Time Series Econometrics
 A Concise Course

Francis X. Diebold University of Pennsylvania

February 17, 2020

Copyright © 2013-2020, by Francis X. Diebold.

All rights reserved.

This work is freely available for your use, but be warned: it is highly preliminary, significantly incomplete, and rapidly evolving. It is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. (Briefly: I retain copyright, but you can use, copy and distribute non-commercially, so long as you give me attribution and do not modify. To view a copy of the license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.) In return I ask that you please cite the book whenever appropriate, as: "Diebold, F.X. (year here), Book Title Here, Department of Economics, University of Pennsylvania, http://www.ssc.upenn.edu/ fdiebold/Textbooks.html."

The graphic is by Peter Mills and was obtained from Wikimedia Commons.

Time Domain:

The General Linear Process and its Approximation

The Environment

Time series Y_{t} (doubly infinite)

Realization y_{t} (again doubly infinite)

$$
\text { Sample path } y_{t}, t=1, \ldots, T
$$

Strict Stationarity

Joint cdfs for sets of observations depend only on displacement, not time.

Weak Stationarity

(Covariance stationarity, second-order stationarity, ...)

$$
\begin{gathered}
E y_{t}=\mu, \forall t \\
\gamma(t, \tau)=E\left(y_{t}-E y_{t}\right)\left(y_{t-\tau}-E y_{t-\tau}\right)=\gamma(\tau), \forall t \\
0<\gamma(0)<\infty
\end{gathered}
$$

Autocovariance Function

$$
\begin{aligned}
& \text { (a) symmetric } \\
& \gamma(\tau)=\gamma(-\tau), \forall \tau
\end{aligned}
$$

(b) nonnegative definite

$$
a^{\prime} \Sigma a \geq 0, \forall a
$$

where Toeplitz matrix Σ has $i j$-th element $\gamma(i-j)$
(c) bounded by the variance

$$
\gamma(0) \geq|\gamma(\tau)|, \forall \tau
$$

Autocovariance Generating Function

$$
g(z)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau) z^{\tau}
$$

Autocorrelation Function

$$
\rho(\tau)=\frac{\gamma(\tau)}{\gamma(0)}
$$

White Noise

White noise: $\varepsilon_{t} \sim W N\left(\mu, \sigma^{2}\right)$ (serially uncorrelated) Zero-mean white noise: $\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)$ Independent (strong) white noise: $\varepsilon_{t} \quad \sim\left(0, \sigma^{2}\right)$
iid

Gaussian white noise: $\varepsilon_{t} \sim N\left(0, \sigma^{2}\right)$

Unconditional Moment Structure of Strong White Noise

$$
\begin{aligned}
E\left(\varepsilon_{t}\right) & =0 \\
\operatorname{var}\left(\varepsilon_{t}\right) & =\sigma^{2}
\end{aligned}
$$

Conditional Moment Structure of Strong White Noise

$$
\begin{gathered}
E\left(\varepsilon_{t} \mid \Omega_{t-1}\right)=0 \\
\operatorname{var}\left(\varepsilon_{t} \mid \Omega_{t-1}\right)=E\left[\left(\varepsilon_{t}-E\left(\varepsilon_{t} \mid \Omega_{t-1}\right)\right)^{2} \mid \Omega_{t-1}\right]=\sigma^{2}
\end{gathered}
$$

where

$$
\Omega_{t-1}=\varepsilon_{t-1}, \varepsilon_{t-2}, \ldots
$$

Autocorrelation Structure of Strong White Noise

$$
\begin{aligned}
& \gamma(\tau)=\left\{\begin{array}{c}
\sigma^{2}, \tau=0 \\
0, \tau \geq 1
\end{array}\right. \\
& \rho(\tau)=\left\{\begin{array}{c}
1, \tau=0 \\
0, \tau \geq 1
\end{array}\right.
\end{aligned}
$$

An Aside on Treatment of the Mean

In theoretical work we assume a zero mean, $\mu=0$.
This reduces notational clutter and is without loss of generality.
(Think of y_{t} as having been centered around its mean, μ, and note that $y_{t}-\mu$ has zero mean by construction.)
(In empirical work we allow explicitly for a non-zero mean, either by centering the data around the sample mean or by including an intercept.)

The Wold Decomposition

Under regularity conditions, every covariance-stationary process $\left\{y_{t}\right\}$ can be written as:

$$
y_{t}=\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i}
$$

where:

$$
b_{0}=1
$$

$$
\sum_{i=0}^{\infty} b_{i}^{2}<\infty
$$

$$
\varepsilon_{t}=\left[y_{t}-P\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots\right)\right] \sim W N\left(0, \sigma^{2}\right)
$$

The General Linear Process

$$
\begin{gathered}
y_{t}=B(L) \varepsilon_{t}=\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i} \\
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right) \\
b_{0}=1 \\
\sum_{i=0}^{\infty} b_{i}^{2}<\infty
\end{gathered}
$$

Unconditional Moment Structure

 (Assuming Strong WN Innovations)$$
\begin{aligned}
& E\left(y_{t}\right)=E\left(\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i}\right)=\sum_{i=0}^{\infty} b_{i} E \varepsilon_{t-i}=\sum_{i=0}^{\infty} b_{i} \cdot 0=0 \\
& \operatorname{var}\left(y_{t}\right)=\operatorname{var}\left(\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i}\right)=\sum_{i=0}^{\infty} b_{i}^{2} \operatorname{var}\left(\varepsilon_{t-i}\right)=\sigma^{2} \sum_{i=0}^{\infty} b_{i}^{2}
\end{aligned}
$$

(Do these calculations use the strong WN assumption? If so, how?)

Conditional Moment Structure

(Assuming Strong WN Innovations)

$$
\begin{gathered}
E\left(y_{t} \mid \Omega_{t-1}\right)=E\left(\varepsilon_{t} \mid \Omega_{t-1}\right)+b_{1} E\left(\varepsilon_{t-1} \mid \Omega_{t-1}\right)+b_{2} E\left(\varepsilon_{t-2} \mid \Omega_{t-1}\right)+\ldots \\
\left(\Omega_{t-1}=\varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\right) \\
=0+b_{1} \varepsilon_{t-1}+b_{2} \varepsilon_{t-2}+\ldots=\sum_{i=1}^{\infty} b_{i} \varepsilon_{t-i} \\
\operatorname{var}\left(y_{t} \mid \Omega_{t-1}\right)=E\left[\left(y_{t}-E\left(y_{t} \mid \Omega_{t-1}\right)\right)^{2} \mid \Omega_{t-1}\right] \\
=E\left(\varepsilon_{t}^{2} \mid \Omega_{t-1}\right)=E\left(\varepsilon_{t}^{2}\right)=\sigma^{2}
\end{gathered}
$$

(Do these calculations use the strong WN assumption? If so, how?)

Autocovariance Structure

$$
\begin{gathered}
\gamma(\tau)=E\left[\left(\sum_{i=-\infty}^{\infty} b_{i} \varepsilon_{t-i}\right)\left(\sum_{h=-\infty}^{\infty} b_{h} \varepsilon_{t-\tau-h}\right)\right] \\
=\sigma^{2} \sum_{i=-\infty}^{\infty} b_{i} b_{i-\tau}
\end{gathered}
$$

(where $b_{i} \equiv 0$ if $i<0$)

$$
g(z)=\sigma^{2} B(z) B\left(z^{-1}\right)
$$

Approximating the Wold Representation, I:

 Finite-Ordered Autoregressions$A R(p)$ process

(Stochastic difference equation)

We now study $A R(1)$ (heavy detail)

Approximating the Wold Representation II:

 Fintite-Ordered Moving Average Processes$M A(q)$ process
(Obvious truncation)

We now study $M A(1)$ (light detail)

Wiener-Kolmogorov Prediction

$$
\begin{gathered}
y_{t}=\varepsilon_{t}+b_{1} \varepsilon_{t-1}+\ldots \\
y_{T+h}=\varepsilon_{T+h}+b_{1} \varepsilon_{T+h-1}+\ldots+b_{h} \varepsilon_{T}+b_{h+1} \varepsilon_{T-1}+\ldots
\end{gathered}
$$

$$
\text { Project on } \Omega_{T}=\left\{\varepsilon_{T}, \varepsilon_{T-1}, \ldots\right\} \text { to get: }
$$

$$
y_{T+h, T}=b_{h} \varepsilon_{T}+b_{h+1} \varepsilon_{T-1}+\ldots
$$

Note that the projection is on the infinite past

Wiener-Kolmogorov Prediction Error

$$
e_{T+h, T}=y_{T+h}-y_{T+h, T}=\sum_{i=0}^{h-1} b_{i} \varepsilon_{T+h-i}
$$

$$
(\text { An } M A(h-1) \text { process!) }
$$

$$
\begin{gathered}
E\left(e_{T+h, T}\right)=0 \\
\operatorname{var}\left(e_{T+h, T}\right)=\sigma^{2} \sum_{i=0}^{h-1} b_{i}^{2}
\end{gathered}
$$

Wold's Chain Rule for Autoregressions

Consider an $\operatorname{AR}(1)$ process:

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

History:

$$
\left\{y_{t}\right\}_{t=1}^{T}
$$

$$
\begin{gathered}
\text { Immediately, } \\
y_{T+1, T}=\phi y_{T} \\
y_{T+2, T}=\phi y_{T+1, T}=\phi^{2} y_{T}
\end{gathered}
$$

$$
y_{T+h, T}=\phi y_{T+h-1, T}=\phi^{h} y_{T}
$$

Extension to $A R(p)$ and $A R(\infty)$ is immediate.

Multivariate (Bivariate)

Define $y_{t}=\left(y_{1 t}, y_{2 t}\right)^{\prime}$ and $\mu_{t}=\left(\mu_{1 t}, \mu_{2 t}\right)^{\prime}$
y_{t} is covariance stationary if:

$$
E\left(y_{t}\right)=\mu_{t}=\mu, \forall t
$$

where $\mu=\left(\mu_{1}, \mu_{2}\right)^{\prime}$ is a vector of constants "mean does not depend on time"

$$
\begin{aligned}
& \Gamma_{y_{1} y_{2}}(t, \tau)=E\left(y_{t}-\mu_{t}\right)\left(y_{t+\tau}-\mu_{t+\tau}\right)^{\prime} \\
& =\left(\begin{array}{ll}
\gamma_{11}(\tau) & \gamma_{12}(\tau) \\
\gamma_{21}(\tau) & \gamma_{22}(\tau)
\end{array}\right), \tau=0,1,2, \ldots
\end{aligned}
$$

"autocovariance depends only on displacement, not on time"

$$
\operatorname{var}\left(y_{1}\right)<\infty, \operatorname{var}\left(y_{2}\right)<\infty
$$

"finite variance"

Cross Covariances

Cross covariances not symmetric in τ :

$$
\begin{gathered}
\gamma_{12}(\tau) \neq \gamma_{12}(-\tau) \\
\text { Instead: } \\
\gamma_{12}(\tau)=\gamma_{21}(-\tau) \\
\Gamma_{y_{1} y_{2}}(\tau)=\Gamma_{y_{1} y_{2}}^{\prime}(-\tau), \quad \tau=0,1,2, \ldots
\end{gathered}
$$

Covariance-generating function:

$$
G_{y_{1} y_{2}}(z)=\sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) z^{\tau}
$$

Cross Correlations

$$
R_{y_{1} y_{2}}(\tau)=D_{y_{1} y_{2}}^{-1} \Gamma_{y_{1} y_{2}}(\tau) D_{y_{1} y_{2}}^{-1}, \tau=0,1,, 2, \ldots
$$

$$
D=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)
$$

The Multivariate General Linear Process

$$
\begin{gathered}
y_{t}=B(L) \varepsilon_{t}=\sum_{i=0}^{\infty} B_{i} \varepsilon_{t-i} \\
E\left(\varepsilon_{t} \varepsilon_{s}^{\prime}\right)=\left\{\begin{array}{cc}
\sum & \text { if } t=s \\
0 & \text { otherwise }
\end{array}\right. \\
B_{0}=1 \\
\sum_{i=0}^{\infty}\left\|B_{i}\right\|^{2}<\infty
\end{gathered}
$$

Bivariate case:

$$
\binom{y_{1 t}}{y_{2 t}}=\left(\begin{array}{ll}
B_{11}(L) & B_{12}(L) \\
B_{21}(L) & B_{22}(L)
\end{array}\right)\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

Autocovariance Structure

$$
\Gamma_{y_{1} y_{2}}(\tau)=\sum_{i=-\infty}^{\infty} B_{i} \Sigma B_{i-\tau}^{\prime}
$$

$$
\text { (where } B_{i} \equiv 0 \text { if } i<0 \text {) }
$$

$$
G_{y}(z)=B(z) \Sigma B^{\prime}\left(z^{-1}\right)
$$

Wiener-Kolmogorov Prediction

$$
\begin{gathered}
y_{t}=\varepsilon_{t}+B_{1} \varepsilon_{t-1}+B_{2} \varepsilon_{t-2}+\ldots \\
y_{T+h}=\varepsilon_{T+h}+B_{1} \varepsilon_{T+h-1}+B_{2} \varepsilon_{T+h-2}+\ldots
\end{gathered}
$$

Project on $\Omega_{t}=\left\{\varepsilon_{T}, \varepsilon_{T-1}, \ldots\right\}$ to get:

$$
y_{t+h, T}=B_{h} \varepsilon_{T}+B_{h+1} \varepsilon_{T-1}+\ldots
$$

Wiener-Kolmogorov Prediction Error

$$
\begin{gathered}
\varepsilon_{T+h, T}=y_{T+h}-y_{T+h, T}=\sum_{i=0}^{h-1} B_{i} \varepsilon_{T+h-i} \\
E\left[\varepsilon_{T+h, T}\right]=0 \\
E\left[\varepsilon_{T+h, T} \varepsilon_{T+h, T}^{\prime}\right]=\sum_{i=0}^{h-1} B_{i} \Sigma B_{i}^{\prime}
\end{gathered}
$$

Vector Autoregressions (VAR's)

N-variable VAR of order p :

$$
\begin{gathered}
\Phi(L) y_{t}=\varepsilon_{t} \\
\varepsilon_{t} \sim W N(0, \Sigma) \\
\text { where: }
\end{gathered}
$$

$$
\Phi(L)=I-\Phi_{1} L-\ldots-\Phi_{p} L^{p}
$$

Bivariate VAR(1) in "Long Form"

$$
\begin{gathered}
\binom{y_{1 t}}{y_{2 t}}=\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right)\binom{y_{1 t-1}}{y_{2 t-1}}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}} \\
\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}} \sim W N\left(\binom{0}{0},\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)\right)
\end{gathered}
$$

- Two sources of cross-variable interaction.

MA Representation of a VAR

$$
\begin{gathered}
\Phi(L) y_{t}=\varepsilon_{t} \\
y_{t}=\Phi^{-1}(L) \varepsilon_{t}=\Theta(L) \varepsilon_{t}
\end{gathered}
$$

where:

$$
\Theta(L)=I+\Theta_{1} L+\Theta_{2} L^{2}+\ldots
$$

MA Representation of Bivariate VAR(1) in Long Form

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right) L\right)\binom{y_{1 t}}{y_{2 t}}=\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}} \\
& \binom{y_{1 t}}{y_{2 t}}=\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}+\left(\begin{array}{ll}
\theta_{11}^{1} & \theta_{12}^{1} \\
\theta_{21}^{1} & \theta_{22}^{1}
\end{array}\right)\binom{\varepsilon_{1 t-1}}{\varepsilon_{2 t-1}}+\ldots
\end{aligned}
$$

Understanding VAR's: Granger-Sims Causality

Is the history of y_{j} useful for predicting y_{i}, over and above the history of y_{i} ?

- Granger non-causality corresponds to exclusion restrictions
- In the simple 2-Variable $\operatorname{VAR}(1)$ example,

$$
\binom{y_{1 t}}{y_{2 t}}=\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right)\binom{y_{1 t-1}}{y_{2 t-1}}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

y_{2} does not Granger cause y_{1} iff $\phi_{12}=0$

Understanding VAR's: Impulse Response Functions (IRF's)

$$
\begin{gathered}
\left(I-\Phi_{1} L-\ldots-\Phi_{p} L^{p}\right) y_{t}=\varepsilon_{t} \\
\varepsilon_{t} \sim W N(0, \Sigma)
\end{gathered}
$$

The impulse-response question:
How is $y_{i t}$ dynamically affected by a shock to $y_{j t}$ (alone)?
($N \times N$ matrix of IRF graphs (over steps ahead))
Problem:
Σ generally not diagonal, so how to shock j alone?

Graphic: IRF Matrix for 4-Variable U.S. Macro VAR

20

Response of R

Understanding VAR's: Variance Decompositions (VD's)

$$
\begin{gathered}
\left(I-\Phi_{1} L-\ldots-\Phi_{p} L^{p}\right) y_{t}=\varepsilon_{t} \\
\varepsilon_{t} \sim W N(0, \Sigma)
\end{gathered}
$$

The variance decomposition question:
How much of the h-step ahead (optimal) prediction-error variance of y_{i} is due to shocks to variable j ?

$$
(N \times N \text { matrix of VD graphs (over } h \text {). }
$$

Or pick an h and examine the $N \times N$ matrix of VD numbers.)
Problem:
Σ generally not diagonal, which makes things tricky, as the variance of a sum of innovations is not the sum of the variances in that case.

Orthogonalizing VAR's by Cholesky Factorization

 (A Classic Identification Scheme)Original:

$$
\left(I-\Phi_{1} L-\ldots-\Phi_{p} L^{p}\right) y_{t}=\varepsilon_{t}, \quad \varepsilon_{t} \sim W N(0, \Sigma)
$$

Equivalently:

$$
\left(I-\Phi_{1} L-\ldots-\Phi_{p} L^{p}\right) y_{t}=P v_{t}, \quad v_{t} \sim W N(0, I)
$$

or

$$
\left(P^{-1}-\left[P^{-1} \Phi_{1}\right] L-\ldots-\left[P^{-1} \Phi_{p}\right] L^{p}\right) y_{t}=v_{t}, \quad v_{t} \sim W N(0, I)
$$

where $\Sigma=P P^{\prime}$, for lower-triangular P
(Cholesky factorization)
Now we can proceed with IRF's and VD's.

IRF's and VD's from the Orthogonalized VAR

IRF comes from the orthogonalized moving-average representation:

$$
\begin{aligned}
& y_{t}=\left(I+\Theta_{1} L+\Theta_{2} L^{2}+\ldots\right) P v_{t} \\
& =\left(P+\Theta_{1} P L+\Theta_{2} P L^{2}+\ldots\right) v_{t}
\end{aligned}
$$

$\operatorname{IRF}_{\mathrm{ij}}$ is $\left\{P_{i j},\left(\Theta_{1} P\right)_{i j},\left(\Theta_{2} P\right)_{i j}, \ldots\right\}$
$\mathrm{VD}_{\mathrm{ij}}$ comes similarly from the orthogonalized moving-average representation.

Bivariate IRF Example (e.g., IRF_{12})

$$
\begin{gathered}
y_{t}=P v_{t}+\Theta_{1} P v_{t-1}+\Theta_{2} P v_{t-2}+\ldots \\
v_{t} \sim W N(0, I) \\
y_{t}=c_{0} v_{t}+c_{1} v_{t-1}+c_{2} v_{t-2}+\ldots \\
\binom{y_{1 t}}{y_{2 t}}=\left(\begin{array}{cc}
c_{11}^{0} & c_{12}^{0} \\
c_{21}^{0} & c_{22}^{0}
\end{array}\right)\binom{v_{1 t}}{v_{2 t}}+\left(\begin{array}{ll}
c_{11}^{1} & c_{12}^{1} \\
c_{21}^{1} & c_{22}^{1}
\end{array}\right)\binom{v_{1 t-1}}{v_{2 t-1}}+\ldots \\
\operatorname{IRF}_{12}=c_{12}^{0}, \mathrm{c}_{12}^{1}, c_{12}^{2}, \ldots \\
\left(\mathrm{Q}: \text { What is } c_{12}^{0} ?\right)
\end{gathered}
$$

Bivariate VD Example (e.g., VD 12 for $h=2$)

$$
\begin{aligned}
\epsilon_{t+2, t} & =C_{0} v_{t+2}+C_{1} v_{t+1} \\
v_{t} & \sim W N(0, l)
\end{aligned}
$$

$$
\begin{gathered}
\binom{\epsilon_{t+2, t}^{1}}{\epsilon_{t+2, t}^{2}}=\left(\begin{array}{ll}
c_{11}^{0} & c_{12}^{0} \\
c_{21}^{0} & c_{22}^{0}
\end{array}\right)\binom{v_{1 t+2}}{v_{2 t+2}}+\left(\begin{array}{ll}
c_{11}^{1} & c_{12}^{1} \\
c_{21}^{1} & c_{22}^{1}
\end{array}\right)\binom{v_{1 t+1}}{v_{2 t+1}} \\
\epsilon_{t+2, t}^{1}=c_{11}^{0} v_{1 t+2}+c_{12}^{0} v_{2 t+2}+c_{11}^{1} v_{1 t+1}+c_{12}^{1} v_{2 t+1} \\
\operatorname{var}\left(\epsilon_{t+2, t}^{1}\right)=\left(c_{11}^{0}\right)^{2}+\left(c_{12}^{0}\right)^{2}+\left(c_{11}^{1}\right)^{2}+\left(c_{12}^{1}\right)^{2} \\
\text { Part coming from } v_{2}:\left(c_{12}^{0}\right)^{2}+\left(c_{12}^{1}\right)^{2}
\end{gathered}
$$

$$
V D_{12}(2)=\frac{\left(c_{12}^{0}\right)^{2}+\left(c_{12}^{1}\right)^{2}}{\left(c_{11}^{0}\right)^{2}+\left(c_{12}^{0}\right)^{2}+\left(c_{11}^{1}\right)^{2}+\left(c_{12}^{1}\right)^{2}}
$$

Frequency Domain

"Spectral Analysis"

Remember...

$$
\begin{gathered}
z=a+b i \quad(\text { rectangular }) \\
z=r e^{i \omega}=r(\cos \omega+i \sin \omega) \quad(\text { polar }) \\
\cos (\omega)=\frac{e^{i \omega}+e^{-i \omega}}{2} \\
\sin (\omega)=\frac{e^{i \omega}-e^{-i \omega}}{2} \\
P=\frac{2 \pi}{\omega} \\
z \bar{z}=|z|^{2}
\end{gathered}
$$

Recall the General Linear Process

$$
y_{t}=B(L) \varepsilon_{t}=\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i}
$$

Autocovariance generating function:

$$
\begin{aligned}
& g(z)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau) z^{\tau} \\
& =\sigma^{2} B(z) B\left(z^{-1}\right)
\end{aligned}
$$

$\gamma(\tau)$ and $g(z)$ are a z-transform pair

Spectrum

Evaluate $\mathrm{g}(\mathrm{z})$ on the unit circle, $z=e^{-i \omega}$:

$$
\begin{gathered}
g\left(e^{-i \omega}\right)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau) e^{-i \omega \tau},-\pi<\omega<\pi \\
=\sigma^{2} B\left(e^{i \omega}\right) B\left(e^{-i \omega}\right) \\
=\sigma^{2}\left|B\left(e^{i \omega}\right)\right|^{2}
\end{gathered}
$$

Spectrum

Trigonometric form:

$$
\begin{gathered}
g(\omega)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau) e^{-i \omega \tau} \\
=\gamma(0)+\sum_{\tau=1}^{\infty} \gamma(\tau)\left(e^{i \omega \tau}+e^{-i \omega \tau}\right) \\
=\gamma(0)+2 \sum_{\tau=1}^{\infty} \gamma(\tau) \cos (\omega \tau)
\end{gathered}
$$

Spectral Density Function

$$
\begin{gathered}
f(\omega)=\frac{1}{2 \pi} g(\omega) \\
f(\omega)=\frac{1}{2 \pi} \sum_{\tau=-\infty}^{\infty} \gamma(\tau) e^{-i \omega \tau} \quad(-\pi<\omega<\pi) \\
=\frac{1}{2 \pi} \gamma(0)+\frac{1}{\pi} \sum_{\tau=1}^{\infty} \gamma(\tau) \cos (\omega \tau) \\
=\frac{\sigma^{2}}{2 \pi} B\left(e^{i \omega}\right) B\left(e^{-i \omega}\right) \\
=\frac{\sigma^{2}}{2 \pi}\left|B\left(e^{i \omega}\right)\right|^{2}
\end{gathered}
$$

Properties of Spectrum and Spectral Density

1. symmetric around $\omega=0$
2. real-valued
3. 2π-periodic
4. nonnegative

A Fourier Transform Pair

$$
\begin{gathered}
g(\omega)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau) e^{-i \omega \tau} \\
\gamma(\tau)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(\omega) e^{i \omega \tau} d \omega
\end{gathered}
$$

A Variance Decomposition by Frequency

$$
\begin{aligned}
\gamma(\tau) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(\omega) e^{i \omega \tau} d \omega \\
& =\int_{-\pi}^{\pi} f(\omega) e^{i \omega \tau} d \omega
\end{aligned}
$$

Hence

$$
\gamma(0)=\int_{-\pi}^{\pi} f(\omega) d \omega
$$

White Noise Spectral Density

$$
\begin{gathered}
y_{t}=\varepsilon_{t} \\
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right) \\
f(\omega)=\frac{\sigma^{2}}{2 \pi} B\left(e^{i \omega}\right) B\left(e^{-i \omega}\right) \\
=\frac{\sigma^{2}}{2 \pi}
\end{gathered}
$$

AR(1) Spectral Density

$$
\begin{gathered}
y_{t}=\phi y_{t-1}+\varepsilon_{t} \\
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right) \\
f(\omega)=\frac{\sigma^{2}}{2 \pi} B\left(e^{i \omega}\right) B\left(e^{-i \omega}\right) \\
=\frac{\sigma^{2}}{2 \pi} \frac{1}{\left(1-\phi e^{i \omega}\right)\left(1-\phi e^{-i \omega}\right)} \\
=\frac{\sigma^{2}}{2 \pi} \frac{1}{1-2 \phi \cos (\omega)+\phi^{2}}
\end{gathered}
$$

How does shape depend on ϕ ? Where are the peaks?

Figure: Granger's Typical Spectral Shape of an Economic Variable

Robust Variance Estimation

$$
\begin{gathered}
\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t} \\
\operatorname{var}(\bar{y})=\frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \gamma(t-s) \\
\text { ("Add row sums") } \\
=\frac{1}{T} \sum_{\tau=-(T-1)}^{T-1}\left(1-\frac{|\tau|}{T}\right) \gamma(\tau)
\end{gathered}
$$

("Add diagonal sums," using change of variable $\tau=t-s$)

Robust Variance Estimation, Continued

$$
\begin{gathered}
\Rightarrow \sqrt{T}(\bar{y}-\mu) \sim\left(0, \sum_{\tau=-(T-1)}^{T-1}\left(1-\frac{|\tau|}{T}\right) \gamma(\tau)\right) \\
\sqrt{T}(\bar{y}-\mu) \xrightarrow{d} N\left(0, \sum_{\tau=-\infty}^{\infty} \gamma(\tau)\right) \\
\sqrt{T}(\bar{y}-\mu) \xrightarrow{d} N(0, g(0))
\end{gathered}
$$

Estimation: Sample Spectral Density

$$
\begin{gathered}
\hat{f}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-(T-1)}^{T-1} \hat{\gamma}(\tau) e^{-i \omega \tau} \\
\text { where } \\
\hat{\gamma}(\tau)=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-\tau}-\bar{y}\right)
\end{gathered}
$$

(Use frequencies $\omega_{j}=\frac{2 \pi j}{T}, j=0,1,2, \ldots, \frac{T}{2}$)

- Inconsistent, unfortunately

Historical and Computational Note:

The FFT and Periodogram

$$
\begin{gathered}
\hat{f}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-(T-1)}^{T-1} \hat{\gamma}(\tau) e^{-i \omega \tau} \\
=\left(\frac{1}{\sqrt{2 \pi T}} \sum_{t=1}^{T} y_{t} e^{-i \omega t}\right)\left(\frac{1}{\sqrt{2 \pi T}} \sum_{t=1}^{T} y_{t} e^{i \omega t}\right) \\
(\mathrm{FFT}) \cdot(\overline{\mathrm{FFT}}) \\
=\frac{1}{4 \pi} I(\omega) \quad(I \text { is the "periodogram" })
\end{gathered}
$$

- Again: Inconsistent, unfortunately

Properties of the Sample Spectral Density

Under conditions:

- $\hat{f}\left(\omega_{j}\right)$ asymptotically unbiased
- But $\operatorname{var}\left(\hat{f}\left(\omega_{j}\right)\right)$ does not converge to 0 (d.f. don't accumulate)
- Hence $\hat{f}\left(\omega_{j}\right)$ is inconsistent. What's true is that:

$$
\frac{2 \hat{f}\left(\omega_{j}\right)}{f\left(\omega_{j}\right)} \quad \stackrel{d}{\rightarrow} \chi_{2}^{2}
$$

where the χ_{2}^{2} random variables are uncorrelated across frequencies $\omega_{j}=\frac{2 \pi j}{T}, j=0,1,2, \ldots, \frac{T}{2}$

Consistent ("Lag Window") Spectral Estimation

$$
\begin{gathered}
\hat{f}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-(T-1)}^{T-1} \hat{\gamma}(\tau) e^{-i \omega \tau} \\
f^{*}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-(T-1)}^{T-1} \lambda(\tau) \hat{\gamma}(\tau) e^{-i \omega \tau}
\end{gathered}
$$

(Weight the sample autocovariances.)
Common "lag windows" with "truncation lag" M_{T} :
$\lambda(\tau)=1,|\tau| \leq M_{T}$ and 0 otherwise (rectangular, or uniform)
$\lambda(\tau)=1-\frac{|\tau|}{M_{T}}, \tau \leq M_{T}$ and 0 otherwise (triangular, or Bartlett, or Newey-West)

Consistency: $M_{T} \rightarrow \infty$ and $\frac{M_{T}}{T} \rightarrow 0$ as $T \rightarrow \infty$

Consistent ("Autoregressive") Spectral Estimation

"Model-based estimation"

Fit $A R\left(p_{T}\right)$ model (using AIC, say)
Calculate spectrum of the fitted model at the fitted parameters
Consistency: $p_{T} \rightarrow \infty$ and $\frac{p_{T}}{T} \rightarrow 0$ as $T \rightarrow \infty$

Multivariate Frequency Domain

Covariance-generating function:

$$
G_{y_{1} y_{2}}(z)=\sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) z^{\tau}
$$

Spectral density function:

$$
\begin{gathered}
F_{y_{1} y_{2}}(\omega)=\frac{1}{2 \pi} G_{y_{1} y_{2}}\left(e^{-i \omega}\right) \\
=\frac{1}{2 \pi} \sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) e^{-i \omega \tau},-\pi<\omega<\pi
\end{gathered}
$$

(Complex-valued)

Consistent Multivariate Spectral Estimation

Spectral density matrix:

$$
F_{y_{1} y_{2}}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) e^{-i \omega \tau}, \quad-\pi<\omega<\pi
$$

Consistent (lag window) estimator:

$$
F_{y_{1} y_{2}}^{*}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-(T-1)}^{(T-1)} \lambda(\tau) \hat{\Gamma}_{y_{1} y_{2}}(\tau) e^{-i \omega \tau}, \quad-\pi<\omega<\pi
$$

Or do autoregressive (VAR) spectral estimation.

Co-Spectrum and Quadrature Spectrum

$$
\begin{gathered}
F_{y_{1} y_{2}}(\omega)=C_{y_{1} y_{2}}(\omega)+i Q_{y_{1} y_{2}}(\omega) \\
C_{y_{1} y_{2}}(\omega)=\frac{1}{2 \pi} \sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) \cos (\omega \tau) \\
Q_{y_{1} y_{2}}(\omega)=\frac{-1}{2 \pi} \sum_{\tau=-\infty}^{\infty} \Gamma_{y_{1} y_{2}}(\tau) \sin (\omega \tau)
\end{gathered}
$$

Cross Spectrum

$$
\begin{gathered}
f_{y_{1} y_{2}}(\omega)=g a_{y_{1} y_{2}}(\omega) \exp \left(i p h_{y_{1} y_{2}}(\omega)\right) \text { (generic cross spectrum) } \\
g a_{y_{1} y_{2}}(\omega)=\left[c_{y_{1} y_{2}}^{2}(\omega)+q_{y_{1} y_{2}}^{2}(\omega)\right]^{\frac{1}{2}} \text { (gain) } \\
p h_{y_{1} y_{2}}(\omega)=\arctan \left(\frac{q_{y_{1} y_{2}}(\omega)}{c_{y_{1} y_{2}}(\omega)}\right) \text { (phase shift in radians) }
\end{gathered}
$$

(Phase shift in time units is $\frac{p h(\omega)}{\omega}$)

$$
\operatorname{coh}_{y_{1} y_{2}}(\omega)=\frac{\left|f_{y_{1} y_{2}}(\omega)\right|^{2}}{f_{y_{11} y_{1}}(\omega) f_{y_{2} y_{2}}(\omega)} \text { (coherence) }
$$

Squared correlation decomposed by frequency

Useful Spectral Results for Filter Analysis

$$
\begin{gathered}
\text { If } y_{1 t}=B(L) y_{2 t} \text {, then: } \\
\begin{array}{c}
f_{y_{1} y_{1}}(\omega)=\left|B\left(e^{-i \omega}\right)\right|^{2} f_{y_{2} y_{2}}(\omega) \\
f_{y_{1} y_{2}}(\omega)=B\left(e^{-i \omega}\right) f_{y_{2} y_{2}}(\omega)
\end{array}
\end{gathered}
$$

$B\left(e^{-i \omega}\right)$ is the filter's frequency response function
If $y_{1 t}=A(L) B(L) y_{2 t}$, then:

$$
\begin{gathered}
f_{y_{1} y_{1}}(\omega)=\left|A\left(e^{-i \omega}\right)\right|^{2}\left|B\left(e^{-i \omega}\right)\right|^{2} f_{y_{2} y_{2}}(\omega) \\
f_{y_{1} y_{2}}(\omega)=A\left(e^{-i \omega}\right) B\left(e^{-i \omega}\right) f_{y_{2} y_{2}}(\omega)
\end{gathered}
$$

If $y=\sum_{i=1}^{N} y_{i}$, and the y_{i} are independent, then:

$$
f_{y}(\omega)=\sum_{i=1}^{N} f_{y_{i}}(\omega)
$$

Nuances...

Note that

$$
\begin{gathered}
B\left(e^{-i \omega}\right)=\frac{f_{y_{1} y_{2}}(\omega)}{f_{y_{2} y_{2}}(\omega)} \\
\Longrightarrow B\left(e^{-i \omega}\right)=\frac{g a_{y_{1} y_{2}}(\omega) e^{i p h_{y_{1} y_{2}}(\omega)}}{f_{y_{2} y_{2}}(\omega)}=\left(\frac{g a_{y_{1} y_{2}}(\omega)}{f_{y_{2} y_{2}}(\omega)}\right) e^{i p h_{y_{1} y_{2}}(\omega)}
\end{gathered}
$$

Gains of $f_{y_{1} y_{2}}(\omega)$ and $B\left(e^{-i \omega}\right)$ are closely related.
Phases are the same.

Filter Analysis Example I:

A Simple (but Very Important) High-Pass Filter

$$
\begin{gathered}
y_{1 t}=(1-L) y_{2 t}=y_{2 t}-y_{2, t-1} \\
B(L)=(1-L) \Longrightarrow B\left(e^{-i \omega}\right)=1-e^{-i \omega}
\end{gathered}
$$

Hence the filter gain is:

$$
\left|B\left(e^{-i \omega}\right)\right|=\left|1-e^{-i \omega}\right|=2(1-\cos (\omega))
$$

Gain of the First-Difference Filter, $B(L)=1-L$

How would the gain look if the filter were $B(L)=1+L$ rather than $B(L)=1-L$?

Filter Analysis Example II

$$
\begin{aligned}
y_{2 t} & =.9 y_{2, t-1}+\eta_{t} \\
\eta_{t} & \sim W N(0,1) \\
y_{1 t} & =.5 y_{2, t-1}+\varepsilon_{t} \\
\varepsilon_{t} & \sim W N(0,1)
\end{aligned}
$$

where η_{t} and ε_{t} are orthogonal at all leads and lags

Spectral Density of y_{2}

$$
\begin{gathered}
y_{2 t}=\frac{1}{1-.9 L} \eta_{t} \\
\Longrightarrow f_{y_{2} y_{2}}(\omega)=\frac{1}{2 \pi}\left(\frac{1}{1-.9 e^{-i \omega}}\right)\left(\frac{1}{1-.9 e^{i \omega}}\right) \\
=\frac{1}{2 \pi} \frac{1}{1-2(.9) \cos (\omega)+(.9)^{2}} \\
=\frac{1}{11.37-11.30 \cos (\omega)}
\end{gathered}
$$

Shape?

Spectral Density of y_{1}

$$
y_{1 t}=0.5 L y_{2 t}+\varepsilon_{t}
$$

(So $B(L)=.5 L$ and $B\left(e^{-i \omega}\right)=0.5 e^{-i \omega}$)

$$
\begin{gathered}
\Longrightarrow f_{y_{1} y_{1}}(\omega)=\left|0.5 e^{-i \omega}\right|^{2} f_{y_{2} y_{2}}(\omega)+\frac{1}{2 \pi} \\
=0.25 f_{y_{2} y_{2}}(\omega)+\frac{1}{2 \pi} \\
=\frac{0.25}{11.37-11.30 \cos (\omega)}+\frac{1}{2 \pi}
\end{gathered}
$$

Shape?

Cross Spectrum Gain and Phase

$$
\begin{gathered}
B(L)=.5 L \\
B\left(e^{-i \omega}\right)=.5 e^{-i \omega} \\
f_{y_{1} y_{2}}(\omega)=B\left(e^{-i \omega}\right) f_{y_{2} y_{2}}(\omega) \\
=.5 e^{-i \omega} f_{y_{2} y_{2}}(\omega) \\
=\left(.5 f_{y_{2} y_{2}}(\omega)\right) e^{-i \omega} \\
g_{y_{1} y_{2}}(\omega)=.5 f_{y_{2} y_{2}}(\omega)=\frac{.5}{11.37-11.30 \cos (\omega)} \\
P h_{y_{1} y_{2}}(\omega)=-\omega \\
\text { (In time units, } \left.P h_{y_{1} y_{2}}(\omega)=-1, \text { so } y_{1} \text { leads } y_{2} \text { by }-1\right)
\end{gathered}
$$

Cross Spectrum Coherence

$$
\begin{gathered}
\operatorname{Coh}_{y_{1} y_{2}}(\omega)=\frac{\left|f_{y_{1} Y_{2}}(\omega)\right|^{2}}{f_{y_{2} y_{2}}(\omega) f_{y_{1} y_{1}}(\omega)}=\frac{.25 f_{y_{2} y_{2}}^{2}(\omega)}{f_{y_{2} y_{2}}(\omega) f_{y_{1} y_{1}}(\omega)}=\frac{.25 f_{y_{2} y_{2}}(\omega)}{f_{y_{1} y_{1}}(\omega)} \\
=\frac{.25 \frac{1}{2 \pi} \frac{1}{1-2(.9) \cos (\omega)+.9^{2}}}{.25 \frac{1}{2 \pi} \frac{1}{1-2(.9) \cos (\omega)+.9^{2}}+\frac{1}{2 \pi}} \\
=\frac{1}{8.24+7.20 \cos (\omega)}
\end{gathered}
$$

Shape?

Filter Analysis Example III: Kuznets' Filters

Low-frequency fluctuations in aggregate real output growth.
Low-frequency "Kuznets cycle": 20-year period
Filter 1 (moving average):

$$
\begin{aligned}
y_{1 t} & =\frac{1}{5} \sum_{j=-2}^{2} y_{2, t-j} \\
\Longrightarrow B_{1}\left(e^{-i \omega}\right) & =\frac{1}{5} \sum_{j=-2}^{2} e^{-i \omega j}=\frac{\sin (5 \omega / 2)}{5 \sin (\omega / 2)}
\end{aligned}
$$

Hence the filter gain is:

$$
\left|B_{1}\left(e^{-i \omega}\right)\right|=\left|\frac{\sin (5 \omega / 2)}{5 \sin (\omega / 2)}\right|
$$

Kuznets' Filters, Continued

Figure: Gain of Kuznets' Filter 1

Kuznets' Filters, Continued

Filter 2 (fancy difference):

$$
\begin{gathered}
y_{3 t}=y_{2, t+5}-y_{2, t-5} \\
\Longrightarrow B_{2}\left(e^{-i \omega}\right)=e^{i 5 \omega}-e^{-i 5 \omega}=2 \sin (5 \omega)
\end{gathered}
$$

Hence the filter gain is:

$$
\left|B_{2}\left(e^{-i \omega}\right)\right|=|2 \sin (5 \omega)|
$$

Kuznets' Filters, Continued

Figure: Gain of Kuznets' Filter 2

Kuznets' Filters, Continued

Composite gain:

$$
\left|B_{1}\left(e^{-i \omega}\right) B_{2}\left(e^{-i \omega}\right)\right|=\left|\frac{\sin (5 \omega / 2)}{5 \sin (\omega / 2)}\right||2 \sin (5 \omega)|
$$

Kuznets' Filters, Continued

Figure: Composite Gain of Kuznets' two Filters

Gains All Together for Comparison

Gain of Kuznet's Filter 1 (MA filter)

Gain of Kuznet's Filter 2 (Difference filter)

Composite Gain of Kuznet's Filter

So The Kuznets Procedure may Induce a Spurious "Long-Wave" Cycle

Let's apply the Kuznets filter to WN:

$$
\begin{gathered}
\varepsilon_{t} \sim W N(0,1) \\
f_{\varepsilon}(w)=\frac{1}{2 \pi} \\
\tilde{\varepsilon}_{t}=B_{\text {Kuznets }}(L) \varepsilon_{t}, \\
f_{\tilde{\varepsilon}_{t}}(w)=\left|B_{\text {Kuznets }}\left(e^{i w}\right)\right|^{2} f_{\varepsilon}(w)
\end{gathered}
$$

Compare the Two Spectra!

Markovian Structure, State Space, and the Kalman Filter

Part I: Markov Processes

Discrete-State, Discrete-Time Stochastic Process

$$
\left\{y_{t}\right\}, t=0,1,2, \ldots
$$

Possible values ("states") of $y_{t}: 1,2,3, \ldots$
First-order homogeneous Markov process:

$$
\begin{gathered}
\operatorname{Prob}\left(y_{t+1}=j \mid y_{t}=i, y_{t-1}=i_{t-1}, \ldots, y_{0}=i_{0}\right) \\
=\operatorname{Prob}\left(y_{t+1}=j \mid y_{t}=i\right)=p_{i j}
\end{gathered}
$$

Transition Probability Matrix P

1-step transition probabilities:

$$
\begin{gathered}
{[\operatorname{time}(t+1)]} \\
{[\text { time } t] \quad\left(\begin{array}{ccc}
p_{11} & p_{12} & \cdots \\
p_{21} & p_{22} & \cdots \\
\cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots
\end{array}\right)} \\
P \equiv \\
p_{i j} \geq 0, \quad \sum_{j=1}^{\infty} p_{i j}=1
\end{gathered}
$$

Chapman-Kolmogorov

m-step transition probabilities:

$$
\begin{gathered}
p_{i j}^{(m)}=\operatorname{Prob}\left(y_{t+m}=j \mid y_{t}=i\right) \\
\text { Let } P^{(m)} \equiv\left(p_{i j}^{(m)}\right) .
\end{gathered}
$$

Chapman-Kolmogorov theorem:

$$
P^{(m+n)}=P^{(m)} P^{(n)}
$$

Corollary: $P^{(m)}=P^{m}$

Lots of Definitions...

State j is accessible from state i if $p_{i j}^{(n)}>0$, for some n.
Two states i and j communicate (or are in the same class) if each is accessible from the other. We write $i \leftrightarrow j$.

A Markov process is irreducible if there exists only one class (i.e., all states communicate).

State i has period d if $p_{i i}^{(n)}=0 \forall n$ such that $n / d \notin Z$, and d is the greatest integer with that property.
(That is, a return to state i can only occur in multiples of d steps.)
A state with period 1 is called an aperiodic state.
A Markov process all of whose states are aperiodic is called an aperiodic Markov process.

And More Definitions

The first-transition probability is the probability that, starting in i, the first transition to j occurs after n transitions:

$$
f_{i j}^{(n)}=\operatorname{Prob}\left(y_{n}=j, y_{k} \neq j, k=1, \ldots,(n-1) \mid y_{0}=i\right)
$$

Denote the eventual transition probability

$$
\text { from } i \text { to } j \text { by } f_{i j}\left(=\sum_{n=1}^{\infty} f_{i j}^{(n)}\right)
$$

State j is recurrent if $f_{j j}=1$ and transient otherwise.
Denote the expected number of transitions needed to return to recurrent state j by $\mu_{j j}\left(=\sum_{n=1}^{\infty} n f_{j j}^{(n)}\right)$.

A recurrent state j is: positive recurrent if $\mu_{j j}<\infty$ null recurrent if $\mu_{j j}=\infty$.

And One More Definition

The row vector π is called the stationary distribution for P if:

$$
\pi P=\pi
$$

The stationary distribution is also called the steady-state distribution.

Theorem (Finally!)

Theorem: Consider an irreducible, aperiodic Markov process.
Then either:
(1) All states are transient or all states are null recurrent
$p_{i j}^{(n)} \rightarrow 0$ as $n \rightarrow \infty \forall i, j$. No stationary distribution.
or
(2) All states are positive recurrent.

$$
\begin{gathered}
p_{i j}^{(n)} \rightarrow \pi_{j} \text { as } n \rightarrow \infty \forall i, j . \\
\left\{\pi_{j}, j=1,2,3, \ldots\right\} \text { is the unique stationary distribution. } \\
\pi \text { is any row of } \lim _{n \rightarrow \infty} P^{n} .
\end{gathered}
$$

Example

Consider a Markov process with transition probability matrix:

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Call the states 1 and 2.
We will verify many of our claims, and we will calculate the steady-state distribution.

Example, Continued

(a) Valid Transition Probability Matrix

$$
\begin{aligned}
& p_{i j} \geq 0 \quad \forall i, j \\
& \sum_{j=1}^{2} p_{1 j}=1, \quad \sum_{j=1}^{2} p_{2 j}=1
\end{aligned}
$$

(b) Chapman-Kolmogorov Theorem (for $P^{(2)}$)

$$
P^{(2)}=P \cdot P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example, Continued

(c) Communication and Reducibility

Clearly, $1 \leftrightarrow 2$, so P is irreducible.

> (d) Periodicity

$$
\begin{array}{ll}
\text { State 1: } & d(1)=2 \\
\text { State 2: } & d(2)=2
\end{array}
$$

(e) First and Eventual Transition Probabilities

$$
\begin{aligned}
& f_{12}^{(1)}=1, f_{12}^{(n)}=0 \forall n>1 \Rightarrow f_{12}=1 \\
& f_{21}^{(1)}=1, f_{21}^{(n)}=0 \forall n>1 \Rightarrow f_{21}=1
\end{aligned}
$$

Example, Continued

(f) Recurrence

Because $f_{21}=f_{12}=1$, both states 1 and 2 are recurrent.

Moreover,

$$
\left.\mu_{11}=\sum_{n=1}^{\infty} n f_{11}^{(n)}=2<\infty \quad \text { (and similarly } \mu_{22}=2<\infty\right)
$$

Hence states 1 and 2 are positive recurrent.

Example, Continued

$$
\begin{gathered}
\text { (g) Stationary Distribution } \\
\text { We will guess and verify. } \\
\text { Let } \pi_{1}=.5, \pi_{2}=.5 \text { and check } \pi P=\pi \text { : } \\
(.5, .5)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=(.5, .5) .
\end{gathered}
$$

Hence the stationary probabilities are 0.5 and 0.5 .
Note that in this example we can not get the stationary probabilities by taking $\lim _{n \rightarrow \infty} P^{n}$. Why?

Illustrations/Variations/Extensions:
 Regime-Switching Models

$$
\begin{gathered}
P=\left(\begin{array}{cc}
p_{11} & 1-p_{11} \\
1-p_{22} & p_{22}
\end{array}\right) \\
s_{t} \sim P \\
y_{t}=c_{s_{t}}+\phi_{s_{t}} y_{t-1}+\varepsilon_{t} \\
\varepsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{s_{t}}^{2}\right)
\end{gathered}
$$

"Markov switching," or "hidden Markov," model

Illustrations/Variations/Extensions:
 Heterogeneous Markov Processes

$$
P_{t}=\left(\begin{array}{ccc}
p_{11, t} & p_{12, t} & \cdots \\
p_{21, t} & p_{22, t} & \cdots \\
\cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots
\end{array}\right)
$$

e.g., Regime switching with time-varying transition probabilities:

$$
\begin{gathered}
s_{t} \sim P_{t} \\
y_{t}=c_{s_{t}}+\phi_{s_{t}} y_{t-1}+\varepsilon_{t} \\
\varepsilon_{t} \sim i i d N\left(0, \sigma_{s_{t}}^{2}\right)
\end{gathered}
$$

Business cycle duration dependence: $p_{i j, t}=g_{i j}(t)$
Credit migration over the cycle: $p_{i j, t}=g_{i j}\left(\right.$ cycle $\left._{t}\right)$
General covariates: $p_{i j, t}=g_{i j}\left(x_{t}\right)$

Illustrations/Variations/Extensions: Constructing Markov Processes with Useful Stationary Distributions

- Markov Chain Monte Carlo (e.g., Gibbs sampling) - Construct a Markov process from whose steady-state distribution we want to sample.
- Global Optimization (e.g., simulated annealing)
- Construct a Markov process the support of whose steady-state distribution is the set of global optima of a function we want to maximize.

Illustrations/Variations/Extensions:

Continuous-State Markov Processes
$A R(1)$

$$
\alpha_{t}=T \alpha_{t-1}+\eta_{t}
$$

$$
\eta_{t} \sim W N
$$

Illustrations/Variations/Extensions:
 Continuous-State Markov Processes

State-Space System

$$
\begin{gathered}
\alpha_{t}=T \alpha_{t-1}+\eta_{t} \\
y_{t}=Z \alpha_{t}+\zeta_{t} \\
\eta_{t} \sim W N, \quad \zeta_{t} \sim W N
\end{gathered}
$$

We will now proceed to study state-space systems in significant depth.

Part II: State Space

Transition Equation

$$
\begin{gathered}
\begin{array}{c}
\alpha_{t} \\
m \times 1
\end{array}=\begin{array}{ccccc}
T & \alpha_{t-1} & + & R & \eta_{t} \\
m \times m & m \times 1
\end{array} \\
\\
\\
t=1,2, \ldots, T
\end{gathered}
$$

Measurement Equation

y_{t}	Z	α_{t}	$+$	Γ	w_{t}	$+$	ζ_{t}
1×1	1xm	$m \times 1$		1×L	Lx1		1×1

(This is for univariate y. We'll do multivariate shortly.)

$$
t=1,2, \ldots, T
$$

(Important) Details

$$
\binom{\eta_{t}}{\zeta_{t}} \sim W N(\underline{0}, \operatorname{diag}(\underbrace{Q}_{g \times g}, \underbrace{h}_{1 \times 1}))
$$

$$
\begin{gathered}
E\left(\alpha_{0} \eta_{t}\right)=0_{m \times g} \\
E\left(\alpha_{0} \zeta_{t}\right)=0_{m \times 1}
\end{gathered}
$$

All Together Now

$$
\begin{aligned}
& \binom{\eta_{t}}{\zeta_{t}} \sim W N(\mathbf{0}, \operatorname{diag}(\underbrace{Q}_{g \times g}, \underbrace{h}_{1 \times 1})) \\
& E\left(\alpha_{0} \zeta_{t}\right)=0_{m \times 1} \quad E\left(\alpha_{0} \eta_{t}{ }^{\prime}\right)=0_{m \times g}
\end{aligned}
$$

(Covariance stationary case: All eigenvalues of T inside $|z|=1$)

Our Assumptions Balance Generality vs. Tedium

- Could allow time-varying system matrices
- Could allow exogenous variables in measurement equation
- Could allow correlated measurement and transition disturbances
- Could allow for non-linear structure

State Space Representations Are Not Unique

Transform by the nonsingular matrix B.
The original system is:

$\begin{aligned} & \alpha_{t} \\ & m \times 1 \end{aligned}$	$=$	T $m \times m$	$\begin{gathered} \alpha_{t-1} \\ m \times 1 \end{gathered}$			R $m \times g$	
	y_{t}	=	Z	α_{t}	$+$		
	1×1		$1 \times m$	$m \times 1$			$1 \times$

State Space Representations Are Not Unique: Step 1

Rewrite the system in two steps
First, write it as:

State Space Representations Are Not Unique: Step 2

Second, premultiply the transition equation by B to yield:

$$
\begin{aligned}
& \left(B \alpha_{t}\right)=\left(B T B^{-1}\right)\left(B \alpha_{t-1}\right)+(B R) \quad \eta_{t} \\
& m \times 1 \\
& m \times m \\
& m \times 1 \\
& m \times g \\
& g \times 1 \\
& \begin{array}{ccc}
y_{t} \\
1 \times 1
\end{array}=\begin{array}{c}
\left(\begin{array}{c}
Z B^{-1}
\end{array}\right) \\
1 \times m
\end{array} \underset{m \times 1}{\left(B \alpha_{t}\right)}+\underset{1 \times 1}{\zeta_{t}}
\end{aligned}
$$

(Equivalent State Space Representation)

AR(1) State Space Representation

$$
\begin{aligned}
y_{t} & =\phi y_{t-1}+\eta_{t} \\
\eta_{t} & \sim W N\left(0, \sigma_{\eta}^{2}\right)
\end{aligned}
$$

Already in state space form!

$$
\begin{gathered}
\alpha_{t}=\phi \alpha_{t-1}+\eta_{t} \\
y_{t}=\alpha_{t} \\
\left(T=\phi, R=1, Z=1, Q=\sigma_{\eta}^{2}, h=0\right)
\end{gathered}
$$

MA(1) in State Space Form

$$
\begin{gathered}
y_{t}=\eta_{t}+\theta \eta_{t-1} \\
\eta_{t} \sim W N\left(0, \sigma_{\eta}^{2}\right) \\
\binom{\alpha_{1 t}}{\alpha_{2 t}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{\alpha_{1, t-1}}{\alpha_{2, t-1}}+\binom{1}{\theta} \eta_{t} \\
y_{t}=(1,0) \alpha_{t}=\alpha_{1 t}
\end{gathered}
$$

MA(1) in State Space Form

Why? Recursive substitution from the bottom up yields:

$$
\alpha_{t}=\binom{y_{t}}{\theta \eta_{t}}
$$

MA (q) in State Space Form

$$
\begin{gathered}
y_{t}=\eta_{t}+\theta_{1} \eta_{t-1}+\ldots+\theta_{q} \eta_{t-q} \\
\eta_{t} \sim W N N\left(0, \sigma_{\eta}^{2}\right)
\end{gathered}
$$

$$
\left(\begin{array}{c}
\alpha_{1 t} \\
\alpha_{2 t} \\
\vdots \\
\alpha_{q+1, t}
\end{array}\right)=\left(\begin{array}{cc}
0 & \\
0 & I_{q} \\
\vdots & \\
0 & 0^{\prime}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1, t-1} \\
\alpha_{2, t-1} \\
\vdots \\
\alpha_{q+1, t-1}
\end{array}\right)+\left(\begin{array}{c}
1 \\
\theta_{1} \\
\vdots \\
\theta_{q}
\end{array}\right) \eta_{t}
$$

$$
y_{t}=(1,0, \ldots, 0) \alpha_{t}=\alpha_{1 t}
$$

MA(q) in State Space Form

Recursive substitution from the bottom up yields:

$$
\alpha_{t} \equiv\left(\begin{array}{c}
\theta_{q} \eta_{t-q}+\ldots+\theta_{1} \eta_{t-1}+\eta_{t} \\
\vdots \\
\theta_{q} \eta_{t-1}+\theta_{q-1} \eta_{t} \\
\theta_{q} \eta_{t}
\end{array}\right)=\left(\begin{array}{c}
y_{t} \\
\vdots \\
\theta_{q} \eta_{t-1}+\theta_{q-1} \eta_{t} \\
\theta_{q} \eta_{t}
\end{array}\right)
$$

$A R(p)$ in State Space Form

$$
\begin{gathered}
y_{t}=\phi_{1} y_{t-1}+\ldots+\phi_{p} y_{t-p}+\eta_{t} \\
\eta_{t} \sim W N\left(0, \sigma_{\eta}^{2}\right) \\
\alpha_{t}=\left(\begin{array}{c}
\alpha_{1 t} \\
\alpha_{2 t} \\
\vdots \\
\alpha_{p t}
\end{array}\right)=\left(\begin{array}{cc}
\phi_{1} & \\
\phi_{2} & I_{p-1} \\
\vdots & \\
\phi_{p} & 0^{\prime}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1, t-1} \\
\alpha_{2, t-1} \\
\vdots \\
\alpha_{p, t-1}
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \eta_{t} \\
y_{t}=(1,0, \ldots, 0) \alpha_{t}=\alpha_{1 t}
\end{gathered}
$$

AR(p) in State Space Form

Recursive substitution from the bottom up yields:

$$
\begin{aligned}
\alpha_{t}=\left(\begin{array}{c}
\alpha_{1 t} \\
\vdots \\
\alpha_{p-1, t} \\
\alpha_{p t}
\end{array}\right) & =\left(\begin{array}{c}
\phi_{1} \alpha_{1, t-1}+\ldots+\phi_{p} \alpha_{1, t-p}+\eta_{t} \\
\vdots \\
\phi_{p-1} \alpha_{1, t-1}+\phi_{p} \alpha_{1, t-2} \\
\phi_{p} \alpha_{1, t-1}
\end{array}\right) \\
& =\left(\begin{array}{c}
y_{t} \\
\vdots \\
\phi_{p-1} y_{t-1}+\phi_{p} y_{t-2} \\
\phi_{p} y_{t-1}
\end{array}\right)
\end{aligned}
$$

ARMA (p, q) in State Space Form

$$
\begin{gathered}
y_{t}=\phi_{1} y_{t-1}+\ldots+\phi_{p} y_{t-p}+\eta_{t}+\theta_{1} \eta_{t-1}+\ldots+\theta_{q} \eta_{t-q} \\
\eta_{t} \sim \operatorname{WN}\left(0, \sigma_{\eta}^{2}\right)
\end{gathered}
$$

Let $m=\max (p, q+1)$ and write as $\operatorname{ARMA}(m, m-1)$:

$$
\begin{aligned}
& \left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right)=\left(\phi_{1}, \ldots, \phi_{p}, 0, \ldots, 0\right) \\
& \left(\theta_{1}, \theta_{2}, \ldots, \theta_{m-1}\right)=\left(\theta_{1}, \ldots, \theta_{q}, 0, \ldots, 0\right)
\end{aligned}
$$

ARMA (p, q) in State Space Form

$$
\begin{gathered}
\alpha_{t}=\left(\begin{array}{cc}
\phi_{1} & \\
\phi_{2} & I_{m-1} \\
\vdots & \\
\phi_{m} & 0^{\prime}
\end{array}\right) \alpha_{t-1}+\left(\begin{array}{c}
1 \\
\theta_{1} \\
\vdots \\
\theta_{m-1}
\end{array}\right) \eta_{t} \\
y_{t}=(1,0, \ldots, 0) \alpha_{t}
\end{gathered}
$$

ARMA (p, q) in State Space Form

Recursive substitution from the bottom up yields:

$$
\begin{aligned}
\left(\begin{array}{c}
\alpha_{1 t} \\
\vdots \\
\alpha_{m-1, t} \\
\alpha_{m t}
\end{array}\right) & =\left(\begin{array}{c}
\phi_{1} \alpha_{1, t-1}+\phi_{p} \alpha_{1, t-p}+\eta_{t}+\theta_{1} \eta_{t-1}+\ldots+\theta_{q} \eta_{t-q} \\
\vdots \\
\phi_{m-1} \alpha_{1, t-1}+\alpha_{m, t-1}+\theta_{m-2} \eta_{t} \\
\phi_{m} \alpha_{1, t-1}+\theta_{m-1} \eta_{t}
\end{array}\right) \\
& =\left(\begin{array}{c}
y_{t} \\
\vdots \\
\left.\phi_{m-1} y_{t-1}+\begin{array}{c}
\phi_{m} y_{t-2}+\theta_{m-1} \eta_{t-1}+\theta_{m-2} \eta_{t} \\
\phi_{m} y_{t-1}+\theta_{m-1} \eta_{t}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Multivariate State Space

(Same framework, $N>1$ observables)

$$
\begin{aligned}
& \begin{array}{lll}
y_{t} \\
N \times 1
\end{array}=\quad \begin{array}{c}
Z \\
N \times m
\end{array} \underset{m \times 1}{ } \quad+\quad \zeta_{t} \\
& \binom{\eta_{t}}{\zeta_{t}} \sim W N(\underline{0}, \operatorname{diag}(\underbrace{Q}_{g \times g}, \underbrace{H}_{N \times N})) \\
& E\left(\alpha_{0} \eta_{t}^{\prime}\right)=0_{m \times g} \quad E\left(\alpha_{0} \zeta_{t}^{\prime}\right)=0_{m \times N}
\end{aligned}
$$

N-Variable VAR(p)

$$
\begin{aligned}
y_{t}= & \Phi_{1} \quad y_{t-1}+\ldots+\Phi_{p} y_{t-p}+ \\
N_{x 1} & \eta_{t} \\
& N \times 1
\end{aligned}
$$

$$
\eta_{t} \sim W N(0, \Sigma)
$$

State Space Representation

$$
\begin{gathered}
\left(\begin{array}{c}
\alpha_{1 t} \\
\alpha_{2 t} \\
\vdots \\
\alpha_{p t}
\end{array}\right)_{N_{p \times 1}}=\left(\begin{array}{ccc}
\Phi_{1} & \left(\begin{array}{c}
\Phi_{2} \\
I_{N(\rho-1)} \\
\vdots \\
\Phi_{p}
\end{array}\right. & 0^{\prime}
\end{array}\right)_{N_{p \times N_{p}}}\left(\begin{array}{c}
\alpha_{1, t-1} \\
\alpha_{2, t-1} \\
\vdots \\
\alpha_{\rho, t-1}
\end{array}\right)_{N_{p \times 1}}+\left(\begin{array}{c}
I_{N} \\
0_{N \times N} \\
\vdots \\
0_{N \times N}
\end{array}\right)_{N P \times N} \eta_{t} \\
\begin{array}{llll}
y_{t} & =\left(\begin{array}{lll}
I_{N}, & 0_{N}
\end{array}, \ldots, 0_{N}\right) & \alpha_{t} \\
N \times 1 & N \times N p
\end{array}
\end{gathered}
$$

N-Variable VARMA (p, q)

$$
\begin{aligned}
& \begin{array}{l}
y_{t}=\Phi_{N_{x N}} y_{t-1}+\ldots+{ }_{N \times 1} \Phi_{N_{x} N} y_{t-p}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{t} \sim W N(0, \Sigma)
\end{aligned}
$$

N-Variable VARMA (p, q)

$\alpha_{t}=\left(\begin{array}{cc}\Phi_{1} & \\ \Phi_{2} & I_{N(m-1)} \\ \vdots & \\ \Phi_{m} & 0_{N \times N(m-1)}\end{array}\right) \alpha_{t-1}+\left(\begin{array}{c}l \\ \Theta_{1} \\ \vdots \\ \Theta_{m-1}\end{array}\right) \eta_{t}$

$$
\begin{gathered}
y_{t}=(I, 0, \ldots, 0) \alpha_{t}=\alpha_{1 t} \\
\text { where } m=\max (p, q+1)
\end{gathered}
$$

Linear Regression

Transition:

$$
\alpha_{t}=\alpha_{t-1}
$$

Measurement:

$$
\begin{gathered}
y_{t}=x_{t}^{\prime} \alpha_{t}+\zeta_{t} \\
\left(T=I, R=0, Z_{t}=x_{t}^{\prime}, H=\sigma_{\zeta}^{2}\right)
\end{gathered}
$$

Note the time-varying system matrix.

Linear Regression with Time-Varying Coefficients

Transition:

$$
\alpha_{t}=\phi \alpha_{t-1}+\eta_{t}
$$

Measurement:

$$
\begin{gathered}
y_{t}=x_{t}^{\prime} \alpha_{t}+\zeta_{t} \\
\left(T=\phi, R=I, Q=\operatorname{cov}\left(\eta_{t}\right), Z_{t}=x_{t}^{\prime}, H=\sigma_{\zeta}^{2}\right)
\end{gathered}
$$

- Gradual evolution of tastes, technologies and institutions
- Lucas critique
- Stationary or non-stationary

Linear Regression with ARMA (p, q) Disturbances

$$
\begin{gathered}
y_{t}=\beta x_{t}+u_{t} \\
u_{t}=\phi_{1} u_{t-1}+\ldots+\phi_{p u_{t-p}}+\eta_{t}+\phi_{1} \eta_{t-1}+\ldots+\theta_{q} \eta_{t-q} \\
\alpha_{t}=\left(\begin{array}{cc}
\phi_{1} & \\
\phi_{2} & I_{m-1} \\
\vdots & \\
\phi_{m} & 0^{\prime}
\end{array}\right) \alpha_{t-1}+\left(\begin{array}{c}
1 \\
\theta_{1} \\
\vdots \\
\theta_{m-1}
\end{array}\right) \eta_{t} \\
y_{t}=(1,0, \ldots, 0) \alpha_{t}+\beta x_{t}
\end{gathered}
$$

$$
\text { where } m=\max (p, q+1)
$$

Signal + Noise Model

"Unobserved Components"

$$
\begin{gathered}
y_{t}=x_{t}+\zeta_{t} \\
x_{t}=\phi x_{t-1}+\eta_{t} \\
\binom{\zeta_{t}}{\eta_{t}} \sim W N\left(0,\left(\begin{array}{cc}
\sigma_{\zeta}^{2} & 0 \\
0 & \sigma_{\eta}^{2}
\end{array}\right)\right) \\
\left(\alpha_{t}=x_{t}, \quad T=\phi, R=1, Z=1, Q=\sigma_{\eta}^{2}, H=\sigma_{\zeta}^{2}\right)
\end{gathered}
$$

Cycle + Seasonal + Noise

$$
\begin{aligned}
y_{t} & =c_{t}+s_{t}+\zeta_{t} \\
c_{t} & =\phi c_{t-1}+\eta_{c t} \\
s_{t} & =\gamma s_{t-4}+\eta_{s t}
\end{aligned}
$$

Cycle + Seasonal + Noise

Transition equations for the cycle and seasonal:

$$
\begin{gathered}
\alpha_{c t}=\phi \alpha_{c, t-1}+\eta_{c t} \\
\alpha_{s t}=\left(\begin{array}{ll}
0 & \\
0 & I_{3} \\
0 & \\
\gamma & 0^{\prime}
\end{array}\right) \alpha_{s, t-1}+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \eta_{s t}
\end{gathered}
$$

Cycle + Seasonal + Noise

Stacking transition equations gives the grand transition equation:
$\binom{\alpha_{s t}}{\alpha_{c t}}=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \gamma & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \phi\end{array}\right)\binom{\alpha_{s, t-1}}{\alpha_{c, t-1}}+\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)\binom{\eta_{s t}}{\eta_{c t}}$

Finally, the measurement equation is:

$$
y_{t}=(1,0,0,0,1)\binom{\alpha_{s t}}{\alpha_{c t}}+\zeta_{t}
$$

Dynamic Factor Model - Single AR(1) Factor

(White noise idiosyncratic factors uncorrelated with each other and uncorrelated with the factor at all leads and lags...)

$$
\begin{gathered}
\left(\begin{array}{c}
y_{1 t} \\
\vdots \\
y_{N t}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{N}
\end{array}\right) f_{t}+\left(\begin{array}{c}
\zeta_{1 t} \\
\vdots \\
\zeta_{N t}
\end{array}\right) \\
f_{t}=\phi f_{t-1}+\eta_{t}
\end{gathered}
$$

Already in state-space form!

Dynamic Factor Model - Single ARMA(p,q) Factor

$$
\left(\begin{array}{c}
y_{1 t} \\
\vdots \\
y_{N t}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{N}
\end{array}\right) f_{t}+\left(\begin{array}{c}
\zeta_{1 t} \\
\vdots \\
\zeta_{N t}
\end{array}\right)
$$

$$
\Phi(L) f_{t}=\Theta(L) \eta_{t}
$$

Dynamic Factor Model - Single ARMA(p,q) Factor

State vector for f is state vector for system.
System transition:

$$
\alpha_{t}=\left(\begin{array}{cc}
\phi_{1} & \\
\phi_{2} & I_{m-1} \\
\vdots & \\
\phi_{m} & 0^{\prime}
\end{array}\right) \alpha_{t-1}+\left(\begin{array}{c}
1 \\
\theta_{1} \\
\vdots \\
\theta_{m-1}
\end{array}\right) \eta_{t}
$$

Dynamic Factor Model - Single ARMA(p,q) Factor

System measurement:

$$
\begin{aligned}
\left(\begin{array}{c}
y_{1 t} \\
\vdots \\
y_{N t}
\end{array}\right) & =\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{N}
\end{array}\right)(1,0, \ldots, 0) \alpha_{t}+\left(\begin{array}{c}
\zeta_{1 t} \\
\vdots \\
\zeta_{N t}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
\vdots & & & \\
\lambda_{N} & 0 & \ldots & 0
\end{array}\right) \alpha_{t}+\left(\begin{array}{c}
\zeta_{1 t} \\
\vdots \\
\zeta_{N t}
\end{array}\right)
\end{aligned}
$$

Part III: The Kalman Filter

State Space Representation

$$
\begin{aligned}
& \begin{array}{lcccc}
\alpha_{t} \\
m \times 1
\end{array} \quad \begin{array}{ccc}
\quad & \alpha_{t-1} & + \\
m \times m & m \times 1
\end{array} \quad \begin{array}{c}
\text { m×g }
\end{array} \\
& \begin{array}{lllll}
y_{t} \\
N \times 1
\end{array} \quad=\quad \begin{array}{lll}
& Z & \alpha_{t} \\
N \times m & m \times 1
\end{array} \quad \begin{array}{l}
\zeta_{t} \\
N \times 1
\end{array} \\
& \binom{\eta_{t}}{\zeta_{t}} \sim W N(0, \operatorname{diag}(\underbrace{Q}_{g \times g}, \underbrace{H}_{N \times N}))
\end{aligned}
$$

$$
\begin{aligned}
& E\left(\alpha_{0} \eta_{t}^{\prime}\right)=0_{m \times g} \\
& E\left(\alpha_{0} \zeta_{t}^{\prime}\right)=0_{m \times N}
\end{aligned}
$$

The Filtering "Thought Experiment"

- Prediction and updating
- "Online", "ex ante", using only real-time available data \tilde{y}_{t} to extract α_{t} and predict α_{t+1}, where $\tilde{y}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}$

Statement of the Kalman Filter

I. Initial state estimate and MSE

$$
\begin{gathered}
a_{0}=E\left(\alpha_{0}\right) \\
P_{0}=E\left(\alpha_{0}-a_{0}\right)\left(\alpha_{0}-a_{0}\right)^{\prime}
\end{gathered}
$$

Statement of the Kalman Filter

II. Prediction Recursions

$$
\begin{gathered}
a_{t / t-1}=T a_{t-1} \\
P_{t / t-1}=T P_{t-1} T^{\prime}+R Q R^{\prime}
\end{gathered}
$$

III. Updating Recursions

$$
\begin{gathered}
a_{t}=a_{t / t-1}+P_{t / t-1} Z^{\prime} F_{t}^{-1}\left(y_{t}-Z a_{t / t-1}\right) \\
\left(\text { where } F_{t}=Z P_{t / t-1} Z^{\prime}+H\right) \\
P_{t}=P_{t / t-1}-P_{t / t-1} Z^{\prime} F_{t}^{-1} Z P_{t / t-1} \\
t=1, \ldots, T
\end{gathered}
$$

State-Space Representation in Density Form

 (Assuming Normality)$$
\alpha_{t} \mid \alpha_{t-1} \sim N\left(T \alpha_{t-1}, R Q R^{\prime}\right)
$$

$$
y_{t} \mid \alpha_{t} \sim N\left(Z \alpha_{t}, H\right)
$$

Kalman Filter in Density Form

(Assuming Normality)

Initialize at a_{0}, P_{0}

$$
\begin{gathered}
\text { State prediction: } \\
\alpha_{t} \mid \tilde{y}_{t-1} \sim N\left(a_{t / t-1}, P_{t / t-1}\right) \\
a_{t / t-1}=T a_{t-1} \\
P_{t / t-1}=T P_{t-1} T^{\prime}+R Q R^{\prime}
\end{gathered}
$$

Update:

$$
\begin{gathered}
\alpha_{t} \mid \tilde{y}_{t} \sim N\left(a_{t}, P_{t}\right) \\
a_{t}=a_{t / t-1}+K_{t}\left(y_{t}-Z a_{t / t-1}\right) \\
P_{t}=P_{t / t-1}-K_{t} Z P_{t / t-1}
\end{gathered}
$$

$$
\text { where } \tilde{y}_{t}=\left\{y_{1}, \ldots, y_{t}\right\}
$$

Useful Result 1: Conditional Expectation is MVUE Extraction Under Normality

Suppose that

$$
\binom{x}{y} \sim N(\mu, \Sigma)
$$

where x is unobserved and y is observed.

$$
E(x \mid y)=\operatorname{argmin}_{\hat{x}(y)} \iint(x-\hat{x}(y))^{2} f(x, y) d x d y
$$

where $\hat{x}(y)$ is any unbiased extraction of x based on y

Useful Result 2: Properties of the Multivariate Normal

$$
\begin{gathered}
\binom{x}{y} \sim N(\mu, \Sigma) \mu=\left(\mu_{x}, \mu_{y}\right)^{\prime} \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right) \\
\Longrightarrow x \mid y \sim N\left(\mu_{x \mid y}, \Sigma_{x \mid y}\right) \\
\mu_{x \mid y}=\mu_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-\mu_{y}\right) \\
\Sigma_{x \mid y}=\Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{y x}
\end{gathered}
$$

Constructive Derivation of the Kalman Filter Under Normality

$$
\text { Let } E_{t}(\cdot) \equiv E\left(\cdot \mid \Omega_{t}\right), \text { where } \Omega_{t} \equiv\left\{y_{1}, \ldots, y_{t}\right\} \text {. }
$$

Time 0 "update" (initialization):

$$
\begin{gathered}
a_{0}=E_{0}\left(\alpha_{0}\right)=E\left(\alpha_{0}\right) \\
P_{0}=\operatorname{var}_{0}\left(\alpha_{0}\right)=E\left[\left(\alpha_{0}-a_{0}\right)\left(\alpha_{0}-a_{0}\right)^{\prime}\right]
\end{gathered}
$$

Derivation of the Kalman Filter, Continued...

Time 0 prediction

At time 1 we know that:

$$
\alpha_{1}=T \alpha_{0}+R \eta_{1}
$$

Now take expectations conditional on time-0 information:

$$
\begin{gathered}
E_{0}\left(\alpha_{1}\right)=T E_{0}\left(\alpha_{0}\right)+R E_{0}\left(\eta_{1}\right) \\
=T a_{0} \\
=a_{1 / 0}
\end{gathered}
$$

Derivation of the Kalman Filter, Continued...

Time 0 prediction covariance matrix

$$
\begin{gathered}
E_{0}\left(\left(\alpha_{1}-a_{1 / 0}\right)\left(\alpha_{1}-a_{1 / 0}\right)^{\prime}\right) \\
=E_{0}\left(\left(\alpha_{1}-T a_{0}\right)\left(\alpha_{1}-T a_{0}\right)^{\prime}\right) \quad\left(\text { subst. } a_{1 / 0}\right) \\
=E_{0}\left(\left(T\left(\alpha_{0}-a_{0}\right)+R \eta_{1}\right)\left(T\left(\alpha_{0}-a_{0}\right)+R \eta_{1}\right)^{\prime}\right) \quad\left(\text { subst. } \alpha_{1}\right) \\
=T P_{0} T^{\prime}+R Q R^{\prime} \quad\left(\text { using } E\left(\alpha_{0} \eta_{t}^{\prime}\right)=0 \forall t\right) \\
=P_{1 / 0}
\end{gathered}
$$

Derivation of the Kalman Filter, Continued...

Time 1 updating

We will derive the distribution of:

$$
\left.\binom{\alpha_{1}}{y_{1}} \right\rvert\, \Omega_{0}
$$

and then convert to

$$
\alpha_{1} \mid\left(\Omega_{0} \cup y_{1}\right)
$$

or

$$
\alpha_{1} \mid \Omega_{1}
$$

Derivation of the Kalman Filter, Continued...

Means:

$$
E_{0}\left(\alpha_{1}\right)=a_{1 / 0}
$$

$$
E_{0}\left(y_{1}\right)=Z a_{1 / 0}
$$

Derivation of the Kalman Filter, Continued...

Variance-Covariance Matrix:

$$
\begin{gathered}
\operatorname{var}_{0}\left(\alpha_{1}\right)=E_{0}\left(\left(\alpha_{1}-a_{1 / 0}\right)\left(\alpha_{1}-a_{1 / 0}\right)\right)=P_{1 / 0} \\
\operatorname{var}_{0}\left(y_{1}\right)=E_{0}\left(\left(y_{1}-Z a_{1 / 0}\right)\left(y_{1}-Z a_{1 / 0}\right)^{\prime}\right) \\
=E_{0}\left(\left(Z\left(\alpha_{1}-a_{1 / 0}\right)+\zeta_{1}\right)\left(Z\left(\alpha_{1}-a_{1 / 0}\right)+\zeta_{1}\right)^{\prime}\right) \\
=Z P_{1 / 0} Z^{\prime}+H(\text { using } \zeta \perp \eta) \\
\operatorname{cov}_{0}\left(\alpha_{1}, y_{1}\right)=E_{0}\left(\alpha_{1}-a_{1 / 0}\right)\left(Z\left(\alpha_{1}-a_{1 / 0}\right)+\zeta_{1}\right)^{\prime} \\
=P_{1 / 0} Z^{\prime}(u \operatorname{sing} \zeta \perp \eta)
\end{gathered}
$$

Derivation of the Kalman Filter, Continued...

Hence:

$$
\binom{\alpha_{1}}{y_{1}} \left\lvert\, \Omega_{0} \sim N\left(\binom{a_{1 / 0}}{Z a_{1 / 0}},\left(\begin{array}{cc}
P_{1 / 0} & P_{1 / 0} Z^{\prime} \\
Z P_{1 / 0} & Z P_{1 / 0} Z^{\prime}+H
\end{array}\right)\right)\right.
$$

Now by Useful Result 2, $\alpha_{1} \mid \Omega_{0} \cup y_{1} \sim N\left(a_{1}, P_{1}\right)$

$$
\begin{gathered}
a_{1}=a_{1 / 0}+P_{1 / 0} Z^{\prime} F_{1}^{-1}\left(y_{1}-Z a_{1 / 0}\right) \\
P_{1}=P_{1 / 0}-P_{1 / 0} Z^{\prime} F_{1}^{-1} Z P_{1 / 0} \\
\left(F_{1}=Z P_{1 / 0} Z^{\prime}+H\right)
\end{gathered}
$$

Repeating yields the Kalman filter.

What Have We Done?

> Under normality, we proved that the Kalman filter delivers
> best predictions and extractions, for a standard and appropriate definition of "best".
> "MVUE"

Dropping normality,
similar results continue to hold
(best linear predictions and extractions).
"BLUE"

Calculation of Initial Covariance Matrix $P_{0}=\Gamma(0)$

When $a_{0}=0$

$$
\begin{gathered}
\alpha_{t}=T \alpha_{t-1}+R \eta_{t} \\
\Longrightarrow P_{0}=E\left(T \alpha_{t-1}+R \eta_{t}\right)\left(T \alpha_{t-1}+R \eta_{t}\right)^{\prime}=T P_{0} T^{\prime}+R Q R^{\prime} \\
\Longrightarrow \operatorname{vec}\left(P_{0}\right)=\operatorname{vec}\left(T P_{0} T^{\prime}\right)+\operatorname{vec}\left(R Q R^{\prime}\right) \\
=(T \otimes T) \operatorname{vec}\left(P_{0}\right)+\operatorname{vec}\left(R Q R^{\prime}\right) \\
\Longrightarrow(I-(T \otimes T)) \operatorname{vec}\left(P_{0}\right)=\operatorname{vec}\left(R Q R^{\prime}\right) \\
\Longrightarrow \operatorname{vec}\left(P_{0}\right)=(I-(T \otimes T))^{-1} \operatorname{vec}\left(R Q R^{\prime}\right)
\end{gathered}
$$

The Smoothing Thought Experiment

- "offline", "ex post", using all data \tilde{y}_{T} to extract α_{t}.

The Kalman Smoother

1. Kalman filter forward through the sample, $t=1, \ldots, T$
2. Smooth backward, $t=T,(T-1),(T-2), \ldots, 1$

$$
\text { Initialize: } a_{T, T}=a_{T}, P_{T, T}=P_{T}
$$

Then:

$$
\begin{gathered}
a_{t, T}=a_{t}+J_{t}\left(a_{t+1, T}-a_{t+1, t}\right) \\
P_{t, T}=P_{t}+J_{t}\left(P_{t+1, T}-P_{t+1, t}\right) J_{t}^{\prime} \\
\text { where } \\
J_{t}=P_{t} T^{\prime} P_{t+1, t}^{-1}
\end{gathered}
$$

Point Prediction of y_{t}

Prediction:

$$
y_{t / t-1}=Z a_{t / t-1}
$$

Prediction error:

$$
v_{t}=y_{t}-Z a_{t / t-1}
$$

Density Prediction of y_{t}

$$
\begin{aligned}
& y_{t} \mid \Omega_{t-1} \sim N\left(Z a_{t / t-1}, F_{t}\right) \\
& \text { or equivalently } \\
& v_{t} \mid \Omega_{t-1} \sim N\left(0, F_{t}\right)
\end{aligned}
$$

Normality follows from linearity of all transformations.
Conditional mean already derived.
Proof that the conditional covariance matrix is F_{t} :

$$
\begin{gathered}
E_{t-1} v_{t} v_{t}^{\prime}=E_{t-1}\left[Z\left(\alpha_{t}-a_{t / t-1}\right)+\zeta_{t}\right]\left[Z\left(\alpha_{t}-a_{t / t-1}\right)+\zeta_{t}\right]^{\prime} \\
=Z P_{t / t-1} Z^{\prime}+H \\
=F_{t}
\end{gathered}
$$

Part IV:

The Innovations (Steady-State) Representation

Combining State Vector Prediction and Updating

(1) Prediction: $a_{t+1 / t}=T a_{t}$
(2) Update: $a_{t}=a_{t / t-1}+P_{t / t-1} Z^{\prime} F_{t}^{-1}\left(y_{t}-Z a_{t / t-1}\right)$

$$
=a_{t / t-1}+K_{t} v_{t}
$$

where

$$
K_{t}=P_{t / t-1} Z^{\prime} F_{t}^{-1}
$$

Substituting (2) into (1):

$$
a_{t+1 / t}=T a_{t / t-1}+T K_{t} v_{t}
$$

Combining Covariance Matrix Prediction and Updating

(1) Prediction: $P_{t+1 / t}=T P_{t} T^{\prime}+R Q R^{\prime}$
(2) Update: $P_{t}=P_{t / t-1}-K_{t} Z P_{t / t-1}$

> Substitute (2) into (1):
> $P_{t+1 / t}=T P_{t / t-1} T^{\prime}-T K_{t} Z P_{t / t-1} T^{\prime}+R Q R^{\prime}$
(Matrix Ricatti equation)

Why Care About Combining Prediction and Updating?

It leads us to the notion of steady state of the Kalman filter...
...which is the bridge from the Wold representation to the state space representation

"Two-Shock" State Space Representation

$$
\begin{gathered}
\alpha_{t}=T \alpha_{t-1}+R \eta_{t} \\
y_{t}=Z \alpha_{t}+\zeta_{t} \\
E\left(\eta_{t} \eta_{t}^{\prime}\right)=Q \\
E\left(\zeta_{t} \zeta_{t}^{\prime}\right)=H
\end{gathered}
$$

(Nothing new)

"One-Shock" ("Prediction Error") Representation

We have seen that

$$
a_{t+1 \mid t}=T a_{t \mid t-1}+T K_{t} v_{t} \quad \text { (transition) }
$$

Moreover, it is tautologically true that

$$
\begin{aligned}
y_{t} & =Z a_{t \mid t-1}+\left(y_{t}-Z a_{t \mid t-1}\right) \\
& =Z a_{t \mid t-1}+v_{t} \text { (measurement) }
\end{aligned}
$$

Note that one-shock state space representation has time-varying system matrices:

- " R matrix" in transition equation is $T K_{t}$
- Covariance matrix of v_{t} is F_{t}

"Innovations" (Steady-State) Representation

$$
\text { If as } T \rightarrow \infty, P_{t / t-1} \rightarrow \bar{P} \text {, }
$$

where \bar{P} solves the matrix Ricatti equation, then:

$$
\begin{gathered}
a_{t+1 \mid t}=T a_{t \mid t-1}+T \bar{K} \varepsilon_{t} \\
y_{t}=Z a_{t \mid t-1}+\varepsilon_{t} \\
\text { where } \\
\bar{K}=\bar{P} Z^{\prime} \bar{F}^{-1} \\
E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\bar{F}=Z \bar{P} Z^{\prime}+H
\end{gathered}
$$

- Effectively Wold-Wiener-Kolmogorov prediction and extraction
- Prediction $y_{t+1 / t}$ is now the projection of y_{t+1} on infinite past, and the finite-history prediction errors v_{t} are now the infinite-history Wold-Wiener-Kolmogorov innovations ε_{t}

Remarks on the Steady State

1. Steady state \bar{P} exists if:

- the underlying two-shock system is time invariant
- all eigenvalues of T are less than one
- $P_{1 \mid 0}$ is positive semidefinite

2. Because the recursions for $P_{t \mid t-1}$ and K_{t} don't depend on the data, but only on P_{0}, we can calculate arbitrarily close approximations to \bar{P} and \bar{K} by letting the Kalman filter run

Likelihood Evaluation and Optimization

Gaussian Likelihood by Brute Force Univariate Zero-Mean Gaussian $A R(1)$ Example

$$
\begin{gathered}
\text { Process: } y_{t}=\phi y_{t-1}+\varepsilon_{t} \\
\varepsilon_{T} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)
\end{gathered}
$$

$T \times 1$ Sample path:

$$
y \sim N\left(\underline{0}, \Sigma\left(\phi, \sigma^{2}\right)\right)
$$

where

$$
\Sigma_{i j}\left(\phi, \sigma^{2}\right)=\frac{\sigma^{2}}{1-\phi^{2}} \phi^{|i-j|}
$$

Gaussian Likelihood by Brute Force

 Univariate Zero-Mean Gaussian $A R(1)$ Example Continued$$
\begin{aligned}
& L\left(y ; \phi, \sigma^{2}\right)=(2 \pi)^{T / 2}\left|\Sigma\left(\phi, \sigma^{2}\right)\right|^{-1 / 2} \exp \left(-\frac{1}{2} y^{\prime} \Sigma^{-1}\left(\phi, \sigma^{2}\right) y\right) \\
& \quad \ln L\left(y ; \phi, \sigma^{2}\right)=\mathrm{const}-\frac{1}{2} \ln \left|\Sigma\left(\phi, \sigma^{2}\right)\right|-\frac{1}{2} y^{\prime} \Sigma^{-1}\left(\phi, \sigma^{2}\right) y
\end{aligned}
$$

- Here Σ is easy to express analytically in terms of model parameters $\left(\phi, \sigma^{2}\right)$, but that only works in the simplest cases.
- In general Σ is very hard to express analytically in terms of model parameters.
- In any event, likelihood evaluation requires inversion of Σ, which is $T \times T$. Very hard except for very small T.

Gaussian Likelihood by Brute Force:

General Case

$$
\begin{gathered}
L(y ; \theta)=(2 \pi)^{T / 2}|\Sigma(\theta)|^{-1 / 2} \exp \left(-\frac{1}{2}(y-\mu)^{\prime} \Sigma^{-1}(\theta)(y-\mu)\right) \\
\ln L(y ; \theta)=\text { const }-\frac{1}{2} \ln |\Sigma(\theta)|-\frac{1}{2}(y-\mu)^{\prime} \Sigma^{-1}(\theta)(y-\mu)
\end{gathered}
$$

$T \times T$ matrix $\Sigma(\theta)$ is generally very hard (read: impossible) to calculate and invert
(And in the multivariate case $\Sigma(\theta)$ would be $N T \times N T$)

Gaussian Likelihood with Finesse:

The Prediction-Error Likelihood Decomposition

In levels:

$$
\begin{gathered}
L\left(y_{1}, \ldots, y_{T} ; \theta\right)=\prod_{t=1}^{T} L_{t}\left(y_{t} \mid y_{t-1}, \ldots, y_{1} ; \theta\right) \\
L\left(v_{1}, \ldots, v_{T} ; \theta\right)=\prod_{t=1}^{T} L_{t}\left(v_{t} ; \theta\right) \\
\ln \operatorname{logs}:
\end{gathered}
$$

$\ln L\left(y_{1}, \ldots, y_{T} ; \theta\right)=\sum_{t=1}^{T} L_{t}\left(y_{t} \mid y_{t-1}, \ldots, y_{1} ; \theta\right)$

$$
\ln L\left(v_{1}, \ldots, v_{T} ; \theta\right)=\sum_{t=1}^{T} \ln L_{t}\left(v_{t} ; \theta\right)
$$

Prediction-Error Decomposition, Continued Univariate Gaussian Case

$$
\ln L=-\frac{T}{2} \ln 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \ln \sigma_{t}^{2}-\frac{1}{2} \sum_{t=1}^{T} \frac{\left(y_{t}-\mu_{t}\right)^{2}}{\sigma_{t}^{2}}
$$

Now change the above "standard notation"
to "Kalman filter notation" :

$$
\ln L=-\frac{T}{2} \ln 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \ln F_{t}-\frac{1}{2} \sum_{t=1}^{T} \frac{v_{t}^{2}}{F_{t}}
$$

Kalman filter delivers v_{t} and F_{t} !
No need for tedious analytic likelihood derivations!
No matrix inversion!

Prediction-Error Decomposition, Continued Multivariate Gaussian Case

$$
\begin{gathered}
\ln L=-\frac{N T}{2} \ln 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \ln \left|\Sigma_{t}\right|-\frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-\mu_{t}\right)^{\prime} \Sigma_{t}^{-1}\left(y_{t}-\mu_{t}\right) \\
\text { or } \\
\ln L=-\frac{N T}{2} \ln 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \ln \left|F_{t}\right|-\frac{1}{2} \sum_{t=1}^{T} v_{t}^{\prime} F_{t}^{-1} v_{t}
\end{gathered}
$$

Kalman filter again delivers v_{t} and F_{t}.
Only the small $N \times N$ matrix F_{t} need be inverted.

Approximate (Asymptotic)

Frequency Domain Gaussian Likelihood
We have:

$$
x_{j}=\frac{2 \hat{f}\left(\omega_{j}\right)}{f\left(\omega_{j} ; \theta\right)} \xrightarrow{d} \chi_{2}^{2}
$$

where $f\left(\omega_{j} ; \theta\right)$ is the spectral density and the χ_{2}^{2} random variables are independent across frequencies

$$
\omega_{j}=\frac{2 \pi j}{T}, j=0,1, \ldots, \frac{T}{2}
$$

\Rightarrow MGF of any one of the x_{j} 's is

$$
M_{x}(t)=\frac{1}{1-2 t}
$$

Approximate Frequency Domain Gaussian Likelihood, Continued

Now, because:

$$
\hat{f}\left(\omega_{j}\right)=\frac{f\left(\omega_{j} ; \theta\right) x_{j}}{2}
$$

we can infer that:

$$
M_{\hat{f}}(t)=M_{x}\left(\frac{f\left(\omega_{j} ; \theta\right)}{2} t\right)=\frac{1}{1-f\left(\omega_{j} ; \theta\right) t}
$$

This is the MGF of exponential rv with parameter $1 / f\left(\omega_{j} ; \theta\right)$. Hence the density (point likelihood) of \hat{f} is:

$$
I\left(\hat{f}\left(\omega_{j}\right) ; \theta\right)=\frac{1}{f\left(\omega_{j} ; \theta\right)} e^{\frac{-\hat{f}\left(\omega_{j}\right)}{f\left(\omega_{j} ; \theta\right)}}
$$

Approximate Frequency Domain Gaussian Likelihood, Continued

So the univariate asymptotic Gaussian log likelihood is:
$\ln L\left(\hat{f}\left(\omega_{j}\right) ; \theta\right)=\sum_{j=0}^{T / 2} \ln I\left(\hat{f}\left(\omega_{j}\right) ; \theta\right)=-\sum_{j=0}^{T / 2} \ln f\left(\omega_{j} ; \theta\right)-\sum_{j=0}^{T / 2} \frac{\hat{f}\left(\omega_{j}\right)}{f\left(\omega_{j} ; \theta\right)}$

The multivariate asymptotic Gaussian log likelihood is:

$$
\ln L(\hat{F} ; \theta)=-\sum_{j=0}^{T / 2} \ln \left|F\left(\omega_{j} ; \theta\right)\right|-\operatorname{trace}\left(\sum_{j=0}^{T / 2} F^{-1}\left(\omega_{j} ; \theta\right) \hat{F}\left(\omega_{j}\right)\right)
$$

Numerical Maximization of the Gaussian Likelihood

- The key is to be able to evaluate the likelihood for a given parameter configuration.
- Then we can climb uphill to maximize the likelihood.
- Now we will introduce methods for doing so.

Numerical Optimization: Basic Framework

Function $\operatorname{In} L(\theta)$ to be optimized w.r.t. θ,

$$
\theta \in \Theta \text {, a compact subset of } R^{k}
$$

Crude Search ("Brute Force")

- Deterministic search: Search k dimensions at r locations in each dimension.
- Randomized Search: Repeatedly sample from Θ, repeatedly evaluating $\ln L(\theta)$
- Absurdly slow (curse of dimensionality)

"Gradient-Based" Iterative Algorithms ("Line-Search")

Parameter vector at iteration $m: \theta^{(m)}$.

$$
\theta^{(m+1)}=\theta^{(m)}+C^{(m)} \text {, where } C^{(m)} \text { is the step. }
$$

Gradient algorithms: $C^{(m)}=-t^{(m)} D^{(m)} s^{(m)}$
$t^{(m)}$ is the step length, or step size (a positive number) $D^{(m)}$ is a positive definite direction matrix
$s^{(m)}$ is the score (gradient) vector evaluated at $\theta^{(m)}$

General Algorithm

1. Specify $\theta^{(0)}$
2. Compute $D^{(m)}$ and $s^{(m)}$
3. Determine step length $t^{(m)}$ (Often, at each step, choose $t^{(m)}$ to optimize the objective function ("variable step length"))
4. Compute $\theta^{(m+1)}$
5. If convergence criterion not met, go to 2 .

Convergence Criteria

$$
\left\|\theta^{(m)}-\theta^{(m-1)}\right\| \text { "small" }
$$

$$
\left\|s^{(m)}\right\| \text { "small" }
$$

Method of Steepest Decent

$$
\text { Use } D^{(m)}=I, t^{(m)}=1, \forall m
$$

Properties:

1. May converge to a critical point other than a minimum (of course)
2. Requires only first derivative of the objective function
3. Slow convergence

Newton's Method

Take $D^{(m)}$ as the inverse Hessian of $\ln L(\theta)$ at $\theta^{(m)}$

$$
\left.\begin{array}{ccccc}
\left.\frac{\partial^{2} \ln L}{\partial \theta_{1}^{2}}\right|_{\theta^{(m)}} & \cdot & \cdot & \cdot & \left.\frac{\partial^{2} \ln L}{\partial \theta_{1} \partial \theta_{k}}\right|_{\theta^{(m)}} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
\left.\frac{\partial^{2} \ln L}{\partial \theta_{k} \partial \theta_{1}}\right|_{\theta^{(m)}} & \cdot & \cdot & \cdot & \left.\frac{\partial^{2} \ln L}{\partial \theta_{k}^{2}}\right|_{\theta^{(m)}}
\end{array}\right)^{-1}
$$

Also take $t^{(m)}=1$
Then $\theta^{(m+1)}=\theta^{(m)}-H^{-1(m)} s^{(m)}$

Derivation From Second-Order Taylor Expansion

Initial guess: $\theta^{(0)}$
$\ln L(\theta) \approx \ln L\left(\theta^{(0)}\right)+s^{(0)}\left(\theta-\theta^{(0)}\right)+\frac{1}{2}\left(\theta-\theta^{(0)}\right)^{\prime} H^{(0)}\left(\theta-\theta^{(0)}\right)$
F.O.C.:
$s^{(0)}+H^{(0)}\left(\theta^{*}-\theta^{(0)}\right)=0$
or

$$
\theta^{*}=\theta^{(0)}-H^{-1(0)} s^{(0)}
$$

Properties of Newton

$\ln L(\theta)$ quadratic \Rightarrow full convergence in a single iteration
More generally, iterate to convergence:

$$
\theta^{(m+1)}=\theta^{(m)}-H^{-1(m)} S^{(m)}
$$

Quick Convergence

But there is a price:
Requires first and second derivatives of the objective function
Requires inverse Hessian at each iteration

The EM (Expectation/Maximization) Algorithm

Think of $\left\{\alpha_{t}\right\}_{t=0}^{T}$ as data that are unfortunately missing in

$$
\begin{gathered}
\alpha_{t}=T \alpha_{t-1}+\eta_{t} \\
y_{t}=Z \alpha_{t}+\zeta_{t} \\
t=1, \ldots, T
\end{gathered}
$$

Incomplete Data Likelihood:

$$
\ln L\left(\left\{y_{t}\right\}_{t=1}^{T} ; \theta\right)
$$

Complete Data Likelihood: (If only we had complete data!)

$$
\operatorname{InL}\left(\left\{y_{t}\right\}_{t=1}^{T},\left\{\alpha_{t}\right\}_{t=0}^{T} ; \theta\right)
$$

Expected Complete Data Likelihood:

$$
\ln L\left(\left\{y_{t}\right\}_{t=1}^{T} ; \theta\right) \approx \mathbf{E}_{\alpha}\left[\ln L\left(\left\{y_{t}\right\}_{t=1}^{T},\left\{\alpha_{t}\right\}_{t=0}^{T} ; \theta\right)\right]
$$

EM iteratively constructs and maximizes the expected complete-data likelihood, which (amazingly) has same maximizer as the (relevant) incomplete-data likelihood.

EM has Strong Intuition

1. E Step:

Approximate a "complete data" situation by replacing $\left\{\alpha_{t}\right\}_{t=0}^{T}$ with $\left\{a_{t, T}\right\}_{t=0}^{T}$ from the Kalman smoother

2. M Step:

Estimate parameters by running regressions:

$$
\begin{aligned}
a_{t, T} & \rightarrow a_{t-1, T} \\
y_{t} & \rightarrow a_{t, T}
\end{aligned}
$$

3. If convergence criterion not met, go to 1
(Note: This slide provides some important intuition, but it also omits some important details.)

Simulation Methods in Econometrics

Simulation: The Basics

The Canonical Problem: $U(0,1)$

- Chaotic solutions to certain non-linear deterministic difference equations, appropriately scaled, appear indistinguishable from $U(0,1)$
- "Pseudo-random deviates"
- Assume that we have such a $U(0,1)$ pseudo-random number generator

Given $U(0,1), U(\alpha, \beta)$ is immediate

Inverse cdf Method ("Inversion Methods")

Desired density: $f(y)$

1. Find the analytical c.d.f., $F(y)$, corresponding to $f(y)$
2. Generate $T U(0,1)$ deviates, $\left\{r_{1}, \ldots, r_{T}\right\}$
3. Calculate $\left\{F^{-1}\left(r_{1}\right), \ldots, F^{-1}\left(r_{T}\right)\right\}$

Graphical Representation of Inverse cdf Method

Figure: Transforming from $U(0,1)$ to f (from Davidson and MacKinnon, 1993)

Example: Inverse cdf Method for $\exp (\beta)$ Deviates

$$
\begin{aligned}
& f(y)=\beta e^{-\beta y} \text { where } \beta>0, y \geq 0 \\
& \Rightarrow F(y)=\int_{0}^{y} \beta e^{-\beta t} d t \\
& =\left.\frac{\beta e^{-\beta t}}{-\beta}\right|_{0} ^{y}=-e^{-\beta y}+1=1-e^{-\beta y}
\end{aligned}
$$

Hence $e^{-\beta y}=1-F(y)$ so $y=\frac{\ln (1-F(y))}{-\beta}$
Then insert a $U(0,1)$ deviate for $F(y)$

Complications

Analytic inverse cdf not always available (e.g., $N(0,1)$ distribution).

- Approach 1: Evaluate the cdf numerically
- Approach 2: Use a different method
e.g., CLT approximation:

Take $\left(\sum_{i=1}^{12} U_{i}(0,1)-6\right)$ for $N(0,1)$

An Efficient Gaussian Approach: Box-Muller

Let y_{1} and y_{2} be i.i.d. $U(0,1)$, and consider

$$
\begin{aligned}
& z_{1}=\sqrt{-2 \ln y_{1}} \cos \left(2 \pi y_{2}\right) \\
& z_{2}=\sqrt{-2 \ln y_{1}} \sin \left(2 \pi y_{2}\right)
\end{aligned}
$$

Find the distribution of z_{1} and z_{2}. We know that

$$
f\left(z_{1}, z_{2}\right)=f\left(y_{1}, y_{2}\right) \cdot\left|\begin{array}{ll}
\frac{\partial y_{1}}{\partial z_{1}} & \frac{\partial y_{1}}{\partial z_{2}} \\
\frac{\partial y_{2}}{\partial z_{1}} & \frac{\partial y_{2}}{\partial z_{2}}
\end{array}\right|=1 \cdot\left|\begin{array}{ll}
\frac{\partial y_{1}}{\partial z_{1}} & \frac{\partial y_{1}}{\partial z_{2}} \\
\frac{\partial y_{2}}{\partial z_{1}} & \frac{\partial y_{2}}{\partial z_{2}}
\end{array}\right|
$$

Box-Muller (Continued)

Here we have $y_{1}=e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}$ and $y_{2}=\frac{1}{2 \pi} \arctan \left(\frac{z_{2}}{z_{1}}\right)$

$$
\text { Hence }\left|\begin{array}{ll}
\frac{\partial y_{1}}{\partial z_{1}} & \frac{\partial y_{1}}{\partial z_{2}} \\
\frac{\partial y_{2}}{\partial z_{1}} & \frac{\partial y_{2}}{\partial z_{2}}
\end{array}\right|=\left(\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2}\right)\left(\frac{1}{\sqrt{2 \pi}} e^{-z_{2}^{2} / 2}\right)
$$

Bivariate density is the product of two $N(0,1)$ densities, so we have generated two independent $N(0,1)$ deviates.

Generating Deviates Derived from $N(0,1)$

$N\left(\mu, \sigma^{2}\right)=\mu+\sigma N(0,1)$
$\chi_{1}^{2}=[N(0,1)]^{2}$
$\chi_{d}^{2}=\sum_{i=1}^{d}\left[N_{i}(0,1)\right]^{2}$, where the $N_{i}(0,1)$ are independent
$t_{d}=N(0,1) / \sqrt{x_{d}^{2} / d}$, where $N(0,1)$ and χ_{d}^{2} are independent
$F_{d_{1}, d_{2}}=\chi_{d_{1}}^{2} / d_{1} / \chi_{d_{2}}^{2} / d_{2}$ where $\chi_{d_{1}}^{2}$ and $\chi_{d_{2}}^{2}$ are independent

Multivariate Normal

$N(0, I)$ (N-dimensional) - Just stack $N N(0,1)$'s
$N(\mu, \Sigma)(N$-dimensional)
Let $P P^{\prime}=\Sigma(P$ is the Cholesky factor of $\Sigma)$
Let $y \sim N(0, I)$. Then $P y \sim N(0, \Sigma)$
To sample from $N(\mu, \Sigma)$, take $\mu+P y$

Simulating Time Series Processes

1. Nonparametric: Exact realization via Cholesky factorization of desired covariance matrix. One need only specify the autocovariances.
2. Parametric I: Exact realization via Cholesky factorization of covariance matrix corresponding to desired parametric model.
3. Parametric II: Approximate realization via arbitrary startup value. Burn in before sampling.
4. Parametric III: Exact realization via drawing startup values from stationary distribution.
Note: $\operatorname{VAR}(1)$ simulation is key (state transition dynamics).

Accept-Reject Methods

(Simple Example)

We want to sample from $f(y)$
Draw:

$$
\begin{aligned}
& \nu_{1} \sim U(\alpha, \beta) \\
& \nu_{2} \sim U(0, h)
\end{aligned}
$$

If ν_{1}, ν_{2} lies under the density $f(y)$, then take $y=\nu_{1}$
Otherwise reject and repeat

Graphical Representation of Simple Accept-Reject

Figure: Simple Accept-Reject

General Accept-Reject

We want to draw S values of y from $f(y)$, but we only know how to sample from $g(y)$.

Let M satisfy $\frac{f(y)}{g(y)} \leq M<\infty, \forall y$. Then:

1. Draw proposal $y^{*} \sim g(y)$.
2. Accept $y=y^{*} w \cdot p \cdot \frac{f\left(y^{*}\right)}{g\left(y^{*}\right) M}$
3. Repeat until S proposals have been kept.

Note that the S draws so-generated are iid.

Markov Chain Monte Carlo (MCMC) Methods

- Construct a Markov chain whose steady-state distribution is the distribution we want to sample from
- Run ("burn in") the chain to convergence and start sampling

Question: How might you assess convergence to steady state?

- Note that the draws so-generated will be serially correlated Question: For what does the serial correlation "matter"?

For what does it not matter?

MCMC I: Metropolis-Hastings Sampling

We want to draw S values of y from $f(y)$.

1. Draw y^{*} from proposal density $q\left(y ; y^{(s-1)}\right)$
2. Calculate the acceptance probability $\alpha\left(y^{(s-1)}, y^{*}\right)$
3. Set

$$
y^{s}=\left\{\begin{array}{cc}
y^{*} \text { w.p. } \alpha\left(y^{(s-1)}, y^{*}\right) & \text { "accept" } \\
y^{(s-1)} \text { w.p. } 1-\alpha\left(y^{(s-1)}, y^{*}\right) \quad \text { "reject" }
\end{array}\right.
$$

4. Repeat $1-3, s=1, \ldots, S$

Questions: What q to use in step 1 , and what α to use in step 2?

Metropolis-Hastings "Independence Chain"

Draw proposal y^{*} from fixed proposal density $q^{*}(y)$.
So $q\left(y ; y^{(s-1)}\right)$ is just fixed at $q^{*}(y)$.
Acceptance probability that does the trick:

$$
\begin{aligned}
\alpha\left(y^{(s-1)}, y^{*}\right) & =\min \left[\frac{f\left(y=y^{*}\right) q^{*}\left(y=y^{(s-1)}\right)}{f\left(y=y^{(s-1)}\right) q^{*}\left(y=y^{*}\right)}, 1\right] \\
& =\min \left[\frac{\left.\frac{f\left(y=y^{*}\right)}{\frac{q^{*}\left(y=y^{*}\right)}{q^{*}\left(y=y^{(s-1)}\right)}}, 1\right]}{} .1\right]
\end{aligned}
$$

If improvement in target greater than improvement in proposal, go there w.p. $=1$. Else go there w.p. <1.

Metropolis-Hastings "Random Walk Chain"

Random walk proposals:

$$
y^{*}=y^{(s-1)}+\varepsilon
$$

ε is called the increment random variable. Commonly we draw from $\varepsilon \sim N\left(0, c^{2}\right)$, where c is chosen to ensure a "reasonable" acceptance rate (around 30%, say).

Then $q\left(y ; y^{(s-1)}\right)$ is $N\left(y^{(s-1)}, c^{2}\right)$.
Acceptance probability that does the trick:

$$
\alpha\left(y^{(s-1)}, y^{*}\right)=\min \left[\frac{f\left(y=y^{*}\right)}{f\left(y=y^{(s-1)}\right)}, 1\right]
$$

A Useful Property of Metropolis-Hastings

Metropolis requires evaluating only the kernel of the density of interest, because the acceptance probability is governed by the ratio

$$
\frac{f\left(y=y^{*}\right)}{f\left(y=y^{(s-1)}\right)} .
$$

- This constrasts with generic accept-reject, which requires evaluation of the full density $f(y)$ (not just its kernel)

MCMC II: Gibbs Sampling

Consider first the bivariate case. We want to sample from $f(y)=f\left(y_{1}, y_{2}\right)$. Initialize $(j=0)$ using y_{2}^{0}.

Gibbs iteration $j=1$:
a. Draw y_{1}^{1} from $f\left(y_{1} \mid y_{2}^{0}\right)$
b. Draw y_{2}^{1} from $f\left(y_{2} \mid y_{1}^{1}\right)$

Repeat $j=2,3, \ldots$
Notice that $\left\{y^{1}, y^{2}, \ldots\right\}$ is a Markov chain. Under very general conditions its stationary distribution is $f(y)$.

Useful if conditionals are known and "easy" to sample from, but joint/marginals are not. (This often happens in Bayesian analysis.)

General Gibbs Sampling

We want to sample from $f(y)=f\left(y_{1}, y_{2}, \ldots, y_{k}\right)$
Initialize $(j=0)$ using $y_{2}^{0}, y_{3}^{0}, \ldots, y_{k}^{0}$
Gibbs iteration $j=1$:
a. Draw y_{1}^{1} from $f\left(y_{1} \mid y_{2}^{0}, \ldots, y_{k}^{0}\right)$
b. Draw y_{2}^{1} from $f\left(y_{2} \mid y_{1}^{1}, y_{3}^{0}, \ldots, y_{k}^{0}\right)$
c. Draw y_{3}^{1} from $f\left(y_{3} \mid y_{1}^{1}, y_{2}^{1}, y_{4}^{0}, \ldots, y_{k}^{0}\right)$
k. Draw y_{k}^{1} from $f\left(y_{k} \mid y_{1}^{1}, \ldots, y_{k-1}^{1}\right)$

Repeat $j=2,3, \ldots$.

More Simulation:
 Bayesian Analysis with Markov Chain Monte Carlo

I. Basic Issues

Frequentist vs. Bayesian Paradigms

Frequentist: $\hat{\theta}$ random, θ fixed. $\sqrt{T}\left(\hat{\theta}_{M L}-\theta\right) \rightarrow{ }_{d} N$
Bayesian: $\hat{\theta}$ fixed, θ random. $\sqrt{T}\left(\theta-\hat{\theta}_{M L}\right) \rightarrow_{d} N$
Frequentist: Characterize the distribution of the random data $(\hat{\theta})$ conditional on fixed "true" θ. Focus on the likelihood $\max \left(\hat{\theta}_{M L}\right)$ and likelihood curvature in an ϵ-neighborhood of the max.

Bayesian: Characterize the distribution of the random θ conditional on fixed data $(\hat{\theta})$. Examine the entire likelihood.

Some Bayesian Pros and Cons

(We Could Lengthen Both Lists...)

Pros:

1. Feels sensible to focus on $p(\theta / y)$. Relative frequency in repeated samples replaced with subjective degree of belief conditional on the single sample actually obtained
2. Exact finite-sample full-density inference

Cons:

1. From where does the prior come? How to elicit prior distributions? Very difficult in all but the most trivial cases.
2. How to do an "objective" analysis? What is an "uninformative" prior? Uniform is definitely not uninformative...

Bayesian Computational Mechanics

$$
\text { Data } y \equiv\left\{y_{1}, \ldots, y_{T}\right\}
$$

Bayes' Theorem:

$$
f(\theta / y)=\frac{f(y / \theta) f(\theta)}{f(y)}
$$

or

$$
\begin{gathered}
f(\theta / y)=c f(y / \theta) f(\theta) \\
\text { where } c^{-1}=\int_{\theta} f(y / \theta) f(\theta)
\end{gathered}
$$

$$
\begin{aligned}
& f(\theta / y) \propto f(y / \theta) f(\theta) \\
& p(\theta / y) \propto L(\theta / y) g(\theta)
\end{aligned}
$$

posterior \propto likelihood • prior

Bayesian Estimation

Full posterior density

Highest posterior density intervals
Posterior mean, median, mode (depending on loss function)

How to get the posterior density of interest?
(We will see...)

II. Bayesian Analysis of State-Space Models

A. First do Bayes for Gaussian Regression

Model and Standard Results

$$
\begin{gathered}
y=X \beta+\varepsilon \\
\varepsilon \sim \text { iid } N\left(0, \sigma^{2} l\right)
\end{gathered}
$$

Recall the standard (frequentist) results:

$$
\begin{gathered}
\hat{\beta}_{M L}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\hat{\sigma}_{M L}^{2}=\frac{e^{\prime} e}{T} \\
\hat{\beta}_{M L} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) \\
\frac{T \hat{\sigma}_{M L}^{2}}{\sigma^{2}} \sim \chi_{T-K}^{2}
\end{gathered}
$$

Bayesian Inference for β / σ^{2}

Conjugate prior:
$\beta \sim N\left(\beta_{0}, \Sigma_{0}\right)$
$g(\beta) \propto \exp \left(-1 / 2\left(\beta-\beta_{0}\right)^{\prime} \Sigma_{0}^{-1}\left(\beta-\beta_{0}\right)\right)$

$$
\begin{gathered}
L\left(\beta / \sigma^{2}, y\right) \propto\left(\sigma^{2}\right)^{-\frac{\text { Likelihood: }}{T / 2} \exp \left(\frac{-1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right)} \\
\text { Posterior: } \\
p\left(\beta / \sigma^{2}, y\right) \propto \\
\exp \left(-1 / 2\left(\beta-\beta_{0}\right)^{\prime} \Sigma_{0}^{-1}(\beta-\beta 0)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right)
\end{gathered}
$$

This is the kernel of a normal distribution:

$$
\begin{gathered}
\beta / \sigma^{2}, y \sim N\left(\beta_{1}, \Sigma_{1}\right) \\
\text { where } \\
\beta_{1}=\Sigma_{1}\left(\Sigma_{0}^{-1} \beta_{0}+\sigma^{-2}\left(X^{\prime} X\right) \hat{\beta}_{M L}\right) \\
\Sigma_{1}=\left(\Sigma_{0}^{-1}+\sigma^{-2}\left(X^{\prime} X\right)\right)^{-1}
\end{gathered}
$$

Gamma and Inverse Gamma Refresher

$$
z_{t} \stackrel{i i d}{\sim} N\left(0, \frac{1}{\delta}\right), x=\sum_{t=1}^{v} z_{t}^{2} \Rightarrow x \sim \Gamma\left(x ; \frac{v}{2}, \frac{\delta}{2}\right)
$$

(Note $\delta=1 \Rightarrow x \sim \chi_{v}^{2}$, so χ^{2} is a special case of Γ)

$$
\begin{gathered}
\Gamma\left(x ; \frac{v}{2}, \frac{\delta}{2}\right) \propto x^{\frac{v}{2}-1} \exp \left(\frac{-x \delta}{2}\right) \\
E(x)=\frac{v}{\delta} \\
\operatorname{var}(x)=\frac{2 v}{\delta^{2}}
\end{gathered}
$$

$x \sim \Gamma^{-1}\left(\frac{v}{2}, \frac{\delta}{2}\right)$ ("inverse gamma") $\Leftrightarrow \frac{1}{x} \sim \Gamma\left(\frac{v}{2}, \frac{\delta}{2}\right)$

Bayesian Inference for σ^{2} / β

$$
\begin{gathered}
\text { Conjugate prior: } \\
\frac{1}{\sigma^{2}} \sim \Gamma\left(\frac{v_{0}}{2}, \frac{\delta_{0}}{2}\right) \\
g\left(\frac{1}{\sigma^{2}}\right) \propto\left(\frac{1}{\sigma^{2}}\right)^{\frac{v_{0}}{2}-1} \exp \left(-\frac{\delta_{0}}{2 \sigma^{2}}\right)
\end{gathered}
$$

Likelihood:

$$
L\left(\frac{1}{\sigma^{2}} / \beta, y\right) \propto\left(\sigma^{2}\right)^{-T / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right)
$$

$$
\begin{gathered}
\text { Posterior: } \\
p\left(\frac{1}{\sigma^{2}} / \beta, y\right) \propto\left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2}-1} \exp \left(\frac{-\delta_{1}}{2 \sigma^{2}}\right)
\end{gathered}
$$

This is the kernel of a gamma distribution:

$$
\begin{gathered}
\frac{1}{\sigma^{2}} / \beta, y \sim \Gamma\left(\frac{v_{1}}{2}, \frac{\delta_{1}}{2}\right) \\
\text { where } \\
v_{1}=v_{0}+T \\
\delta_{1}=\delta_{0}+(y-X \beta)^{\prime}(y-X \beta)
\end{gathered}
$$

The Key Issue/Question

- We have the conditional posterior distributions $\left(p\left(\beta / \sigma^{2}, y\right)\right.$, $\left.p\left(\sigma^{2} / \beta, y\right)\right)$, but they're not what we want.
- How do we get the unconditional (joint and marginal) posterior distributions that we really want: $p\left(\beta, \sigma^{2} / y\right)$, $p(\beta / y), p\left(\sigma^{2} / y\right)$?

MCMC!

Gibbs Sampling from the Joint Posterior

0 . Initialize: $\sigma^{2}=\left(\sigma^{2}\right)^{(0)}$
Gibbs sampler at generic iteration j :
j1. Draw $\beta^{(j)}$ from $p\left(\beta^{(j)} /\left(\sigma^{2}\right)^{(j-1)}, y\right) \quad\left(N\left(\beta_{1}, \Sigma_{1}\right)\right)$
$j 2$. Draw $\left(\sigma^{2}\right)^{(j)}$ from $p\left(\sigma^{2} / \beta^{(j)}, y\right) \quad\left(\Gamma^{-1}\left(\frac{v_{1}}{2}, \frac{\delta_{1}}{2}\right)\right)$
Iterate to convergence (steady state of the Markov chain), and then estimate posterior moments of interest

- Sample mean converges appropriately despite the serial correlation in the Markov chain
- Assessing precision requires robust s.e.'s (based on spectrum at frequency zero) due to the serial correlation in the Markov chain.

$$
\left(\begin{array}{cc}
\text { Recall : } & \sqrt{\mathrm{T}}(\overline{\mathrm{x}}-\mu) \xrightarrow{d} \mathrm{~N}(0, \mathrm{~g}(0))
\end{array}\right)
$$

B. Now Move to Bayesian Analysis of General State-Space Models

Recall the State-Space Model

$$
\begin{gathered}
\alpha_{t}=T \alpha_{t-1}+R \eta_{t} \\
y_{t}=Z \alpha_{t}+\zeta \\
\binom{\eta_{t}}{\zeta_{t}} \stackrel{i i d}{\sim} N\left(\begin{array}{cc}
Q & 0 \\
0 & H
\end{array}\right) \\
\text { Let } \tilde{\alpha}_{T}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{T}^{\prime}\right)^{\prime}, \\
\text { and collect all system parameters into a vector } \theta .
\end{gathered}
$$

Recall the State-Space Model in Density Form

$$
\begin{gathered}
\alpha_{t} \mid \alpha_{t-1} \sim N\left(T \alpha_{t-1}, R Q R^{\prime}\right) \\
y_{t} \mid \alpha_{t} \sim N\left(Z \alpha_{t}, H\right)
\end{gathered}
$$

Recall the Kalman Filter in Density Form

Initialize at a_{0}, P_{0}
State prediction:

$$
\begin{gathered}
\alpha_{t} \mid \tilde{y}_{t-1} \sim N\left(a_{t / t-1}, P_{t / t-1}\right) \\
a_{t / t-1}=T a_{t-1} \\
P_{t / t-1}=T P_{t-1} T^{\prime}+R Q R^{\prime}
\end{gathered}
$$

State update:
$\alpha_{t} \mid \tilde{y}_{t} \sim N\left(a_{t}, P_{t}\right)$
$a_{t}=a_{t / t-1}+K_{t}\left(y_{t}-Z a_{t / t-1}\right)$
$P_{t}=P_{t / t-1}-K_{t} Z P_{t / t-1}$
Data prediction:

$$
y_{t} \mid \tilde{y}_{t-1} \sim N\left(Z a_{t / t-1}, F_{t}\right)
$$

Recall the (Essence of the) EM Algorithm for State-Space Models

1. E Step:

Approximate a "complete data" situation by replacing $\left\{\alpha_{t}\right\}_{t=0}^{T}$ with $\left\{a_{t, T}\right\}_{t=0}^{T}$ from the Kalman smoother
2. M Step:

Estimate parameters by running regressions:

$$
\begin{aligned}
a_{t, T} & \rightarrow a_{t-1, T} \\
y_{t} & \rightarrow a_{t, T}
\end{aligned}
$$

3. If convergence criterion not met, go to 1

Recall Multivariate Regression

$$
\begin{gathered}
y_{i t}=x_{t}^{\prime} \beta^{i}+\varepsilon_{i t} \\
\left(\epsilon_{1, t}, \ldots \epsilon_{N, t}\right)^{\prime} \stackrel{i i d}{\sim} N(0, \Sigma) \\
i=1, \ldots, N \\
t=1, \ldots T
\end{gathered}
$$

or

$$
\underbrace{Y}_{T \times N}=\underbrace{X}_{T \times K} \underbrace{B}_{K \times N}+\underbrace{E}_{T \times N}
$$

OLS is still $\left(X^{\prime} X\right)^{-1} X^{\prime} Y$

The Key to Moving Forward...

- Treat the vector $\tilde{\alpha}_{T}$ as a parameter, along with system matrices θ
- Use Gibbs to draw from posterior $\tilde{\alpha}_{T}, \theta / \tilde{y}_{T}$ by iterating on $\tilde{\alpha}_{T} / \theta, \tilde{y}_{T}$ and $\theta / \tilde{\alpha}_{T}, \tilde{y}_{T}$
- Note that we draw from two large blocks $\tilde{\alpha}_{T} / \theta, \tilde{y}_{T}$ (one draw) and $\theta / \tilde{\alpha}_{T}, \tilde{y}_{T}$ (one draw) "Multi-move Gibbs sampler"
- Massively more efficient than cycling through a "one at a time" Gibbs sampler

Carter-Kohn "Multimove" Gibbs Sampler

Let $\tilde{y}_{T}=\left(y_{1}^{\prime}, \ldots, y_{T}^{\prime}\right)^{\prime}$
0 . Initialize $\theta^{(0)}$
Gibbs sampler at generic iteration j :
$j 1$. Draw from posterior $\tilde{\alpha}_{T}^{(j)} / \theta^{(j-1)}, \tilde{y}_{T}$ ("hard")
j2. Draw from posterior $\theta^{(j)} / \tilde{\alpha}_{T}^{(j)}, \tilde{y}_{T}$ ("easy")
Iterate to convergence, and then estimate posterior moments of interest

Let's First Explain Step $j 2\left(\theta^{(j)} \mid \tilde{\alpha}_{T}^{(j)}, \tilde{y}_{T}\right)$ ("easy")

Conditional upon an $\tilde{\alpha}_{T}^{(j)}$ draw, obtaining a $\theta^{(j)}$ draw is just a Bayesian multivariate regression problem (i.e., we need to draw from the posterior of the multivariate regression parameters).
(We have already seen how to do Bayesian univariate regression. That is, we know how to draw from the posterior of univariate regression parameters using a conjugate (normal-gamma) prior. We can easily extend to draw from the posterior of multivariate regression parameters using a conjugate (normal-Wishart) prior.)

Now do Step $j 1\left(\tilde{\alpha}_{T}^{(j)} / \theta^{(j-1)}, \tilde{y}_{T}\right)$ ("hard")

For notational simplicity we write $p\left(\tilde{\alpha}_{T} / \tilde{y}_{T}\right)$, suppressing the conditioning on θ, but it is of course still there.

$$
\begin{gathered}
p\left(\tilde{\alpha}_{T} / \tilde{y}_{T}\right)=p\left(\alpha_{T} / \tilde{y}_{T}\right) p\left(\tilde{\alpha}_{T-1} / \alpha_{T}, \tilde{y}_{T}\right) \\
=p\left(\alpha_{T} / \tilde{y}_{T}\right) p\left(\alpha_{T-1} / \alpha_{T}, \tilde{y}_{T}\right) p\left(\tilde{\alpha}_{T-2} / \alpha_{T-1}, \alpha_{T}, \tilde{y}_{T}\right) \\
=\ldots \\
=p\left(\alpha_{T} / \tilde{y}_{T}\right) \Pi_{t=1}^{(T-1)} p\left(\alpha_{t} / \alpha_{t+1}, \tilde{y}_{t}\right)
\end{gathered}
$$

So, to draw from $p\left(\tilde{\alpha}_{T} / \tilde{y}_{T}\right)$, we need to be able to draw from $p\left(\alpha_{T} / \tilde{y}_{T}\right)$ and $p\left(\alpha_{t} / \alpha_{t+1}, \tilde{y}_{t}\right), t=1, \ldots,(T-1)$

Multimove Gibbs sampler, Continued

The key is to work backward:

> Draw from $p\left(\alpha_{T} / \tilde{y}_{T}\right)$, then from $p\left(\alpha_{T-1} / \alpha_{T}, \tilde{y}_{T-1}\right)$ then from $p\left(\alpha_{T-2} / \alpha_{T-1}, \tilde{y}_{T-2}\right)$, etc.

Time T draw is easy. From the Kalman filter,

$$
p\left(\alpha_{T} / \tilde{y}_{T}\right) \text { is } N\left(a_{T}, P_{T}\right)
$$

(where we have the usual formulas for a_{T} and P_{T})
Earlier-time draws require a bit of new work: How to draw from $p\left(\alpha_{t} / \alpha_{t+1}, \tilde{y}_{t}\right), t=(T-1), \ldots, 1$?

- Note that the CK smoother requires first running the Kalman filter. Prior info for $\tilde{\alpha}_{T}$ enters through choice of a_{0} and P_{0}.

Multimove Gibbs sampler, Continued

CK show that the posterior density $p\left(\alpha_{t} / \alpha_{t+1}, \tilde{y}_{t}\right)$ is Gaussian:

$$
\alpha_{t} / \alpha_{t+1}, \tilde{y}_{t} \sim N\left(a_{t / t, \alpha_{t+1}}, P_{t / t, \alpha_{t+1}}\right)
$$

where

$$
\begin{gathered}
a_{t / t, \alpha_{t+1}}=E\left(\alpha_{t} / \tilde{y}_{t}, \alpha_{t+1}\right)=E\left(\alpha_{t} \mid a_{t}, \alpha_{t+1}\right) \\
=a_{t}+P_{t} T^{\prime}\left(T P_{t} T^{\prime}+Q\right)^{-1}\left(\alpha_{t+1}-T a_{t}\right) \\
P_{t / t, \alpha_{t+1}}=\operatorname{cov}\left(\alpha_{t} / \tilde{y}_{t}, \alpha_{t+1}\right)=\operatorname{cov}\left(\alpha_{t} \mid a_{t}, \alpha_{t+1}\right) \\
=P_{t}-P_{t} T^{\prime}\left(T P_{t} T^{\prime}+Q\right)^{-1} T P_{t} \\
t=(T-1), \ldots, 1
\end{gathered}
$$

Remarks

- Multi-move Gibbs resembles EM for state-space models, iterating between an " α step" and a " θ step"
- More than a superficial resemblance; both explore likelihood
- EM explores likelihood as part of getting to a max
- Multi-move Gibbs explores likelihood as part of exploring a posterior

Non-linear and/or Non-Gaussian

This small block is just to stimulate curiosity, and to introduce some non-linear and/or non-Gaussian models.
(Take 722.)

Figure: A Map

Earlier: Wold-Wiener-Kolmogorov Representation/Theory Now: Volterra Representation/Theory

$$
\begin{gathered}
y_{t}=\sum_{m_{1}=0}^{\infty} h_{1}\left(m_{1}\right) \varepsilon_{t-m_{1}} \\
+\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} h_{2}\left(m_{1}, m_{2}\right) \varepsilon_{t-m_{1}} \varepsilon_{t-m_{2}} \\
+\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \sum_{m_{3}=0}^{\infty} h_{3}\left(m_{1}, m_{2}, m_{3}\right) \varepsilon_{t-m_{1}} \varepsilon_{t-m_{2}} \varepsilon_{t-m_{3}} \\
+\ldots \\
\text { where } \varepsilon_{t} \sim N(0,1)
\end{gathered}
$$

State Space Models

$$
\begin{aligned}
& \quad \text { Linear / Gaussian: } \\
& \alpha_{t}=T \alpha_{t-1}+R \eta_{t}, \quad y_{t}=Z \alpha_{t}+\zeta_{t}, \quad \eta_{t} \sim N(0, Q), \quad \zeta_{t} \sim N(0, H) \\
& \text { Linear / Non-Gaussian: } \\
& \alpha_{t}=T \alpha_{t-1}+R \eta_{t}, \quad y_{t}=Z \alpha_{t}+\zeta_{t}, \quad \eta_{t} \sim D^{\eta}, \quad \zeta_{t} \sim D^{\zeta} \\
& \quad \text { Non-Linear / Gaussian: } \\
& \alpha_{t}=Q\left(\alpha_{t-1}, \eta_{t}\right), \quad y_{t}=G\left(\alpha_{t}, \zeta_{t}\right), \quad \eta_{t} \sim N(0, Q), \quad \zeta_{t} \sim N(0, H)
\end{aligned}
$$

Non-Linear / Non-Gaussian:

$$
\alpha_{t}=Q\left(\alpha_{t-1}, \eta_{t}\right), \quad y_{t}=G\left(\alpha_{t}, \zeta_{t}\right), \quad \eta_{t} \sim D^{\eta}, \quad \zeta_{t} \sim D^{\zeta}
$$

Non-Linear / Non-Gaussian, Specialized to Additive: $\alpha_{t}=Q\left(\alpha_{t-1}\right)+\eta_{t}, \quad y_{t}=G\left(\alpha_{t}\right)+\zeta_{t}, \quad \eta_{t} \sim D^{\eta}, \quad \zeta_{t} \sim D^{\zeta}$

Example:

Regime Switching Model (Non-Linear / Gaussian)

$$
\begin{gathered}
\binom{\alpha_{1 t}}{\alpha_{2 t}}=\left(\begin{array}{ll}
\phi & 0 \\
0 & \gamma
\end{array}\right)\binom{\alpha_{1, t-1}}{\alpha_{2, t-1}}+\binom{\eta_{1 t}}{\eta_{2 t}} \\
y_{t}=\mu_{0}+\delta I\left(\alpha_{2 t}>0\right)+(1,0)\binom{\alpha_{1 t}}{\alpha_{2 t}} \\
\eta_{1 t} \sim N^{\eta_{1}} \quad \eta_{2 t} \sim N^{\eta_{2}} \quad \eta_{1 t} \perp \eta_{2 t}
\end{gathered}
$$

Extensions to:

- Richer α_{1} dynamics (governing the observed y)
- Richer α_{2} dynamics (governing the latent regime)
- Richer η_{t} distribution (e.g., $\eta_{2 t}$ asymmetric)
- More than two states
- Switching also on dynamic parameters, volatilities, etc.
- Multivariate

Example:

Two-Shock Stochastic Volatility Model (Non-Linear / Gaussian Form)

$$
\begin{gathered}
h_{t}=\omega+\beta h_{t-1}+\eta_{t} \quad(\text { transition }) \\
r_{t}=\sqrt{e^{h_{t}}} \zeta_{t} \quad(\text { measurement }) \\
\eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right), \quad \zeta_{t} \sim N(0,1)
\end{gathered}
$$

Example:

Two-Shock Stochastic Volatility Model

 (Linear / Non-Gaussian Form)$$
\begin{gathered}
h_{t}=\omega+\beta h_{t-1}+\eta_{t} \quad(\text { transition }) \\
2 \ln \left|r_{t}\right|=h_{t}+2 \ln \left|\zeta_{t}\right| \quad(\text { measurement }) \\
\text { or } \\
h_{t}=\omega+\beta h_{t-1}+\eta_{t} \\
y_{t}=h_{t}+u_{t} \\
\eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right), \quad u_{t} \sim D^{u}
\end{gathered}
$$

- A "signal plus (non-Gaussian) noise" components model

Example:

One-Shock Stochastic Volatility Model (GARCH)

Coming soon, in detail...

Nonlinear and/or Non-Gaussian Filtering

- Kalman filter BLUE but not MVUE
- Fully-optimal filtering gets complicated

Different filters (e.g., particle filter) needed for full optimality
(Again, take 722.)

One-Shock Stochastic Volatility Model (ARCH/GARCH)

Stock Returns

Figure: Time Series of Daily NYSE Returns.

Key Fact 1: Returns are Approximately White Noise

Figure: Correlogram of Daily NYSE Returns.

Key Fact 2: Returns are not Gaussian

Figure: Histogram and Statistics for Daily NYSE Returns.

Unconditional Volatility Measures

Unconditional Variance: $\sigma^{2}=E\left(r_{t}-\mu\right)^{2}$
(or standard deviation: σ)
Unconditional Mean Absolute Deviation: $M A D=E\left|r_{t}-\mu\right|$
Unconditional Interquartile Range: $I Q R=75 \%-25 \%$
Unconditional $p \%$ Value at Risk $\left.\left(V_{a R^{p}}\right)\right): x$ s.t. $P\left(r_{t}<x\right)=p$
Unconditional Outlier probability: $P\left|r_{t}-\mu\right|>5 \sigma$ (for example)
Unconditional Tail index: γ s.t. $P\left(r_{t}>r\right)=k r^{-\gamma}$

Key Fact 3: Returns are Conditionally Heteroskedastic (And the Volatility Dynamics are Highly Persistent)

Figure: Correlogram of Daily Squared NYSE Returns.

Conditional Return Distributions

Consider $f\left(r_{t}\right)$ vs. $f\left(r_{t} \mid \Omega_{t-1}\right)$

Key 1: $E\left(r_{t} \mid \Omega_{t-1}\right)$ is approximately constant
Returns are approximately serially uncorrelated, and approximately free of additional non-linear conditional mean dependence.

$$
\text { Key 2: } \operatorname{var}\left(r_{t} \mid \Omega_{t-1}\right) \text { is not constant! }
$$

Squared returns serially correlated, often with very slow decay.

Bottom line: Returns are (approximately) non-Gaussian weak white noise, serially uncorrelated but nevertheless serially dependent, with the non-linear serial dependence operating not through $E\left(r_{t} \mid \Omega_{t-1}\right)$ but rather through $\operatorname{var}\left(r_{t} \mid \Omega_{t-1}\right)$ ("volatility dynamics").

The Standard Model

(Linearly Indeterministic Process with iid Innovations)

$$
\begin{gathered}
y_{t}=\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i} \\
\varepsilon \sim \operatorname{iid}\left(0, \sigma_{\varepsilon}^{2}\right) \\
\sum_{i=0}^{\infty} b_{i}^{2}<\infty, \quad b_{0}=1
\end{gathered}
$$

Uncond. mean: $E\left(y_{t}\right)=0$ (constant)
Uncond. variance: $E\left(y_{t}-E\left(y_{t}\right)\right)^{2}=\sigma_{\varepsilon}^{2} \sum_{i=0}^{\infty} b_{i}^{2}$ (constant)
Cond. mean: $E\left(y_{t} \mid \Omega_{t-1}\right)=\sum_{i=1}^{\infty} b_{i} \varepsilon_{t-i}$ (varies)
Cond. variance: $E\left(\left[y_{t}-E\left(y_{t} \mid \Omega_{t-1}\right)\right]^{2} \mid \Omega_{t-1}\right)=\sigma_{\varepsilon}^{2}$ (constant)

The Standard Model, Continued

 h-Step-Ahead Least Squares Forecasting$$
E\left(y_{t+h} \mid \Omega_{t}\right)=\sum_{i=0}^{\infty} b_{h+i} \varepsilon_{t-i}
$$

Associated prediction error:

$$
y_{t+h}-E\left(y_{t+h} \mid \Omega_{t}\right)=\sum_{i=0}^{h-1} b_{i} \varepsilon_{t+h-i}
$$

Conditional prediction error variance:

$$
E\left(\left[y_{t+h}-E\left(y_{t+h} \mid \Omega_{t}\right)\right]^{2} \mid \Omega_{t}\right)=\sigma_{\varepsilon}^{2} \sum_{i=0}^{h-1} b_{i}^{2}
$$

Key: Depends only on h, not on Ω_{t}

$A R C H(1)$ Process

$$
\begin{gathered}
r_{t} \mid \Omega_{t-1} \sim N\left(0, h_{t}\right) \\
h_{t}=\omega+\alpha r_{t-1}^{2} \\
E\left(r_{t}\right)=0 \\
E\left(r_{t}-E\left(r_{t}\right)\right)^{2}=\frac{\omega}{(1-\alpha)} \\
E\left(r_{t} \mid \Omega_{t-1}\right)=0 \\
E\left(\left[r_{t}-E\left(r_{t} \mid \Omega_{t-1}\right)\right]^{2} \mid \Omega_{t-1}\right)=\omega+\alpha r_{t-1}^{2}
\end{gathered}
$$

Nonlinear State-Space Representation

$$
\begin{gathered}
r_{t} \mid \Omega_{t-1} \sim N\left(0, \omega+\alpha r_{t-1}^{2}\right) \\
\text { or } \\
r_{t}=\sqrt{\omega+\alpha r_{t-1}^{2}} z_{t} \\
z_{t} \sim \operatorname{iid} N(0,1)
\end{gathered}
$$

Trivial state-space representation:

$$
\begin{gathered}
\alpha_{t}=\sqrt{\omega+\alpha \alpha_{t-1}^{2}} \eta_{t} \\
r_{t}=\alpha_{t} \\
\eta_{t} \sim \operatorname{iid} N(0,1)
\end{gathered}
$$

Unconditionally Fat Tails

ARCH produces an unconditional distribution that is symmetric but with fatter tails than the conditional (Gaussian) distribution.

Tractable Likelihood

$$
L\left(\theta ; r_{T}, \ldots, r_{1}\right) \approx f\left(r_{T} \mid \Omega_{T-1} ; \theta\right) f\left(r_{T-1} \mid \Omega_{T-2} ; \theta\right) \ldots f\left(r_{2} \mid \Omega_{1} ; \theta\right)
$$

$$
\text { where } \theta=(\omega, \alpha)^{\prime} \text {. }
$$

(It is approximate because we drop the initial marginal $f\left(r_{1} ; \theta\right)$).
With Gaussian conditional densities,

$$
f\left(r_{t} \mid \Omega_{t-1} ; \theta\right)=\frac{1}{\sqrt{2 \pi}} h_{t}(\theta)^{-1 / 2} \exp \left(-\frac{1}{2} \frac{r_{t}^{2}}{h_{t}(\theta)}\right)
$$

we have:

$$
\begin{gathered}
\ln L\left(\theta ; r_{T}, \ldots, r_{1}\right) \approx \text { const }-\frac{1}{2} \sum_{t=2}^{T} \ln h_{t}(\theta)-\frac{1}{2} \sum_{t=2}^{T} \frac{r_{t}^{2}}{h_{t}(\theta)}, \\
\text { where } h_{t}(\theta)=\omega+\alpha r_{t-1}^{2} .
\end{gathered}
$$

GARCH $(1,1)$ Process

$$
\begin{gathered}
r_{t} \mid \Omega_{t-1} \sim N\left(0, h_{t}\right) \\
h_{t}=\omega+\alpha r_{t-1}^{2}+\beta h_{t-1}
\end{gathered}
$$

$$
\begin{gathered}
E\left(r_{t}\right)=0 \\
E\left(r_{t}-E\left(r_{t}\right)\right)^{2}=\frac{\omega}{(1-\alpha-\beta)} \\
E\left(r_{t} \mid \Omega_{t-1}\right)=0
\end{gathered}
$$

$$
E\left(\left[r_{t}-E\left(r_{t} \mid \Omega_{t-1}\right)\right]^{2} \mid \Omega_{t-1}\right)=\omega+\alpha r_{t-1}^{2}+\beta h_{t-1}
$$

$\operatorname{GARCH}(1,1)$ back substitution yields:

$$
\begin{gathered}
h_{t}=\frac{\omega}{1-\beta}+\alpha \sum_{j=1}^{\infty} \beta^{j-1} r_{t-j}^{2} \\
A R C H(\infty)!
\end{gathered}
$$

Variations on the ARCH/GARCH Theme

- Asymmetric Response and the Leverage Effect
- Fat-Tailed Conditional Densities

Asymmetric Response and the Leverage Effect: Threshold GARCH

Standard GARCH: $h_{t}=\omega+\alpha r_{t-1}^{2}+\beta h_{t-1}$
TARCH: $h_{t}=\omega+\alpha r_{t-1}^{2}+\gamma r_{t-1}^{2} D_{t-1}+\beta h_{t-1}$

$$
D_{t}=\left\{\begin{array}{l}
1 \text { if } r_{t}<0 \\
0 \text { otherwise }
\end{array}\right.
$$

positive return (good news): α effect on volatility
negative return (bad news): $\alpha+\gamma$ effect on volatility
$\gamma \neq 0$: Asymetric news response
$\gamma>0$: "Leverage effect"

Fat-Tailed Conditional Densities: t-GARCH

If r is conditionally Gaussian, then $\frac{r_{t}}{\sqrt{h_{t}}} \sim N(0,1)$
But often with high-frequency data, $\frac{r_{t}}{\sqrt{h_{t}}} \sim$ fat tailed
So take:

$$
\begin{gathered}
r_{t}=h_{t}^{1 / 2} z_{t} \\
\quad i i d \\
z_{t} \sim \frac{t_{d}}{s t d\left(t_{d}\right)}
\end{gathered}
$$

GARCH $(1,1)$ for NYSE Returns

Dependent Variable: R
Method: ML - ARCH (Marquardt)

Sample: 13461
Inchuded observations: 3461
Convergence achieved after 19 iterations
Variance backcast: 0 N

Coefricient	Std. Error	z-Statistic	Prob.	
\mathbb{C}	0.000640	0.000127	5.036942	0.0000

Variance Equation			
C	$1.06 \mathrm{E}-06$	$1.49 \mathrm{E}-07$	7.136840
ARCH(1)	0.067410	0.004955	13.60315
GARCH(1)	0.919714	0.006122	150.2195

Figure: GARCH(1,1) Estimation, Daily NYSE Returns.

Fitted Volatility

Figure: Estimated Conditional Standard Deviation, Daily NYSE Returns.

Recall: Correlogram of Squared Returns

Figure: Correlogram of Squared Daily NYSE Returns.

Compare: Correlogram of Squared Standardized Returns

Figure: Correlogram of Squared Standardized Daily NYSE Returns.

Figure: A Map

Integration and Cointegration

Random Walks

Random walk:

$$
\begin{aligned}
& y_{t}=y_{t-1}+\varepsilon_{t} \\
& \varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Random walk with drift:

$$
\begin{gathered}
y_{t}=\delta+y_{t-1}+\varepsilon_{t} \\
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Random Walk - Level and Change

Random Walk With Drift - Level and Change

Random Walk With Drift
Level and Change

Properties of the Random Walk

$$
y_{t}=y_{0}+\sum_{i=1}^{t} \varepsilon_{i}
$$

(shocks perfectly persistent)

$$
\begin{gathered}
E\left(y_{t}\right)=y_{0} \\
\operatorname{var}\left(y_{t}\right)=t \sigma^{2} \\
\lim _{t \rightarrow \infty} \operatorname{var}\left(y_{t}\right)=\infty
\end{gathered}
$$

Properties of the Random Walk with Drift

$$
y_{t}=t \delta+y_{0}+\sum_{i=1}^{t} \varepsilon_{i}
$$

(shocks again perfectly persistent)

$$
\begin{gathered}
E\left(y_{t}\right)=y_{0}+t \delta \\
\operatorname{var}\left(y_{t}\right)=t \sigma^{2} \\
\lim _{t \rightarrow \infty} \operatorname{var}\left(y_{t}\right)=\infty
\end{gathered}
$$

Forecasting a Random Walk with Drift

$$
\begin{gathered}
y_{t}=\delta+y_{t-1}+\varepsilon_{t} \\
\varepsilon_{t} \sim W N
\end{gathered}
$$

Optimal forecast:

$$
y_{T+h, T}=\delta h+y_{T}
$$

Forecast does not revert to trend

Forecasting a Linear Trend + Stationary AR(1)

$$
\begin{gathered}
y_{t}=a+\delta t+u_{t} \\
u_{t}=\phi u_{t-1}+v_{t} \\
v_{t} \sim W N
\end{gathered}
$$

Optimal forecast:

$$
y_{T+h, T}=a+\delta(T+h)+\phi^{h} u_{T}
$$

Forecast reverts to trend

U.S. Per Capita GNP

 History, Two Forecasts, and Realization

Some Language...

"Random walk with drift" vs. "stat. $A R(1)$ around linear trend" "unit root" vs. "stationary root"
"Difference stationary" vs. "trend stationary"
"Stochastic trend" vs. "deterministic trend"

$$
" I(1) " \text { vs. " } I(0) "
$$

Unit Root Distribution in the $A R(1)$ Process

DGP:

$$
y_{t}=y_{t-1}+\varepsilon_{t}
$$

LS regression run:

$$
y_{t} \rightarrow y_{t-1}
$$

Then we have:

$$
T\left(\hat{\phi}_{L S}-1\right) \stackrel{d}{\rightarrow} D F
$$

"Superconsistent"
Not Gaussian, even asymptotically
DF tabulated by Monte Carlo

Studentized Version

DGP:

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

LS regression run:

$$
y_{t} \rightarrow y_{t-1}
$$

Form the "t-stat":

$$
\hat{\tau}=\frac{\hat{\phi}-1}{s \sqrt{\frac{1}{\sum_{t=2}^{T} y_{t-1}^{2}}}}
$$

"Random walk" vs. "stationary $A R(1)$ "
Not t in finite samples, and not $N(0,1)$ asymptotically

Again, tabulate by Monte Carlo

Example of Monte Carlo for the Dickey-Fuller Distribution: Tabulating the Null Distribution of $\hat{\tau}$

1. Draw $T N(0,1)$ innovations $\varepsilon_{1}, \ldots, \varepsilon_{T}$
2. Convert $\varepsilon_{1}, \ldots, \varepsilon_{T}$ into y_{1}, \ldots, y_{T} using $y_{t}=y_{t-1}+\varepsilon_{t}$ and $y_{0}=0$
3. Run DF regression $y_{t} \rightarrow y_{t-1}$ and get $\hat{\tau}$
4. Repeat 100000 times, yielding $\left\{\hat{\tau}^{i}\right\}_{i=1}^{100000}$
5. Sort the $\hat{\tau}^{i}$'s and compute percentiles

Nonzero Mean Under the Alternative

$$
\begin{gathered}
\left(y_{t}-\mu\right)=\phi\left(y_{t-1}-\mu\right)+\varepsilon_{t} \\
y_{t}=\alpha+\phi y_{t-1}+\varepsilon_{t} \\
\text { where } \alpha=\mu(1-\phi)
\end{gathered}
$$

"Random walk" vs. "stationary $A R(1)$ "
Studentized statistic $\hat{\tau}_{\mu}$

Linear Trend Under the Alternative

$$
\begin{gathered}
\left(y_{t}-a-b t\right)=\phi\left(y_{t-1}-a-b(t-1)\right)+\varepsilon_{t} \\
y_{t}=\alpha+\beta t+\phi y_{t-1}+\varepsilon_{t} \\
\text { where } \alpha=a(1-\phi)+b \phi \text { and } \beta=b(1-\phi)
\end{gathered}
$$

"Random walk with drift" vs. "stat. $A R(1)$ around linear trend" "Difference stationary" vs. "trend stationary" "Stochastic trend" vs. "deterministic trend"

Studentized statistic $\hat{\tau}_{\tau}$
$A R(p)$
"Augmented Dickey Fuller" ("ADF")

$$
\begin{aligned}
& \text { Any univariate } A R(p), \\
y_{t}= & \phi_{1} y_{t-1}+\ldots+\phi_{p} y_{t-p}+u_{t}
\end{aligned}
$$

can be written as

$$
\Delta y_{t}=-\pi y_{t-1}+\sum_{i=1}^{p-1} b_{i} \Delta y_{t-i}+u_{t}
$$

- In the unit root case, $\pi=0(A R(p-1)$ in changes $)$.
- Use standard automatically-computed t-stat (which of course does not have the t-distribution)

DF "trick form": regress change on lagged level and lagged changes ("augmentation lags")

Multivariate Problem: Spurious Time-Series Regressions

Regress a persistent variable on an unrelated persistent variable:

$$
y_{1 t} \rightarrow c, y_{2 t}
$$

(Canonical case: y_{1}, y_{2} independent driftless random walks)

$$
\begin{aligned}
& \text { d } \\
& \frac{\hat{\beta}}{\sqrt{T}} \rightarrow R V(\hat{\beta} \text { diverges }) \\
& \text { d } \\
& \frac{t}{\sqrt{T}} \rightarrow R V(t \text { diverges }) \\
& \text { d } \\
& R^{2} \rightarrow R V \text { (not zero) }
\end{aligned}
$$

When are I(1) Levels Regressions Not Spurious?

Answer: When the variables are cointegrated.

Cointegration

Consider an N-dimensional variable y :

$$
y \sim C l(d, b) \text { if }
$$

1. $y_{i} \sim I(d), i=1, \ldots, N$
2. $\exists 1$ or more linear combinations $z_{t}=\alpha^{\prime} y_{t}$ s.t.

$$
z_{t} \sim I(d-b), b>0
$$

Leading Case

$$
y \sim C l(1,1) \text { if }
$$

$$
\text { (1) } y_{i} \sim I(1), i=1, \ldots, N
$$

(2) $\exists 1$ or more linear combinations

$$
z_{t}=\alpha^{\prime} y_{t} \text { s.t. } z_{t} \sim I(0)
$$

Example

$$
\begin{gathered}
y_{1 t}=y_{1, t-1}+v_{t} \quad(I(1)) \\
y_{2 t}=y_{1, t-1}+\varepsilon_{t} \quad(I(1)) \\
\Longrightarrow \\
\left(y_{2 t}-y_{1 t}\right)=\varepsilon_{t}-v_{t} \quad(I(0))
\end{gathered}
$$

Cointegration and "Attractor Sets"

y_{t} is N-dimensional but does not wander randomly in \mathbb{R}^{N}
$\alpha^{\prime} y_{t}$ is attracted to an $(N-R)$-dimensional subspace of \mathbb{R}^{N}
N : space dimension
R : number of cointegrating relationships
Attractor dimension $=N-R$
("number of underlying unit roots")
("number of common trends")

Example

3-dimensional $\operatorname{VAR}(p)$, all variables $I(1)$
$R=0 \Leftrightarrow$ no cointegration $\Leftrightarrow y$ wanders throughout \mathbb{R}^{3}
$R=1 \Leftrightarrow 1$ cointegrating vector $\Leftrightarrow y$ attracted to a 2 -Dim hyperplane in \mathbb{R}^{3} given by $\alpha^{\prime} y=0$
$R=2 \Leftrightarrow 2$ cointegrating vectors $\Leftrightarrow y$ attracted to a 1 -Dim hyperplane (line) in \mathbb{R}^{3} given by intersection of two 2-Dim hyperplanes, $\alpha_{1}^{\prime} y=0$ and $\alpha_{2}^{\prime} y=0$
$R=3 \Leftrightarrow 3$ cointegrating vectors $\Leftrightarrow y$ attracted to a 0 -Dim hyperplane (point) in \mathbb{R}^{3} given by the intersection of three 2-Dim hyperplanes, $\alpha_{1}^{\prime} y=0, \alpha_{2}^{\prime} y=0$ and $\alpha_{3}^{\prime} y=0$
(Covariance stationary around $E(y)$)

Cointegration Motivation: Dynamic Factor Model

Consider a simple bivariate example:

$$
\begin{gathered}
\binom{y_{1 t}}{y_{2 t}}=\binom{\lambda_{1}}{\lambda_{2}} f_{t}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}} \\
f_{t}=f_{t-1}+\eta_{t} \\
\text { "Common trend" } f_{t} \\
\text { Note that } \underbrace{\frac{y_{1 t}}{\lambda_{1}}}_{l(1)}-\underbrace{\frac{y_{2 t}}{\lambda_{2}}}_{l(1)}=\underbrace{\frac{\varepsilon_{1 t}}{\lambda_{1}}-\frac{\varepsilon_{2 t}}{\lambda_{2}}}_{l(0)}
\end{gathered}
$$

So we have a linear combination of $I(1)$'s that is $I(0)$

- Immediate generalization to N-dimensional system with $N-R I(1)$ factors (common trends)

Cointegration Motivation: Optimal Forecasting

$I(1)$ variables always co-integrated with their optimal forecasts
Example:

$$
\begin{gathered}
y_{t}=y_{t-1}+\varepsilon_{t} \\
y_{t+h \mid t}=y_{t} \\
\Longrightarrow \underbrace{y_{t+h}}_{l(1)}-\underbrace{y_{t+h \mid t}}_{l(1)}=\underbrace{\sum_{i=1}^{h} \varepsilon_{t+i}}_{l(0)}
\end{gathered}
$$

(finite MA, always covariance stationary)

Cointegration Motivation:
 Long-Run Relation Augmented with Short-Run Dynamics

Simple Bivariate AR Case (ECM):

$$
\begin{gathered}
\Delta y_{1, t}=\alpha \Delta y_{1, t-1}+\beta \Delta y_{2, t-1}-\gamma\left(y_{1, t-1}-\delta y_{2, t-1}\right)+u_{t} \\
=\alpha \Delta y_{1, t-1}+\beta \Delta y_{2, t-1}-\gamma z_{t-1}+u_{t}
\end{gathered}
$$

General AR Case (VECM):

$$
A(L) \Delta y_{t}=-\gamma z_{t-1}+u_{t}
$$

where:

$$
\begin{gathered}
A(L)=I-A_{1} L-\ldots-A_{p} L^{p} \\
z_{t}=\alpha^{\prime} y_{t}
\end{gathered}
$$

Recall Univariate ADF Regression

Any univariate $A R(p)$ can be written as

$$
\Delta y_{t}=-\pi y_{t-1}+\sum_{i=1}^{p-1} b_{i} \Delta y_{t-i}+u_{t} .
$$

In the unit root case, $\pi=0$.

Multivariate ADF Regression

Any $\operatorname{VAR}(p)$ can be written as

$$
\Delta y_{t}=-\underbrace{\Pi}_{N \times N} y_{t-1}+\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}+u_{t}
$$

Now more possibilities for Π :

- Zero rank, full rank (like univariate $\pi=0$ or $\pi \neq 0$)
- Intermediate rank (impossible in univariate)

Integration/Cointegration Status

- $\operatorname{Rank}(\Pi)=0$

0 cointegrating vectors, N underlying unit roots (all variables appropriately specified in differences)

- $\operatorname{Rank}(\Pi)=N$
N cointegrating vectors, 0 unit roots
(all variables appropriately specified in levels)
- $\operatorname{Rank}(\Pi)=R \quad(0<R<N)$
R cointegrating vectors, $N-R$ unit roots

Granger Representation Theorem

$$
y_{t} \sim V E C M \quad \Longleftrightarrow \quad y_{t} \sim C I(1,1)
$$

$V E C M \Leftarrow$ Cointegration

We can always write the ADF form:

$$
\Delta y_{t}=\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\Pi y_{t-1}+u_{t}
$$

But under cointegration, $\operatorname{rank}(\Pi)=R<N$, so

$$
\begin{gathered}
\begin{array}{c}
\Pi \\
N \times N
\end{array} \begin{array}{c}
\gamma \\
N \times R
\end{array} \begin{array}{c}
\alpha^{\prime} \\
\hline \times N
\end{array} \\
\Rightarrow y_{t}=\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\gamma \alpha^{\prime} y_{t-1}+u_{t} \\
=\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\gamma z_{t-1}+u_{t}
\end{gathered}
$$

$V E C M \Rightarrow$ Cointegration

$$
\Delta y_{t}=\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\gamma \alpha^{\prime} y_{t-1}+u_{t}
$$

Premultiply by α^{\prime} :
$\alpha^{\prime} \Delta y_{t}=\alpha^{\prime} \sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\underbrace{\alpha^{\prime} \gamma}_{\text {full rank }} \alpha^{\prime} y_{t-1}+\alpha^{\prime} u_{t}$
So equation balance requires that $\alpha^{\prime} y_{t-1}$ be stationary.

Stationary-Nonstationary Decomposition

$$
\begin{array}{cc}
M^{\prime} & y \\
(N \times N) & (N \times 1)
\end{array}=\left(\begin{array}{c}
\alpha^{\prime} \\
(R \times N) \\
\delta \\
(N-R) \times N
\end{array}\right) y=\binom{\text { Cl combs }}{\text { com. trends }}
$$

where the rows of δ are orthogonal to the columns of γ

Intuition

The system is

$$
\Delta y_{t}=\sum_{i=1}^{p-1} B_{i} \Delta y_{t-i}-\gamma \alpha^{\prime} y_{t-1}+\mu_{t}
$$

Transforming the system by δ yields
$\delta \Delta y_{t}=\sum_{i=1}^{p-1} \delta B_{i} \Delta y_{t-i}-\underbrace{\delta \gamma}_{0 \text { by orthogonality }} \alpha^{\prime} y_{t-1}+\delta \mu_{t}$
So δ isolates that part of the VECM that is appropriately specified as a VAR in differences.

Note that if we start with $\mathrm{M}^{\prime} \mathrm{y}$, then the observed series is $\left(M^{\prime}\right)^{-1} M^{\prime} y$, so nonstationarity is spread throughout the system.

Example

$$
\begin{aligned}
& y_{1 t}=y_{1 t-1}+u_{1 t} \\
& y_{2 t}=y_{1 t-1}+u_{2 t}
\end{aligned}
$$

Levels form:

$$
\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) L\right)\binom{y_{1 t}}{y_{2 t}}=\binom{u_{1 t}}{u_{2 t}}
$$

Dickey-Fuller form:

$$
\binom{\Delta y_{1 t}}{\Delta y_{2 t}}=-\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right)\binom{y_{1 t-1}}{y_{2 t-1}}+\binom{u_{1 t}}{u_{2 t}}
$$

Example, Continued

$$
\begin{gathered}
\Pi=\binom{0}{1}\left(\begin{array}{ll}
-1 & 1
\end{array}\right)=\gamma \alpha^{\prime} \\
M^{\prime}=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)\binom{\text { first'row just } \alpha^{\prime}}{\text { second row orthogonal to } \gamma} \\
M^{\prime}\binom{y_{1 t}}{y_{2 t}}=\binom{u_{2 t}-u_{1 t}}{y_{1 t}}=\binom{y_{2 t}-y_{1 t}}{y_{1 t}}
\end{gathered}
$$

Figure: A Map

More Simulation:
 Global Optimization by Simulation

On Local vs. Global Optima

1. Try many startup values (sounds trivial but very important)
2. At the end of it all, use extreme value theory to assess the likelihood that the local optimum is global ("Veall's Method")
3. Actually use a global optimizer

Assessing Whether a Local Optimum is Global, Cont'd

$$
\begin{gathered}
\theta \in \Theta \subset R^{k} \\
\ln L(\theta) \text { is continuous }
\end{gathered}
$$

$\ln L\left(\theta^{*}\right)$ is the unique finite global max of $\ln L(\theta), \theta \in \Theta$

$$
H\left(\theta^{*}\right) \text { exists and is nonsingular }
$$

$$
\ln L(\hat{\theta}) \text { is a local max }
$$

Develop statistical inference for θ^{*}

Assessing Whether a Local Optimum is Global, Cont'd

Draw $\left\{\theta_{i}\right\}_{i=1}^{N}$ uniformly from Θ and form $\left\{\ln L\left(\theta_{i}\right)\right\}_{i=1}^{N}$
$\ln L_{1}$ first order statistic, $\ln L_{2}$ second order statistic

$$
\begin{gathered}
P\left[\ln L\left(\theta^{*}\right) \in\left(\ln L_{1}, \ln L^{\alpha}\right)\right]=(1-\alpha), \text { as } N \rightarrow \infty, \\
\text { where }
\end{gathered}
$$

$$
\ln L^{\alpha}=\ln L_{1}+\frac{\ln L_{1}-\ln L_{2}}{(1-\alpha)^{\frac{-2}{k}}-1}
$$

Global Optimization

Summary of Local Optimization:

1. initial guess $\theta^{(0)}$
2. while stopping criteria not met do
3. select $\theta^{(c)} \in N\left(\theta^{(m)}\right)$ (Classically: use gradient)
4. if $\Delta \equiv \ln L\left(\theta^{(c)}\right)-\ln L\left(\theta^{(m)}\right)>0$ then $\theta^{(m+1)}=\theta^{(c)}$
5. end while

Simulated Annealing

(Illustrated Here for a Discrete Parameter Space)

Framework:

1. A set Θ, and a real-valued function $\ln L$ (satisfying regularity conditions) defined on Θ. Let $\Theta^{*} \subset \Theta$ be the set of global maxima of $\operatorname{In} L$
2. $\forall \theta^{(m)} \in \Theta$, a set $N\left(\theta^{(m)}\right) \subset \Theta-\theta^{(m)}$, the set of neighbors of $\theta^{(m)}$
3. A nonincreasing function, $T(m): N \rightarrow(0, \infty)$ ("the cooling schedule"), where $T(m)$ is the "temperature" at iteration m
4. An initial guess, $\theta^{(0)} \in \Theta$

Simulated Annealing Algorithm

1. initial guess $\theta^{(0)}$
2. while stopping criteria not met do
3. select $\theta^{(c)} \in N\left(\theta^{(m)}\right)$
4. if $\Delta>0$ or $\exp (\Delta / T(m))>U(0,1)$ then $\theta^{(m+1)}=\theta^{(c)}$
5. end while

Note the extremes:
$T=0$ implies no randomization (like classical gradient-based)
$T=\infty$ implies complete randomization (like random search)

A (Heterogeneous) Markov Chain

$$
\begin{gathered}
\text { If } \theta^{(c)} \notin N\left(\theta^{(m)}\right) \text { then } \\
P\left(\theta^{(m+1)}=\theta^{(c)} \mid \theta^{(m)}\right)=0 \\
\text { If } \theta^{(c)} \in N\left(\theta^{(m)}\right) \text { then } \\
P\left(\theta^{(m+1)}=\theta^{(c)} \mid \theta^{(m)}\right)=\exp (\min [0, \Delta / T(m)])
\end{gathered}
$$

Convergence of a Global Optimizer

Definition. We say that the simulated annealing algorithm converges if

$$
\lim _{m \rightarrow \infty} P\left[\theta^{(m)} \in \Theta^{*}\right]=1
$$

Definition: We say that $\theta^{(m)}$ communicates with Θ^{*} at depth d if there exists a path in Θ (with each element of the path being a neighbor of the preceding element) that starts at $\theta^{(m)}$ and ends at some element of Θ^{*}, such that the smallest value of $\operatorname{In} L$ along the path is $\ln L\left(\theta^{(m)}\right)-d$.

Convergence of Simulated Annealing

Theorem: Let d^{*} be the smallest number such that every $\theta^{(m)} \in \Theta$ communicates with Θ^{*} at depth d^{*}. Then the simulated annealing algorithm converges if and only if, as $m \rightarrow \infty$,

$$
\begin{gathered}
T(m) \rightarrow 0 \\
\text { and } \\
\sum \exp \left(-d^{*} / T(m)\right) \rightarrow \infty .
\end{gathered}
$$

Problems: How to choose T, and moreover we don't know d^{*}
Popular choice of cooling function: $T(m)=\frac{1}{\ln m}$
Regarding speed of convergence, little is known

More Simulation:
 Econometric Theory by Simulation
 (Monte Carlo Methods)

Monte Carlo

Key: Solve deterministic problems by simulating stochastic analogs, with the analytical unknowns reformulated as parameters to be estimated.

Many important discoveries made by Monte Carlo.
Also, numerous mistakes avoided by Monte Carlo!
The pieces:
(I) Experimental Design
(II) Simulation (including variance reduction techniques)
(III) Analysis: Response surfaces (which also reduce variance)

(I) Experimental Design

- Data-Generating Process (DGP)
- Objective
- e.g., MSE of an estimator:

$$
E\left[(\theta-\hat{\theta})^{2}\right]=g(\theta, T)
$$

- e.g., Power function of a test:

$$
\pi=g(\theta, T)
$$

- Selection of (θ, T) Configurations to Explore
- Number of Monte Carlo Repetitions (N)

(II) Simulation

Running example: Monte Carlo integration
(Most of the things we examine by Monte Carlo are expectations, and hence integrals!
(Estimator MSE, test size and power, etc.)
Canonical definite integral: $\mu=\int_{0}^{1} m(y) d y$
Key insight:

$$
\begin{gathered}
\mu=\int_{0}^{1} m(y) d y=E(m(y)) \\
y \sim U(0,1)
\end{gathered}
$$

"Direct Simulation", General Case

$$
\mu=E(m(y))=\int m(y) f(y) d y
$$

- Indefinite integral, arbitrary function $m(\cdot)$, arbitrary density $f(y)$

Draw $y_{i} \sim f(\cdot)$, and then form $m\left(y_{i}\right)$. Repeat. Then form:

$$
\begin{gathered}
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} m\left(y_{i}\right) . \\
\text { Immediately, }
\end{gathered}
$$

$$
\sqrt{N}(\hat{\mu}-\mu) \xrightarrow{d} N
$$

Direct Simulation, Leading Special Case (Mean)

$$
\mu=E(y)=\int y f(y) d y
$$

- Indefinite integral, $m(y)=y$, arbitrary density $f(y)$

Draw $y_{i} \sim f(\cdot)$. Repeat. Then form:

$$
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} y_{i}
$$

Immediately,

$$
\sqrt{N}(\hat{\mu}-\mu) \xrightarrow{d} N
$$

Indirect Simulation:

Importance Sampling to Facilitate Sampling

Sampling from $f(\cdot)$ may be difficult. So change to:

$$
\mu=\int y \frac{f(y)}{g(y)} g(y) d y
$$

where the "importance sampling density" $g(\cdot)$ is easy to sample
Draw many $y_{i} \sim g(\cdot)$, and then form:

$$
\hat{\mu}_{*}=\frac{1}{N} \sum_{i=1}^{N} y_{i} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)}=\sum_{i=1}^{N} w_{i} y_{i}
$$

- Avg of $f(y)$ draws replaced by weighted avg of $g(y)$ draws

$$
\sqrt{N}\left(\hat{\mu}_{*}-\mu\right) \xrightarrow{d} N
$$

(Much) More on Indirect Simulation: Variance Reduction

"Variance-Reduction Techniques"

- Same accuracy for smaller N
- Greater accuracy for same N

Importance Sampling to Achieve Variance Reduction

$$
\begin{aligned}
& \text { Again : } \mu=\int y f(y) d y=\int y \frac{f(y)}{g(y)} g(y) d y \\
& \text { And again : } \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} y_{i}\left(y_{i} \text { drawn from } f\right)
\end{aligned}
$$

And again : $\sqrt{N}(\hat{\mu}-\mu) \rightarrow_{d} N\left(0, \sigma^{2}\right)$
And again : $\hat{\mu}_{*}=\frac{1}{N} \sum_{i=1}^{N} y_{i} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)}\left(y_{i}\right.$ drawn from $\left.g\right)$

$$
\text { And again : } \sqrt{N}\left(\hat{\mu}_{*}-\mu\right) \rightarrow_{d} N\left(0, \sigma_{*}^{2}\right)
$$

The new point: If $g(y)$ is chosen judiciously, $\sigma_{*}^{2} \ll \sigma^{2}$
Key: Pick $g(y)$ s.t. $\frac{y f(y)}{g(y)}$ has small variance

Importance Sampling Example

Let $y \sim N(0,1)$, and estimate the mean of $I(y>1.96)$:

$$
\begin{gathered}
\mu=E(I(y>1.96))=P(y>1.96)=\int \underbrace{I(y>1.96)}_{y} \underbrace{\phi(y)}_{f(y)} d y \\
\left.\hat{\mu}=\sum_{i=1}^{N} \frac{I\left(y_{i}>1.96\right)}{N} \quad \text { (with variance } \sigma^{2}\right)
\end{gathered}
$$

Use importance sampler:

$$
g(y)=N(1.96,1)
$$

$$
P(y>1.96)=\int I(y>1.96) \frac{\phi(y)}{g(y)} g(y) d y
$$

$$
\begin{array}{r}
\hat{\mu}_{*}=\frac{\sum_{i=1}^{N} I\left(y_{i}>1.96\right) \frac{\phi\left(y_{i}\right)}{g\left(y_{i}\right)}}{N} \\
\frac{\sigma_{*}^{2}}{\sigma^{2}} \approx 0.06
\end{array}
$$

Control Variates

Instead of simulating the mean of y, just simulate the mean of $(y-c(y))$, where the "control function" $c(y)$ has known mean and is highly correlated with y (i.e., $c(y)$ is simple enough to integrate analytically and flexible enough to absorb most of the variation in y).

$$
\begin{gathered}
\mu=\int y f(y) d y=\int c(y) f(y) d y+\int(y-c(y)) f(y) d y \\
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} y_{i} \\
\hat{\mu}_{*}=\int c(y) f(y) d y+\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-c\left(y_{i}\right)\right) \\
\sqrt{N}\left(\hat{\mu}_{*}-\mu\right) \rightarrow_{d} N\left(0, \sigma_{*}^{2}\right)
\end{gathered}
$$

If $c(y)$ is chosen judiciously, $\sigma_{*}^{2} \ll \sigma^{2}$

Control Variate Example

Suppose we want $\mu=E\left(e^{y}\right)=\int_{0}^{1} e^{y} d y$, for $y \sim U(0,1)$

$$
\text { Immediately : } \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} e^{y_{i}}
$$

Alternatively, use control variate: $c(y)=1+1.7 y$
Immediately : $\int_{0}^{1} c(y) d y=\left.\left(y+\frac{1.7}{2} y^{2}\right)\right|_{0} ^{1}=1.85$

$$
\begin{gathered}
\text { So : } \hat{\mu}_{*}=1.85+\frac{1}{N} \sum_{i=1}^{N}\left(e^{y_{i}}-\left(1+1.7 y_{i}\right)\right) \\
\frac{\hat{\sigma}_{*}^{2}}{\hat{\sigma}^{2}} \approx .01
\end{gathered}
$$

Antithetic Variates

Average negatively-correlated unbiased estimators of μ
(Unbiasedness maintained, variance reduced)
How to get negative correlation?

- If $y \sim U(0,1)$, then so too is $(1-y)$
(so y and $1-y$ equally likely)
- If $y \sim D$, for any zero-mean symmetric distribution D, then so too is $-y$ (so y and $-y$ equally likely)

How Antithetics Work (Zero-Mean Symmetric Case)

$$
\mu=\int y f(y) d y
$$

Direct: $\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} y_{i}\left(\hat{\mu}\right.$ is based on $\left.y_{i}, i=1, \ldots, N\right)$
Antithetic: $\hat{\mu}_{*}=\frac{1}{2} \hat{\mu}_{(y)}+\frac{1}{2} \hat{\mu}_{(-y)}$
$\hat{\mu}_{(y)}$ is based on $y_{i}, i=1, \ldots, N / 2$, $\hat{\mu}_{(-y)}$ is based on $-y_{i}, i=1, \ldots, N / 2$

$$
\sqrt{N}\left(\hat{\mu}_{*}-\mu\right) \rightarrow_{d} N\left(0, \sigma_{*}^{2}\right)
$$

$$
\sigma_{*}^{2}=\frac{1}{4} \operatorname{var}\left(\hat{\mu}_{(y)}\right)+\frac{1}{4} \operatorname{var}\left(\hat{\mu}_{(-y)}\right)+\frac{1}{2} \underbrace{\operatorname{cov}\left(\hat{\mu}_{(y)}, \hat{\mu}_{(-y)}\right)}_{<0}
$$

Often $\sigma_{*}^{2} \ll \sigma^{2}$

Common Random Numbers

Here we exploit positively-correlated estimates.
We have focused on estimation of a single integral. But interest often centers on difference (or ratio) of two integrals.

The key: Estimate each integral using the same random numbers. Then the (positively-correlated) simulation errors will tend to cancel from differences or ratios!

How Common Random Numbers Work

(e.g., in Comparing MSE's of Two Estimators)

Two estimators $\hat{\delta}_{1}, \hat{\delta}_{2}$; true parameter δ_{0}
We want to compare MSE's: $E\left(\hat{\delta}_{1}-\delta_{0}\right)^{2}$ vs. $E\left(\hat{\delta}_{2}-\delta_{0}\right)^{2}$
Expected difference: $\mu=E\left(\left(\hat{\delta}_{1}-\delta_{0}\right)^{2}-\left(\hat{\delta}_{2}-\delta_{0}\right)^{2}\right)$
$\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N}\left(\left(\hat{\delta}_{1 i}-\delta_{0}\right)^{2}-\left(\hat{\delta}_{2 i}-\delta_{0}\right)^{2}\right) \quad$ (using indep r.n.'s)
$\hat{\mu}_{*}=\frac{1}{N} \sum_{i=1}^{N}\left(\left(\hat{\delta}_{1 i}-\delta_{0}\right)^{2}-\left(\hat{\delta}_{2 i}-\delta_{0}\right)^{2}\right) \quad$ (using comm. r.n.'s)
$\sigma_{*}^{2}=\frac{1}{N} \operatorname{var}\left(\left(\hat{\delta}_{1}-\delta_{0}\right)^{2}\right)+\frac{1}{N} \operatorname{var}\left(\left(\hat{\delta}_{2}-\delta_{0}\right)^{2}\right)-\frac{2}{N} \underbrace{\operatorname{cov}\left(\left(\hat{\delta}_{1}-\delta_{0}\right)^{2},\left(\hat{\delta}_{2}-\delta_{0}\right)^{2}\right)}_{>0}$
Often $\sigma_{*}^{2} \ll \sigma^{2}$.

(III) Response surfaces

1. Direct Response Surfaces
2. Indirect Responses Surfaces:

- Clear and informative graphical presentation
- Imposition of known asymptotic results (e.g., power $\rightarrow 1$ as $T \rightarrow \infty$)
- Imposition of known features of functional form (e.g. power $\in[0,1]$)
- Variance reduction (!)

Example: Assessing Finite-Sample Test Size

For a Fixed Alternative

$$
\alpha=P\left(s>s^{*} \mid T, H_{0} \text { true }\right)=g(T)
$$

(α is empirical size, s is test statistic, s^{*} is asymptotic c.v.)

$$
\begin{gathered}
\hat{\alpha}=\frac{\# r e j}{N} \\
\hat{\alpha} \sim N\left(\alpha, \frac{\alpha(1-\alpha)}{N}\right)
\end{gathered}
$$

Equivalently: $\hat{\alpha}=\alpha+\varepsilon=g(T)+\varepsilon$,

$$
\text { where } \varepsilon \sim N\left(0, \frac{g(T)(1-g(T))}{N}\right)
$$

Note the heteroskedasticity: variance of ε changes with T

Example: Assessing Finite-Sample Test Size

For a Fixed Alternative

Enforce analytically known structure on $\hat{\alpha}$.
Common approach:

$$
\hat{\alpha}=\underbrace{\alpha_{0}+T^{-\frac{1}{2}}\left(c_{0}+\sum_{i=1}^{p} c_{i} T^{-\frac{-i}{2}}\right)}_{\alpha}+\varepsilon
$$

α_{0} is nominal size, which obtains as $T \rightarrow \infty$. Second term is the vanishing size distortion.

Response surface regression:

$$
\left(\hat{\alpha}-\alpha_{0}\right) \rightarrow T^{-\frac{1}{2}}, T^{-1}, T^{-\frac{3}{2}}, \ldots
$$

Disturbance will be approximately normal but heteroskedastic. So use GLS or robust standard errors (or nothing - still consistent).

More Simulation:
 Estimation by Simulation

(Simulated Method of Moments and Indirect Inference)

GMM

k-dimensional parameter θ

$$
\hat{\theta}_{G M M}=\operatorname{argmin}_{\theta} d(\theta)^{\prime} \Sigma d(\theta)
$$

where

$$
d(\theta)=\left(\begin{array}{c}
m_{1}(\theta)-\hat{m}_{1} \\
m_{2}(\theta)-\hat{m}_{2} \\
\vdots \\
m_{r}(\theta)-\hat{m}_{r}
\end{array}\right)
$$

The $m_{i}(\theta)$ are model moments and the \hat{m}_{i} are data moments.
MM: $k=r$ and the $m_{i}(\theta)$ calculated analytically GMM: $k<r$ and the $m_{i}(\theta)$ calculated analytically

- Inefficient relative to MLE, but useful when likelihood is not available (and for other reasons, as we'll see)

Simulated Method of Moments (SMM)

$$
\left(k \leq r \text { and the } m_{i}(\theta) \text { calculated by simulation }\right)
$$

- Analytic model moments may be unavailable. So calculate model moments by simulation. (Use common r.n.'s when iterating to minimize the quadratic form. Why?)
- SMM: if you can simulate, you can estimate
- If you understand a model you can simulate it, and if you can simulate it you can estimate it consistently. Eureka!
- No need to work out what might be very complex likelihoods even if they are in principle "available."
- MLE efficiency lost may be a small price for SMM tractability gained.

SMM Under Misspecification

All econometric models are misspecified. GMM/SMM has special appeal from that perspective.

- Under correct specification any consistent estimator (e.g., MLE or GMM/SMM) takes you to the right place asymptotically, and MLE has the extra benefit of efficiency.
- Under misspecification, consistency becomes an issue, quite apart from the secondary issue of efficiency. Best DGP approximation for one purpose may be very different from best for another.
- GMM/SMM is appealing in such situations, because it forces thought regarding which moments $M=\left\{m_{1}(\theta), \ldots, m_{r}(\theta)\right\}$ to match, and then by construction it is consistent for the M-optimal approximation.

SMM Under Misspecification, Continued

- In contrast, pseudo-MLE ties your hands. Gaussian pseudo-MLE, for example, is consistent for the KLIC-optimal approximation (1-step-ahead mean-squared prediction error).
- The bottom line: under misspecification MLE may not be consistent for what you want, whereas by construction GMM is consistent for what you want (once you decide what you want).

Indirect Inference

k-dimensional economic model parameter θ
$\delta>k$-dimensional auxiliary model parameter β

$$
\hat{\theta}_{I E}=\operatorname{argmin}_{\theta} d(\theta)^{\prime} \Sigma d(\theta)
$$

$$
\begin{aligned}
& \text { where } \\
& d(\theta)=\left(\begin{array}{c}
\hat{\beta}_{1}(\theta)-\hat{\beta}_{1} \\
\hat{\beta}_{2}(\theta)-\hat{\beta}_{2} \\
\vdots \\
\hat{\beta}_{\delta}(\theta)-\hat{\beta}_{\delta}
\end{array}\right)
\end{aligned}
$$

$\hat{\beta}_{i}(\theta)$ are est. params. of aux. model fit to simulated model data $\hat{\beta}_{i}$ are est. params. of aux. model fit to real data

- Consistent for true θ if economic model correctly specified
- Consistent for pseudo-true θ otherwise

More Simulation: Inference by Simulation

(Bootstrap)

Simplest (iid) Case

$$
\left\{x_{t}\right\}_{t=1}^{T} \sim i i d\left(\mu, \sigma^{2}\right)(\text { not necessarily Gaussian! })
$$

100α percent confidence interval for μ :

$$
\begin{gathered}
I=\left[\bar{x}_{T}-u_{(1+\alpha) / 2} \frac{\sigma(x)}{\sqrt{T}}, \quad \bar{x}_{T}-u_{(1-\alpha) / 2} \frac{\sigma(x)}{\sqrt{T}}\right] \\
\bar{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t} \\
\sigma(x)=\sqrt{E(x-\mu)^{2}} \\
u_{\alpha} \text { solves } P\left(\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\sigma}{\sqrt{T}}} \leq u_{\alpha}\right)=\alpha
\end{gathered}
$$

Exact interval, regardless of the underlying distribution.

Operational Version

$$
\begin{gathered}
I=\left[\bar{x}_{T}-\hat{u}_{(1+\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}, \bar{x}_{T}-\hat{u}_{(1-\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}\right] \\
\hat{\sigma}^{2}(x)=\frac{1}{T} \sum_{t=1}^{T}\left(x_{t}-\bar{x}_{T}\right)^{2} \\
\hat{u}_{\alpha} \text { solves } P\left(\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\hat{\sigma}(x)}{\sqrt{T}}} \leq \hat{u}_{\alpha}\right)=\alpha
\end{gathered}
$$

Classic (Gaussian) example:

$$
I=\bar{x}_{T} \pm t_{(1-\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}
$$

Bootstrap approach: No need to assume Gaussian data.

"Percentile Bootstrap"

$$
\begin{gathered}
\text { Root : } S=\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\sigma}{\sqrt{T}}} \\
\text { Root c.d.f. : } H(z)=P\left(\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\sigma}{\sqrt{T}}} \leq z\right)
\end{gathered}
$$

1. Draw $\left\{x_{t}^{(j)}\right\}_{t=1}^{T}$ with replacement from $\left\{x_{t}\right\}_{t=1}^{T}$
2. Compute $\frac{\bar{x}_{T}^{(j)}-\bar{x}_{T}}{\frac{\hat{\sigma}(x)}{\sqrt{T}}}$
3. Repeat many times and build up the sampling distribution of $\frac{\bar{x}_{X}^{(j)}-\bar{x}_{T}}{\frac{\tilde{\hat{\alpha}}}{\sqrt{T})}}$ which is an approximation to the distribution of $\frac{\bar{x}_{T-\mu}}{\frac{\sigma}{\sqrt{T}}}$
"Russian doll principle"

Percentile Bootstrap, Continued

Bootstrap estimator of $\mathrm{H}(\mathrm{z})$:

$$
\hat{H}(z)=P\left(\frac{\left(\bar{x}_{T}^{(j)}-\bar{x}_{T}\right)}{\frac{\hat{\sigma}(x)}{\sqrt{T}}} \leq z\right)
$$

Translates into bootstrap 100α percent Cl :

$$
\begin{aligned}
& \hat{\imath}=\left[\bar{x}_{T}-\hat{u}_{(1+\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}, \bar{x}_{T}-\hat{u}_{(1-\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}\right] \\
& \text { where } P\left(\frac{\left(\bar{x}_{T}^{(j)}-\bar{x}_{T}\right)}{\frac{\hat{\sigma}(x)}{\sqrt{T}}} \leq \hat{u}_{\alpha}\right)=\hat{H}\left(\hat{u}_{\alpha}\right)=\alpha
\end{aligned}
$$

"Percentile-t" Bootstrap

$$
\begin{gathered}
S=\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\hat{\sigma}(x)}{\sqrt{T}}} \\
H(z)=P\left(\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\hat{\sigma}(x)}{\sqrt{T}}} \leq z\right) \\
\hat{H}(z)=P\left(\frac{\left(\bar{x}_{T}^{(j)}-\bar{x}_{T}\right)}{\frac{\hat{\sigma}\left(x^{(j)}\right)}{\sqrt{T}}} \leq z\right) \\
\hat{I}=\left[\bar{x}_{T}-\hat{u}_{(1+\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}, \bar{x}_{T}-\hat{u}_{(1-\alpha) / 2} \frac{\hat{\sigma}(x)}{\sqrt{T}}\right] \\
P\left(\frac{\left(\bar{x}_{T}^{(j)}-\bar{x}_{T}\right)}{\frac{\hat{\sigma}\left(x^{(j)}\right)}{\sqrt{T}}} \leq \hat{u}_{\alpha}\right)=\alpha
\end{gathered}
$$

Percentile-t Bootstrap, Continued

Key insight:
Percentile: $\bar{x}_{T}^{(j)}$ changes across bootstrap replications
Percentile-t: both $\bar{x}_{T}^{(j)}$ and $\hat{\sigma}\left(x^{(j)}\right)$ change across bootstrap replications

Key Bootstrap Property: Asymptotic Validity

Real-world root:

$$
\stackrel{d}{\rightarrow D} \quad(\text { as } T \rightarrow \infty)
$$

Bootstrap-world root:

$$
\stackrel{d}{S^{*}} D^{*} \quad(\text { as } T, N \rightarrow \infty)
$$

Bootstrap consistent ("valid," "first-order valid") if $D=D^{*}$. Holds under regularity conditions.

Aren't There Simpler ways to do Asymptotically-Valid Inference for the Mean?

Of course. But:

1. Bootstrap idea extends mechanically to much more complicated cutting-edge econometric models
2. Bootstrap can deliver higher-order refinements (e.g., percentile- t)
3. Monte Carlo indicates that bootstrap often does very well in finite samples (not unrelated to 2, but does not require 2)
4. Many variations and extensions of the basic bootstraps

Percentile Bootstrap for Stationary Time Series

Before:

1. Use $S=\frac{\left(\bar{x}_{T}-\mu\right)}{\frac{\tilde{\sigma}(x)}{\sqrt{T}}}$
2. Draw $\left\{x_{t}^{(j)}\right\}_{t=1}^{T}$ with replacement from $\left\{x_{t}\right\}_{t=1}^{T}$

Issues:

1. Inappropriate standardization of S for dynamic data. So replace $\hat{\sigma}(x)$ with $2 \pi f_{x}^{*}(0)$, where $f_{x}^{*}(0)$ is a consistent estimator of the spectral density of x at frequency 0 .
2. Inappropriate to draw $\left\{x_{t}^{(j)}\right\}_{t=1}^{T}$ with replacement for dynamic data. What to do?

Non-Parametric Solution:

Block Bootstrap

Overlapping blocks of size b in the sample path:

$$
\xi_{t}=\left(x_{t}, \ldots, x_{t+b-1}\right), t=1, \ldots, T-b+1
$$

Draw k blocks (where $T=k b$) from $\left\{\xi_{t}\right\}_{t=1}^{T-b+1}$:

$$
\xi_{1}^{(j)}, \ldots, \xi_{k}^{(j)}
$$

Concatenate: $\left(x_{1}^{(j)}, \ldots, x_{T}^{(j)}\right)=\left(\xi_{1}^{(j)} \ldots \xi_{k}^{(j)}\right)$
Consistent if $b \rightarrow \infty$ as $T \rightarrow \infty$ with $b / T \rightarrow 0$

Parametric Solution:
 Parametric Bootstrap

$A R(1)$ example:

$$
x_{t}=\phi x_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \text { iid }
$$

1. Regress $x_{t} \rightarrow x_{t-1}$ to get $\hat{\phi}$, and save residuals, $\left\{e_{t}\right\}_{t=1}^{T}$
2. Draw $\left\{\varepsilon_{t}^{(j)}\right\}_{t=1}^{T}$ with replacement from $\left\{e_{t}\right\}_{t=1}^{T}$
3. Draw $x_{0}^{(j)}$ from $\left\{x_{t}\right\}_{t=1}^{T}$
4. Generate $x_{t}^{(j)}=\hat{\phi} x_{t-1}^{(j)}+\varepsilon_{t}^{(j)}, t=1, \ldots, T$
5. Regress $x_{t}^{(j)} \rightarrow x_{t-1}^{(j)}$ to get $\hat{\phi}^{(j)}$
6. Repeat $j=1, \ldots, R$, and build up the distribution of $\hat{\phi}^{(j)}$

General State-Space Parametric Time Series Bootstrap

Recall the prediction-error state space representation:

$$
\begin{aligned}
a_{t+1 / t} & =T a_{t / t-1}+T K_{t} v_{t} \\
y_{t} & =Z a_{t / t-1}+v_{t}
\end{aligned}
$$

1. At the estimated system parameter values $\hat{\theta}$, run the Kalman filter to get the corresponding 1-step-ahead prediction errors $v_{t} \sim\left(0, F_{t}\right)$ and standardize them to $u_{t}=\Omega_{t}^{-1} v_{t} \sim(0, I)$, where $\Omega_{t} \Omega_{t}^{\prime}=F_{t}$.
2. Draw $\left\{u_{t}^{(j)}\right\}_{t=1}^{T}$ with replacement from $\left\{u_{t}\right\}_{t=1}^{T}$ and convert to $\left\{v_{t}^{(j)}\right\}_{t=1}^{T}=\left\{\Omega_{t} u_{t}^{(j)}\right\}_{t=1}^{T}$.
3. Using the prediction-error draw $\left\{v_{t}^{(j)}\right\}_{t=1}^{T}$, simulate the model, obtaining $\left\{y_{t}^{(j)}\right\}_{t=1}^{T}$.
4. Estimate the model, obtaining $\hat{\theta}^{(j)}$.
5. Repeat $j=1, \ldots, R$, build up the distribution of $\hat{\theta}^{(j)}$.

Some Contrasts, for Reflection...

- Wold-Wiener-Kolmogorov vs. state space
- Univariate vs. multivariate
- Time Domain vs. frequency domain
- Frequentist MLE vs. Bayesian posterior analysis
- Linear Gaussian vs. non-linear non-Gaussian
- Conditional mean vs. conditional variance
- Stationary vs. non-stationary
- Simulation sprinkled throughout (incl. MCMC for Bayesian analysis, Monte Carlo and variance reduction, global optimization, simulated MM, bootstrap, ...)

For Reference: Hamilton TOC

1 Difference Equations 1
2 Lag Operators 25
3 Stationary ARMA Processes 43
4 Forecasting 72
5 Maximum Likelihood Estimation 117
6 Spectral Analysis 152
7 Asymptotic Distribution Theory 180
8 Linear Regression Models 200
9 Linear Systems of Simultaneous Equations 233
10 Covariance-Stationary Vector Processes 257
11 Vector Autoregressions 291
12 Bayesian Analysis 351
13 The Kalman Filter 372
14 Generalized Method of Moments 409
15 Models of Nonstationary Time Series 435
16 Processes with Deterministic Time Trends 454
17 Univariate Processes with Unit Roots 475
18 Unit Roots in Multivariate Time Series 544
19 Cointegration 571
20 FIML Analysis of Cointegrated Systems 630
21 Time Series Models of Heteroskedasticity 657
22 Modeling Time Series with Changes in Regime 677

