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Abstract

In this paper we compare the cyclical features implied by an RBC model

with two technology shocks under several statistical specifications for the stochas-

tic processes governing technological change. We conclude that while a trend-

stationary model accounts better for the observed volatilities, a difference-

stationary model does a relatively better job of accounting for correlations. We

analyze the relative importance of the two technology shocks and conclude that

failing to include an investment specific shock will worsen more the performance

of a level stationary model economy. We also explore some counterfactuals to

assess the ability of our model to replicate the volatility slowdown of the mid

1980s. First, we conclude that the stochastic trend model outperforms the de-

terministic trend model in accounting for the Great Moderation. Finally, we

obtain that even though the neutral technology shock is the main driving force

in the volatility slowdown, allowing for a larger financial flexibility in the form

of a smaller volatility for the investment-specific innovation improves the ability

of our model to account for the magnitude of the Great Moderation.
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1 Introduction

Technology driven business cycles have been in the core of the Real Business Cycle

literature from its origins. For example Prescott (1986) claims that technology shocks

account for more than a half of the US business cycle fluctuations over the postwar

period. In Cooley and Prescott (1995), technology shocks account for more than 75%

of the volatility of output. Such an empirical success has been questioned by Gaĺı

(1999) and Gaĺı and Rabanal (2004) among others. They claim that business cycle

features are due mainly to non-technology factors. However, Greenwood, Hercowitz,

and Krusell (1997) started a new wave of attention on technology-driven business

cycles by allowing for not only a neutral technology shock, but also an investment-

specific one.

In this paper we want to address the slowdown in volatility of macroeconomic

variables in the US economy using a simple model inspired by Greenwood, Hercowitz,

and Krusell (2000). We want to determine whether the slowdown in the volatility of

the two shocks under analysis suffices to explain a significant part of the so called

Great Moderation. Arias, Hansen, and Ohanian (2007) consider a basic RBC model à

la Hansen (1985) with only one technology shock. They conclude that the slowdown

in the volatility of productivity shocks can account for about a 50% decline in business

cycle volatility. They also analyze a model based on Burnside and Eichenbaum (1996)

with endogenous movements in TFP due to labor hoarding and capital utilization.

They explore the explanatory power of different shocks and conclude that the most

promising candidate for understanding the slowdown in volatility is a productivity-

like shock.

We are interested in exploring the performance of our simple RBC model under

three specifications for the technology processes. We will consider a general specifi-

cation allowing for persistence but without imposing unit roots. Therefore, such a

model will be trend stationary. Then, we will analyze two versions of a difference-
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stationary model. We want to determine which specification accounts better for the

US business cycle features in the flavor of the analysis by Hansen (1997). He explores

the specifications presented here in an economy with only one technology shock. He

concludes that when technological progress is difference-stationary, the RBC model

does a poor job accounting for features of observed business cycles.

We think it is challenging to analyze the explanatory power of those statistical

models when the Great Moderation is at hand. In fact, we have found that while

the deterministic trend model accounts better for observed volatilities, the stochastic

trend models are preferable if we want to match correlations or address the slowdown

in aggregate volatility observed in the mid 1980s.

Since Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000) dated the

starting of the Great Moderation1, there has been a growing literature on explaining

what is behind such a phenomenon. Kahn, McConnell, and Pérez-Quirós (2002) claim

that the change in inventory behavior due to improvement in information technology

can explain the output volatility slowdown. Stock and Watson (2002), Kim, Morley,

and Piger (2004), Ahmed, Levin, and Wilson (2004), Leduc and Sill (2006), and Arias,

Hansen, and Ohanian (2007) use different approaches to conclude that the Great

Moderation can be explained by ’good luck’ in the form of smaller shocks. Dynan,

Elmendorf, and Sichel (2005), Campbell and Hercowitz (2005), Dynan, Elmendorf,

and Sichel (2006), Guerron (2006), Jermann and Quadrini (2006), and Justiniano and

Primiceri (2006) claim that financial innovations are one of the possible contributing

sources to the macro stability observed since mid 1980s.

Our results suggest that ’good luck’ in the form of smaller innovations to the

technology processes can account for the bulk of the volatility slowdown in our

model. Moreover, we find that while the neutral technology shock plays the main

role in explaining the reduction in macro volatility, its performance improves when

1Stock and Watson (2002) came up with such an expression to refer to the slowdown in the

volatility of macro variables in the US observed in the mid 1980s
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the investment-technology shock is also at hand. Justiniano and Primiceri (2006)

suggest to interpret investment-specific disturbances as proxy for investment finan-

cial frictions. Therefore, in our model economy, the Great Moderation is due not only

to smaller shocks but also to lessened financial frictions.

The paper proceeds as follows. In section 2 we set up our baseline model. In

section 3 we proceed with our calibration exercises. We will study the three statistical

models under analysis. Section 4 presents several counterfactuals in order to analyze

the Great Moderation in the framework defined by our model economy. Section 5

concludes.

2 The model

The model is a simplified version of the one proposed by Greenwood, Hercowitz, and

Krusell (2000). In particular, we will abstract from different capital goods and degrees

of capital utilization. We will preserve, however, the existence of both a neutral and

an investment-specific technology shocks.

We will consider three statistical versions of the baseline model in order to assess

which one accounts better for the US business cycle features. First, we will analyze

a deterministic trend version of the model where the stochastic processes are trend

stationary. Second, we will consider a stochastic trend model where the technology

processes follow a unit root with drift. Finally, we will allow for some persistence

to the innovation of the investment specific technology in a stochastic trend model.

Therefore, in the first case we will study an economy where all shocks are temporary.

In the second model, all shocks are permanent. In the last model, we will consider both

permanent and transitory shocks. In particular, any neutral shock will be permanent,

while any investment-specific shock will have both permanent and transitory effects.

Hansen (1997) performed a similar analysis to the one we propose here but con-

sidering a model with only a neutral technology shock. He concluded that the trend-
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stationary (but highly persistent) model does a better job accounting for the business

cycle features than the difference-stationary one.

Since Nelson and Plosser (1982) there has been a large empirical literature about

stochastic trends in macro variables. Unit roots and stationary processes differ in

their implications at infinite time horizons, but for any given finite sample, there is a

representative from either class of models that can account for all the observed features

of the data2. In addition, the lack of power of univariate classical tests for unit roots

is well known. Therefore, we have decided to choose among the three specifications

described above using the following criterion: the most preferred statistical model will

be the one able to account for a larger proportion of the US business cycle properties.

Note that we will be performing this test not only over the whole sample, but also

over the two subsamples of interest3.

In this economy there is a continuum of households that maximize their lifetime

utility given by

E0

[
∞∑

t=0

βtU(Ct, Ht)

]
(1)

with

U(Ct, Ht) = lnCt −B
H

1+1/ν
t

1 + 1/ν
(2)

where Ct stands for consumption, Ht for hours worked, ν for the short-run (Frisch)

labor supply elasticity, and B is a preference weight.

We have chosen such a specification because we are not interested in exploring

2For a more detailed discussion on nonstationary time series see Hamilton (1994)
3We have performed ADF (Augmented Dickey-Fuller) tests on all of the variables of interest. We

have run the test including a constant ie we were testing whether the series under analysis follow

a random walk with drift. We were not able to reject the null of unit root for all the variables but

(log) hours and (log) labor productivity. It is remarkable that for the neutral technology we reject

the null at 5% but not at 1% for the whole sample and the first subsample. We cannot reject the

hypothesis of stochastic trend for the second subsample.
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the stationarity of hours issue4. Therefore, we will use a series for hours that is

stationary in levels. It is well known that the log utility in consumption implies

a constant long-run labor supply in response to a permanent change in technology.

Hence, we do not have to worry about trending hours implied by our model even

under the difference-stationary specification.

The representative household supplies labor at the competitive equilibrium wage

Wt and rents capital Kt to the firms at rental rate Rt. The capital stock depreciates at

rate δ. Therefore the representative household maximizes (1) subject to the following

Ct + P k
t Xt = WtHt + RtP

k
t Kt (3)

(1 + η)Kt+1 = (1− δ)Kt + Xt (4)

where P k
t is the (relative) price of investment (using the consumption good as a

numeraire) and Xt stands for quality-adjusted investment. Note that while the budget

constraint is expressed in consumption units, the capital accumulation equation is

expressed in efficiency units. Population in this economy grows at rate (1 + η).

There is also a continuum of firms that rent capital and labor services from house-

holds and produce consumption and investment goods. The representative firm solves

the following problem5:

max Πt = Ct + P k
t Xt −WtHt −RtP

k
t Kt (5)

s.t. Ct +
Xt

Vt

= AtK
α
t H1−α

t (6)

where At is the current level of (neutral) technology and Vt stands for the current

4See Chang, Doh, and Schorfheide (2007) for an interesting treatment of such an issue and

Christiano, Eichenbaum, and Vigfusson (2003) for an analysis of the implications of different labor

input measures in a SVAR framework.
5When we proceed with calibration we will introduce an additional parameter µ in the production

function so that output at steady state is equal to 1
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level of the investment-specific technology6. Firms will produce both consumption

and investment goods only if Vt = 1
P k

t
. Note that It = P k

t Xt, therefore (6) is identical

to the familiar resource constraint7

Yt = Ct + It = AtK
α
t H1−α

t

Let us consider three statistical specifications for the stochastic processes gov-

erning the technology levels in this economy. In the deterministic trend model the

technology processes are modeled as follows:

At = A0e
γat+εat

Vt = V0e
γvt+εvt

where εat and εat are autoregressive processes. The explicit structure of the errors

will be stated in section 3.

In the stochastic trend version of the model, the processes are given by

At = At−1e
γa+εat

Vt = Vt−1e
γv+εvt

ie the log technologies evolve according to a random walk with drift. In the

baseline stochastic trend model, the errors are assumed to be white noise. In the

stochastic trend model with persistence, the log of investment-specific technology

level is assumed to follow a random walk with drift and moving average component.

Under all the specifications our model economy exhibits long-run growth. There-

fore, we will transform our economy so that we can work with a detrended version of

6Note that a higher V implies a fall in the cost of producing a new unit of capital in terms of

output. It could also be interpreted as an improvement in the quality of new capital produced with

a given amount of resources.
7Xt refers to investment in efficiency units and It to investment in consumption units.
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the original one. In our trend stationary model economy, the following variables are

stationary8

Yt

qt
,

Ct

qt
,

It

qt
,

Wt

qt
,

Kt

(qv)t
, Ht, Rt

where

q = e
1

1−α
γa+ α

1−α
γv

and

v = eγv

Let us denote a stationary variable Z by Z̃. Therefore, the stationary equilibrium

conditions for this statistical version of the model are given by:

Ỹt = C̃t + Ĩt (7)

Ỹt = A0e
εatK̃t

α
H1−α

t (8)

(1 + η)qvK̃t+1 = (1− δ)K̃t + V0e
εvt Ĩt (9)

1 = βEt

[(
eεvt−εvt+1

qv

)(
C̃t

C̃t+1

)
(1− δ + Rt+1)

]
(10)

Ht =

(
1

B

W̃t

C̃t

)ν

(11)

Rt = αV0e
εvt

Ỹt

K̃t

(12)

W̃t = (1− α)
Ỹt

Ht

(13)

Given the detrended version of our economy we can solve for the steady state.

Let us denote the steady state value of a variable Z by Z∗.

Y ∗ = C∗ + I∗ (14)

Y ∗ = A0K
∗αH∗(1−α) (15)

(1 + η)qvK∗ = (1− δ)K∗ + V0I
∗ (16)

8See the appendix for a detailed explanation on obtaining the growth rates for the economies

under analysis
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1 = β

(
1

qv

)
(1− δ + R∗) (17)

H∗ =

(
1

B

W ∗

C∗

)ν

(18)

R∗ = αV0
Y ∗

K∗ (19)

W ∗ = (1− α)
Y ∗

H∗ (20)

Let us consider now the two difference-stationary models. Beveridge and Nelson

(1981) showed in a model with only one shock that any of the trending variables

of these kinds of models can be decomposed into a permanent component that is a

random walk with drift (a stochastic trend) and a stationary stochastic process. In

our case we have to take into account that the two stochastic processes have a unit

root9. Hence, given such a statistical model, we have that the following variables are

stationary
Ct

Qt

,
It

Qt

,
Yt

Qt

, Ht, Rt,
Kt+1

QtVt

,
Wt

Qt

where Qt = A
1

1−α

t V
α

1−α

t .

The stationary equilibrium conditions are:

Ỹt = C̃t + Ĩt (21)

Ỹt =

(
1

qtvt

)α

K̃t
α
H1−α

t (22)

(1 + η)K̃t+1 = (1− δ)

(
1

qtvt

)
K̃t + Ĩt (23)

1 = βEt

[(
1

qt+1vt+1

)(
C̃t

C̃t+1

)
(1− δ + Rt+1)

]
(24)

Ht =

(
1

B

W̃t

C̃t

)ν

(25)

Rt = α(qtvt)
Ỹt

K̃t

(26)

9For detrending issues there is no difference between having just a random walk with drift or a

random walk with drift plus a moving average component.
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W̃t = (1− α)
Ỹt

Ht

(27)

where

qt =
Qt

Qt−1

= e
1

1−α
(γa+εat)+

α
1−α

(γv+εvt) (28)

vt =
Vt

Vt−1

= eγv+εvt (29)

Given that the stationary version of the difference-stationary model satisfies the

usual assumptions, we can solve for the steady-state of this transformed economy.

Then,

Y ∗ = C∗ + I∗ (30)

Y ∗ =

(
1

q∗v∗

)
(K∗)α(H∗)1−α (31)

(1 + η)K∗ = (1− δ)

(
1

q∗v∗

)
K∗ + I∗ (32)

1 = β

(
1

q∗v∗

)
(1− δ + R∗) (33)

H∗ =

(
1

B

W ∗

C∗

)ν

(34)

R∗ = αq∗v∗
Y ∗

K∗ (35)

W ∗ = (1− α)
Y ∗

H∗ (36)

where

q∗ = e
1

1−α
γa+ α

1−α
γv

v∗ = eγv
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3 Calibration

3.1 Data Set

We use the data set constructed by Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko,

and Santaeulàlia-Llopis (2007). They use data from NIPA-BEA, FAT-BEA, BLS, and

Cummins and Violante (2002) to construct quarterly series of investment-specific

technological change and neutral technological change. Basically, they construct a

series for the relative price of investment (in terms of the consumption good) that

spans from 1948.I to 2006.IV and then proceed with a growth accounting exercise to

recover the neutral technological change series. For a detailed explanation please see

Ŕıos-Rull et al. (2007).

While the investment-specific process is approximated by the inverse of the (rela-

tive) price of investment, the neutral technology process is associated with the Solow

residual of the economy.

In the literature we find different ways of computing the quarterly Solow residual.

Cooley and Prescott (1995) claim that as the BEA produces only annual estimates for

the capital stock, any quarterly series will introduce additional noise in the measure

of the Solow residual. Therefore, they propose a ’conservative’ approach by omitting

capital when computing the neutral technology process. This approach has been

widely used in the literature, for a recent example see Arias, Hansen, and Ohanian

(2007). Gomme and Rupert (2007) establish that another justification for omitting

capital could be measurement errors. However, mismeasurement affects the level of

the capital stock but not its time series properties. Thus, other approaches construct

quarterly capital series by iterating on the law of motion for capital. Note that as

Greenwood, Hercowitz, and Krusell (1997) point out, we have to be careful when

constructing our capital stock series since it must be in efficiency units. In the data

base, capital stock series is constructed recursively using the perpetual inventory
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method

Kt+1 = (1− δ)Kt + Xt

where Xt is the total nominal investment deflated by the quality-adjusted price of

investment ie it stands for investment in efficiency units. δ is the average depreciation

rate of the time-varying physical depreciation rates for total capital available from

Cummins and Violante (2002). The initial capital stock in efficiency units is calibrated

using the steady-state investment equation.

3.2 Deterministic Trend Model

We will consider the following statistical specification:

lnAt = lnA0 + γat + εat

lnVt = lnV0 + γvt + εvt

The econometric strategy is as follows:

1. Regress each technological change series on a constant and a linear time trend

lnAt = ϕa + γat + εat (37)

lnVt = ϕv + γvt + εvt (38)

2. Generate the corresponding residual series {ε̂at} and {ε̂vt}.

3. Estimate univariate autoregressive processes for those shocks

εat = ρaεat−1 + ξat (39)

εvt = ρv1εvt−1 + ρv2εvt−2 + ξvt (40)

where ξa ∼ N (0, σ2
ξa

) and ξv ∼ N (0, σ2
ξv

). The lag structure for the errors has

been chosen following the Akaike Information and the Bayesian Information

Criteria.
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The estimated parameters are reported in table 7. We observe that in the post-1984

period there has been a 48% reduction in the volatility of the innovation to the neutral

technology and a 40% reduction in the volatility of the innovation to the investment-

specific technology. We will analyze in section 4 if such a reduction in innovations’

volatilities suffices to explain the slowdown in the volatility of the macro variables of

interest.

In our model the vector of parameters is given by

(α, γa, γv, β, δ, B, ν, η, µ, ϕa, ϕv, ρa, ρv1, ρv2, σξa , σξv)

where µ is a scaling parameter. We can estimate (α, γa, γv, η, ϕa, ϕv, ρa, ρv1, ρv2, σξa , σξv)

from the data. In order to calibrate the remaining parameters we will consider the

targets specified in table 6.

Given our specification we cannot calibrate both ν and B. In fact, our calibrated

B will be conditional on the choice for the Frisch elasticity parameter. In the literature

we find values for such a parameter in a wide range. To keep the analysis simple, we

will simulate our model considering a grid for the labor supply elasticity. In particular,

ν = {0.5, 1, 1.5, 2}. The calibrated parameters are reported in table 7.

The ability of our model to account for the US business cycle features is sensitive

to the value of the parameter governing the Frisch elasticity of labor supply. Tables

10, 11, 12, and 13 in appendix A report our results for the grid over ν.

The deterministic trend model, however, is able to account for some relevant

features of US business cycles irrespective of our choice for ν. In particular, the

model accounts for the large fluctuations of investment compared to output and for

the small fluctuations of capital and consumption compared to output.

The volatilities of investment (in efficiency units), output, capital (in efficiency

units), and hours are increasing with the short-run elasticity of labor supply10. The

10See Appendix E for the results when ν = ∞
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standard deviation of hours implied by the model is smaller than the standard devia-

tion of labor productivity which is at odds with the data. This is, however, a typical

feature of RBC models with utility non-linear in hours. Hansen (1997)’s deterministic

trend model was able to account for the pattern in the data by assuming that labor

is indivisible and that agents trade employment lotteries11.

The trend stationary model generates too much volatility in consumption in the

first subsample for any value of the Frisch elasticity. For ν = {1, 1.5, 2}, the model

implies a capital volatility for the pre-1984 sample that is too large.

Finally, this statistical version of our baseline RBC model cannot generate enough

correlation between output and consumption. It generates, however, a large correla-

tion between labor productivity and output that is at odds with the data. Moreover,

the model cannot account for the change in sign in such a correlation in the second

sub-sample.

3.3 Stochastic Trend Model

3.3.1 Random Walk with Drift

Following King, Plosser, and Rebelo (1988) when addressing the difference stationary

specification, we restrict our attention to the following class of parametric forms

Φ(L)(1− L)log(Xt) = γx + Θ(L)εxt

11The results under those assumptions for our model are reported in appendix E. We conclude

that if the stochastic processes are trend stationary, a model à la Hansen overstates the volatilities of

investment, output, capital, and hours. In such a setting, a model economy with only an investment-

specific technology shock is able to replicate the volatility of hours. Finally, we also conclude that

under a difference stationary framework our model economy is still not able to generate enough

volatility for all the variables at hand.
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where Φ(L) and Θ(L) are lag polynomials whose roots are outside the unit circle.

The statistical model to be considered in this section is as follows

lnAt = lnAt−1 + γa + εat

lnVt = lnVt−1 + γv + εvt

which can be rewritten as

lnAt = lnA0 + γat +
t∑

i=0

εat−i

lnVt = lnV0 + γvt +
t∑

i=0

εvt−i

Note that any shock to the stochastic trend at time t has a permanent effect in the

log-level of the technology processes. Therefore, we are abstracting from transitory

shocks in this specification which implies that we are just analyzing a lower bound of

the effects of technology shocks.

Following Fisher (2006) and Fernández-Villaverde and Rubio-Ramı́rez (2006) we

will assume  εat

εvt

 ∼ N

 0

0

 ,D

 (41)

where D is a diagonal matrix i.e.

D =

 σ2
a 0

0 σ2
v


Our estimates are reported in table 8. Under this specification we also observe a

reduction in the volatility of the innovations to the technology shocks of about 48%.

In this version of the baseline RBC model, our calibration targets are identical to

the ones in the previous subsection. The calibrated parameters are given in table 8.

In tables 14, 15, 16, and 17 of appendix A, we report the results for the different

values of the Frisch elasticity. The results for the volatility of output, investment,

capital, and hours are also sensitive to the value of such a parameter. This statistical
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specification accounts for the same qualitative features of the US business cycle as

the deterministic trend version.

The difference-stationary model does not overpredict the volatilities of consump-

tion and capital. In fact, this statistical version of the model generates lower volatil-

ities for all the variables than the trend stationary one.

In addition, the stochastic trend model is successful in accounting for the corre-

lation of consumption and output. But it shares with the deterministic trend model

the remaining unmatched features.

3.3.2 Random Walk with Drift and Moving Average Component

Following Christiano (1988) we will allow for a moving average component in the unit

root specification for the investment-specific technology process. Thus, (41) will be

substituted by

lnVt = lnVt−1 + γv + ρεvt−1 + ξt (42)

However, we will not modify our statistical specification for the neutral technology

process since there is no empirical evidence for the inclusion of a moving average

component in such a representation.

Note that (42) allows for both temporary and permanent shocks. In particular, a

fraction 1/(1−ρ) of any innovation to the investment-specific shock will be permanent.

The remainder will be temporary.

Our estimation results are reported in table 9. We also observe here a reduction

in the volatility of the innovations to the technology shocks of about 56% for the

investment-specific technology and 48% for the neutral one.

The results over the grid for the elasticity of labor supply with respect to real

wage are reported in tables 18, 19, 20, and 21 in appendix A. This version of the

stochastic trend model shares all the ’virtues’ of the baseline stochastic trend model
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and improves upon some of its shortcomings. For example, the volatility of hours is

larger than in the baseline difference-stationary model.

3.4 Comparing Statistical Models

From our previous analysis we can conclude that irrespective of the value for ν, all the

statistical models are able to qualitatively reproduce the slowdown in volatility. While

the baseline difference-stationary model implies a reduction in the volatility of the

variables at hand of about 52%, the trend-stationary model overpredicts the slowdown

for all the variables but output. Even though the baseline stochastic trend model

outperforms the other two statistical specifications, it over predicts the slowdown in

capital, hours, and labor productivity. The model implies a 48% reduction while in

the data we observe about a 35% slowdown.

To continue our analysis let us set the Frisch elasticity parameter equal to 1.

We have chosen only one value in the grid for expositional purposes. Table 1 re-

ports how much volatility each model is able to account for. We observe that the

trend-stationary model performs better than the difference-stationary models for the

volatility of all variables but labor productivity. Notice that the stochastic trend

model with a moving average component performs relatively better than the baseline

stochastic trend model in the first sub-sample under analysis.

In table 2 we report the variance decomposition for the different specifications

under analysis. It is remarkable that for the deterministic trend model the investment-

specific shock is the main contributor to the variance of consumption, capital, and

hours. Therefore, we conclude that if we were interested in matching volatility levels

using a simple level stationary RBC model, we should include not only the usual

neutral productivity shock but also an investment specific disturbance. Note that for

the stochastic trend versions of our model, the neutral shock accounts for the bulk of
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Table 1: ν = 1: σmodel/σdata

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

DT ST ST-MA DT ST ST-MA DT ST ST-MA

c 0.96 0.75 0.76 1.21 0.75 0.79 0.74 0.66 0.65

x 0.66 0.53 0.48 0.82 0.46 0.48 0.60 0.50 0.44

y 0.73 0.64 0.64 0.75 0.61 0.64 0.88 0.69 0.67

k 0.92 0.51 0.49 1.09 0.46 0.51 0.61 0.41 0.36

h 0.36 0.16 0.16 0.47 0.16 0.18 0.29 0.12 0.11

y/h 0.91 0.93 0.93 0.97 0.94 0.99 0.69 0.74 0.72

the variance for all variables. Therefore, failing to include an investment shock will

not worsen the results as much as it would under a deterministic trend environment.

Table 2: Variance Decomposition. Whole sample: ν = 1

DT ST ST-MA

A V A V A V

c 26 74 86 14 84 16

x 54 46 65 35 67 33

y 91 9 99 1 96 4

k 25 75 67 33 63 37

h 35 65 68 32 60 40

y/h 91 9 99 1 97 3

Figure 1 and 2 are the impulse response functions for the deterministic trend

version and the baseline stochastic trend one. The responses to a neutral innovation

only differ in the steady state to which each economy converges. Short run dynamics

of consumption, hours, and labor productivity in response to an investment-specific
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shock are richer in a level stationary environment than in a difference stationary one.

That would help to explain that the deterministic trend model accounts better for

macro volatilities.

Let us now analyze the performance of the statistical specifications of our RBC

model in terms of accounting for correlation with output. From table 3 we can con-

clude that all versions do a similar job for all the variables of interest but consumption.

While the stochastic trend versions of the baseline model are able to account fairly

well for the correlation between consumption and output, the deterministic trend ver-

sion falls too short. All the different specifications of the RBC model under analysis

perform very poorly in matching the low correlation between output and labor pro-

ductivity. Moreover, none of them is able to reproduce the change in sign we observe

in the post-1984 period. Hansen (1997) concluded that the deterministic trend model

Table 3: ν = 1: ρmodel/ρdata

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

DT ST ST-MA DT ST ST-MA DT ST ST-MA

c 0.33 1.12 1.09 0.05 1.14 1.09 0.25 1.11 1.16

x 1 0.93 0.96 0.97 0.95 0.98 1.02 0.95 1.01

y 1 1 1 1 1 1 1 1 1

k 0.92 0.92 0.92 0.85 0.82 0.87 1.15 1.22 1.22

h 0.90 0.95 0.93 0.87 0.97 0.94 0.94 0.96 1

y/h 8.70 8.91 8.91 3.39 4.26 4.26 -1.93 -2.13 -2.15

is the best one accounting for correlations of all the variables with output. Con-

versely, from our results we conclude that the stochastic trend model outperforms the

deterministic trend one.

Given the counterintuitive result obtained for the correlation between consump-

tion and output for the deterministic trend model, we have explored the cross-
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correlations with output for five lags and leads, and the correlations of other pairs of

variables.

Tables 23 to 34 report the cross-correlations with output for lags and leads. We

conclude that the results for all versions of the model are similar for all variables

but consumption. Not only the deterministic trend under predicts the correlation

between consumption and output for the current period, but also under predicts for

all lags and leads. The stochastic versions of the model, however, account for the

relative magnitude and signs at all lags and leads.

Table 4 reports the correlations for different pairs of variables. As expected,

none of the versions of the model can capture any of the correlations with labor

productivity. For all the other moments not involving consumption, the performance

of all the statistical specifications is fairly uniform. Let us give a closer look to the

correlations with consumption. First of all, the deterministic trend model predicts

negative correlations between consumption and investment in efficiency units and

hours which are at odds with the data. The stochastic specifications account correctly

for the sign of the moments of interest. Secondly, we should stress out here that

while the stochastic trend model with a moving average component can account for

the relative magnitude of the increase in the correlation between consumption and

investment, capital, and hours across subsamples, the baseline stochastic trend model

fails to do so except for capital.

Given the above, we can conclude that choosing one specification over the others

depends upon what we are attempting to explain. If we were interested in matching

volatilities we would choose, as Hansen (1997), the deterministic trend model. How-

ever, we would need to include in our RBC model not only a neutral productivity

shock, but also an investment-specific one. If we wanted to match correlations12, we

12Let us use the term correlation in a broad sense ie it refers not only to the correlation with

output, but also to the cross-correlations considering lags and leads, and the correlation for any

other pair of variables
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Table 4: Correlation (nu = 1)

Data DT ST ST-MA

Whole Pre Post Whole Pre Post Whole Pre Post Whole Pre Post

c x 0.61 0.58 0.75 -0.21 -0.46 -0.18 0.53 0.57 0.57 0.50 0.51 0.74

c k 0.25 0.21 0.50 0.15 0.15 0.06 0.34 0.37 0.41 0.31 0.31 0.44

c h 0.70 0.69 0.75 -0.41 -0.61 -0.37 0.50 0.54 0.54 0.40 0.40 0.67

c lbp 0.03 0.14 -0.40 0.69 0.68 0.61 0.96 0.96 0.96 0.94 0.94 0.97

x k 0.21 0.24 0.09 0.28 0.24 0.31 0.24 0.23 0.24 0.24 0.23 0.24

x h 0.81 0.81 0.81 0.98 0.98 0.98 0.99 1 1 0.98 0.97 0.99

x lbp 0.03 0.12 -0.39 0.56 0.34 0.68 0.75 0.77 0.77 0.75 0.76 0.87

k h 0.54 0.59 0.35 0.22 0.18 0.29 0.32 0.34 0.37 0.20 0.20 0.17

k lbp -0.41 -0.42 -0.35 0.33 0.35 0.30 0.32 0.34 0.37 0.32 0.31 0.38

h lbp -0.40 -0.28 -0.80 0.38 0.16 0.51 0.73 0.75 0.75 0.67 0.68 0.83

would choose a stochastic trend model. Finally, if we wanted to match the magni-

tude of the volatility slowdown in the 1980s, we would also choose a stochastic trend

model.

4 The Great Moderation

So far we have performed our analysis allowing for changes in all the structural pa-

rameters over the two subsamples of interest. In such a way we have shown that

any of the statistical versions of our RBC model is able to account for a slowdown

in macro volatilities. However, we are more interested in analyzing that part of the

performance of our model due only to ’good luck’.
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Thus, to better assess the relative importance of each technology shock in explain-

ing the Great Moderation, we will perform some counterfactuals in the spirit of the

ones performed by Arias, Hansen, and Ohanian (2007). In particular, we will proceed

with three experiments in two scenarios. First, we will calibrate the parameters of

the model to match the targets for the whole sample (i.e., we will fix them equal to

the first column of tables 7, 8, and 9). Second, we will allow for time variation in the

coefficients of the laws of motion for the technology processes.

In the first counterfactual we will analyze the explicative power of the neu-

tral technology shock. To do so, we will set the volatility of the innovation to the

investment-specific technology to match its volatility for the entire sample. The

standard deviation of the neutral innovation will, however, change across subsam-

ples. The second counterfactual is analogous to the first one but we focus on the

investment-specific technology shock. Finally, in the third counterfactual we ex-

plore the explicative power of both shocks jointly by letting their standard deviations

vary across subsamples.

The results under time invariant coefficients are reported in tables 35, 36, and

37. For the first experiment, we observe that while the stochastic trend models can

reproduce a large fraction of the slowdown observed in the data, the trend-stationary

model does only an acceptable job of accounting for the slowdown in output and labor

productivity volatilities. Our main conclusion from this experiment is that smaller

neutral technology innovations suffice to explain a large proportion of the aggregate

stability observed in the mid 1980s if the model economy is difference stationary.

Table 36 presents the results of the second counterfactual. We conclude that the

role of the investment-specific shock as a single actor is greatly reduced. For example,

for the deterministic trend case we have that although the investment-specific shock

is 62% as volatile in the second subperiod as the first, this has a very small effect

on the volatility of output, investment, and labor productivity. However, we observe

a reduction of about 22% in the volatility of consumption, capital, and hours. The
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relevance of the investment shock to explain the slowdown in real variables in our

difference stationary economy is almost negligible.

The results for the third experiment are reported in table 37. Under this scenario

we can quantify the relative importance of the interaction between the two shocks ac-

tive in our model economy. Here all the models are able to imply volatility slowdowns

relatively similar to the ones in the data.

Let us now perform the same counterfactuals but allowing for time variation not

only in the volatilities of the innovation processes, but also in the laws of motion

of the technology processes. Results are reported in tables 38, 39, and 40. The

results are qualitatively similar to the ones explained previously. On the one hand,

the investment shock in a difference stationary economy is not sufficient to induce a

slowdown in macro volatilities of a similar magnitude to the ones observed in the data.

The role of such a shock is larger for a level stationary economy. It is remarkable that

the role of the investment shock is larger when the law of motion of the technology

level is time-varying than when it is assumed to be fixed across subsamples. From

the last experiment we can conclude again that the stochastic trend model accounts

better for the magnitude of the slowdown than the deterministic trend one. In this

environment, the slowdown implied by the level stationary model is not only larger

than the one observed in the data, but also larger than the one implied by the model

under time-invariant laws of motion.

We conclude that while the neutral shock is the main driving force in the slowdown

in volatilities generated by our difference-stationary model, allowing for a larger finan-

cial flexibility in the form of milder investment-specific shocks substantially improves

its ability to reproduce the magnitude of the observed slowdown. Such a financial

flexibility plays an even larger role in a level stationary economy since not only en-

hances the slowdown due to the neutral shock, but also it is the main driving force

in the slowdown of consumption, capital, and hours volatility. Therefore, the Great

Moderation in our setting is not due only to ’good luck’ but also to the interaction
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between the two technology shocks.

5 Conclusion

We find that the choice of the statistical model for the stochastic processes in an RBC

model with two technology shocks is not a trivial one. In fact, one model would be

preferred to the others depending on the features of the business cycle the researcher

wants to match.

We conclude that even though the neutral technology shock is the main driving

force in replicating the Great Moderation, having both technology shocks translate

into a better accounting for such a macroeconomic phenomenon. Therefore, the cross

effects seem to be relevant. However, a bivariate specification of the innovations to

the technology processes does not translate into a significative improvement of the

performance of the model under analysis(see appendix E).

We have shown that in a simple RBC model the two technology shocks can explain

approximately 70% of the observed slowdown in volatilities of US macro variables in

mid 1980s. The remaining 30% could be explained as suggested in the literature

by a reduction in the standard deviation of other shocks eg preference shocks, by

an improved financial environment, or by good policy. Discriminating among those

alternatives requires a richer model which is beyond the scope of our analysis.
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R. Santaeulàlia-Llopis (2007): “Calibration, Estimation, and the Effects of

Technology Shocks,” Manuscript. University of Pennsylvania.

Stock, J. H., and M. W. Watson (2002): “Has the business cycle changed and

why?,” NBER Working Paper 9127.

28



A Tables

Table 5: The Great Moderation: Empirical Evidence

1950-2006 Pre-1984 Post-1984 Post/Pre

%σx ρ(GNP, x) %σx ρ(GNP, x) %σx ρ(GNP, x) %σx ρ(GNP, x)

GNP 1.73 1 2.07 1 0.99 1 0.48 1

Consumption 0.92 0.78 1.07 0.78 0.62 0.82 0.58 1.05

Investment(efficiency units) 5.77 0.89 6.85 0.89 3.47 0.92 0.51 1.03

Investment(consumption units) 5.44 0.91 6.40 0.91 3.42 0.92 0.53 1.01

Capital(efficiency units) 0.59 0.36 0.68 0.39 0.44 0.27 0.65 0.69

Hours 1.88 0.87 2.11 0.87 1.46 0.90 0.69 1.03

Labor productivity 0.94 0.11 1.06 0.23 0.72 -0.46 0.68 -2

Neutral Technology 0.94 0.65 1.14 0.71 0.48 0.21 0.42 0.30

Investment-specific Tech 1.09 0.17 1.34 0.18 0.48 0.12 0.36 0.67

Source:Ŕıos-Rull et al. (2007) Data Set. We have HP-filtered the log of real

variables. Standard deviations are in percentage terms.
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Table 6: Calibration Targets

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

H∗ 0.31 0.31 0.31

Y ∗ 1 1 1

(K/V
Y

)∗ 10.288 10.502 9.953

(X
K

)∗ 0.0277 0.0276 0.0279

( I
Y

)∗ 0.28 0.29 0.28
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Table 7: Deterministic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000131 0.001413 -0.000824

γv 0.006760 0.005311 0.009438

β 0.995 0.992 0.998

δ 0.0135 0.0131 0.0121

η 0.0034 0.0037 0.0030

µ 0.0086 0.0091 0.0074

ϕa 4.67 4.59 4.83

ϕv -0.16 -0.07 -0.65

ρa 0.98 0.97 0.96

ρv1 1.77 1.71 1.73

ρv2 -0.77 -0.76 -0.73

σξa 0.0073 0.0086 0.0045

σξv 0.0033 0.0037 0.0023

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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Table 8: Baseline Stochastic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000619 0.001489 -0.000734

γv 0.00643 0.00493 0.008762

β 0.9894 0.9897 0.9889

δ 0.01348 0.01401 0.01267

η 0.0034 0.0037 0.0030

µ 0.92443 0.91670 0.93694

σa 0.0074 0.0087 0.0045

σv 0.0054 0.0060 0.0030

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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Table 9: Stochastic Trend with a Moving Average Component: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000619 0.001489 -0.000734

γv 0.006404 0.004911 0.008739

β 0.9894 0.9897 0.9889

δ 0.01352 0.01404 0.01271

η 0.0034 0.0037 0.0030

µ 0.92439 0.91667 0.93692

ρ 0.618159 0.6359218 0.5071769

σa 0.0074 0.0087 0.0045

σv 0.0025 0.0028 0.0012

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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Table 23: Cross-correlation output with x: DATA. Whole sample

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y -0.14 0.05 0.31 0.60 0.84 1 0.84 0.60 0.31 0.05 -0.14

V -0.30 -0.22 -0.12 -0.01 0.09 0.17 0.25 0.29 0.30 0.30 0.29

A 0.19 0.31 0.46 0.60 0.65 0.65 0.32 0.003 -0.27 -0.43 -0.49

C -0.04 0.16 0.37 0.59 0.75 0.78 0.66 0.47 0.27 0.09 -0.06

X -0.04 0.13 0.36 0.60 0.79 0.89 0.71 0.46 0.17 -0.07 -0.22

I 0.02 0.18 0.41 0.64 0.82 0.91 0.71 0.43 0.12 -0.13 -0.29

K -0.51 -0.44 -0.31 -0.12 0.11 0.36 0.55 0.66 0.67 0.61 0.51

H -0.26 -0.09 0.14 0.42 0.69 0.87 0.87 0.75 0.54 0.30 0.10

LBP 0.26 0.28 0.29 0.28 0.19 0.11 -0.19 -0.39 -0.51 -0.51 -0.45

Table 24: Cross-correlation output with x: Deterministic Trend nu = 1. Whole

Sample

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.01 0.15 0.32 0.52 0.75 1 0.75 0.52 0.32 0.15 0.01

C -0.22 -0.18 -0.12 -0.02 0.10 0.26 0.24 0.22 0.21 0.20 0.18

X 0.11 0.24 0.38 0.54 0.71 0.89 0.65 0.42 0.23 0.06 -0.07

K -0.28 -0.21 -0.11 0.01 0.16 0.54 0.46 0.53 0.55 0.55 0.51

H 0.16 0.26 0.38 0.51 0.64 0.67 0.55 0.35 0.17 0.02 -0.11

LBP -0.11 0.02 0.18 0.37 0.60 0.86 0.67 0.50 0.35 0.21 0.10
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Table 25: Cross-correlation output with x: Stochastic Trend nu = 1. Whole Sample

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.03 0.15 0.30 0.50 0.73 1 0.73 0.50 0.30 0.15 0.03

C -0.06 0.04 0.19 0.37 0.60 0.87 0.68 0.51 0.37 0.25 0.15

X 0.09 0.19 0.32 0.47 0.65 0.85 0.59 0.37 0.19 0.05 -0.06

K -0.36 -0.30 -0.21 -0.08 0.10 0.33 0.48 0.57 0.60 0.60 0.57

H 0.13 0.23 0.34 0.49 0.65 0.83 0.55 0.32 0.13 -0.01 -0.12

LBP -0.01 0.11 0.27 0.46 0.70 0.98 0.73 0.52 0.34 0.20 0.08

Table 26: Cross-correlation output with x: Stochastic Trend-MA nu = 1. Whole

Sample

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y -0.00 0.13 0.30 0.50 0.72 1 0.72 0.50 0.30 0.13 -0.00

C -0.09 0.03 0.18 0.36 0.58 0.85 0.67 0.52 0.38 0.24 0.13

X 0.06 0.18 0.33 0.48 0.66 0.86 0.57 0.35 0.16 0.00 -0.12

K -0.37 -0.31 -0.21 -0.08 0.10 0.33 0.48 0.56 0.58 0.57 0.52

H 0.08 0.19 0.32 0.47 0.62 0.81 0.52 0.29 0.10 -0.05 -0.16

LBP -0.04 0.09 0.26 0.46 0.69 0.98 0.73 0.52 0.34 0.18 0.05
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Table 27: Cross-correlation output with x: DATA. 1948:1-1983:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y -0.18 0.00 0.28 0.58 0.84 1 0.84 0.58 0.28 0.00 -0.18

V -0.30 -0.22 -0.12 -0.01 0.84 0.18 0.25 0.29 0.31 0.31 0.29

A 0.20 0.33 0.50 0.65 0.84 0.71 0.36 0.03 -0.25 -0.44 -0.50

C -0.07 0.14 0.36 0.58 0.84 0.78 0.64 0.43 0.21 0.02 -0.14

X -0.09 0.08 0.32 0.57 0.84 0.89 0.70 0.43 0.13 -0.11 -0.26

I -0.03 0.14 0.37 0.61 0.81 0.91 0.70 0.40 0.07 -0.18 -0.33

K -0.53 -0.47 -0.33 -0.12 0.12 0.39 0.58 0.68 0.68 0.59 0.46

H -0.36 -0.20 0.05 0.36 0.66 0.87 0.88 0.75 0.52 0.27 0.06

LBP 0.34 0.39 0.43 0.42 0.33 0.23 -0.11 -0.35 -0.50 -0.54 -0.49

Table 28: Cross-correlation output with x: Deterministic Trend nu = 1. 1948:1-

1983:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.02 0.16 0.33 0.53 0.75 1 0.75 0.53 0.33 0.16 0.02

C -0.26 -0.26 -0.24 -0.19 -0.10 0.04 0.05 0.08 0.13 0.17 0.21

X 0.15 0.28 0.41 0.56 0.72 0.86 0.64 0.42 0.23 0.06 -0.09

K -0.35 -0.27 -0.17 -0.03 0.14 0.33 0.47 0.55 0.59 0.59 0.55

H 0.19 0.30 0.42 0.54 0.66 0.76 0.56 0.36 0.18 0.02 -0.12

LBP -0.15 -0.04 0.10 0.28 0.51 0.78 0.60 0.45 0.33 0.23 0.15
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Table 29: Cross-correlation output with x: Stochastic Trend nu = 1. 1948:1-1983:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y -0.00.13 0.28 0.48 0.71 1 0.71 0.48 0.28 0.13 -0.00

C -0.09 0.03 0.18 0.37 0.61 0.89 0.69 0.51 0.35 0.22 0.11

X 0.07 0.17 0.30 0.45 0.64 0.87 0.58 0.35 0.17 0.03 -0.08

K -0.38 -0.32 -0.23 -0.10 0.08 0.32 0.47 0.55 0.59 0.58 0.54

H 0.11 0.21 0.32 0.47 0.64 0.84 0.54 0.31 0.12 -0.02 -0.13

LBP -0.04 0.09 0.25 0.45 0.69 0.98 0.72 0.50 0.32 0.17 0.04

Table 30: Cross-correlation output with x: Stochastic Trend-MA nu = 1. 1948:1-

1983:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.01 0.14 0.31 0.50 0.73 1 0.73 0.50 0.31 0.14 0.01

C -0.10 0.02 0.17 0.37 0.59 0.85 0.68 0.52 0.37 0.24 0.14

X 0.11 0.21 0.35 0.50 0.68 0.87 0.60 0.37 0.18 0.03 -0.09

K -0.36 -0.29 -0.20 -0.06 0.12 0.34 0.49 0.57 0.60 0.59 0.55

H 0.13 0.23 0.35 0.48 0.64 0.82 0.55 0.32 0.13 -0.02 -0.13

LBP -0.03 0.10 0.27 0.47 0.70 0.98 0.74 0.53 0.34 0.19 0.06
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Table 31: Cross-correlation output with x: DATA. 1984:1-2006:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.27 0.45 0.61 0.78 0.89 1 0.88 0.78 0.61 0.45 0.27

V -0.23 -0.15 -0.08 -0.01 0.07 0.12 0.20 0.24 -0.33 0.25 0.25

A 0.20 0.17 0.13 0.18 0.15 0.21 -0.06 -0.18 -0.33 -0.36 -0.42

C 0.10 0.27 0.44 0.61 0.72 0.82 0.78 0.73 0.62 0.47 0.32

X 0.39 0.53 0.66 0.79 0.88 0.92 0.82 0.69 0.52 0.35 0.16

I 0.43 0.56 0.68 0.80 0.88 0.92 0.80 0.67 0.49 0.32 0.13

K -0.38 -0.27 -0.17 -0.04 0.08 0.27 0.39 0.51 0.60 0.65 0.66

H 0.25 0.44 0.61 0.74 0.84 0.90 0.89 0.83 0.71 0.55 0.39

LBP -0.14 -0.27 -0.40 -0.44 -0.50 -0.46 -0.61 -0.62 -0.61 -0.51 -0.43

Table 32: Cross-correlation output with x: Deterministic Trend nu = 1. 1984:1-

2006:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.03 0.16 0.31 0.50 0.73 1 0.73 0.50 0.31 0.16 0.03

C -0.12 -0.09 -0.04 0.02 0.11 0.20 0.22 0.22 0.22 0.20 0.16

X 0.07 0.19 0.33 0.50 0.70 0.94 0.66 0.43 0.24 0.09 -0.03

K -0.36 -0.29 -0.20 -0.07 0.10 0.31 0.45 0.53 0.56 0.56 0.53

H 0.09 0.20 0.32 0.47 0.64 0.85 0.58 0.36 0.18 0.04 -0.06

LBP -0.03 0.09 0.23 0.41 0.64 0.89 0.69 0.50 0.35 0.21 0.10

51



Table 33: Cross-correlation output with x: Stochastic Trend nu = 1. 1984:1-2006:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y 0.00 0.13 0.30 0.49 0.73 1 0.73 0.49 0.30 0.13 0.00

C -0.09 0.03 0.19 0.38 0.61 0.90 0.70 0.53 0.38 0.24 0.12

X 0.07 0.18 0.32 0.47 0.66 0.87 0.60 0.37 0.19 0.04 -0.08

K -0.39 -0.33 -0.23 -0.09 0.09 0.33 0.48 0.57 0.60 0.60 0.56

H 0.11 0.22 0.35 0.49 0.67 0.86 0.56 0.32 0.13 -0.02 -0.14

LBP -0.03 0.10 0.26 0.46 0.70 0.98 0.73 0.52 0.34 0.18 0.05

Table 34: Cross-correlation output with x: Stochastic Trend nu = 1. 1984:1-2006:4

x(-5) x(-4) x(-3) x(-2) x(-1) x(0) x(1) x(2) x(3) x(4) x(5)

Y -0.01 0.12 0.28 0.48 0.72 1 0.72 0.48 0.28 0.12 -0.01

C -0.08 0.04 0.20 0.39 0.64 0.94 0.72 0.53 0.36 0.22 0.10

X 0.05 0.16 0.31 0.49 0.69 0.93 0.63 0.39 0.19 0.03 -0.08

K -0.42 -0.36 -0.26 -0.12 0.07 0.33 0.49 0.59 0.62 0.61 0.57

H 0.09 0.20 0.33 0.50 0.69 0.90 0.59 0.33 0.13 -0.03 -0.14

LBP -0.04 0.09 0.25 0.45 0.70 0.99 0.73 0.50 0.31 0.16 0.04
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Table 35: The Great Moderation: Time-invariant coefficients-Experiment 1

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 0.90 0.79 0.88 0.79 0.47 0.59 0.82 0.47 0.57 0.58

x 4.11 3.01 0.73 3.13 2.19 0.70 3.21 2.11 0.66 0.53

y 1.48 0.84 0.57 1.28 0.70 0.54 1.34 0.68 0.51 0.48

k 0.57 0.49 0.86 0.31 0.22 0.71 0.34 0.23 0.68 0.65

h 0.71 0.59 0.83 0.33 0.23 0.69 0.35 0.25 0.71 0.69

y/h 1 0.56 0.56 1.01 0.55 0.54 1.05 0.53 0.50 0.68

Table 36: The Great Moderation: Time-invariant coefficients-Experiment 2

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 0.93 0.69 0.74 0.70 0.65 0.93 0.71 0.67 0.94 0.58

x 3.78 3.25 0.86 2.93 2.49 0.83 2.90 2.46 0.86 0.53

y 1.28 1.23 0.96 1.10 1.09 0.99 1.11 1.12 1.01 0.48

k 0.55 0.43 0.78 0.29 0.24 0.83 0.31 0.25 0.81 0.65

h 0.69 0.54 0.78 0.31 0.26 0.84 0.33 0.26 0.79 0.69

y/h 0.88 0.84 0.95 0.87 0.86 0.98 0.87 0.88 1.01 0.68
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Table 37: The Great Moderation: Time-invariant coefficients-Experiment 3

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 0.98 0.57 0.58 0.80 0.43 0.53 0.84 0.42 0.50 0.58

x 4.20 2.37 0.56 3.23 1.71 0.53 3.35 1.65 0.49 0.53

y 1.47 0.78 0.53 1.29 0.69 0.54 1.34 0.68 0.50 0.48

k 0.61 0.36 0.59 0.32 0.17 0.53 0.36 0.17 0.47 0.65

h 0.75 0.44 0.59 0.34 0.18 0.53 0.37 0.18 0.49 0.69

y/h 0.99 0.52 0.53 1.02 0.55 0.54 1.06 0.54 0.51 0.68

Table 38: The Great Moderation: Time-varying coefficients-Experiment 1

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 1.23 0.64 0.52 0.79 0.49 0.62 0.80 0.44 0.55 0.58

x 5.19 2.71 0.52 3.20 2.12 0.66 3.26 1.84 0.56 0.53

y 1.55 0.83 0.54 1.30 0.70 0.54 1.30 0.67 0.52 0.48

k 0.65 0.40 0.62 0.30 0.22 0.73 0.33 0.21 0.64 0.65

h 0.98 0.51 0.52 0.33 0.22 0.67 0.36 0.20 0.56 0.69

y/h 1.01 0.53 0.52 1.02 0.56 0.55 1.02 0.53 0.52 0.68

54



Table 39: The Great Moderation: Time-varying coefficients-Experiment 2

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 1.29 0.55 0.43 0.71 0.66 0.93 0.73 0.65 0.89 0.58

x 4.94 3.24 0.66 2.89 2.49 0.86 3.02 2.34 0.77 0.53

y 1.33 1.25 0.94 1.11 1.11 1 1.12 1.10 0.98 0.48

k 0.64 0.39 0.61 0.28 0.26 0.93 0.31 0.24 0.77 0.65

h 0.97 0.53 0.55 0.30 0.26 0.87 0.34 0.25 0.74 0.69

y/h 0.88 0.80 0.91 0.88 0.88 1 0.89 0.87 0.98 0.68

Table 40: The Great Moderation: Time-varying coefficients-Experiment 3

DT ST ST-MA Data

%σpre %σpost σpost/σpre %σpre %σpost σpost/σpre %σpre %σpost σpost/σpre σpost/σpre

c 1.30 0.46 0.35 0.79 0.44 0.56 0.83 0.41 0.49 0.58

x 5.30 2.26 0.43 3.27 1.72 0.39 3.32 1.56 0.47 0.53

y 1.58 0.79 0.50 1.28 0.71 0.56 1.31 0.68 0.52 0.48

k 0.65 0.31 0.48 0.30 0.18 0.60 0.34 0.17 0.50 0.65

h 1.00 0.40 0.40 0.34 0.18 0.53 0.37 0.17 0.46 0.69

y/h 1.04 0.51 0.49 1.01 0.57 0.56 1.03 0.54 0.52 0.68
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IRF for 1SD in INVESTMENT SPECIFIC innovation
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B Balanced Growth Path

From the feasibility constraint we can conclude that output, consumption, and in-

vestment grow at the same rate

Yt = Ct + It

Yt

Yt−1

=
Ct

Ct−1

Ct−1

Yt−1

+
It

It−1

It−1

Yt−1

gY = gC
Ct−1

Yt−1

+ gI
It−1

Yt−1

Therefore, gY is constant if and only if gY = gC = gI .

Let us consider now the investment equation

(1 + η)Kt+1 = (1− δ)Kt + VtIt

(1 + η)
Kt+1

Kt

= (1− δ) +
VtIt

Kt

(1 + η)gK = (1− δ) +
VtIt

Kt

gK is constant if and only if (V I) grows at the same rate as K which requires

gK = gIgV

Let us analyze the production function

Yt = AtK
α
t H1−α

t

gY = gAgα
Kg1−α

H

As we are considering hours are stationary, we have that gH = 1. Hence,

gY = gAgα
K

= gA(gY gV )α
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Therefore,

gY = g
1

1−α

A g
α

1−α

V

Let us consider the deterministic trend model. We will have that

gY = e
1

1−α
γa+ α

1−α
γv (43)

gV = eγv (44)

which implies

gK = e
1

1−α
(γa+γv) (45)

Let us consider the stochastic trend model. Then, we will have

gY = A
1

1−α

t V
α

1−α

t (46)

(47)

and

gK = A
1

1−α

t V
1

1−α

t (48)

C Log-linearization around the steady state

C.1 Deterministic Trend Model

Let us define x̂t = ln(X̃t/X
∗), then the log-linearized system of equations is given by:

ŷt =
C∗

Y ∗ ĉt +
I∗

Y ∗ ît (49)

ŷt = αk̂t + (1− α)ĥt + εat (50)

qvk̂t+1 = (1− δ)k̂t + V0
I∗

K∗ [e
εvt(1 + ît)− 1] (51)

0 = Et

[
ĉt − ĉt−1 + εvt − εvt+1 +

(
R∗

1− δ + R∗

)
r̂t+1

]
(52)

ĥt = ν(ŵt − ĉt) (53)

r̂t = ŷt − k̂t + εvt (54)

ŵt = ŷt − ĥt (55)
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C.2 Stochastic Trend Model

Let us define x̂t = ln(X̃t/X
∗), then the log-linearized system of equations is given by:

ŷt = ĉt
C∗

Y ∗ + ît
I∗

Y ∗ (56)

ŷt = −α(q̂t + v̂t) + αk̂t + (1− α)ĥt (57)

k̂t+1 = (1− δ)

(
1

q∗v∗

)[
k̂t − (q̂t + v̂t)

]
+ ît

I∗

K∗ (58)

0 = Et

[
ĉt − ĉt−1 − (q̂t+1 + v̂t+1) + r̂k

t+1]
]

(59)

r̂k
t =

(
R∗

Rk∗

)
r̂t (60)

ĥt = ν(ŵt − ĉt) (61)

r̂t = ŷt − k̂t + q̂t + v̂t (62)

ŵt = ŷt − ĥt (63)

q̂t =
1

1− α
εat +

α

1− α
εvt (64)

v̂t = εvt (65)

The above is a system of 11 equations and 11 unknowns: {ĉt, ît, ŷt, k̂t, ĥt, b̂t, r̂t, r̂
k
t , q̂t, v̂t, }.

To proceed with estimation we need to also consider the following conditions:

q∗ = e
1

1−α
γa+ α

1−α
γv

v∗ = eγv

R∗ =
q∗v∗

β
− (1− δ)

Rk∗ = (1− δ) + R∗ =
q∗v∗

β
I∗

K∗ = 1− (1− δ)
1

q∗v∗

K∗

Y ∗ =
1

αq∗v∗
R∗

C∗

Y ∗ =

(
1− δ

q∗v∗
− 1

)
K∗

Y ∗ + 1

I∗

Y ∗ = 1− C∗

Y ∗

H∗ =

(
1

B∗

) ν
1+ν
[
(1− α)

Y ∗

C∗

] ν
1+ν
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D Stochastic Trend Model: Closed form solution

In the economy under analysis both welfare theorems hold, therefore we can solve the

planner’s problem which is given by

maxCt,HtU = E

[
∞∑

t=0

βt

(
lnCt −B

H
1+1/ν
t

1 + 1/ν

)]
s.t.

Ct + It = AtK
α
t H1−α

t

Kt+1 = (1− δ)Kt + VtIt

At = At−1e
γa+εat

Vt = Vt−1e
γv+εvt

A0, V0, K0 given

We will proceed first by combining the resource constraint and the law of motion for

capital. Thus, our equilibrium conditions are given by the Euler equation, the labor

supply, and the new resources constraint. Secondly, as our economy is non-stationary

we need to transform it to be able to solve our model. All variables but hours and

capital grow at rate Qt = A
1

1−α

t V
α

1−α

t . Capital grows at rate QtVt = A
1

1−α

t V
1

1−α

t and

hours are stationary. Therefore, the equilibrium conditions for the transformed model

economy are given by14:

1 = βEt

[
C̃t

C̃t+1

(
(1− δ)e−

1
1−α

(γa+γv+εat+1+εvt+1) + αe−
α

1−α
(γa+γv+εat+1+εvt+1)K̃α−1

t+1 H1−α
t+1

)]

BH
1/ν
t = (1− α)

Ỹt/Ht

C̃t

C̃t + K̃t+1 = (1− δ)e−
1

1−α
(γa+γv+εat+εvt)K̃t + e−

α
1−α

(γa+γv+εat+εvt)K̃α
t H1−α

t

14Maybe it is more intuitive to write the Euler equation as

1 = βEt

[
e−

1
1−α (γa+εat+1+α(γv+εvt+1)) C̃t

C̃t+1

(
(1− δ)e−γv−εvt+1 + αeγa+εat+1K̃α−1

t+1 H1−α
t+1

)]
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Let us assume there is full depreciation (i.e. δ = 1). Thus, the above reduces to:

1 = βEt

[
C̃t

C̃t+1

(
αe−

α
1−α

(γa+γv+εat+1+εvt+1)K̃α−1
t+1 H1−α

t+1

)]
(66)

BH
1/ν
t = (1− α)

Ỹt/Ht

C̃t

(67)

C̃t + K̃t+1 = e−
α

1−α
(γa+γv+εat+εvt)K̃α

t H1−α
t (68)

D.1 Baseline System: An Exact Solution

Our guess for policy function for capital will be

K̃t+1 = αβe−
α

1−α
(γa+γv+εat+εvt)K̃α

t H1−α
t (69)

Then, from (68) we have that the policy function for consumption is given by:

C̃t = e−
α

1−α
(γa+γv+εat+εvt)K̃α

t H1−α
t (1− αβ) (70)

Let us plug (69) and (70) in (66)

1 = βEt

[
e−

α
1−α

(εat+εvt−εat+1−εvt+1) K̃α
t H1−α

t

K̃α
t+1H

1−α
t+1

αe−
α

1−α
(γa+γv+εat+1+εvt+1)K̃α−1

t+1 H1−α
t+1

]

= αβEt

[
1

K̃t+1

e−
α

1−α
(γa+γv+εat+εvt)K̃α

t H1−α
t

]
which implies

K̃t+1 = αβe−
α

1−α
(γa+γv+εat+εvt)K̃α

t H1−α
t

since K̃t+1 is a choice variable at time t not an unknown variable dated at time

t + 1. Therefore, as our guess satisfies the equilibrium conditions, we can ensure the

policy function for capital is of the form given by (69). Consequently, the guess for

the consumption policy rule is also part of the solution to our model. Note that we

constructed such a guess by using (69) and the resources constraint. Note that both

policy rules depend on model parameters, current realizations of shocks (we assume
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current shocks are observed before current decisions are taken), capital at time t

which is a predetermined variable (chosen at time t− 1), and current labor decision.

Therefore, to completely characterize the policy rules of interest it remains to provide

the labor supply policy function. To do so let us consider (67) and plug (70) so that:

BH
1/ν
t =

W̃t

C̃t

=
(1− α)Ỹt/Ht

(1− αβ)Ỹt

Thus,

Ht =

(
1− α

B(1− αβ)

) ν
1−ν

(71)

which is a constant.

Therefore, by substituting (71) in (69) and (70) we have our policy rules as func-

tions of model parameters and current state variables.

D.2 Log-linearized system: An Approximate Solution

Let us consider the following log-linearized system (under the assumption of full

depreciation).

ŷt =
C∗

Y ∗ ĉt +
I∗

Y ∗ ît (72)

ŷ = − α

1− α
(εat + εvt) + αk̂t + (1− α)ĥt (73)

k̂t+1 =
I∗

K∗ ît =
I∗/Y ∗

K∗/Y ∗ ît (74)

0 = E
[
ĉt − ĉt+1 −

1

1− α
(εat+1 + εvt+1) + rt+1

]
(75)

ĥt = ν(ŵt − ĉt) (76)

r̂t = ŷt − k̂t +
1

1− α
(εat + εvt) (77)

ŵt = ŷt − ĥt (78)

Plugging (74) into (72) we obtain

ŷt =
C∗

Y ∗ ĉt +
K∗

Y ∗ k̂t+1 (79)
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Substitute (77) in (75)

0 = E
[
ĉt − ĉt+1ŷt+1 − k̂t+1

]
(80)

Our guesses for policy rules are given by:

k̂t+1 = − α

1− α
(εat + εvt) + αk̂t + (1− α)ĥt (81)

ĉt =
1

C∗/Y ∗

(
1− K∗

Y ∗

)
k̂t+1 (82)

Plugging (81) and (82) into (75)

0 = E[
1

C∗/Y ∗

(
1− K∗

Y ∗

)(
− α

1− α
(εat + εvt − εat+1 − εvt+1) + α(k̂t − k̂t+1) + (1− α)(ĥt − ĥt+1)

)
− α

1− α
(εat+1 + εvt+1) + αk̂t+1 + (1− α)ĥt+1 +

α

1− α
(εat + εvt − αk̂t − (1− α)ĥt)]

0 = E
[(

1− K∗

Y ∗

)
ŷt −

C∗

Y ∗ ŷt −
(

1− K∗

Y ∗

)
ŷt+1 +

C∗

Y ∗ ŷt+1

]
where (

1− K∗

Y ∗

)
ŷt −

C∗

Y ∗ ŷt −
(

1− K∗

Y ∗

)
ŷt+1 +

C∗

Y ∗ ŷt+1 = 0 (83)

since

1 =
C∗

Y ∗ +
K∗

Y ∗ (84)

Therefore, we can conclude that the policy functions for capital and consumption are

given by (81) and (82) respectively.

We need to provide also a policy rule for hours. Intuitively, the policy rule should

be equal to zero. Remember that in the exact solution hours were constant over time.

Therefore, the deviation from steady state should be zero. We show below that given

(82), ĥt = 0 for all t.

ĥt = νŵt − νĉt = ν(ŷt − ĥt)− νĉt

ĥt =
ν

1− ν
(ŷt − ĉt)

=
1

C∗/Y ∗

[
C∗

Y ∗ +
K∗

Y ∗ − 1

]
k̂t+1

= 0
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E Extensions

E.1 Hansen-Rogerson Preferences

So far our analysis have only considered the intensive margin of the labor input.

Here we will assume another specification for household’s preferences so that we will

analyze the extensive margin of the labor input. To do so let us assume the following:

1. Labor is indivisible.

2. Agents can trade employment lotteries.

3. Households have a constant relative risk-aversion utility function with a coeffi-

cient of risk-aversion equal to 1.

Therefore, (2) will be substituted by

U(Ct, Ht) = lnCt −BHt (85)

which implies that the short-run Frisch elasticity of labor supply is infinite.

It is obvious that the (detrended) equilibrium conditions under all the statistical

models are identical but the one associated with the labor supply. In particular, (11)

and (25) will be substituted by
W̃t

C̃t

= B (86)

We need to recalibrate only the parameter linked to the weight of hours in the

utility function i.e. B. In fact, we have that

B = (1− α)
Y ∗

C∗
1

H∗ (87)

We will stochastic simulate our model only for the deterministic trend case and

the baseline stochastic trend one. We will perform our analysis only for the whole

sample.
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We will first allow for the presence of both technology shocks. Then, we will per-

form two counterfactuals in order to asses the relative importance of each technology

shock in accounting for the business cycles features observed in the US data. On

the one hand, we will shut down the investment specific shock and investigate the

volatilities implied by our model. On the other hand, we will shut down the neutral

shock and perform the same analysis.

Table 41: Deterministic Trend Model: 1948:1-2006:4

Data Both shocks Only N-shock Only I-shock

%σz ρzy %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata

c 0.92 0.78 0.89 0.08 0.97 0.55 0.94 0.60 0.70 -0.84 0.76

i 5.44 0.91 6.99 0.93 1.28 4.01 0.99 0.73 5.72 0.97 1.05

y 1.73 1 2.07 1 1.20 1.68 1 0.97 1.21 1 0.70

k 0.59 0.36 0.81 0.35 1.37 0.39 0.33 0.66 0.71 0.44 1.20

h 1.88 0.87 2.19 0.91 1.16 1.18 0.99 0.63 1.84 0.98 0.98

y/h 0.94 0.11 0.89 0.08 0.95 0.55 0.94 0.59 0.70 -0.84 0.74

From table E.1 we conclude that the volatilities of all the variables at hand are

larger than in the divisible labor economy. Moreover, the Hansen-Rogerson economy

overstates the volatilities of investment, output, capital, and hours when both shocks

are at hand. It is remarkable that, as in Hansen (1997), the volatility of hours is

larger than the volatility of labor productivity.

The model performs better, in terms of accounting for volatilities, when there is

only an investment-specific shock than when there is only a neutral one. In fact,

a model with Hansen-Rogerson preferences and only an I-shock is able to replicate

almost perfectly the standard deviation of hours.
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Table 42: Stochastic Trend Model: 1948:1-2006:4

Data Both shocks Only N-shock Only I-shock

%σz ρzy %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata

c 0.92 0.78 0.75 0.87 0.82 0.72 0.98 0.78 0.21 -0.81 0.23

i 5.44 0.91 3.80 0.91 0.70 3.08 0.99 0.57 2.23 0.99 0.41

y 1.73 1 1.41 1 0.82 1.38 1 0.81 0.32 1 0.18

k 0.59 0.36 0.37 0.33 0.63 0.30 0.35 0.51 0.22 0.38 0.37

h 1.88 0.87 0.85 0.90 0.45 0.69 0.98 0.37 0.50 0.97 0.27

y/h 0.94 0.11 0.75 0.87 0.80 0.72 0.98 0.77 0.21 -0.81 0.22

From the above table we conclude that a stochastic trend model is not able to

generate enough volatility in this scenario either. Under this specification, the neutral

shock is the one able to account for the bulk of the volatility for all the variables at

hand.

E.2 Multivariate Analysis

We have performed univariate analysis of the error structure associated to the differ-

ent specifications for the technology processes. We are interested here in exploring a

multivariate error structure in order to analyze the interaction between both innova-

tions.

E.2.1 Deterministic Trend Model

We will consider the following specification

lnAt = ϕa + γat + εat (88)

lnVt = ϕv + γvt + εvt (89)
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and we assume  εat

εvt

 = Γ1

 εat−1

εvt−1

+ Γ2

 εat−2

εvt−2

+

 ξat

ξvt

 (90)

where  ξat

ξvt

 ∼ N (0, Σξ) (91)

We will restrict our attention to the performance of the model under a unit Frisch

elasticity. Our estimates are reported in the following table. All the vector autore-

gressive processes estimated satisfy the stability condition i.e. there is no root that

lies outside the unit circle.

The results obtained from the stochastic simulation of our model economy are

summarized in the table 44.
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Let us compare the previous table with table 11. The direction of change for the

volatilities of the different variables of interest is not unilateral. For example, while the

volatility of consumption is larger in the multivariate setting, the volatility of capital

is lower. The performance of the deterministic trend model, however, improves in

accounting for the volatility slowdown of investment, capital, and hours.

E.2.2 Stochastic Trend Model

Let us consider the following

lnAt = lnAt−1 + γat + εat (92)

lnVt = lnVt−1 + γvt + εvt (93)

and we assume  εat

εvt

 = Γ1

 εat−1

εvt−1

+

 ξat

ξvt

 (94)

where  ξat

ξvt

 ∼ N (0, Σξ) (95)

The results from the estimation of the above specification are reported in table

45. The moments implied by this specification are in table 46.
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Comparing the previous table with table 15 we conclude that the multivariate

specification implies even lower volatilities for all the variables at hand for all the

periods. The performance in terms of replicating the magnitude of the Great Mod-

eration, however, does not change significantly.

From this analysis, we conclude that there is no a significative gain from using a

multivariate specification for the innovations.
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