n/d 6∈ Z ,

and d is the greatest integer with that property.
(That is, a return to state i can only occur in multiples of d steps.)

A state with period 1 is called an aperiodic state.

A Markov process all of whose states are aperiodic
is called an aperiodic Markov process.
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...And More Definitions

The first-transition probability is the probability that, starting in i ,
the first transition to j occurs after n transitions:

f
(n)
ij = Prob(yn = j , yk 6= j , k = 1, ..., (n − 1)|y0 = i)

Denote the eventual transition probability

from i to j by fij (=
∑∞

n=1 f
(n)
ij ).

State j is recurrent if fjj = 1 and transient otherwise.

Denote the expected number of transitions needed to return to

recurrent state j by µjj(=
∑∞

n=1 nf
(n)
jj ).

A recurrent state j is:
positive recurrent if µjj <∞

null recurrent if µjj =∞.
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And One More Definition

The row vector π is called the stationary distribution for P if:

πP = π.

The stationary distribution is also called the
steady-state distribution.
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Theorem (Finally!)

Theorem: Consider an irreducible, aperiodic Markov process.

Then either:

(1) All states are transient or all states are null recurrent

p
(n)
ij → 0 as n→∞ ∀i , j . No stationary distribution.

or

(2) All states are positive recurrent.

p
(n)
ij → πj as n→∞ ∀i , j .

{πj , j = 1, 2, 3, ...} is the unique stationary distribution.
π is any row of limn→∞ Pn.
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Example

Consider a Markov process with transition probability matrix:

P =

(
0 1
1 0

)
Call the states 1 and 2.

We will verify many of our claims,
and we will calculate the steady-state distribution.
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Example, Continued

(a) Valid Transition Probability Matrix

pij ≥ 0 ∀i , j
2∑

j=1

p1j = 1,
2∑

j=1

p2j = 1

(b) Chapman-Kolmogorov Theorem (for P(2))

P(2) = P · P =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
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Example, Continued

(c) Communication and Reducibility

Clearly, 1↔ 2, so P is irreducible.

(d) Periodicity

State 1: d(1) = 2

State 2: d(2) = 2

(e) First and Eventual Transition Probabilities

f
(1)

12 = 1, f
(n)

12 = 0 ∀ n > 1 ⇒ f12 = 1

f
(1)

21 = 1, f
(n)

21 = 0 ∀ n > 1 ⇒ f21 = 1
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Example, Continued

(f) Recurrence

Because f21 = f12 = 1, both states 1 and 2 are recurrent.

Moreover,

µ11 =
∞∑
n=1

nf
(n)

11 = 2 <∞ (and similarly µ22 = 2 <∞)

Hence states 1 and 2 are positive recurrent.
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Example, Continued

(g) Stationary Distribution

We will guess and verify.

Let π1 = .5, π2 = .5 and check πP = π:

(.5, .5)

(
0 1
1 0

)
= (.5, .5).

Hence the stationary probabilities are 0.5 and 0.5.

Note that in this example we can not get the stationary
probabilities by taking limn→∞ Pn. Why?
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Illustrations/Variations/Extensions:
Regime-Switching Models

P =

(
p11 1− p11

1− p22 p22

)

st ∼ P

yt = cst + φst yt−1 + εt

εt ∼ iid N(0, σ2
st )

“Markov switching,” or “hidden Markov,” model
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Illustrations/Variations/Extensions:
Heterogeneous Markov Processes

Pt =


p11,t p12,t · · ·
p21,t p22,t · · ·
· · · · ·
· · · · ·

 .

e.g., Regime switching with time-varying transition probabilities:

st ∼ Pt

yt = cst + φst yt−1 + εt

εt ∼ iid N(0, σ2
st )

Business cycle duration dependence: pij ,t = gij(t)
Credit migration over the cycle: pij ,t = gij(cyclet)

General covariates: pij ,t = gij(xt)
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Illustrations/Variations/Extensions:
Constructing Markov Processes with
Useful Stationary Distributions

I Markov Chain Monte Carlo (e.g., Gibbs sampling)
– Construct a Markov process from whose
steady-state distribution we want to sample.

I Global Optimization (e.g., simulated annealing)
– Construct a Markov process the support of whose
steady-state distribution is the set of global optima
of a function we want to maximize.
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Illustrations/Variations/Extensions:
Continuous-State Markov Processes
AR(1)

αt = Tαt−1 + ηt

ηt ∼WN
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Illustrations/Variations/Extensions:
Continuous-State Markov Processes
State-Space System

αt = Tαt−1 + ηt

yt = Zαt + ζt

ηt ∼WN, ζt ∼WN

We will now proceed to study state-space systems in significant
depth.
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Part II: State Space

104 / 357



Transition Equation

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

t = 1, 2, ..., T
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Measurement Equation

yt
1x1

= Z

1xm

αt

mx1

+ Γ

1xL

wt

Lx1

+ ζt
1x1

(This is for univariate y . We’ll do multivariate shortly.)

t = 1, 2, ..., T
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(Important) Details

(
ηt
ζt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, h︸︷︷︸
1×1

)

)

E (α0 ηt ′) = 0mxg

E (α0 ζt) = 0mx1
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All Together Now

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
1x1

= Z

1xm

αt

mx1

+ Γ

1xL

wt

Lx1

+ ζt
1x1(

ηt
ζt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, h︸︷︷︸
1×1

)

)

E (α0 ζt) = 0mx1 E (α0 ηt ′) = 0mxg

(Covariance stationary case: All eigenvalues of T inside |z | = 1)
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Our Assumptions Balance Generality vs. Tedium

– Could allow time-varying system matrices

– Could allow exogenous variables in measurement equation

– Could allow correlated measurement and transition disturbances

– Could allow for non-linear structure
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State Space Representations Are Not Unique

Transform by the nonsingular matrix B.

The original system is:

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
1x1

= Z

1xm

αt

mx1

+ ζt
1x1
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State Space Representations Are Not Unique: Step 1

Rewrite the system in two steps

First, write it as:

αt

mx1

= T

mxm

B−1

mxm

B

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
1x1

= Z

1xm

B−1

mxm

B

mxm

αt

mx1

+ ζt
1x1
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State Space Representations Are Not Unique: Step 2

Second, premultiply the transition equation by B to yield:

(B αt)
mx1

= (B T B−1)
mxm

(B αt−1)
mx1

+ (B R)
mxg

ηt
gx1

yt
1x1

= (Z B−1)

1xm

(B αt )

mx1

+ ζt
1x1

(Equivalent State Space Representation)
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AR(1) State Space Representation

yt = φ yt−1 + ηt

ηt ∼ WN(0, σ2
η)

Already in state space form!

αt = φ αt−1 + ηt

yt = αt

(T = φ, R = 1, Z = 1, Q = σ2
η, h = 0)
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MA(1) in State Space Form

yt = ηt + θ ηt−1

ηt ∼ WN(0, σ2
η)

(
α1t

α2t

)
=

(
0 1
0 0

) (
α1,t−1

α2,t−1

)
+

(
1
θ

)
ηt

yt = (1, 0) αt = α1t
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MA(1) in State Space Form

Why? Recursive substitution from the bottom up yields:

αt =

(
yt
θηt

)
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MA(q) in State Space Form

yt = ηt + θ1 ηt−1 + ... + θq ηt−q

ηt ∼ WN N(0, σ2
η)


α1t

α2t
...

αq+1,t

 =


0
0 Iq
...
0 0′




α1,t−1

α2,t−1
...

αq+1,t−1

 +


1
θ1
...
θq

 ηt

yt = (1, 0, ..., 0) αt = α1t
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MA(q) in State Space Form

Recursive substitution from the bottom up yields:

αt ≡


θqηt−q + . . . + θ1ηt−1 + ηt

...
θqηt−1 + θq−1ηt

θqηt

 =


yt
...

θqηt−1 + θq−1ηt
θqηt
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AR(p) in State Space Form

yt = φ1 yt−1 + ... + φp yt−p + ηt

ηt ∼ WN(0, σ2
η)

αt =


α1t

α2t

...
αpt

 =


φ1

φ2 Ip−1

...
φp 0′




α1,t−1

α2,t−1

...
αp,t−1

 +


1
0
...
0

 ηt

yt = (1, 0, ..., 0) αt = α1t
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AR(p) in State Space Form

Recursive substitution from the bottom up yields:

αt =


α1t

...
αp−1,t

αpt

 =


φ1α1,t−1 + . . . + φpα1,t−p + ηt

...
φp−1α1,t−1 + φpα1,t−2

φpα1,t−1



=


yt
...

φp−1yt−1 + φpyt−2

φpyt−1
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ARMA(p,q) in State Space Form

yt = φ1yt−1 + ...+ φpyt−p + ηt + θ1ηt−1 + ...+ θqηt−q

ηt ∼WN(0, σ2
η)

Let m = max(p, q + 1) and write as ARMA(m,m − 1):

(φ1, φ2, ..., φm) = (φ1, ..., φp, 0, ..., 0)

(θ1, θ2, ..., θm−1) = (θ1, ..., θq, 0, ..., 0)
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ARMA(p,q) in State Space Form

αt =


φ1

φ2 Im−1
...
φm 0′

 αt−1 +


1
θ1
...

θm−1

 ηt

yt = (1, 0, ..., 0) αt
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ARMA(p,q) in State Space Form

Recursive substitution from the bottom up yields:


α1t

...
αm−1,t

αmt

 =


φ1α1,t−1 + φpα1,t−p + ηt + θ1ηt−1 + . . . + θqηt−q

...
φm−1α1,t−1 + αm,t−1 + θm−2ηt

φmα1,t−1 + θm−1ηt



=


yt
...

φm−1yt−1 + φmyt−2 + θm−1ηt−1 + θm−2ηt
φmyt−1 + θm−1ηt
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Multivariate State Space

(Same framework, N > 1 observables)

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
Nx1

= Z

Nxm

αt

mx1

+ ζt

Nx1

(
ηt
ζt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, H︸︷︷︸
N×N

)

)

E (α0 η
′
t) = 0mxg E (α0 ζ

′
t) = 0mxN
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N-Variable VAR(p)

yt
Nx1

= Φ1

NxN
yt−1 + ... + Φpyt−p + ηt

Nx1

ηt ∼ WN(0, Σ)
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State Space Representation


α1t

α2t

...
αpt


Npx1

=


Φ1

Φ2 IN(p−1)

...
Φp 0′


NpxNp


α1,t−1

α2,t−1

...
αp,t−1


Npx1

+


IN

0NxN

...
0NxN


NPxN

ηt

yt
Nx1

= (IN , 0N
NxNp

, ..., 0N) αt

Npx1
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N-Variable VARMA(p,q)

yt
Nx1

= Φ1

NxN
yt−1 + ... + Φp

NxN
yt−p

+ ηt + Θ1

NxN
ηt−1 + ... + Θq

NxN
ηt−q

ηt ∼ WN(0, Σ)
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N-Variable VARMA(p,q)

αt

Nmx1

=


Φ1

Φ2 IN(m−1)
...

Φm 0NxN(m−1)

 αt−1 +


I
Θ1
...

Θm−1

 ηt

yt = (I , 0, ..., 0) αt = α1t

where m = max(p, q + 1)
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Linear Regression

Transition:

αt = αt−1

Measurement:

yt = x ′tαt + ζt

(T = I , R = 0, Zt = x ′t , H = σ2
ζ )

Note the time-varying system matrix.
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Linear Regression with Time-Varying Coefficients

Transition:

αt = φ αt−1 + ηt

Measurement:

yt = x ′tαt + ζt

(T = φ, R = I , Q = cov(ηt), Zt = x ′t , H = σ2
ζ )

– Gradual evolution of tastes, technologies and institutions
– Lucas critique

– Stationary or non-stationary
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Linear Regression with ARMA(p,q) Disturbances

yt = βxt + ut

ut = φ1 ut−1 + ... + φp ut−p
+ ηt + φ1 ηt−1 + ... + θq ηt−q

αt =


φ1

φ2 Im−1
...
φm 0′

 αt−1 +


1
θ1
...

θm−1

 ηt

yt = (1, 0, ..., 0)αt + βxt

where m = max(p, q + 1)
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Signal + Noise Model
“Unobserved Components”

yt = xt + ζt

xt = φ xt−1 + ηt(
ζt
ηt

)
∼ WN

(
0,

(
σ2
ζ 0

0 σ2
η

) )

(αt = xt , T = φ, R = 1, Z = 1, Q = σ2
η, H = σ2

ζ )
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Cycle + Seasonal + Noise

yt = ct + st + ζt

ct = φ ct−1 + ηct

st = γ st−4 + ηst
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Cycle + Seasonal + Noise

Transition equations for the cycle and seasonal:

αct = φ αc,t−1 + ηct

αst =


0
0 I3
0
γ 0′

 αs,t−1 +


1
0
0
0

 ηst
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Cycle + Seasonal + Noise

Stacking transition equations gives the grand transition equation:

(
αst

αct

)
=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
γ 0 0 0 0
0 0 0 0 φ


(

αs,t−1

αc,t−1

)
+


1 0
0 0
0 0
0 0
0 1


(

ηst
ηct

)

Finally, the measurement equation is:

yt = (1, 0, 0, 0, 1)

(
αst

αct

)
+ ζt
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Dynamic Factor Model – Single AR(1) Factor

(White noise idiosyncratic factors uncorrelated with each other
and uncorrelated with the factor at all leads and lags...)

 y1t
...

yNt

 =

 λ1
...
λN

 ft +

 ζ1t
...
ζNt



ft = φft−1 + ηt

Already in state-space form!
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Dynamic Factor Model – Single ARMA(p,q) Factor

 y1t
...

yNt

 =

 λ1
...
λN

 ft +

 ζ1t
...
ζNt



Φ(L) ft = Θ(L) ηt
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Dynamic Factor Model – Single ARMA(p,q) Factor

State vector for f is state vector for system.

System transition:

αt =


φ1

φ2 Im−1
...
φm 0′

 αt−1 +


1
θ1
...

θm−1

 ηt
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Dynamic Factor Model – Single ARMA(p,q) Factor

System measurement:

 y1t
...

yNt

 =

 λ1
...
λN

 (1, 0, ..., 0) αt +

 ζ1t
...
ζNt



=

 λ1 0 ... 0
...
λN 0 ... 0

 αt +

 ζ1t
...
ζNt
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Part III: The Kalman Filter
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State Space Representation

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
Nx1

= Z

Nxm

αt

mx1

+ ζt

Nx1(
ηt
ζt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, H︸︷︷︸
N×N

)

)

E (α0 η
′
t) = 0mxg

E (α0 ζ
′
t) = 0mxN
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The Filtering “Thought Experiment”

– Prediction and updating

– “Online”, “ex ante”, using only real-time available data ỹt
to extract αt and predict αt+1,

where ỹt = {y1, ..., yt}
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Statement of the Kalman Filter

I. Initial state estimate and MSE

a0 = E (α0)

P0 = E (α0 − a0) (α0 − a0)′
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Statement of the Kalman Filter

II. Prediction Recursions

at/t−1 = T at−1

Pt/t−1 = T Pt−1 T ′ + R Q R ′

III. Updating Recursions

at = at/t−1 + Pt/t−1 Z ′ F−1
t (yt − Zat/t−1)

(where Ft = Z Pt/t−1 Z ′ + H)

Pt = Pt/t−1 − Pt/t−1 Z ′ F−1
t Z Pt/t−1

t = 1, ...,T
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State-Space Representation in Density Form
(Assuming Normality)

αt |αt−1 ∼ N(Tαt−1, RQR ′)

yt |αt ∼ N(Zαt , H)
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Kalman Filter in Density Form
(Assuming Normality)

Initialize at a0, P0

State prediction:
αt |ỹt−1 ∼ N(at/t−1, Pt/t−1)

at/t−1 = Tat−1

Pt/t−1 = TPt−1T ′ + RQR ′

Update:
αt |ỹt ∼ N(at , Pt)

at = at/t−1 + Kt(yt − Zat/t−1)
Pt = Pt/t−1 − KtZPt/t−1

where ỹt = {y1, ..., yt}
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Useful Result 1: Conditional Expectation is MVUE
Extraction Under Normality

Suppose that(
x
y

)
∼ N

(
µ,Σ

)
where x is unobserved and y is observed.

Then

E (x |y) = argmin x̂(y)

∫ ∫
(x − x̂(y))2 f (x , y) dx dy ,

where x̂(y) is any unbiased extraction of x based on y
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Useful Result 2: Properties of the Multivariate Normal

(
x
y

)
∼ N

(
µ,Σ

)
µ = (µx , µy )′ Σ =

(
Σxx Σxy

Σyx Σyy

)

=⇒ x |y ∼ N
(
µx |y , Σx |y

)

µx |y = µx + Σxy Σ−1
yy (y − µy )

Σx |y = Σxx − Σxy Σ−1
yy Σyx
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Constructive Derivation of the Kalman Filter
Under Normality

Let Et(·) ≡ E (· |Ωt), where Ωt ≡ {y1, ..., yt}.

Time 0 “update” (initialization):

a0 = E0 (α0) = E (α0)

P0 = var0(α0) = E [(α0 − a0) (α0 − a0)′]
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Derivation of the Kalman Filter, Continued...

Time 0 prediction

At time 1 we know that:

α1 = Tα0 + Rη1

Now take expectations conditional on time-0 information:

E0(α1) = TE0(α0) + RE0(η1)

= Ta0

= a1/0
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Derivation of the Kalman Filter, Continued...

Time 0 prediction covariance matrix

E0

(
(α1 − a1/0) (α1 − a1/0)′

)

= E0

(
(α1 − Ta0) (α1 − Ta0)′

)
(subst. a1/0)

= E0

(
(T (α0 − a0) + Rη1) (T (α0 − a0) + Rη1)′

)
(subst. α1)

= TP0 T ′ + RQR ′ (using E (α0 η
′
t) = 0 ∀t)

= P1/0
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Derivation of the Kalman Filter, Continued...

Time 1 updating

We will derive the distribution of:(
α1

y1

) ∣∣∣∣Ω0

and then convert to

α1|(Ω0 ∪ y1)

or

α1|Ω1
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Derivation of the Kalman Filter, Continued...

Means:

E0(α1) = a1/0

E0(y1) = Za1/0

152 / 357



Derivation of the Kalman Filter, Continued...

Variance-Covariance Matrix:

var0(α1) = E0

(
(α1 − a1/0) (α1 − a1/0)

)
= P1/0

var0(y1) = E0

(
(y1 − Za1/0) (y1 − Za1/0)′

)
= E0

(
(Z (α1 − a1/0) + ζ1) (Z (α1 − a1/0) + ζ1)′

)
= Z P1/0Z ′ + H (using ζ⊥η)

cov0 (α1, y1) = E0(α1 − a1/0) (Z (α1 − a1/0) + ζ1)′

= P1/0Z ′ (using ζ⊥η)
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Derivation of the Kalman Filter, Continued...

Hence:

(
α1

y1

) ∣∣∣∣Ω0 ∼ N

((
a1/0

Za1/0

)
,

(
P1/0 P1/0 Z ′

ZP1/0 ZP1/0 Z ′ + H

))

Now by Useful Result 2, α1 |Ω0 ∪ y1 ∼ N(a1, P1)

a1 = a1/0 + P1/0 Z ′ F−1
1 (y1 − Za1/0)

P1 = P1/0 − P1/0 Z ′ F−1
1 Z P1/0

(F1 = Z P1/0 Z ′ + H)

Repeating yields the Kalman filter.
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What Have We Done?

Under normality,
we proved that the Kalman filter delivers

best predictions and extractions, for a standard and appropriate
definition of “best”.

“MVUE”

Dropping normality,
similar results continue to hold

(best linear predictions and extractions).
“BLUE”
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Calculation of Initial Covariance Matrix P0 = Γ(0)
When a0 = 0

αt = Tαt−1 + Rηt

=⇒ P0 = E (Tαt−1 + Rηt)(Tαt−1 + Rηt)
′ = TP0T ′ + RQR ′

=⇒ vec(P0) = vec(TP0T ′) + vec(RQR ′)

= (T ⊗ T )vec(P0) + vec(RQR ′)

=⇒ (I − (T ⊗ T ))vec(P0) = vec(RQR ′)

=⇒ vec(P0) = (I − (T ⊗ T ))−1vec(RQR ′)
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The Smoothing Thought Experiment

– “offline”, “ex post”, using all data ỹT to extract αt .
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The Kalman Smoother

1. Kalman filter forward through the sample, t = 1, ..., T

2. Smooth backward, t = T , (T − 1), (T − 2), ..., 1

Initialize: aT ,T = aT , PT ,T = PT

Then:

at,T = at + Jt(at+1,T − at+1,t)

Pt,T = Pt + Jt(Pt+1,T − Pt+1,t)J ′t

where

Jt = PtT
′P−1

t+1,t
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Point Prediction of yt

Prediction:

yt/t−1 = Zat/t−1

Prediction error:

vt = yt − Zat/t−1
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Density Prediction of yt

yt |Ωt−1 ∼ N(Zat/t−1, Ft)

or equivalently

vt |Ωt−1 ∼ N (0, Ft)

Normality follows from linearity of all transformations.

Conditional mean already derived.

Proof that the conditional covariance matrix is Ft :

Et−1vtv
′
t = Et−1[Z (αt − at/t−1) + ζt ][Z (αt − at/t−1) + ζt ]

′

= ZPt/t−1Z ′ + H

= Ft
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Part IV:
The Innovations (Steady-State) Representation
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Combining State Vector Prediction and Updating

(1) Prediction: at+1/t = Tat

(2) Update: at = at/t−1 + Pt/t−1 Z ′ F−1
t (yt − Zat/t−1)

= at/t−1 + Kt vt

where

Kt = Pt/t−1 Z ′ F−1
t

Substituting (2) into (1):

at+1/t = Tat/t−1 + TKtvt
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Combining Covariance Matrix Prediction and Updating

(1) Prediction: Pt+1/t = T Pt T ′ + RQR ′

(2) Update: Pt = Pt/t−1 − Kt Z Pt/t−1

Substitute (2) into (1):

Pt+1/t = T Pt/t−1 T ′ − T Kt Z Pt/t−1 T ′ + RQR ′

(Matrix Ricatti equation)
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Why Care About Combining Prediction and Updating?

It leads us to the notion of steady state of the Kalman filter...

...which is the bridge from the Wold representation
to the state space representation
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“Two-Shock” State Space Representation

αt = Tαt−1 + Rηt

yt = Zαt + ζt

E (ηtη
′
t) = Q

E (ζtζ
′
t) = H

(Nothing new)
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“One-Shock” (“Prediction Error”) Representation

We have seen that

at+1|t = Tat|t−1 + TKt vt (transition)

Moreover, it is tautologically true that

yt = Z at|t−1 + (yt − Zat|t−1)

= Z at|t−1 + vt (measurement)

Note that one-shock state space representation
has time-varying system matrices:

I “R matrix” in transition equation is TKt

I Covariance matrix of vt is Ft
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“Innovations” (Steady-State) Representation

If as T →∞, Pt/t−1 → P̄,

where P̄ solves the matrix Ricatti equation, then:

at+1|t = Tat|t−1 + T K̄εt

yt = Z at|t−1 + εt

where

K̄ = P̄ Z ′ F̄−1

E (εtε
′
t) = F̄ = Z P̄Z ′ + H

– Effectively Wold-Wiener-Kolmogorov prediction and extraction
– Prediction yt+1/t is now the projection of yt+1 on infinite past,

and the finite-history prediction errors vt are now the
infinite-history Wold-Wiener-Kolmogorov innovations εt
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Remarks on the Steady State

1. Steady state P̄ exists if:
I the underlying two-shock system is time invariant
I all eigenvalues of T are less than one
I P1|0 is positive semidefinite

2. Because the recursions for Pt|t−1 and Kt don’t depend on the
data, but only on P0, we can calculate arbitrarily close
approximations to P̄ and K̄ by letting the Kalman filter run
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Likelihood Evaluation and Optimization
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Gaussian Likelihood by Brute Force
Univariate Zero-Mean Gaussian AR(1) Example

Process: yt = φyt−1 + εt

εT ∼ iidN(0, σ2)

T × 1 Sample path:

y ∼ N(0, Σ(φ, σ2)),

where

Σij(φ, σ
2) =

σ2

1− φ2
φ|i−j |
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Gaussian Likelihood by Brute Force
Univariate Zero-Mean Gaussian AR(1) Example
Continued

L(y ;φ, σ2) = (2π)T/2|Σ(φ, σ2)|−1/2exp

(
−1

2
y ′Σ−1(φ, σ2)y

)

lnL(y ;φ, σ2) = const − 1

2
ln|Σ(φ, σ2)| − 1

2
y ′Σ−1(φ, σ2)y

– Here Σ is easy to express analytically in terms of model
parameters (φ, σ2), but that only works in the simplest cases.

– In general Σ is very hard to express analytically
in terms of model parameters.

– In any event, likelihood evaluation requires inversion of Σ, which
is T × T . Very hard except for very small T .
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Gaussian Likelihood by Brute Force:
General Case

L(y ; θ) = (2π)T/2|Σ(θ)|−1/2exp

(
−1

2
(y − µ)′Σ−1(θ)(y − µ)

)

lnL(y ; θ) = const − 1

2
ln|Σ(θ)| − 1

2
(y − µ)′Σ−1(θ) (y − µ)

T × T matrix Σ(θ) is generally
very hard (read: impossible)

to calculate and invert

(And in the multivariate case Σ(θ) would be NT × NT )
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Gaussian Likelihood with Finesse:
The Prediction-Error Likelihood Decomposition

In levels:

L(y1, . . . , yT ; θ) =
T∏
t=1

Lt(yt |yt−1, . . . , y1; θ)

L(v1, . . . , vT ; θ) =
T∏
t=1

Lt(vt ; θ)

In logs:

ln L(y1, . . . , yT ; θ) =
T∑
t=1

Lt(yt |yt−1, . . . , y1; θ)

ln L(v1, . . . , vT ; θ) =
T∑
t=1

ln Lt(vt ; θ)
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Prediction-Error Decomposition, Continued
Univariate Gaussian Case

ln L = −T

2
ln 2π − 1

2

T∑
t=1

lnσ2
t −

1

2

T∑
t=1

(yt − µt)2

σ2
t

Now change the above “standard notation”
to “Kalman filter notation”:

ln L = −T

2
ln 2π − 1

2

T∑
t=1

ln Ft −
1

2

T∑
t=1

v 2
t

Ft

Kalman filter delivers vt and Ft !

No need for tedious analytic likelihood derivations!

No matrix inversion!
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Prediction-Error Decomposition, Continued
Multivariate Gaussian Case

ln L = −NT

2
ln 2π − 1

2

T∑
t=1

ln |Σt | −
1

2

T∑
t=1

(yt − µt)′Σ−1
t (yt − µt)

or

ln L = −NT

2
ln 2π − 1

2

T∑
t=1

ln |Ft | −
1

2

T∑
t=1

v ′tF
−1
t vt

Kalman filter again delivers vt and Ft .

Only the small N × N matrix Ft need be inverted.
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Approximate (Asymptotic)
Frequency Domain Gaussian Likelihood

We have:

xj =
2f̂ (ωj)

f (ωj ; θ)

d
→ χ2

2

where f (ωj ; θ) is the spectral density and the χ2
2 random variables

are independent across frequencies

ωj =
2πj

T
, j = 0, 1, ...,

T

2

⇒ MGF of any one of the xj ’s is

Mx(t) =
1

1− 2t
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Approximate Frequency Domain Gaussian Likelihood,
Continued

Now, because:

f̂ (ωj) =
f (ωj ; θ) xj

2
,

we can infer that:

Mf̂ (t) = Mx

(
f (ωj ; θ)

2
t

)
=

1

1− f (ωj ; θ) t

This is the MGF of exponential rv with parameter 1/f (ωj ; θ).

Hence the density (point likelihood) of f̂ is:

l(f̂ (ωj); θ) =
1

f (ωj ; θ)
e
−f̂ (ωj )

f (ωj ;θ)
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Approximate Frequency Domain Gaussian Likelihood,
Continued

So the univariate asymptotic Gaussian log likelihood is:

ln L(f̂ (ωj); θ) =

T/2∑
j=0

ln l(f̂ (ωj); θ) = −
T/2∑
j=0

ln f (ωj ; θ)−
T/2∑
j=0

f̂ (ωj)

f (ωj ; θ)

The multivariate asymptotic Gaussian log likelihood is:

ln L(F̂ ; θ) = −
T/2∑
j=0

ln |F (ωj ; θ)| − trace

T/2∑
j=0

F−1(ωj ; θ) F̂ (ωj)
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Numerical Maximization of the Gaussian Likelihood

I The key is to be able to evaluate the likelihood for a given
parameter configuration.

I Then we can climb uphill to maximize the likelihood.

I Now we will introduce methods for doing so.
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Numerical Optimization: Basic Framework

Function lnL(θ) to be optimized w.r.t. θ,

θ ∈ Θ, a compact subset of Rk
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Crude Search (“Brute Force”)

I Deterministic search: Search k dimensions at r locations in
each dimension.

I Randomized Search: Repeatedly sample from Θ, repeatedly
evaluating lnL(θ)

– Absurdly slow (curse of dimensionality)

181 / 357



“Gradient-Based” Iterative Algorithms (“Line-Search”)

Parameter vector at iteration m: θ(m).

θ(m+1) = θ(m) + C (m), where C (m) is the step.

Gradient algorithms: C (m) = −t(m)D(m)s(m)

t(m) is the step length, or step size (a positive number)
D(m) is a positive definite direction matrix

s(m) is the score (gradient) vector evaluated at θ(m)
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General Algorithm

1. Specify θ(0)

2. Compute D(m) and s(m)

3. Determine step length t(m)

(Often, at each step, choose t(m) to optimize the objective
function (“variable step length”))

4. Compute θ(m+1)

5. If convergence criterion not met, go to 2.
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Convergence Criteria

‖ θ(m) − θ(m−1) ‖ “small”

‖ s(m) ‖ “small”
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Method of Steepest Decent

Use D(m) = I , t(m) = 1, ∀ m.

Properties:

1. May converge to a critical point other than a minimum
(of course)

2. Requires only first derivative of the objective function

3. Slow convergence
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Newton’s Method

Take D(m) as the inverse Hessian of lnL(θ) at θ(m)

D(m) = H−1(m) =



∂2lnL
∂θ2

1
|θ(m) . . . ∂2lnL

∂θ1∂θk
|θ(m)

.

.

.
∂2lnL
∂θk∂θ1

|θ(m) . . . ∂2lnL
∂θ2

k
|θ(m)



−1

Also take t(m) = 1

Then θ(m+1) = θ(m) − H−1(m) s(m)
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Derivation From Second-Order Taylor Expansion

Initial guess: θ(0)

lnL(θ) ≈ lnL(θ(0)) + s(0)(θ − θ(0)) + 1
2 (θ − θ(0))′H(0)(θ − θ(0))

F.O.C.:

s(0) + H(0)(θ∗ − θ(0)) = 0

or

θ∗ = θ(0) − H−1(0)s(0)
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Properties of Newton

lnL(θ) quadratic ⇒ full convergence in a single iteration

More generally, iterate to convergence:
θ(m+1) = θ(m) − H−1(m)s(m)

Quick Convergence

But there is a price:

Requires first and second derivatives of the objective function

Requires inverse Hessian at each iteration
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The EM (Expectation/Maximization) Algorithm

Think of {αt}Tt=0 as data that are unfortunately missing in

αt = Tαt−1 + ηt

yt = Zαt + ζt

t = 1, ...,T

Incomplete Data Likelihood:

lnL({yt}Tt=1; θ)

Complete Data Likelihood: (If only we had complete data!)

lnL
(
{yt}Tt=1, {αt}Tt=0; θ

)
Expected Complete Data Likelihood:

lnL
(
{yt}Tt=1; θ

)
≈ Eα

[
lnL
(
{yt}Tt=1, {αt}Tt=0; θ

)]
EM iteratively constructs and maximizes the expected
complete-data likelihood, which (amazingly) has same
maximizer as the (relevant) incomplete-data likelihood. 189 / 357



EM has Strong Intuition

1. E Step:

Approximate a “complete data” situation by replacing
{αt}Tt=0 with {at,T}Tt=0 from the Kalman smoother

2. M Step:

Estimate parameters by running regressions:
at,T → at−1,T

yt → at,T

3. If convergence criterion not met, go to 1

(Note: This slide provides some important intuition,
but it also omits some important details.)
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Simulation Methods in Econometrics
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Simulation: The Basics

192 / 357



The Canonical Problem: U(0, 1)

– Chaotic solutions to certain non-linear deterministic difference
equations, appropriately scaled, appear indistinguishable from

U(0, 1)

– “Pseudo-random deviates”

– Assume that we have such a U(0, 1) pseudo-random number
generator

Given U(0, 1) , U(α, β) is immediate
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Inverse cdf Method (“Inversion Methods”)

Desired density: f (y)

1. Find the analytical c.d.f., F (y), corresponding to f (y)

2. Generate T U(0, 1) deviates, {r1, ..., rT}

3. Calculate {F−1(r1), ..., F−1(rT )}
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Graphical Representation of Inverse cdf Method

Figure: Transforming from U(0,1) to f (from Davidson and MacKinnon,
1993)
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Example: Inverse cdf Method for exp(β) Deviates

f (y) = βe−βy where β > 0, y ≥ 0

⇒ F (y) =
∫ y

0 βe−βt dt

= βe−βt

−β

∣∣∣∣y
o

= − e−βy + 1 = 1− e−βy

Hence e−βy = 1 − F (y) so y = ln(1 − F (y))
−β

Then insert a U(0, 1) deviate for F (y)
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Complications

Analytic inverse cdf not always available
(e.g., N(0, 1) distribution).

I Approach 1: Evaluate the cdf numerically

I Approach 2: Use a different method

e.g., CLT approximation:

Take
(∑12

i=1 Ui (0, 1) − 6
)

for N(0, 1)
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An Efficient Gaussian Approach: Box-Muller

Let y1 and y2 be i.i.d. U(0, 1), and consider

z1 =
√
−2 ln y1 cos(2πy2)

z2 =
√
−2 ln y1 sin(2πy2)

Find the distribution of z1 and z2. We know that

f (z1, z2) = f (y1, y2) ·

∣∣∣∣∣ ∂y1
∂z1

∂y1
∂z2

∂y2
∂z1

∂y2
∂z2

∣∣∣∣∣ = 1 ·

∣∣∣∣∣ ∂y1
∂z1

∂y1
∂z2

∂y2
∂z1

∂y2
∂z2

∣∣∣∣∣
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Box-Muller (Continued)

Here we have y1 = e−
1
2

(z2
1 +z2

2 ) and y2 = 1
2π arctan

(
z2
z1

)

Hence

∣∣∣∣∣ ∂y1
∂z1

∂y1
∂z2

∂y2
∂z1

∂y2
∂z2

∣∣∣∣∣ =

(
1√
2π

e−z
2
1/2

)(
1√
2π

e−z
2
2/2

)

Bivariate density is the product of two N(0, 1) densities, so we
have generated two independent N(0, 1) deviates.
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Generating Deviates Derived from N(0,1)

N(µ, σ2) = µ + σ N(0, 1)

χ2
1 = [N(0, 1)]2

χ2
d =

∑d
i=1 [Ni (0, 1)]2, where the Ni (0, 1) are independent

td = N(0, 1)/
√

x2
d/d , where N(0, 1) and χ2

d are independent

Fd1,d2 = χ2
d1
/d1/χ

2
d2
/d2 where χ2

d1
and χ2

d2
are independent
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Multivariate Normal

N(0, I ) (N-dimensional) – Just stack N N(0, 1)’s

N(µ,Σ) (N-dimensional)

Let PP ′ = Σ (P is the Cholesky factor of Σ)

Let y ∼ N(0, I ). Then Py ∼ N(0,Σ)

To sample from N(µ,Σ), take µ+ Py
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Simulating Time Series Processes

1. Nonparametric: Exact realization via Cholesky factorization of
desired covariance matrix. One need only specify the
autocovariances.

2. Parametric I: Exact realization via Cholesky factorization of
covariance matrix corresponding to desired parametric model.

3. Parametric II: Approximate realization via arbitrary startup
value. Burn in before sampling.

4. Parametric III: Exact realization via drawing startup values
from stationary distribution.

Note: VAR(1) simulation is key (state transition dynamics).
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Accept-Reject Methods
(Simple Example)

We want to sample from f (y)

Draw:

ν1 ∼ U(α, β)

ν2 ∼ U(0, h)

If ν1, ν2 lies under the density f (y), then take y = ν1

Otherwise reject and repeat
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Graphical Representation of Simple Accept-Reject

Figure: Simple Accept-Reject
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General Accept-Reject

We want to draw S values of y from f (y), but we only know how
to sample from g(y).

Let M satisfy f (y)
g(y) ≤ M <∞, ∀y . Then:

1. Draw proposal y∗ ∼ g(y).

2. Accept y = y∗ w .p. f (y∗)
g(y∗)M

3. Repeat until S proposals have been kept.

Note that the S draws so-generated are iid.
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Markov Chain Monte Carlo (MCMC) Methods

– Construct a Markov chain whose steady-state distribution
is the distribution we want to sample from

– Run (“burn in”) the chain to convergence and start sampling

Question: How might you assess convergence to steady state?

– Note that the draws so-generated will be serially correlated

Question: For what does the serial correlation “matter”?
For what does it not matter?
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MCMC I: Metropolis-Hastings Sampling

We want to draw S values of y from f (y).

1. Draw y∗ from proposal density q(y ; y (s−1))

2. Calculate the acceptance probability α(y (s−1), y∗)

3. Set

y s =


y∗ w.p. α(y (s−1), y∗) “accept”

y (s−1) w.p. 1− α(y (s−1), y∗) “reject”

4. Repeat 1-3, s = 1, ...,S

Questions: What q to use in step 1, and what α to use in step 2?
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Metropolis-Hastings “Independence Chain”

Draw proposal y∗ from fixed proposal density q∗(y).
So q(y ; y (s−1)) is just fixed at q∗(y).

Acceptance probability that does the trick:

α(y (s−1), y∗) = min

[
f (y = y∗) q∗

(
y = y (s−1)

)
f (y = y (s−1)) q∗ (y = y∗)

, 1

]

= min

 f (y=y∗)
f (y=y (s−1))

q∗(y=y∗)

q∗(y=y (s−1))

, 1

 .
If improvement in target greater than improvement in proposal, go
there w.p.=1. Else go there w.p.<1.
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Metropolis-Hastings “Random Walk Chain”

Random walk proposals:

y∗ = y (s−1) + ε

ε is called the increment random variable. Commonly we draw
from ε ∼ N(0, c2), where c is chosen to ensure a “reasonable”
acceptance rate (around 30%, say).

Then q(y ; y (s−1)) is N(y (s−1), c2).

Acceptance probability that does the trick:

α(y (s−1), y∗) = min

[
f (y = y∗)

f (y = y (s−1))
, 1

]
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A Useful Property of Metropolis-Hastings

Metropolis requires evaluating only the kernel of the density of
interest, because the acceptance probability is governed by the
ratio

f (y = y∗)

f (y = y (s−1))
.

– This constrasts with generic accept-reject, which requires
evaluation of the full density f (y) (not just its kernel)
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MCMC II: Gibbs Sampling

Consider first the bivariate case. We want to sample from
f (y) = f (y1, y2). Initialize (j = 0) using y 0

2 .

Gibbs iteration j = 1:
a. Draw y 1

1 from f (y1|y 0
2 )

b. Draw y 1
2 from f (y2|y 1

1 )

Repeat j = 2, 3, ....

Notice that {y 1, y 2, ...} is a Markov chain. Under very general
conditions its stationary distribution is f (y).

Useful if conditionals are known and “easy” to sample from, but
joint/marginals are not. (This often happens in Bayesian analysis.)
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General Gibbs Sampling

We want to sample from f (y) = f (y1, y2, ..., yk)

Initialize (j = 0) using y 0
2 , y

0
3 , ..., y

0
k

Gibbs iteration j = 1:
a. Draw y 1

1 from f (y1|y 0
2 , ..., y

0
k )

b. Draw y 1
2 from f (y2|y 1

1 , y
0
3 , ..., y

0
k )

c. Draw y 1
3 from f (y3|y 1

1 , y
1
2 , y

0
4 , ..., y

0
k )

...
k. Draw y 1

k from f (yk |y 1
1 , ..., y

1
k−1)

Repeat j = 2, 3, ....
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More Simulation:
Bayesian Analysis with

Markov Chain Monte Carlo
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I. Basic Issues
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Frequentist vs. Bayesian Paradigms

Frequentist: θ̂ random, θ fixed.
√

T (θ̂ML − θ)→d N

Bayesian: θ̂ fixed, θ random.
√

T (θ − θ̂ML)→d N

Frequentist: Characterize the distribution of the random data (θ̂)
conditional on fixed “true” θ. Focus on the likelihood max (θ̂ML)
and likelihood curvature in an ε-neighborhood of the max.

Bayesian: Characterize the distribution of the random θ conditional
on fixed data (θ̂). Examine the entire likelihood.
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Some Bayesian Pros and Cons
(We Could Lengthen Both Lists...)

Pros:

1. Feels sensible to focus on p(θ/y). Relative frequency in
repeated samples replaced with subjective degree of belief
conditional on the single sample actually obtained

2. Exact finite-sample full-density inference

Cons:

1. From where does the prior come? How to elicit prior
distributions? Very difficult in all but the most trivial cases.

2. How to do an “objective” analysis? What is an
“uninformative” prior? Uniform is definitely not
uninformative...
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Bayesian Computational Mechanics

Data y ≡ {y1, . . . , yT}

Bayes’ Theorem:

f (θ/y) =
f (y/θ)f (θ)

f (y)

or

f (θ/y) = c f (y/θ)f (θ)
where c−1 =

∫
θ f (y/θ)f (θ)

f (θ/y) ∝ f (y/θ)f (θ)

p(θ/y) ∝ L(θ/y)g(θ)

posterior ∝ likelihood · prior
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Bayesian Estimation

Full posterior density

Highest posterior density intervals

Posterior mean, median, mode (depending on loss function)

How to get the posterior density of interest?
(We will see...)
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II. Bayesian Analysis of State-Space Models
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A. First do Bayes for Gaussian Regression
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Model and Standard Results

y = Xβ + ε
ε ∼ iid N(0, σ2I )

Recall the standard (frequentist) results:

β̂ML = (X ′X )−1X ′y

σ̂2
ML =

e ′e

T

β̂ML ∼ N
(
β, σ2(X ′X )−1

)
T σ̂2

ML

σ2
∼ χ2

T−K
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Bayesian Inference for β/σ2

Conjugate prior:
β ∼ N(β0,Σ0)

g(β) ∝ exp(−1/2(β − β0)′Σ−1
0 (β − β0))

Likelihood:
L(β/σ2, y) ∝

(
σ2
)−T/2

exp( −1
2σ2 (y − Xβ)′(y − Xβ))

Posterior:
p(β/σ2, y) ∝

exp(−1/2(β − β0)′Σ−1
0 (β − β0)− 1

2σ2 (y − Xβ)′(y − Xβ))

This is the kernel of a normal distribution:
β/σ2, y ∼ N(β1,Σ1)

where
β1 = Σ1(Σ−1

0 β0 + σ−2(X ′X )β̂ML)
Σ1 = (Σ−1

0 + σ−2(X ′X ))−1
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Gamma and Inverse Gamma Refresher

zt
iid∼ N

(
0,

1

δ

)
, x =

v∑
t=1

z2
t ⇒ x ∼ Γ

(
x ;

v

2
,
δ

2

)
(Note δ = 1⇒ x ∼ χ2

v , so χ2 is a special case of Γ)

Γ

(
x ;

v

2
,
δ

2

)
∝ x

v
2
−1exp

(
−xδ

2

)
E (x) =

v

δ

var(x) =
2v

δ2

x ∼ Γ−1( v2 ,
δ
2 ) (”inverse gamma”) ⇔ 1

x ∼ Γ( v2 ,
δ
2 )
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Bayesian Inference for σ2/β

Conjugate prior:
1
σ2 ∼ Γ

(
v0
2 ,

δ0
2

)
g
(

1
σ2

)
∝
(

1
σ2

) v0
2
−1

exp
(
− δ0

2σ2

)
Likelihood:

L
(

1
σ2 /β, y

)
∝
(
σ2
)−T/2

exp
(
− 1

2σ2 (y − Xβ)′(y − Xβ)
)

Posterior:
p
(

1
σ2 /β, y

)
∝
(

1
σ2

) v1
2
−1

exp
(
−δ1
2σ2

)
This is the kernel of a gamma distribution:

1
σ2 /β, y ∼ Γ

(
v1
2 ,

δ1
2

)
where

v1 = v0 + T
δ1 = δ0 + (y − Xβ)′(y − Xβ)

224 / 357



The Key Issue/Question

I We have the conditional posterior distributions (p(β/σ2, y),
p
(
σ2/β, y

)
), but they’re not what we want.

I How do we get the unconditional (joint and marginal)
posterior distributions that we really want: p(β, σ2/y),
p(β/y), p(σ2/y)?

MCMC!
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Gibbs Sampling from the Joint Posterior
0. Initialize: σ2 = (σ2)(0)

Gibbs sampler at generic iteration j :

j1. Draw β(j) from p(β(j)/(σ2)(j−1), y) (N(β1,Σ1))

j2. Draw (σ2)(j) from p(σ2/β(j), y)
(

Γ−1
(
v1
2 ,

δ1
2

))
Iterate to convergence (steady state of the Markov chain), and
then estimate posterior moments of interest
– Sample mean converges appropriately despite the serial
correlation in the Markov chain
– Assessing precision requires robust s.e.’s (based on spectrum at
frequency zero) due to the serial correlation in the Markov chain.Recall :

√
T(x̄− µ)

d
→ N (0, g(0))
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B. Now Move to Bayesian Analysis of
General State-Space Models
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Recall the State-Space Model

αt = Tαt−1 + Rηt

yt = Zαt + ζ

(
ηt
ζt

)
iid∼ N

(
Q 0
0 H

)

Let α̃T = (α′1, . . . , α
′
T )′,

and collect all system parameters into a vector θ.
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Recall the State-Space Model in Density Form

αt |αt−1 ∼ N(Tαt−1, RQR ′)

yt |αt ∼ N(Zαt , H)
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Recall the Kalman Filter in Density Form

Initialize at a0, P0

State prediction:
αt |ỹt−1 ∼ N(at/t−1, Pt/t−1)

at/t−1 = Tat−1

Pt/t−1 = TPt−1T ′ + RQR ′

State update:
αt |ỹt ∼ N(at , Pt)

at = at/t−1 + Kt(yt − Zat/t−1)
Pt = Pt/t−1 − KtZPt/t−1

Data prediction:
yt |ỹt−1 ∼ N(Zat/t−1, Ft)
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Recall the (Essence of the) EM Algorithm
for State-Space Models

1. E Step:

Approximate a “complete data” situation by replacing
{αt}Tt=0 with {at,T}Tt=0 from the Kalman smoother

2. M Step:

Estimate parameters by running regressions:
at,T → at−1,T

yt → at,T

3. If convergence criterion not met, go to 1
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Recall Multivariate Regression

yit = x ′tβ
i + εit

(ε1,t , ...εN,t)
′ iid∼ N(0,Σ)

i = 1, ...,N

t = 1, ...T

or

Y︸︷︷︸
T×N

= X︸︷︷︸
T×K

B︸︷︷︸
K×N

+ E︸︷︷︸
T×N

OLS is still (X ′X )−1X ′Y
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The Key to Moving Forward...

I Treat the vector α̃T as a parameter, along with system
matrices θ

I Use Gibbs to draw from posterior α̃T , θ / ỹT by iterating on
α̃T / θ, ỹT and θ / α̃T , ỹT

I Note that we draw from two large blocks
α̃T / θ, ỹT (one draw) and θ / α̃T , ỹT (one draw)
“Multi-move Gibbs sampler”

I Massively more efficient than cycling through a “one at a
time” Gibbs sampler
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Carter-Kohn “Multimove” Gibbs Sampler

Let ỹT = (y ′1, . . . , y
′
T )′

0. Initialize θ(0)

Gibbs sampler at generic iteration j :

j1. Draw from posterior α̃
(j)
T /θ(j−1), ỹT (“hard”)

j2. Draw from posterior θ(j)/α̃
(j)
T , ỹT (“easy”)

Iterate to convergence, and then estimate posterior moments of
interest
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Let’s First Explain Step j2 (θ(j)|α̃(j)
T , ỹT ) (“easy”)

Conditional upon an α̃
(j)
T draw, obtaining a θ(j) draw is just a

Bayesian multivariate regression problem (i.e., we need to draw
from the posterior of the multivariate regression parameters).

(We have already seen how to do Bayesian univariate regression.
That is, we know how to draw from the posterior of univariate
regression parameters using a conjugate (normal-gamma) prior.
We can easily extend to draw from the posterior of multivariate
regression parameters using a conjugate (normal-Wishart) prior.)
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Now do Step j1 (α̃
(j)
T /θ

(j−1), ỹT ) (“hard”)

For notational simplicity we write p(α̃T/ỹT ), suppressing the
conditioning on θ, but it is of course still there.

p(α̃T/ỹT ) = p(αT/ỹT ) p(α̃T−1/αT , ỹT )

= p(αT/ỹT ) p(αT−1/αT , ỹT ) p(α̃T−2/αT−1, αT , ỹT )

= . . .

= p(αT/ỹT ) Π
(T−1)
t=1 p(αt/αt+1, ỹt)

So, to draw from p(α̃T/ỹT ), we need to be able to draw from
p(αT/ỹT ) and p(αt/αt+1, ỹt), t = 1, . . . , (T − 1)
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Multimove Gibbs sampler, Continued

The key is to work backward:

Draw from p(αT/ỹT ),
then from p(αT−1/αT , ỹT−1),

then from p(αT−2/αT−1, ỹT−2),
etc.

Time T draw is easy. From the Kalman filter,
p(αT/ỹT ) is N(aT ,PT )

(where we have the usual formulas for aT and PT )

Earlier-time draws require a bit of new work:
How to draw from p(αt/αt+1, ỹt), t = (T − 1), ..., 1?

– Note that the CK smoother requires first running the Kalman
filter. Prior info for α̃T enters through choice of a0 and P0.
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Multimove Gibbs sampler, Continued

CK show that the posterior density p(αt/αt+1, ỹt) is Gaussian:

αt/αt+1, ỹt ∼ N(at/t,αt+1
,Pt/t,αt+1

)

where

at/t,αt+1
= E (αt/ỹt , αt+1) = E (αt |at , αt+1)

= at + PtT
′(TPtT

′ + Q)−1(αt+1 − Tat)

Pt/t,αt+1
= cov(αt/ỹt , αt+1) = cov(αt |at , αt+1)

= Pt − PtT
′(TPtT

′ + Q)−1TPt

t = (T − 1), ..., 1.
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Remarks

I Multi-move Gibbs resembles EM for state-space models,
iterating between an “α step” and a “θ step”

I More than a superficial resemblance; both explore likelihood

I EM explores likelihood as part of getting to a max

I Multi-move Gibbs explores likelihood as part of exploring a
posterior
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Non-linear and/or Non-Gaussian

This small block is just to stimulate curiosity,
and to introduce some non-linear and/or

non-Gaussian models.

(Take 722.)
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Figure: A Map
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Earlier: Wold-Wiener-Kolmogorov Representation/Theory
Now: Volterra Representation/Theory

yt =
∞∑

m1=0

h1(m1)εt−m1

+
∞∑

m1=0

∞∑
m2=0

h2(m1,m2)εt−m1εt−m2

+
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

h3(m1,m2,m3)εt−m1εt−m2εt−m3

+...

where εt ∼ N(0, 1)
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State Space Models

Linear / Gaussian:
αt = Tαt−1 + Rηt , yt = Zαt + ζt , ηt ∼ N(0,Q), ζt ∼ N(0,H)

Linear / Non-Gaussian:
αt = Tαt−1 + Rηt , yt = Zαt + ζt , ηt ∼ Dη, ζt ∼ Dζ

Non-Linear / Gaussian:
αt = Q(αt−1, ηt), yt = G (αt , ζt), ηt ∼ N(0,Q), ζt ∼ N(0,H)

Non-Linear / Non-Gaussian:
αt = Q(αt−1, ηt), yt = G (αt , ζt), ηt ∼ Dη, ζt ∼ Dζ

Non-Linear / Non-Gaussian, Specialized to Additive:
αt = Q(αt−1) + ηt , yt = G (αt) + ζt , ηt ∼ Dη, ζt ∼ Dζ
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Example:
Regime Switching Model (Non-Linear / Gaussian)

(
α1t

α2t

)
=

(
φ 0
0 γ

)(
α1,t−1

α2,t−1

)
+

(
η1t

η2t

)

yt = µ0 + δ I (α2t > 0) + (1, 0)

(
α1t

α2t

)
η1t ∼ Nη1 η2t ∼ Nη2 η1t⊥η2t

Extensions to:
– Richer α1 dynamics (governing the observed y)
– Richer α2 dynamics (governing the latent regime)
– Richer ηt distribution (e.g., η2t asymmetric)
– More than two states
– Switching also on dynamic parameters, volatilities, etc.
– Multivariate
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Example:
Two-Shock Stochastic Volatility Model
(Non-Linear / Gaussian Form)

ht = ω + βht−1 + ηt (transition)

rt =
√

eht ζt (measurement)

ηt ∼ N(0, σ2
η), ζt ∼ N(0, 1)
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Example:
Two-Shock Stochastic Volatility Model
(Linear / Non-Gaussian Form)

ht = ω + βht−1 + ηt (transition)

2ln|rt | = ht + 2ln|ζt | (measurement)

or

ht = ω + βht−1 + ηt

yt = ht + ut

ηt ∼ N(0, σ2
η), ut ∼ Du

– A “signal plus (non-Gaussian) noise” components model
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Example:
One-Shock Stochastic Volatility Model (GARCH)

Coming soon, in detail...
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Nonlinear and/or Non-Gaussian Filtering

– Kalman filter BLUE but not MVUE

– Fully-optimal filtering gets complicated
Different filters (e.g., particle filter) needed for full optimality

(Again, take 722.)
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One-Shock Stochastic Volatility Model
(ARCH/GARCH)
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Stock Returns

Figure: Time Series of Daily NYSE Returns.

250 / 357



Key Fact 1: Returns are Approximately White Noise

Figure: Correlogram of Daily NYSE Returns.
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Key Fact 2: Returns are not Gaussian

Figure: Histogram and Statistics for Daily NYSE Returns.
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Unconditional Volatility Measures

Unconditional Variance: σ2 = E (rt − µ)2

(or standard deviation: σ)

Unconditional Mean Absolute Deviation: MAD = E |rt − µ|

Unconditional Interquartile Range: IQR = 75%− 25%

Unconditional p% Value at Risk (VaRp)): x s.t. P(rt < x) = p

Unconditional Outlier probability: P|rt − µ| > 5σ (for example)

Unconditional Tail index: γ s.t. P(rt > r) = kr−γ
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Key Fact 3: Returns are Conditionally Heteroskedastic
(And the Volatility Dynamics are Highly Persistent)

Figure: Correlogram of Daily Squared NYSE Returns.
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Conditional Return Distributions

Consider f (rt) vs. f (rt |Ωt−1)

Key 1: E (rt |Ωt−1) is approximately constant

Returns are approximately serially uncorrelated, and approximately
free of additional non-linear conditional mean dependence.

Key 2: var(rt |Ωt−1) is not constant!

Squared returns serially correlated, often with very slow decay.

Bottom line: Returns are (approximately) non-Gaussian weak white
noise, serially uncorrelated but nevertheless serially dependent, with
the non-linear serial dependence operating not through E (rt |Ωt−1)

but rather through var(rt |Ωt−1) (“volatility dynamics”).
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The Standard Model
(Linearly Indeterministic Process with iid Innovations)

yt =
∞∑
i=0

biεt−i

ε ∼ iid(0, σ2
ε)

∞∑
i=0

b2
i <∞, b0 = 1

Uncond. mean: E (yt) = 0 (constant)
Uncond. variance: E (yt − E (yt))2 = σ2

ε

∑∞
i=0 b2

i (constant)
Cond. mean: E (yt | Ωt−1) =

∑∞
i=1 biεt−i (varies)

Cond. variance: E ([yt − E (yt | Ωt−1)]2 | Ωt−1) = σ2
ε (constant)
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The Standard Model, Continued
h-Step-Ahead Least Squares Forecasting

E (yt+h | Ωt) =
∞∑
i=0

bh+iεt−i

Associated prediction error:

yt+h − E (yt+h | Ωt) =
h−1∑
i=0

biεt+h−i

Conditional prediction error variance:

E ([yt+h − E (yt+h | Ωt)]2 | Ωt) = σ2
ε

h−1∑
i=0

b2
i

Key: Depends only on h, not on Ωt
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ARCH(1) Process

rt |Ωt−1 ∼ N(0, ht)

ht = ω + αr 2
t−1

E (rt) = 0

E (rt − E (rt))2 =
ω

(1− α)

E (rt |Ωt−1) = 0

E ([rt − E (rt |Ωt−1)]2|Ωt−1) = ω + αr 2
t−1

258 / 357



Nonlinear State-Space Representation

rt | Ωt−1 ∼ N(0, ω + αr 2
t−1)

or

rt =
√
ω + αr 2

t−1 zt

zt ∼ iid N(0, 1)

Trivial state-space representation:

αt =
√
ω + αα2

t−1 ηt

rt = αt

ηt ∼ iid N(0, 1)
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Unconditionally Fat Tails

ARCH produces an unconditional distribution that is symmetric
but with fatter tails than the conditional (Gaussian) distribution.
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Tractable Likelihood

L (θ; rT , . . . , r1) ≈ f (rT |ΩT−1; θ) f (rT−1|ΩT−2; θ) . . . f (r2|Ω1; θ) ,

where θ = (ω, α)′.
(It is approximate because we drop the initial marginal f (r1; θ)).

With Gaussian conditional densities,

f (rt |Ωt−1; θ) =
1√
2π

ht(θ)−1/2 exp

(
−1

2

r 2
t

ht(θ)

)
,

we have:

ln L (θ; rT , . . . , r1) ≈ const − 1

2

T∑
t=2

ln ht(θ)− 1

2

T∑
t=2

r 2
t

ht(θ)
,

where ht(θ) = ω + αr 2
t−1.
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GARCH(1,1) Process

rt | Ωt−1 ∼ N(0, ht)

ht = ω + αr 2
t−1 + βht−1

E (rt) = 0

E (rt − E (rt))2 =
ω

(1− α− β)

E (rt |Ωt−1) = 0

E ([rt − E (rt | Ωt−1)]2 | Ωt−1) = ω + αr 2
t−1 + βht−1

GARCH(1,1) back substitution yields:

ht =
ω

1− β
+ α

∞∑
j=1

βj−1r 2
t−j

ARCH(∞)!
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Variations on the ARCH/GARCH Theme

I Asymmetric Response and the Leverage Effect

I Fat-Tailed Conditional Densities
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Asymmetric Response and the Leverage Effect:
Threshold GARCH

Standard GARCH: ht = ω + αr 2
t−1 + βht−1

TARCH: ht = ω + αr 2
t−1 + γr 2

t−1Dt−1 + βht−1

Dt =

{
1 if rt < 0
0 otherwise

positive return (good news): α effect on volatility

negative return (bad news): α + γ effect on volatility

γ 6= 0: Asymetric news response
γ > 0: “Leverage effect”
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Fat-Tailed Conditional Densities: t-GARCH

If r is conditionally Gaussian, then rt√
ht
∼ N(0, 1)

But often with high-frequency data, rt√
ht
∼ fat tailed

So take:

rt = h
1/2
t zt

zt

iid
∼ td

std(td)
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GARCH(1,1) for NYSE Returns

Figure: GARCH(1,1) Estimation, Daily NYSE Returns.
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Fitted Volatility

Figure: Estimated Conditional Standard Deviation, Daily NYSE Returns.
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Recall: Correlogram of Squared Returns

Figure: Correlogram of Squared Daily NYSE Returns.
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Compare: Correlogram of Squared Standardized Returns

Figure: Correlogram of Squared Standardized Daily NYSE Returns.
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Figure: A Map
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Integration and Cointegration
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Random Walks

Random walk:

yt = yt−1 + εt

εt ∼ WN(0, σ2)

Random walk with drift:

yt = δ + yt−1 + εt

εt ∼ WN(0, σ2)
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Random Walk – Level and Change
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Random Walk With Drift – Level and Change
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Properties of the Random Walk

yt = y0 +
t∑

i=1

εi

(shocks perfectly persistent)

E (yt) = y0

var(yt) = tσ2

lim
t→∞

var(yt) = ∞
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Properties of the Random Walk with Drift

yt = tδ + y0 +
t∑

i=1

εi

(shocks again perfectly persistent)

E (yt) = y0 + tδ

var(yt) = tσ2

lim
t→∞

var(yt) = ∞

276 / 357



Forecasting a Random Walk with Drift

yt = δ + yt−1 + εt

εt ∼ WN

Optimal forecast:

yT+h,T = δh + yT

Forecast does not revert to trend
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Forecasting a Linear Trend + Stationary AR(1)

yt = a + δt + ut

ut = φut−1 + vt

vt ∼ WN

Optimal forecast:

yT+h,T = a + δ(T + h) + φhuT

Forecast reverts to trend
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U.S. Per Capita GNP
History, Two Forecasts, and Realization
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Some Language...

“Random walk with drift” vs. “stat. AR(1) around linear trend”

“unit root” vs. “stationary root”

“Difference stationary” vs. “trend stationary”

“Stochastic trend” vs. “deterministic trend”

“I (1)” vs. “I (0)”
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Unit Root Distribution in the AR(1) Process

DGP:

yt = yt−1 + εt

LS regression run:

yt → yt−1

Then we have:

T (φ̂LS − 1)
d
→ DF

“Superconsistent”

Not Gaussian, even asymptotically

DF tabulated by Monte Carlo
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Studentized Version

DGP:

yt = φyt−1 + εt

LS regression run:

yt → yt−1

Form the “t-stat”:

τ̂ =
φ̂ − 1

s
√

1∑T
t=2 y

2
t−1

“Random walk” vs. “stationary AR(1)”

Not t in finite samples, and not N(0, 1) asymptotically

Again, tabulate by Monte Carlo
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Example of Monte Carlo for the Dickey-Fuller Distribution:
Tabulating the Null Distribution of τ̂

1. Draw T N(0, 1) innovations ε1, ..., εT

2. Convert ε1, ..., εT into y1, ..., yT using yt = yt−1 + εt and
y0 = 0

3. Run DF regression yt → yt−1 and get τ̂

4. Repeat 100000 times, yielding {τ̂ i}100000
i=1

5. Sort the τ̂ i ’s and compute percentiles
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Nonzero Mean Under the Alternative

(yt − µ) = φ(yt−1 − µ) + εt

yt = α + φyt−1 + εt

where α = µ(1− φ)

“Random walk” vs. “stationary AR(1)”

Studentized statistic τ̂µ
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Linear Trend Under the Alternative

(yt − a − b t) = φ(yt−1 − a − b (t − 1)) + εt

yt = α + βt + φyt−1 + εt

where α = a(1− φ) + bφ and β = b(1− φ)

“Random walk with drift” vs. “stat. AR(1) around linear trend”
“Difference stationary” vs. “trend stationary”
“Stochastic trend” vs. “deterministic trend”

Studentized statistic τ̂τ
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AR(p)
“Augmented Dickey Fuller” (“ADF”)

Any univariate AR(p),
yt = φ1yt−1 + ...+ φpyt−p + ut ,

can be written as

∆yt = −πyt−1 +

p−1∑
i=1

bi∆yt−i + ut .

– In the unit root case, π = 0 (AR(p−1) in changes).
– Use standard automatically-computed t-stat

(which of course does not have the t-distribution)

DF “trick form”: regress change on lagged level and lagged
changes (“augmentation lags”)
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Multivariate Problem: Spurious Time-Series Regressions

Regress a persistent variable on an unrelated persistent variable:

y1t → c , y2t

(Canonical case: y1, y2 independent driftless random walks)

β̂√
T

d
→ RV (β̂ diverges)

t√
T

d
→ RV (t diverges)

R2
d
→ RV (not zero)
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When are I(1) Levels Regressions Not Spurious?

Answer: When the variables are cointegrated.
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Cointegration

Consider an N-dimensional variable y :

y ∼ CI (d , b) if

1. yi ∼ I (d), i = 1, . . . ,N

2. ∃ 1 or more linear combinations zt = α′yt s.t.
zt ∼ I (d − b), b > 0
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Leading Case

y ∼ CI (1, 1) if

(1) yi ∼ I (1), i = 1, . . . ,N

(2) ∃ 1 or more linear combinations

zt = α′yt s.t. zt ∼ I (0)
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Example

y1t = y1,t−1 + vt (I (1))

y2t = y1,t−1 + εt (I (1))

=⇒ (y2t − y1t) = εt − vt (I (0))
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Cointegration and “Attractor Sets”

yt is N-dimensional but does not wander randomly in RN

α′yt is attracted to an (N − R)-dimensional subspace of RN

N: space dimension

R: number of cointegrating relationships

Attractor dimension = N − R
(“number of underlying unit roots”)

(“number of common trends”)
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Example

3-dimensional VAR(p), all variables I (1)

R = 0⇔ no cointegration ⇔ y wanders throughout R3

R = 1⇔ 1 cointegrating vector ⇔ y attracted to a 2-Dim
hyperplane in R3 given by α′y = 0

R = 2 ⇔ 2 cointegrating vectors ⇔ y attracted to a 1-Dim
hyperplane (line) in R3 given by intersection of two 2-Dim

hyperplanes, α′1y = 0 and α′2y = 0

R = 3 ⇔ 3 cointegrating vectors ⇔ y attracted to a 0-Dim
hyperplane (point) in R3 given by the intersection of three 2-Dim

hyperplanes, α′1y = 0 , α′2y = 0 and α′3y = 0
(Covariance stationary around E (y))
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Cointegration Motivation: Dynamic Factor Model

Consider a simple bivariate example:(
y1t

y2t

)
=

(
λ1

λ2

)
ft +

(
ε1t

ε2t

)
ft = ft−1 + ηt

“Common trend” ft

Note that
y1t

λ1︸︷︷︸
I (1)

− y2t

λ2︸︷︷︸
I (1)

=
ε1t

λ1
− ε2t

λ2︸ ︷︷ ︸
I (0)

So we have a linear combination of I (1)’s that is I (0)

– Immediate generalization to N-dimensional system
with N−R I (1) factors (common trends)

294 / 357



Cointegration Motivation: Optimal Forecasting

I (1) variables always co-integrated with their optimal forecasts

Example:

yt = yt−1 + εt

yt+h|t = yt

=⇒ yt+h︸︷︷︸
I (1)

− yt+h|t︸ ︷︷ ︸
I (1)

=
h∑

i=1

εt+i︸ ︷︷ ︸
I (0)

(finite MA, always covariance stationary)
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Cointegration Motivation:
Long-Run Relation Augmented with Short-Run Dynamics

Simple Bivariate AR Case (ECM):

∆y1,t = α∆y1,t−1 + β∆y2,t−1 − γ(y1,t−1 − δy2,t−1) + ut

= α∆y1,t−1 + β∆y2,t−1 − γzt−1 + ut

General AR Case (VECM):

A(L)∆yt = −γzt−1 + ut

where:

A(L) = I − A1L− ...− ApLp

zt = α′yt
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Recall Univariate ADF Regression

Any univariate AR(p) can be written as

∆yt = −πyt−1 +

p−1∑
i=1

bi∆yt−i + ut .

In the unit root case, π = 0.
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VAR(p)
Multivariate ADF Regression

Any VAR(p) can be written as

∆yt = − Π︸︷︷︸
N×N

yt−1 +

p−1∑
i=1

Bi∆yt−i + ut .

Now more possibilities for Π:
– Zero rank, full rank (like univariate π = 0 or π 6= 0)

– Intermediate rank (impossible in univariate)
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Integration/Cointegration Status

I Rank(Π) = 0
0 cointegrating vectors, N underlying unit roots
(all variables appropriately specified in differences)

I Rank(Π) = N
N cointegrating vectors, 0 unit roots
(all variables appropriately specified in levels)

I Rank(Π) = R (0 < R < N)
R cointegrating vectors, N − R unit roots
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Granger Representation Theorem

yt ∼ VECM ⇐⇒ yt ∼ CI (1, 1)
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VECM ⇐ Cointegration

We can always write the ADF form:

∆yt =

p−1∑
i=1

Bi∆yt−i − Πyt−1 + ut

But under cointegration, rank(Π) = R < N, so

Π
N × N

=
γ

N × R
α′

R × N

=⇒ ∆yt =

p−1∑
i=1

Bi∆yt−i − γα′yt−1 + ut

=

p−1∑
i=1

Bi∆yt−i − γzt−1 + ut
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VECM ⇒ Cointegration

∆yt =

p−1∑
i=1

Bi ∆yt−i − γ α′ yt−1 + ut

Premultiply by α′:

α′∆yt = α′
p−1∑
i=1

Bi ∆yt−i − α′γ︸︷︷︸
full rank

α′yt−1 + α′ ut

So equation balance requires that α′yt−1 be stationary.
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Stationary-Nonstationary Decomposition

M ′

(N × N)
y

(N × 1)
=


α′

(R × N)

δ
(N − R)× N

 y =

 CI combs

com. trends

 ,

where the rows of δ are orthogonal to the columns of γ
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Intuition

The system is

∆ yt =

p−1∑
i=1

Bi ∆ yt−i − γ α′ yt−1 + µt

Transforming the system by δ yields

δ ∆ yt =

p−1∑
i=1

δ Bi ∆ yt−i − δ γ︸︷︷︸
0 by orthogonality

α′ yt−1 + δ µt

So δ isolates that part of the VECM
that is appropriately specified as a VAR in differences.

Note that if we start with M′y, then the observed series is
(M′)−1 M′y, so nonstationarity is spread throughout the system.
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Example

y1t = y1t−1 + u1t

y2t = y1t−1 + u2t

Levels form:((
1 0
0 1

)
−
(

1 0
1 0

)
L

)(
y1t

y2t

)
=

(
u1t

u2t

)

Dickey-Fuller form:(
∆y1t

∆y2t

)
= −

(
0 0
−1 1

) (
y1t−1

y2t−1

)
+

(
u1t

u2t

)
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Example, Continued

Π =

(
0
1

)(
−1 1

)
= γα′

M ′ =

(
−1 1
1 0

)(
first‘row just α′

second row orthogonal to γ

)

M ′
(

y1t

y2t

)
=

(
u2t − u1t

y1t

)
=

(
y2t − y1t

y1t

)
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Figure: A Map
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More Simulation:
Global Optimization by Simulation
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On Local vs. Global Optima

1. Try many startup values (sounds trivial but very important)

2. At the end of it all, use extreme value theory to assess the
likelihood that the local optimum is global (“Veall’s Method”)

3. Actually use a global optimizer
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Assessing Whether a Local Optimum is Global, Cont’d

θ ∈ Θ ⊂ Rk

lnL(θ) is continuous

lnL(θ∗) is the unique finite global max of lnL(θ), θ ∈ Θ

H(θ∗) exists and is nonsingular

lnL(θ̂) is a local max

Develop statistical inference for θ∗
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Assessing Whether a Local Optimum is Global, Cont’d

Draw {θi}Ni=1 uniformly from Θ and form {lnL(θi )}Ni=1

lnL1 first order statistic, lnL2 second order statistic

P[lnL(θ∗) ∈ (lnL1, lnLα)] = (1− α), as N →∞,

where

lnLα = lnL1 +
lnL1 − lnL2

(1− α)
−2
k − 1

.
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Global Optimization

Summary of Local Optimization:

1. initial guess θ(0)

2. while stopping criteria not met do

3. select θ(c) ∈ N(θ(m)) (Classically: use gradient)

4. if ∆ ≡ lnL(θ(c))− lnL(θ(m)) > 0 then θ(m+1) = θ(c)

5. end while
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Simulated Annealing
(Illustrated Here for a Discrete Parameter Space)

Framework:

1. A set Θ, and a real-valued function lnL (satisfying regularity
conditions) defined on Θ. Let Θ∗ ⊂ Θ be the set of global
maxima of lnL

2. ∀θ(m) ∈ Θ, a set N(θ(m)) ⊂ Θ− θ(m), the set of neighbors of
θ(m)

3. A nonincreasing function, T (m) : N → (0,∞) (“the cooling
schedule”), where T (m) is the “temperature” at iteration m

4. An initial guess, θ(0) ∈ Θ
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Simulated Annealing Algorithm

1. initial guess θ(0)

2. while stopping criteria not met do

3. select θ(c) ∈ N(θ(m))

4. if ∆ > 0 or exp (∆/T (m)) > U(0, 1) then θ(m+1) = θ(c)

5. end while

Note the extremes:
T = 0 implies no randomization (like classical gradient-based)
T =∞ implies complete randomization (like random search)
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A (Heterogeneous) Markov Chain

If θ(c) /∈ N(θ(m)) then

P(θ(m+1) = θ(c)|θ(m)) = 0

If θ(c) ∈ N(θ(m)) then

P(θ(m+1) = θ(c) | θ(m)) = exp (min[0, ∆/T (m)])
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Convergence of a Global Optimizer

Definition. We say that the simulated annealing algorithm
converges if

limm→∞ P[θ(m) ∈ Θ∗] = 1.

Definition: We say that θ(m) communicates with Θ∗ at depth d if
there exists a path in Θ (with each element of the path being a
neighbor of the preceding element) that starts at θ(m) and ends at
some element of Θ∗, such that the smallest value of lnL along the
path is lnL(θ(m))− d .
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Convergence of Simulated Annealing

Theorem: Let d∗ be the smallest number such that every
θ(m) ∈ Θ communicates with Θ∗ at depth d∗. Then the simulated
annealing algorithm converges if and only if, as m→∞,

T (m) → 0
and∑

exp(−d∗/T (m)) → ∞.

Problems: How to choose T , and moreover we don’t know d∗

Popular choice of cooling function: T (m) = 1
ln m

Regarding speed of convergence, little is known
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More Simulation:
Econometric Theory by Simulation

(Monte Carlo Methods)
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Monte Carlo

Key: Solve deterministic problems by simulating stochastic
analogs, with the analytical unknowns reformulated as parameters
to be estimated.

Many important discoveries made by Monte Carlo.

Also, numerous mistakes avoided by Monte Carlo!

The pieces:

(I) Experimental Design
(II) Simulation (including variance reduction techniques)
(III) Analysis: Response surfaces (which also reduce variance)
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(I) Experimental Design

I Data-Generating Process (DGP)

I Objective
• e.g., MSE of an estimator:

E [(θ − θ̂)2] = g(θ,T )

• e.g., Power function of a test:

π = g(θ,T )

I Selection of (θ, T ) Configurations to Explore

I Number of Monte Carlo Repetitions (N)
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(II) Simulation

Running example: Monte Carlo integration

(Most of the things we examine by Monte Carlo
are expectations, and hence integrals!

(Estimator MSE, test size and power, etc.)

Canonical definite integral: µ =
∫ 1

0 m(y)dy

Key insight:

µ =
∫ 1

0 m(y)dy = E (m(y))
y ∼ U(0, 1)
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“Direct Simulation”, General Case

µ = E (m(y)) =

∫
m(y)f (y)dy

– Indefinite integral, arbitrary function m(·), arbitrary density f (y)

Draw yi ∼ f (·), and then form m(yi ). Repeat. Then form:

µ̂ =
1

N

N∑
i=1

m(yi ).

Immediately,

√
N(µ̂− µ)

d
→ N

322 / 357



Direct Simulation, Leading Special Case (Mean)

µ = E (y) =

∫
y f (y) dy

– Indefinite integral, m(y) = y , arbitrary density f (y)

Draw yi ∼ f (·). Repeat. Then form:

µ̂ =
1

N

N∑
i=1

yi .

Immediately,

√
N(µ̂− µ)

d
→ N
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Indirect Simulation:
Importance Sampling to Facilitate Sampling

Sampling from f (·) may be difficult. So change to:

µ =

∫
y

f (y)

g(y)
g(y)dy

where the “importance sampling density” g(·) is easy to sample

Draw many yi ∼ g(·), and then form:

µ̂∗ =
1

N

N∑
i=1

yi
f (yi )

g(yi )
=

N∑
i=1

wiyi

– Avg of f (y) draws replaced by weighted avg of g(y) draws

√
N(µ̂∗ − µ)

d
→ N
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(Much) More on Indirect Simulation:
Variance Reduction

“Variance-Reduction Techniques”

– Same accuracy for smaller N

– Greater accuracy for same N
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Importance Sampling to Achieve Variance Reduction

Again : µ =

∫
yf (y)dy =

∫
y

f (y)

g(y)
g(y)dy ,

And again : µ̂ =
1

N

N∑
i=1

yi (yi drawn from f )

And again :
√

N(µ̂− µ)→d N(0, σ2)

And again : µ̂∗ =
1

N

N∑
i=1

yi
f (yi )

g(yi )
(yi drawn from g)

And again :
√

N(µ̂∗ − µ) →d N(0, σ2
∗)

The new point: If g(y) is chosen judiciously, σ2
∗ � σ2

Key: Pick g(y) s.t. yf (y)
g(y) has small variance
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Importance Sampling Example

Let y ∼ N(0, 1), and estimate the mean of I (y > 1.96):

µ = E (I (y > 1.96)) = P(y > 1.96) =

∫
I (y > 1.96)︸ ︷︷ ︸

y

φ(y)︸︷︷︸
f (y)

dy

µ̂ =
N∑
i=1

I (yi > 1.96)

N
(with variance σ2)

Use importance sampler:

g(y) = N(1.96, 1)

P(y > 1.96) =

∫
I (y > 1.96)

φ(y)

g(y)
g(y) dy

µ̂∗ =

∑N
i=1I (yi > 1.96)φ(yi )

g(yi )

N
(with variance σ2

∗)

σ2
∗
σ2
≈ 0.06
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Control Variates
Instead of simulating the mean of y , just simulate the mean of
(y − c(y)), where the “control function” c(y) has known mean
and is highly correlated with y (i.e., c(y) is simple enough to
integrate analytically and flexible enough to absorb most of the
variation in y).

µ =

∫
yf (y)dy =

∫
c(y)f (y)dy +

∫
(y − c(y))f (y)dy

µ̂ =
1

N

N∑
i=1

yi

µ̂∗ =

∫
c(y)f (y)dy +

1

N

N∑
i=1

(yi − c(yi ))

√
N(µ̂∗ − µ)→d N(0, σ2

∗)

If c(y) is chosen judiciously, σ2
∗ � σ2
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Control Variate Example

Suppose we want µ = E (ey ) =
∫ 1

0 eydy , for y ∼ U(0, 1)

Immediately : µ̂ =
1

N

N∑
i=1

eyi

Alternatively, use control variate: c(y) = 1 + 1.7y

Immediately :

∫ 1

0
c(y)dy =

(
y +

1.7

2
y 2

)
1

0

= 1.85

So : µ̂∗ = 1.85 +
1

N

N∑
i=1

(eyi − (1 + 1.7yi ))

σ̂2
∗
σ̂2
≈ .01
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Antithetic Variates

Average negatively-correlated unbiased estimators of µ

(Unbiasedness maintained, variance reduced)

How to get negative correlation?

– If y ∼ U(0, 1), then so too is (1− y)
(so y and 1− y equally likely)

– If y ∼ D, for any zero-mean symmetric distribution D,
then so too is −y (so y and −y equally likely)
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How Antithetics Work (Zero-Mean Symmetric Case)

µ =

∫
yf (y)dy

Direct : µ̂ =
1

N

N∑
i=1

yi (µ̂ is based on yi , i = 1, ...,N)

Antithetic : µ̂∗ =
1

2
µ̂(y) +

1

2
µ̂(−y)

µ̂(y) is based on yi , i = 1, ...,N/2,
µ̂(−y) is based on −yi , i = 1, ...,N/2

√
N(µ̂∗ − µ)→d N(0, σ2

∗)

σ2
∗ =

1

4
var
(
µ̂(y)

)
+

1

4
var
(
µ̂(−y)

)
+

1

2
cov

(
µ̂(y), µ̂(−y)

)︸ ︷︷ ︸
< 0

Often σ2
∗ � σ2
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Common Random Numbers

Here we exploit positively -correlated estimates.

We have focused on estimation of a single integral. But interest
often centers on difference (or ratio) of two integrals.

The key: Estimate each integral using the same random numbers.
Then the (positively-correlated) simulation errors will tend to
cancel from differences or ratios!
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How Common Random Numbers Work
(e.g., in Comparing MSE’s of Two Estimators)

Two estimators δ̂1, δ̂2; true parameter δ0

We want to compare MSE’s: E (δ̂1 − δ0)2 vs. E (δ̂2 − δ0)2

Expected difference: µ = E
(

(δ̂1 − δ0)2 − (δ̂2 − δ0)2
)

µ̂ = 1
N

∑N
i=1

(
(δ̂1i − δ0)2 − (δ̂2i − δ0)

2
)

(using indep r.n.′s)

µ̂∗ = 1
N

∑N
i=1

(
(δ̂1i − δ0)2 − (δ̂2i − δ0)

2
)

(using comm. r.n.′s)

σ2
∗ =

1

N
var
(

(δ̂1 − δ0)2
)

+
1

N
var
(

(δ̂2 − δ0)2
)
− 2

N
cov

(
(δ̂1 − δ0)2, (δ̂2 − δ0)2

)
︸ ︷︷ ︸

>0

Often σ2
∗ � σ2.
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(III) Response surfaces

1. Direct Response Surfaces

2. Indirect Responses Surfaces:

I Clear and informative graphical presentation

I Imposition of known asymptotic results
(e.g., power → 1 as T →∞)

I Imposition of known features of functional form
(e.g. power ∈ [0,1])

I Variance reduction (!)
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Example: Assessing Finite-Sample Test Size
For a Fixed Alternative

α = P (s > s∗|T ,H0 true) = g(T )

(α is empirical size, s is test statistic, s∗ is asymptotic c.v.)

α̂ =
#rej

N

α̂ ∼ N

(
α,
α(1− α)

N

)
Equivalently : α̂ = α + ε = g(T ) + ε,

where ε ∼ N

(
0,

g(T )(1− g(T ))

N

)
Note the heteroskedasticity: variance of ε changes with T
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Example: Assessing Finite-Sample Test Size
For a Fixed Alternative

Enforce analytically known structure on α̂.
Common approach:

α̂ = α0 + T−
1
2

(
c0 +

p∑
i=1

ciT
−i
2

)
︸ ︷︷ ︸

α

+ε

α0 is nominal size, which obtains as T →∞. Second term is the
vanishing size distortion.

Response surface regression:

(α̂− α0)→ T−
1
2 ,T−1,T−

3
2 , ...

Disturbance will be approximately normal but heteroskedastic.
So use GLS or robust standard errors (or nothing – still consistent).
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More Simulation:
Estimation by Simulation

(Simulated Method of Moments
and Indirect Inference)
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GMM

k-dimensional parameter θ

θ̂GMM = argminθ d(θ)′ Σ d(θ)

where

d(θ) =


m1(θ)− m̂1

m2(θ)− m̂2
...

mr (θ)− m̂r


The mi (θ) are model moments and the m̂i are data moments.

MM: k = r and the mi (θ) calculated analytically
GMM: k < r and the mi (θ) calculated analytically

I Inefficient relative to MLE, but useful when likelihood is not
available (and for other reasons, as we’ll see)
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Simulated Method of Moments (SMM)

(k ≤ r and the mi (θ) calculated by simulation )

I Analytic model moments may be unavailable. So calculate
model moments by simulation. (Use common r.n.’s when
iterating to minimize the quadratic form. Why?)

I SMM: if you can simulate, you can estimate
I If you understand a model you can simulate it, and if you can

simulate it you can estimate it consistently. Eureka!

I No need to work out what might be very complex likelihoods
even if they are in principle ”available.”

I MLE efficiency lost may be a small price for SMM tractability
gained.
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SMM Under Misspecification

All econometric models are misspecified.
GMM/SMM has special appeal from that perspective.

I Under correct specification any consistent estimator (e.g.,
MLE or GMM/SMM) takes you to the right place
asymptotically, and MLE has the extra benefit of efficiency.

I Under misspecification, consistency becomes an issue, quite
apart from the secondary issue of efficiency. Best DGP
approximation for one purpose may be very different from
best for another.

I GMM/SMM is appealing in such situations, because it forces
thought regarding which moments M = {m1(θ), ...,mr (θ)} to
match, and then by construction it is consistent for the
M-optimal approximation.
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SMM Under Misspecification, Continued

I In contrast, pseudo-MLE ties your hands. Gaussian
pseudo-MLE, for example, is consistent for the KLIC-optimal
approximation (1-step-ahead mean-squared prediction error).

I The bottom line: under misspecification MLE may not be
consistent for what you want, whereas by construction GMM
is consistent for what you want (once you decide what you
want).
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Indirect Inference

k-dimensional economic model parameter θ
δ > k-dimensional auxiliary model parameter β

θ̂IE = argminθ d(θ)′ Σ d(θ)

where

d(θ) =


β̂1(θ)− β̂1

β̂2(θ)− β̂2
...

β̂δ(θ)− β̂δ


β̂i (θ) are est. params. of aux. model fit to simulated model data

β̂i are est. params. of aux. model fit to real data

– Consistent for true θ if economic model correctly specified
– Consistent for pseudo-true θ otherwise
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More Simulation:
Inference by Simulation

(Bootstrap)
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Simplest (iid) Case

{xt}Tt=1 ∼ iid(µ, σ2) (not necessarily Gaussian!)

100α percent confidence interval for µ:

I = [x̄T − u(1+α)/2
σ(x)√

T
, x̄T − u(1−α)/2

σ(x)√
T

]

x̄T =
1

T

T∑
t=1

xt

σ(x) =
√

E (x − µ)2

uα solves P

(
(x̄T − µ)

σ√
T

≤ uα

)
= α

Exact interval, regardless of the underlying distribution.
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Operational Version

I = [x̄T − û(1+α)/2
σ̂(x)√

T
, x̄T − û(1−α)/2

σ̂(x)√
T

]

σ̂2(x) =
1

T

T∑
t=1

(xt − x̄T )2

ûα solves P

(x̄T − µ)
σ̂(x)√

T

≤ ûα

 = α

Classic (Gaussian) example:

I = x̄T ± t(1−α)/2
σ̂(x)√

T

Bootstrap approach: No need to assume Gaussian data.
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“Percentile Bootstrap”

Root : S =
(x̄T − µ)

σ√
T

Root c .d .f . : H(z) = P

(
(x̄T − µ)

σ√
T

≤ z

)

1. Draw {x (j)
t }

T

t=1 with replacement from {xt}Tt=1

2. Compute
x̄

(j)
T −x̄T
σ̂(x)√

T

3. Repeat many times and build up the sampling distribution of
x̄

(j)
T −x̄T
σ̂(x)√

T

which is an approximation to the distribution of x̄T−µ
σ√
T

“Russian doll principle”
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Percentile Bootstrap, Continued

Bootstrap estimator of H(z):

Ĥ(z) = P

(x̄
(j)
T − x̄T )
σ̂(x)√

T

≤ z


Translates into bootstrap 100α percent CI:

Î = [x̄T − û(1+α)/2
σ̂(x)√

T
, x̄T − û(1−α)/2

σ̂(x)√
T

]

where P

 (x̄
(j)
T − x̄T )
σ̂(x)√

T

≤ ûα

 = Ĥ(ûα) = α
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“Percentile-t” Bootstrap

S =
(x̄T − µ)

σ̂(x)√
T

H(z) = P

(x̄T − µ)
σ̂(x)√

T

≤ z


Ĥ(z) = P

(x̄
(j)
T − x̄T )
σ̂(x(j))√

T

≤ z


Î = [x̄T − û(1+α)/2

σ̂(x)√
T
, x̄T − û(1−α)/2

σ̂(x)√
T

]

P

 (x̄
(j)
T − x̄T )
σ̂(x (j))√

T

≤ ûα

 = α
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Percentile-t Bootstrap, Continued

Key insight:

Percentile: x̄
(j)
T changes across bootstrap replications

Percentile-t: both x̄
(j)
T and σ̂(x (j)) change across bootstrap

replications
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Key Bootstrap Property: Asymptotic Validity

Real-world root:

S
d
→ D (as T →∞)

Bootstrap-world root:

S∗
d
→ D∗ (as T ,N →∞)

Bootstrap consistent (“valid,” “first-order valid”) if D = D∗.
Holds under regularity conditions.
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Aren’t There Simpler ways to do
Asymptotically-Valid Inference for the Mean?

Of course. But:

1. Bootstrap idea extends mechanically to much more
complicated cutting-edge econometric models

2. Bootstrap can deliver higher-order refinements
(e.g., percentile-t)

3. Monte Carlo indicates that bootstrap often does very well in
finite samples (not unrelated to 2, but does not require 2)

4. Many variations and extensions of the basic bootstraps
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Percentile Bootstrap for Stationary Time Series

Before:

1. Use S = (x̄T−µ)
σ̂(x)√

T

2. Draw {x (j)
t }

T

t=1 with replacement from {xt}Tt=1

Issues:

1. Inappropriate standardization of S for dynamic data. So
replace σ̂(x) with 2πf ∗x (0), where f ∗x (0) is a consistent
estimator of the spectral density of x at frequency 0.

2. Inappropriate to draw {x (j)
t }

T

t=1 with replacement for dynamic
data. What to do?

352 / 357



Non-Parametric Solution:
Block Bootstrap

Overlapping blocks of size b in the sample path:

ξt = (xt , ..., xt+b−1), t = 1, ...,T − b + 1

Draw k blocks (where T = kb) from {ξt}T−b+1
t=1 :

ξ
(j)
1 , ..., ξ

(j)
k

Concatenate: (x
(j)
1 , ..., x

(j)
T ) = (ξ

(j)
1 ...ξ

(j)
k )

Consistent if b →∞ as T →∞ with b/T → 0
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Parametric Solution:
Parametric Bootstrap

AR(1) example:

xt = φxt−1 + εt , εt ∼ iid

1. Regress xt → xt−1 to get φ̂, and save residuals, {et}Tt=1

2. Draw {ε(j)
t }Tt=1 with replacement from {et}Tt=1

3. Draw x
(j)
0 from {xt}Tt=1

4. Generate x
(j)
t = φ̂x

(j)
t−1 + ε

(j)
t , t = 1, ...,T

5. Regress x
(j)
t → x

(j)
t−1 to get φ̂(j)

6. Repeat j = 1, ...,R, and build up the distribution of φ̂(j)
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General State-Space Parametric Time Series Bootstrap

Recall the prediction-error state space representation:

at+1/t = Tat/t−1 + TKtvt

yt = Zat/t−1 + vt

1. At the estimated system parameter values θ̂, run the Kalman filter
to get the corresponding 1-step-ahead prediction errors vt ∼ (0,Ft)
and standardize them to ut = Ω−1

t vt ∼ (0, I ), where ΩtΩ
′
t = Ft .

2. Draw {u(j)
t }Tt=1 with replacement from {ut}Tt=1 and convert to

{v (j)
t }Tt=1 = {Ωtu

(j)
t }Tt=1.

3. Using the prediction-error draw {v (j)
t }Tt=1, simulate the model,

obtaining {y (j)
t }Tt=1.

4. Estimate the model, obtaining θ̂(j).

5. Repeat j = 1, ...,R, build up the distribution of θ̂(j).
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Some Contrasts, for Reflection...

– Wold-Wiener-Kolmogorov vs. state space

– Univariate vs. multivariate

– Time Domain vs. frequency domain

– Frequentist MLE vs. Bayesian posterior analysis

– Linear Gaussian vs. non-linear non-Gaussian

– Conditional mean vs. conditional variance

– Stationary vs. non-stationary

– Simulation sprinkled throughout
(incl. MCMC for Bayesian analysis, Monte Carlo and variance
reduction, global optimization, simulated MM, bootstrap, ...)
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