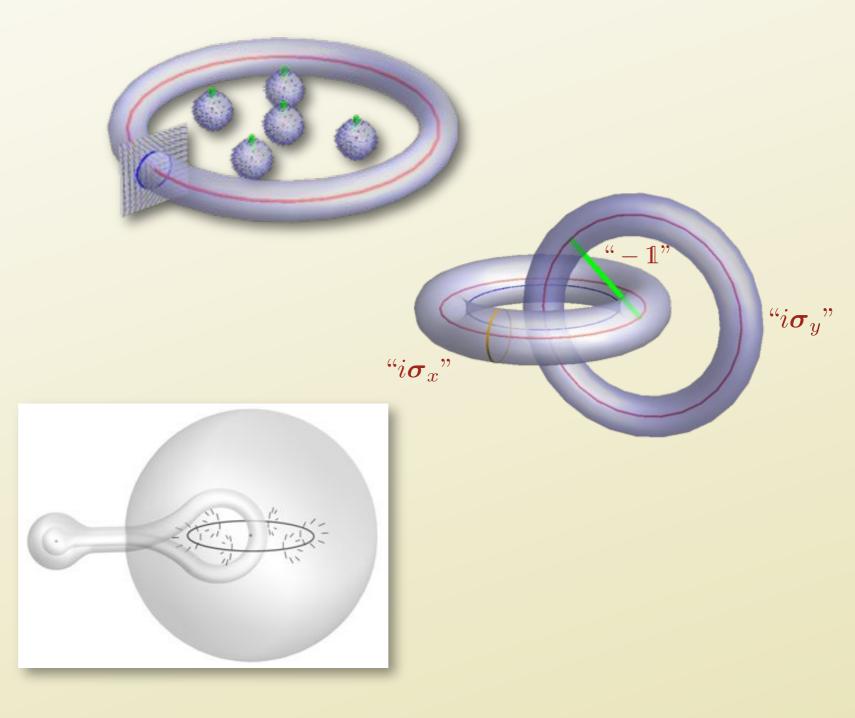
ENTANGLED DEFECTS

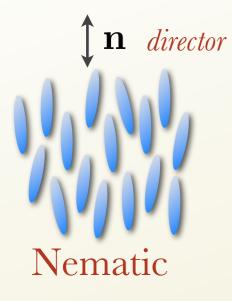
GARETH ALEXANDER

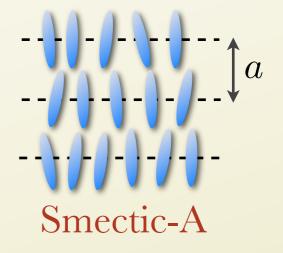
Penn, Warwick

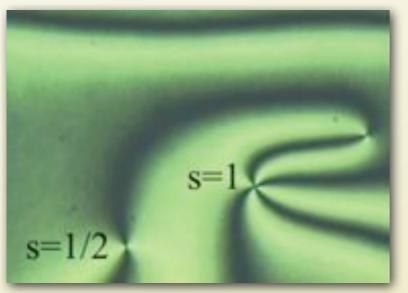


Topological Methods in Complex Systems 25th July-12th August 2011

TEXTURES IN LIQUID CRYSTALS







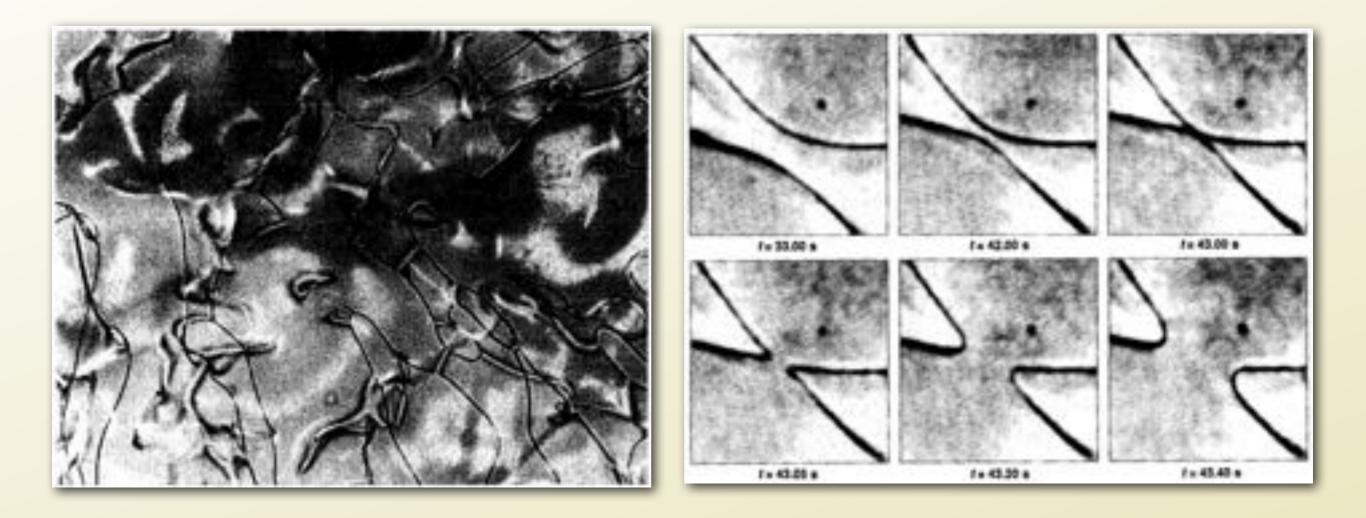
courtesy of Ingo Dierking

Photo by Michi Nakata

courtesy of Noel Clark

INTERACTION OF DEFECTS

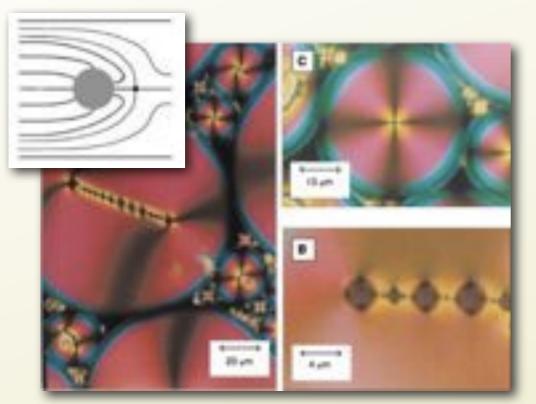
Coarsening and crossing



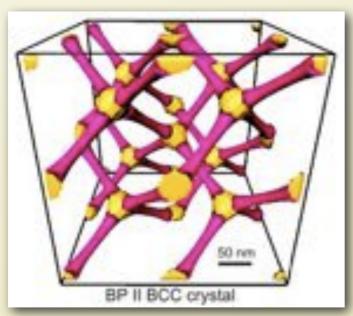
CHUANG, DURRER, TUROK & YURKE Science 251, 1336–1342 (1991)

INTERACTION OF DEFECTS

Colloids: self-assembly

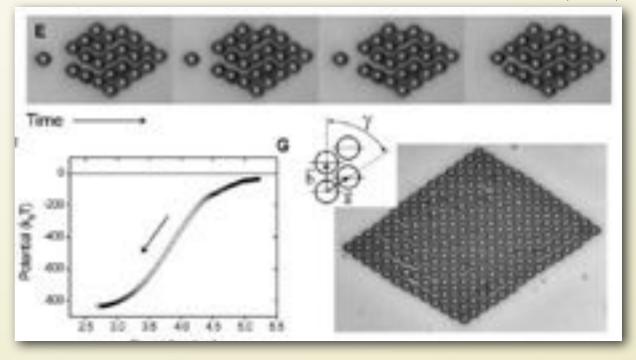


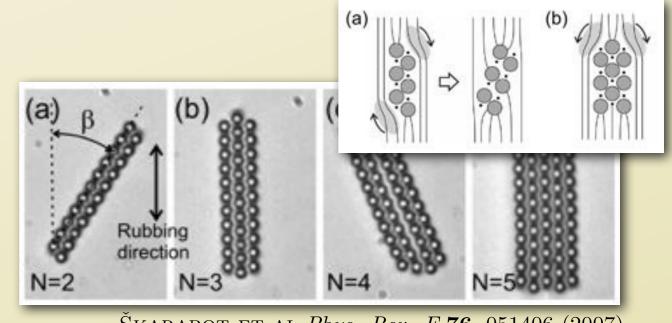
Poulin et al Science 275, 1770–1773 (1997)



Penn Ravnik, GPA, Yeomans & Žumer *PNAS* **108**, 5188–5192 (2011)

MUŠEVIČ ET AL Science 313, 954–958 (2006)

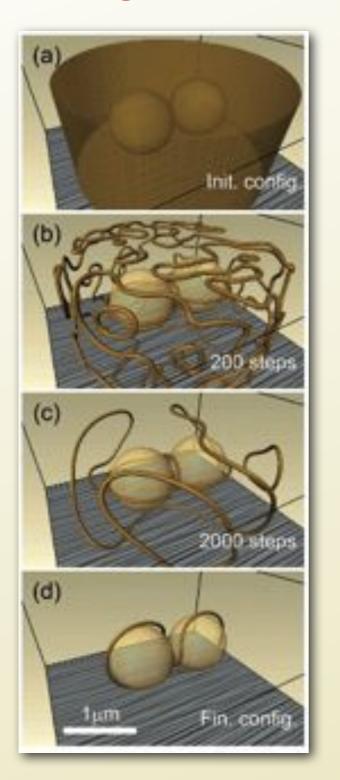


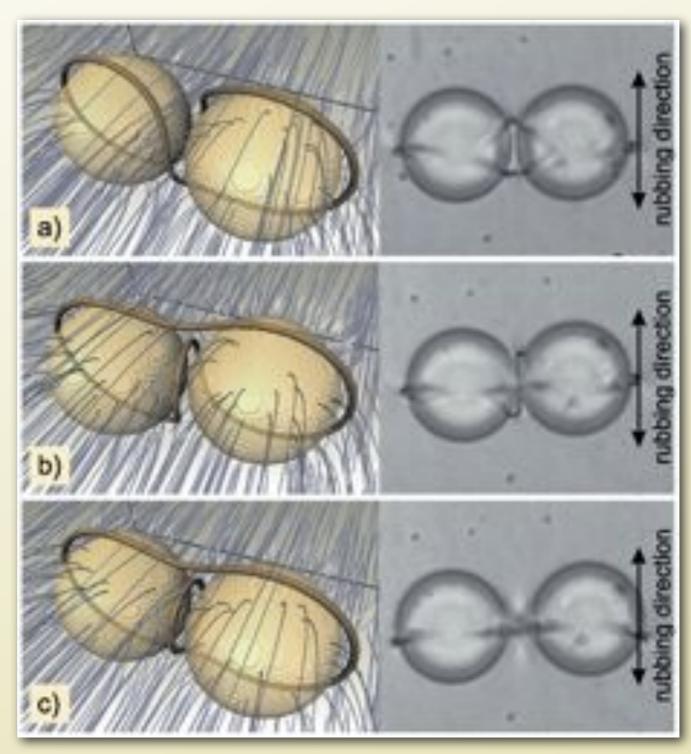


ŠKARABOT ET AL Phys. Rev. E 76, 051406 (2007)

INTERACTION OF DEFECTS

Colloids: entangled defects





RAVNIK & ŽUMER Soft Matter 5, 269–274 (2009)

BIAXIAL NEMATICS

uniaxial

symmetry of a right circular cylinder symmetry group D_{∞}

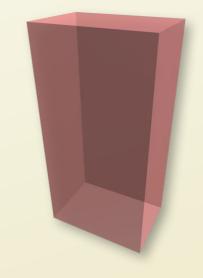
ground state manifold

 $SO(3)/D_{\infty}$

distinct orientations of a cylinder

biaxial

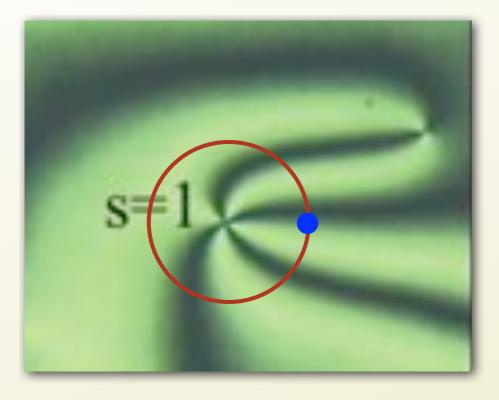
symmetry of a rectangular cuboid symmetry group D_2



ground state manifold

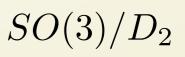
 $SO(3)/D_2$

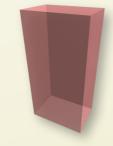
LINE DEFECTS: DISCLINATIONS



biaxial

ground state manifold $SO(3)/D_2$

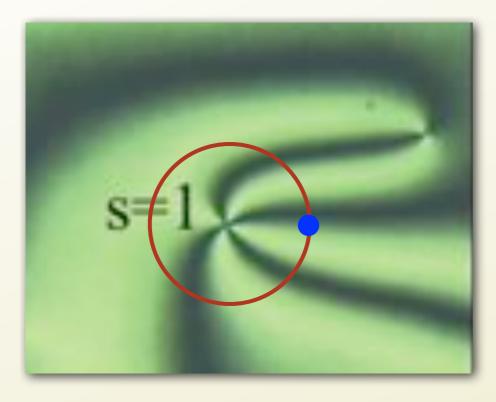




$$\pi_1(SO(3)/D_2) = Q_8$$

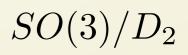
 $\{\pm \mathbb{1}, \pm i\boldsymbol{\sigma}_x, \pm i\boldsymbol{\sigma}_y, \pm i\boldsymbol{\sigma}_z\}$

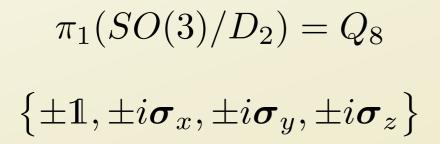
LINE DEFECTS: DISCLINATIONS

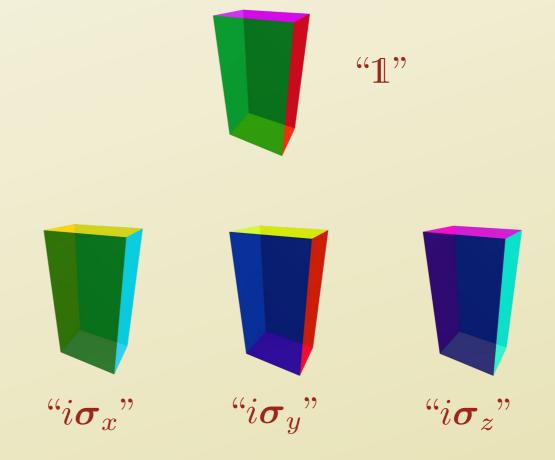


biaxial

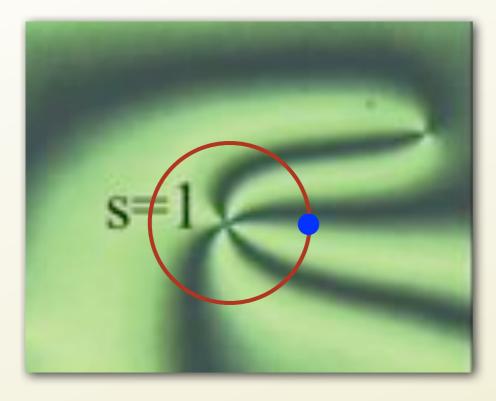
ground state manifold





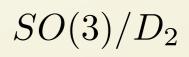


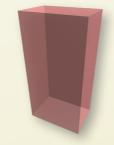
LINE DEFECTS: DISCLINATIONS

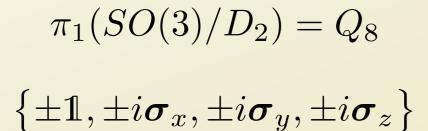


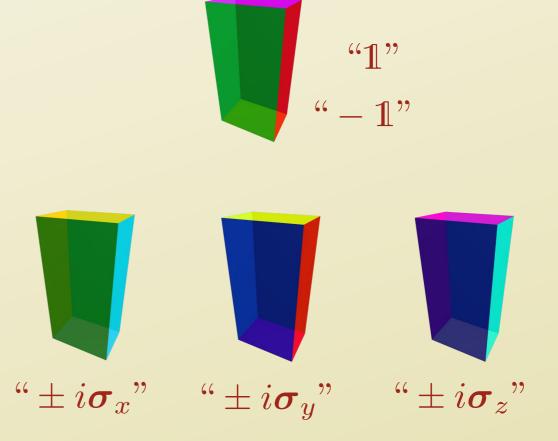
biaxial

ground state manifold







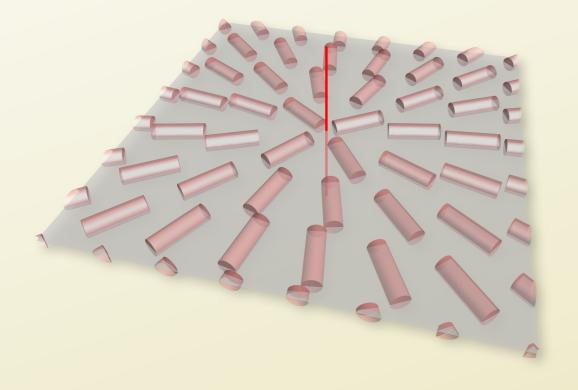


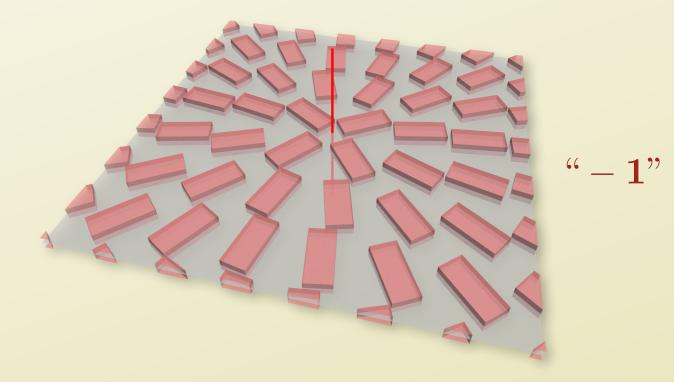
NO ESCAPE FOR BIAXIALS

• 2π disclinations are removable in uniaxial nematics *"escape in the third dimension"*

but not in biaxials (Mermin-Ho)

uniaxial





biaxial

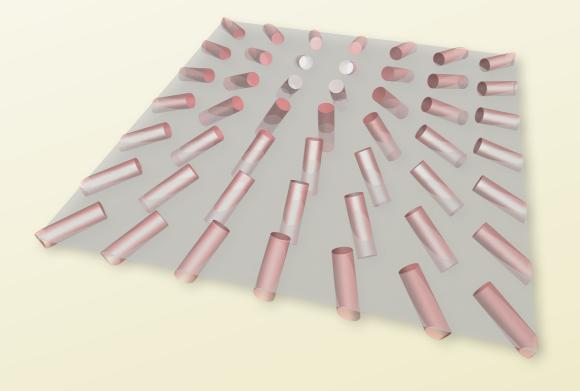
MEYER *Phil. Mag.* **27**, 405–424 (1973) MERMIN & HO *Phys. Rev. Lett.* **36**, 594–597 (1976)

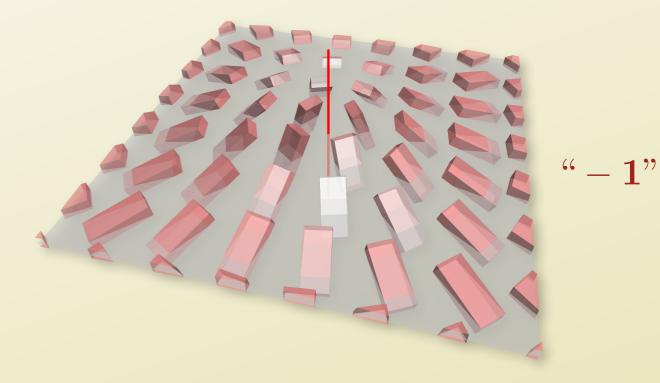
NO ESCAPE FOR BIAXIALS

• 2π disclinations are removable in uniaxial nematics *"escape in the third dimension"*

but not in biaxials (Mermin-Ho)

uniaxial





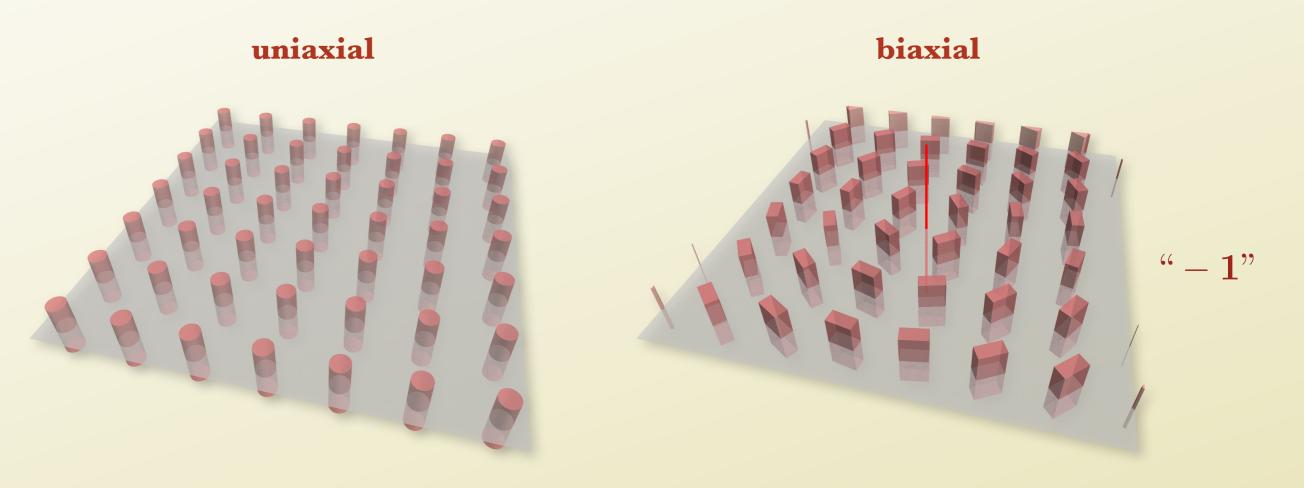
biaxial

MEYER *Phil. Mag.* **27**, 405–424 (1973) MERMIN & HO *Phys. Rev. Lett.* **36**, 594–597 (1976)

NO ESCAPE FOR BIAXIALS

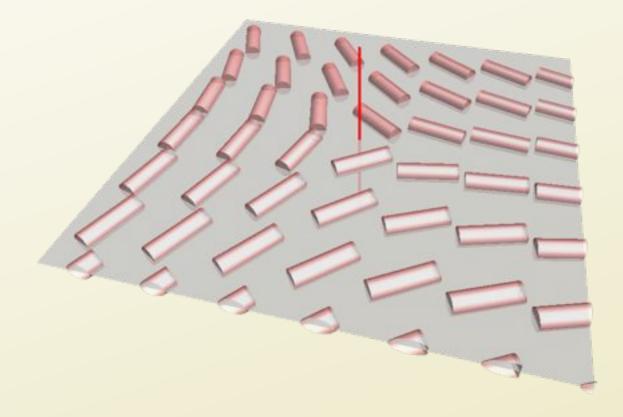
• 2π disclinations are removable in uniaxial nematics *"escape in the third dimension"*

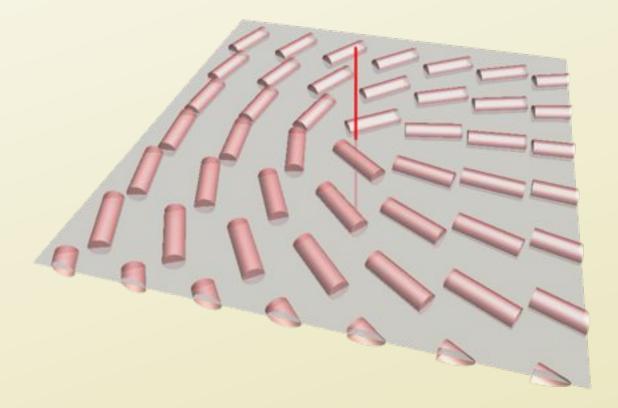
but not in biaxials (Mermin-Ho)



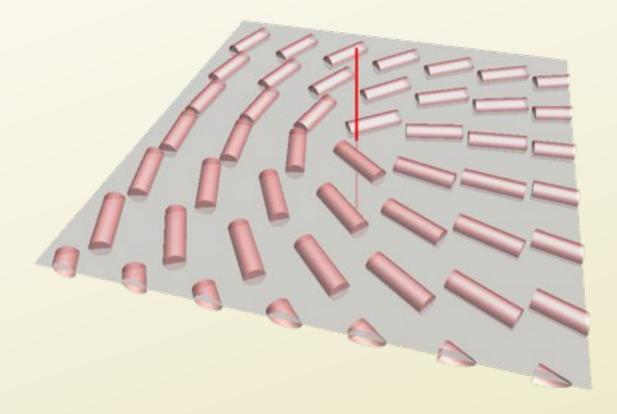
MEYER *Phil. Mag.* **27**, 405–424 (1973) MERMIN & HO *Phys. Rev. Lett.* **36**, 594–597 (1976)

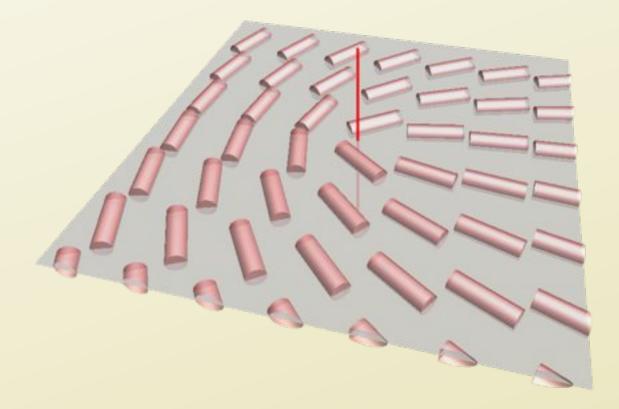
Based and free: 1/2 disclinations



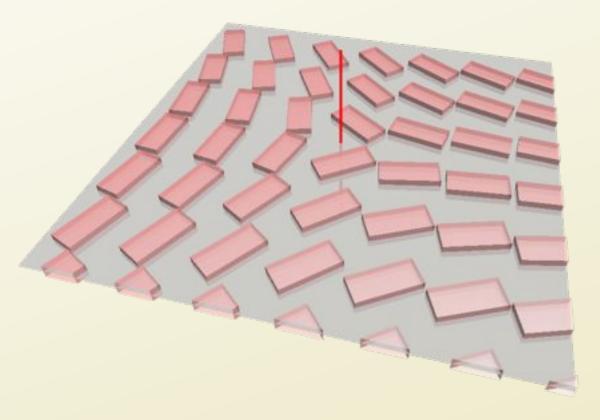


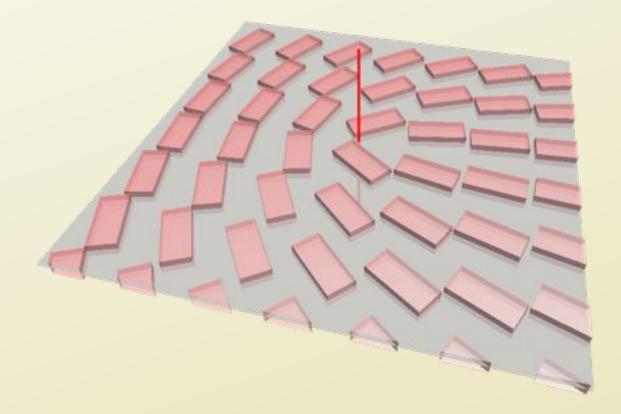
BASED AND FREE: 1/2 disclinations



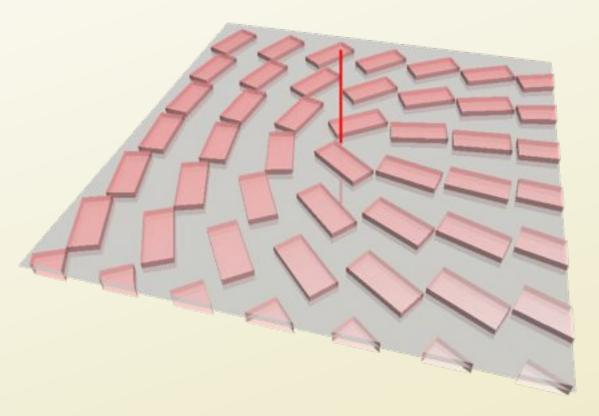


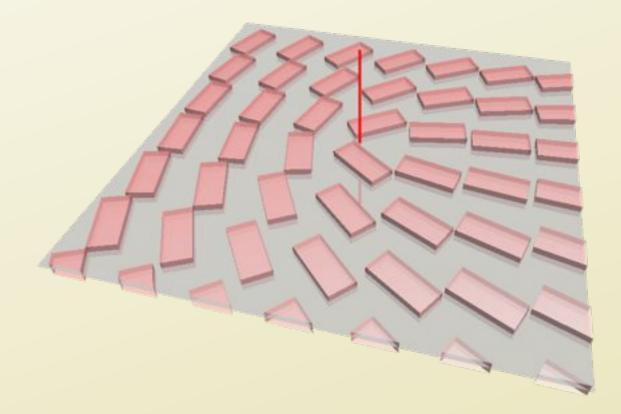
Based and free: 1/2 disclinations



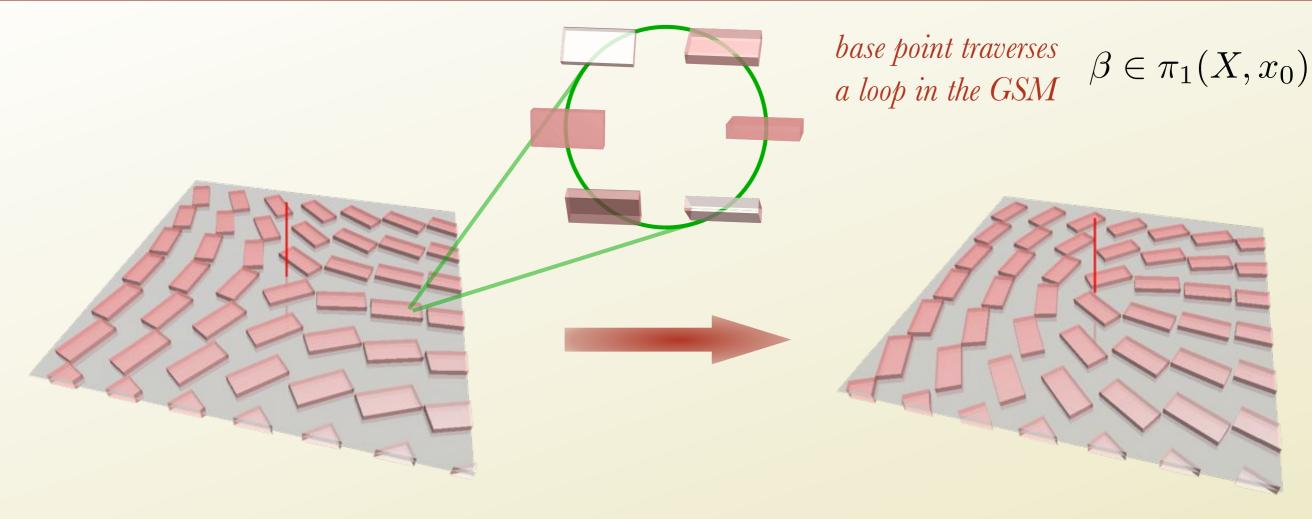


Based and free: 1/2 disclinations





ACTION OF π_1 ON ITSELF



initial defect in class

 $\alpha \in \pi_1(X, x_0)$

 $-i\boldsymbol{\sigma}_y$

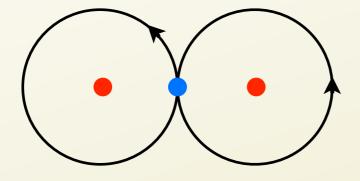
final defect in class $\alpha^{\beta} \in \pi_1(X, x_0)$

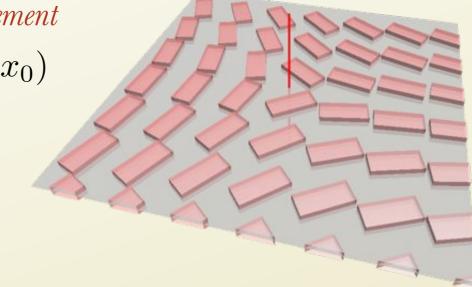
 $(i\boldsymbol{\sigma}_x)(-i\boldsymbol{\sigma}_y)(i\boldsymbol{\sigma}_x)^{-1} = (i\boldsymbol{\sigma}_y)$

where is the defect β ?

 $\beta \in \pi_1(X, x_0)$

initial measurement $\alpha \in \pi_1(X, x_0)$

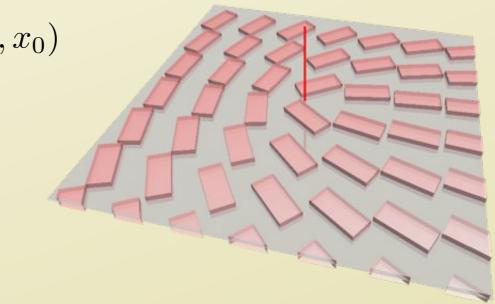




new measurement

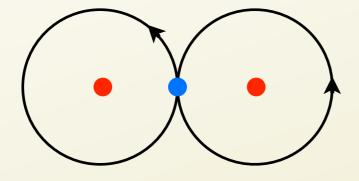
 $\alpha^{\beta} \in \pi_1(X, x_0)$

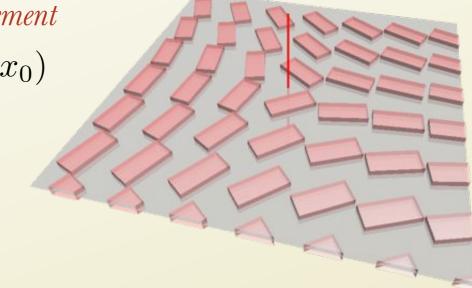
drag one defect around another



 $\beta \in \pi_1(X, x_0)$

initial measurement $\alpha \in \pi_1(X, x_0)$

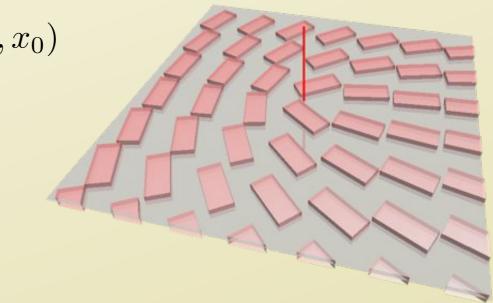


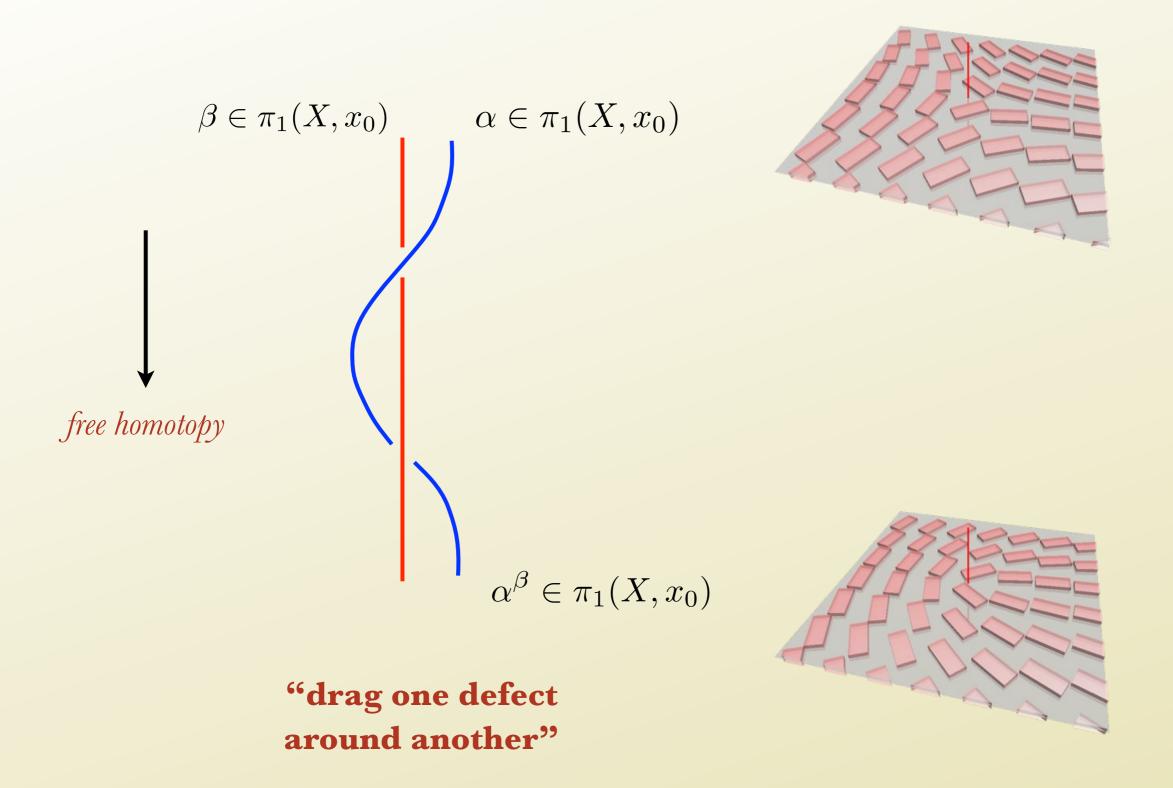


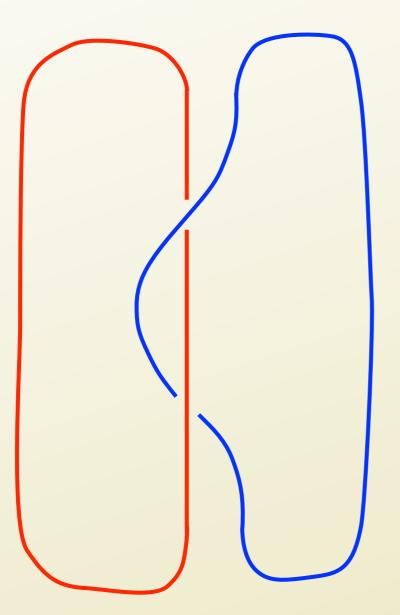
new measurement

 $\alpha^{\beta} \in \pi_1(X, x_0)$

drag one defect around another

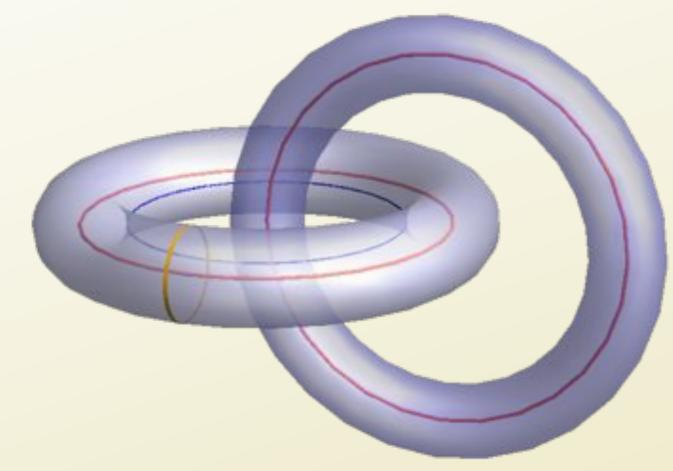






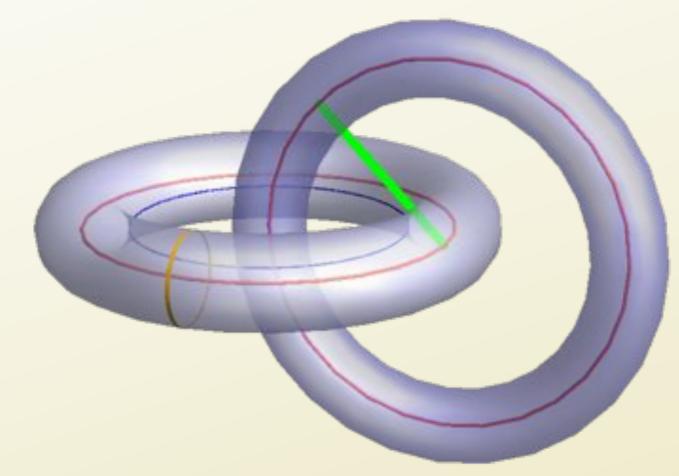
but Randy said: "our defects don't end"

linked loops



orange circle measures $\alpha \in \pi_1(X, x_0)$

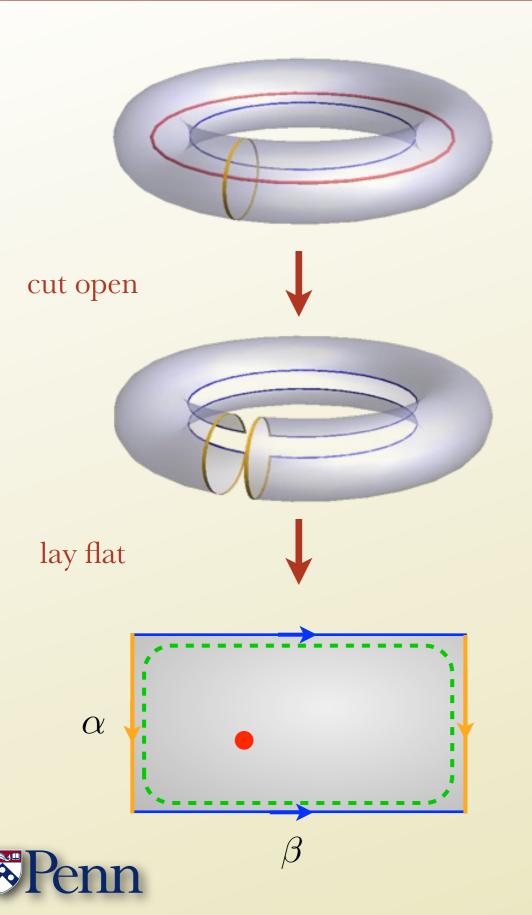
blue circle measures $\beta \in \pi_1(X, x_0)$

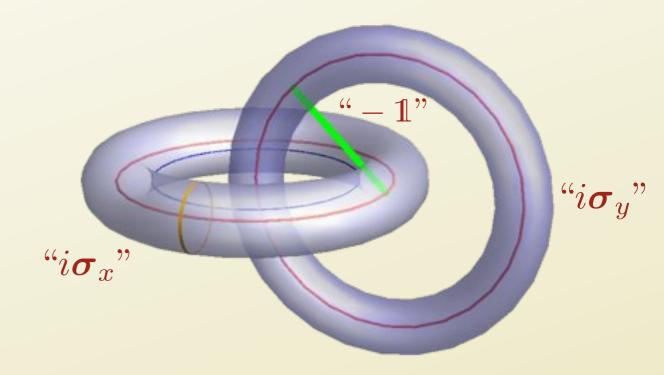


orange circle measures $\alpha \in \pi_1(X, x_0)$

blue circle measures $\beta \in \pi_1(X, x_0)$

two defects collectively define a third



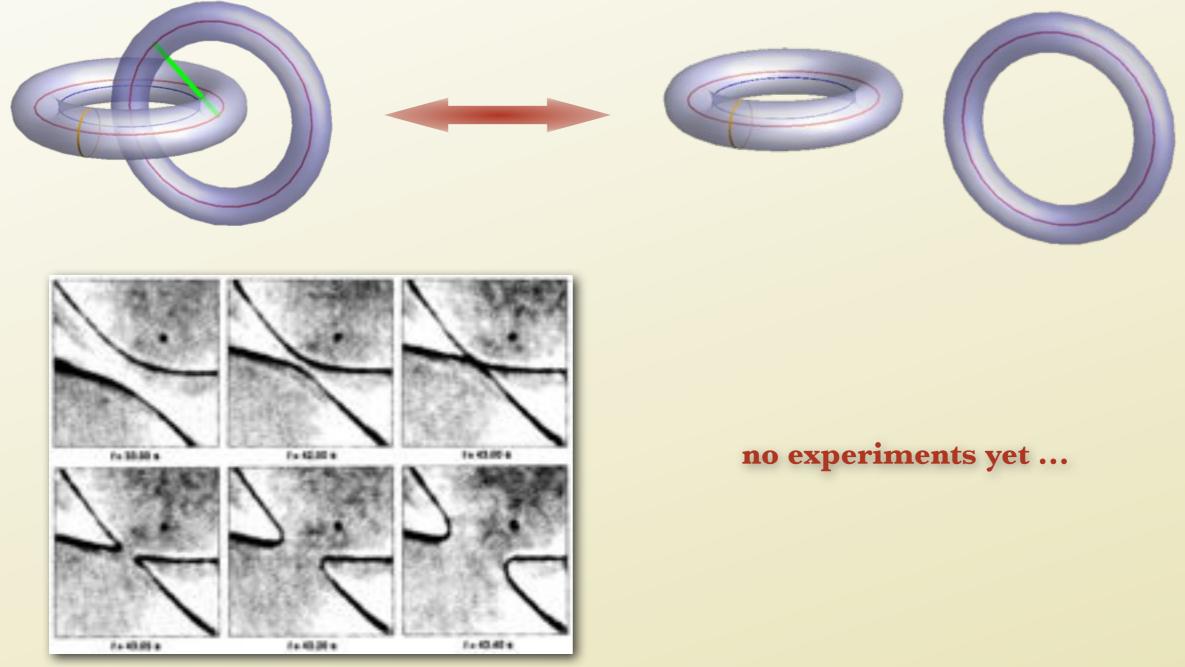


$$[\alpha,\beta] = \alpha\beta\alpha^{-1}\beta^{-1}$$

KLÉMAN J. Phys. France Lett. **38**, 199–202 (1977) POÉNARU & TOULOUSE J. Phys. France **38**, 887–895 (1977)

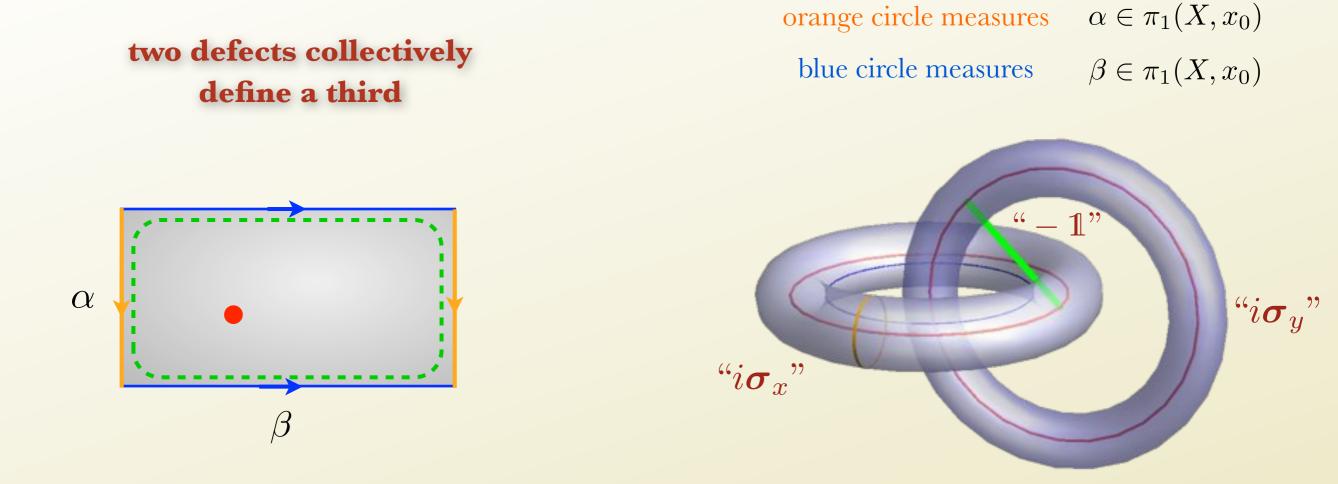
DEFECT CROSSING

when defects cross, sometimes there's a tether



CHUANG, DURRER, TUROK & YURKE Science 251, 1336–1342 (1991)

POÉNARU & TOULOUSE J. Phys. France 38, 887-895 (1977)



Given two defects α , β in the form of linked loops they collectively define a third

 π_1

$$(X, x_0) \times \pi_1(X, x_0) \longrightarrow \pi_1(X, x_0)$$
 Whitehead product

WHITEHEAD Ann. of Math. **42**, 409–428 (1941) KLÉMAN J. Phys. France Lett. **38**, 199–202 (1977) POÉNARU & TOULOUSE J. Phys. France **38**, 887–895 (1977)

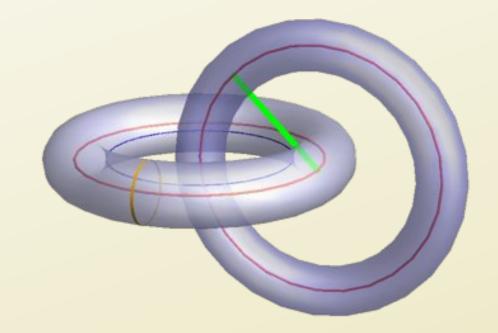
WHITEHEAD PRODUCTS

two defects collectively define a third

$$\pi_p(X, x_0) \times \pi_q(X, x_0) \longrightarrow \pi_{p+q-1}(X, x_0)$$

think of a "p-defect" linking a "q-defect" in \mathbb{R}^{p+q+1} surround the "p-defect" with a $S^p \times S^q$ cut this open along a $S^p \vee S^q$ to give a D^{p+q}

the map on the boundary $\partial D^{p+q} = S^{p+q-1}$ is the Whitehead product



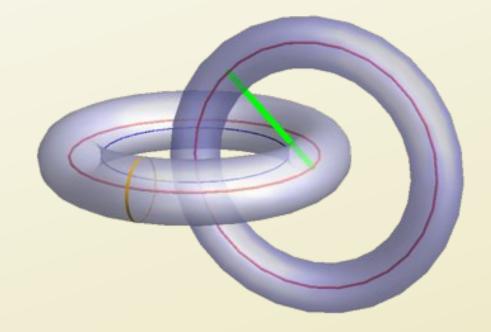
WHITEHEAD PRODUCTS

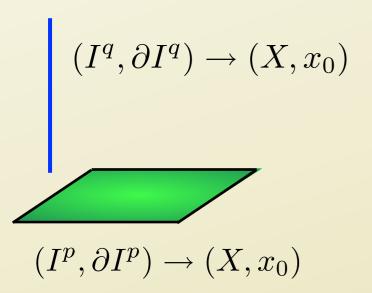
two defects collectively define a third

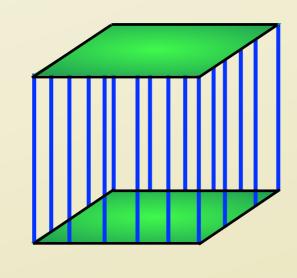
$$\pi_p(X, x_0) \times \pi_q(X, x_0) \longrightarrow \pi_{p+q-1}(X, x_0)$$

think of a "p-defect" linking a "q-defect" in \mathbb{R}^{p+q+1} surround the "p-defect" with a $S^p \times S^q$ cut this open along a $S^p \vee S^q$ to give a D^{p+q}

the map on the boundary $\partial D^{p+q} = S^{p+q-1}$ is the Whitehead product







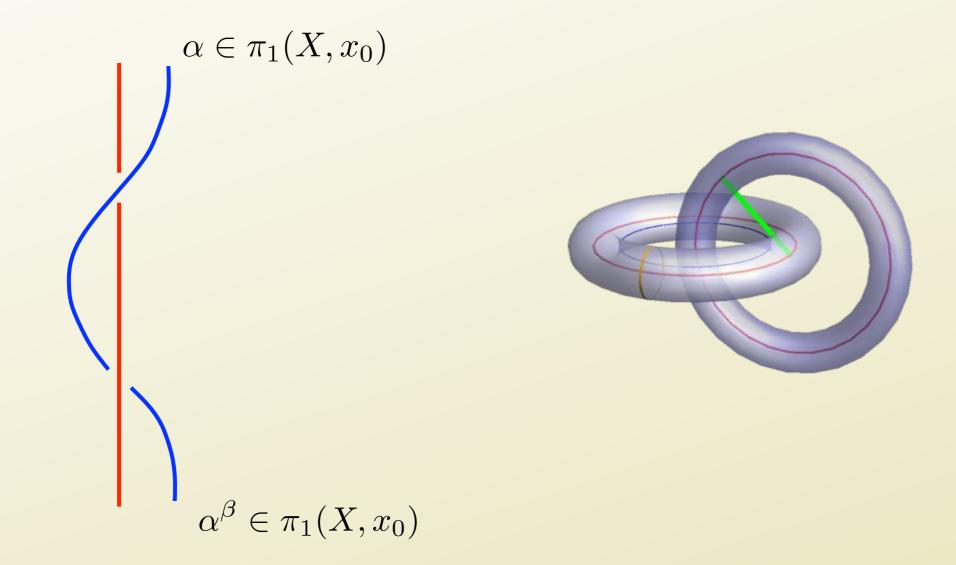
 $\partial I^{p+q} \to (X, x_0)$

next simplest p = 2, q = 1

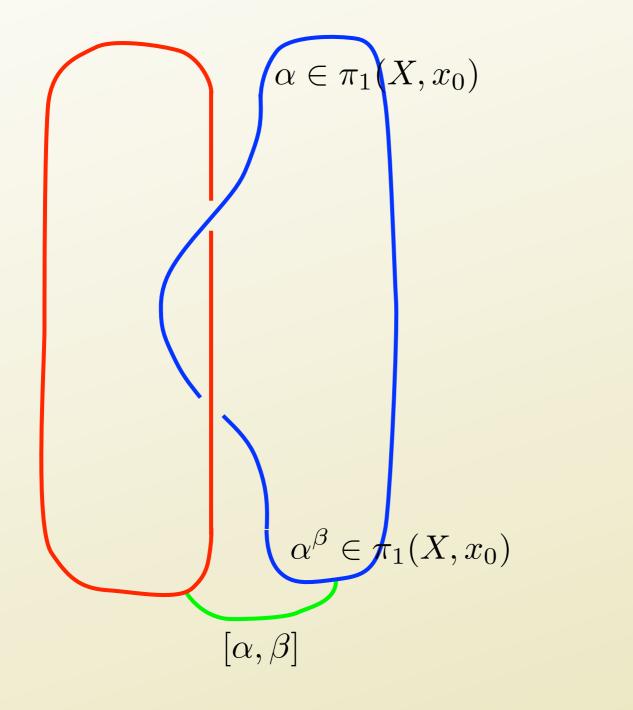
simplest case p = q = 1

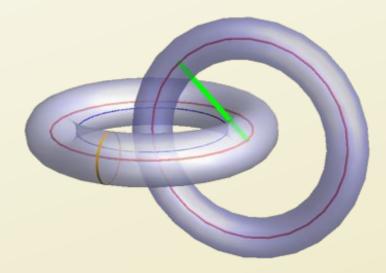
WHITEHEAD Ann. of Math. 42, 409–428 (1941)

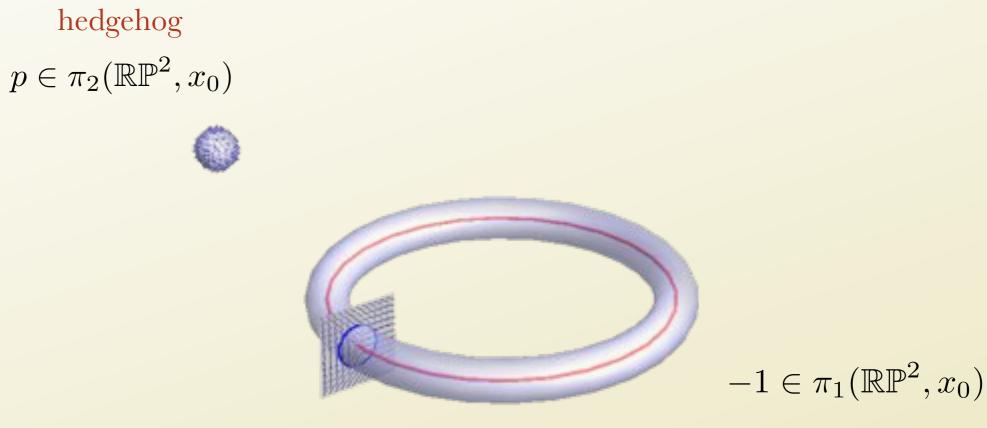
REMEMBER HOW WE GOT HERE



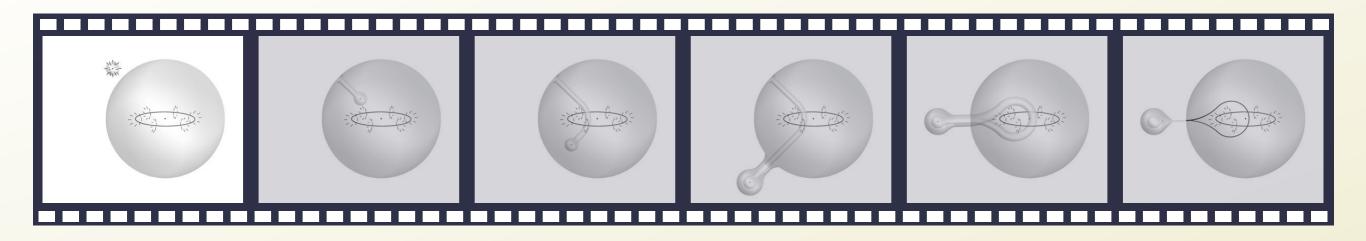
REMEMBER HOW WE GOT HERE

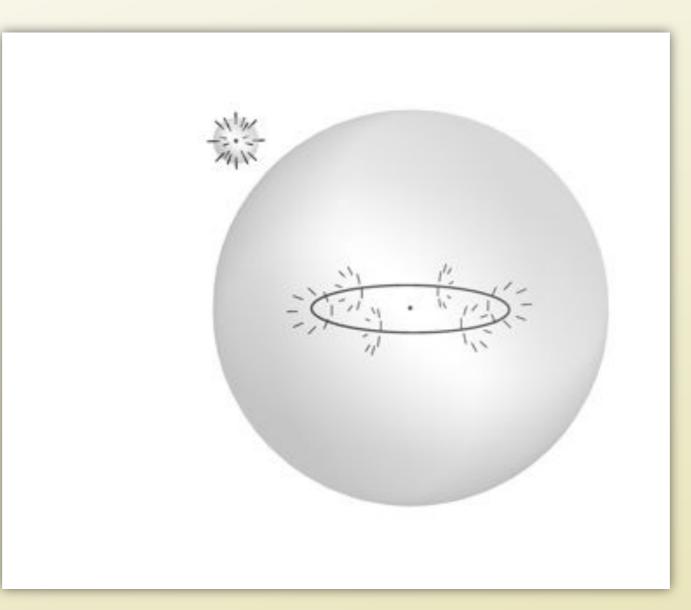


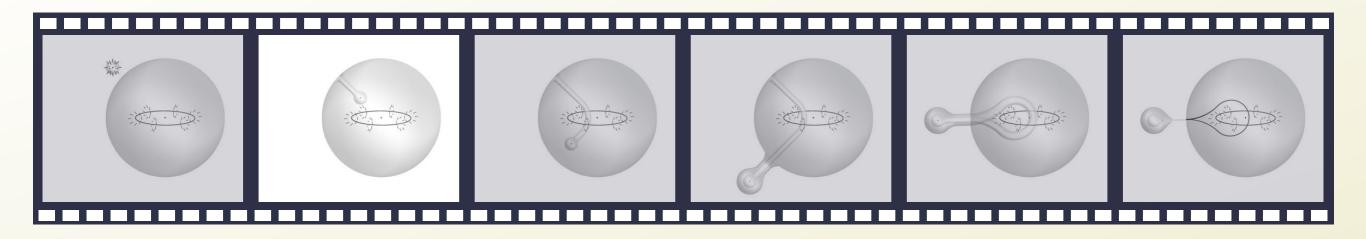


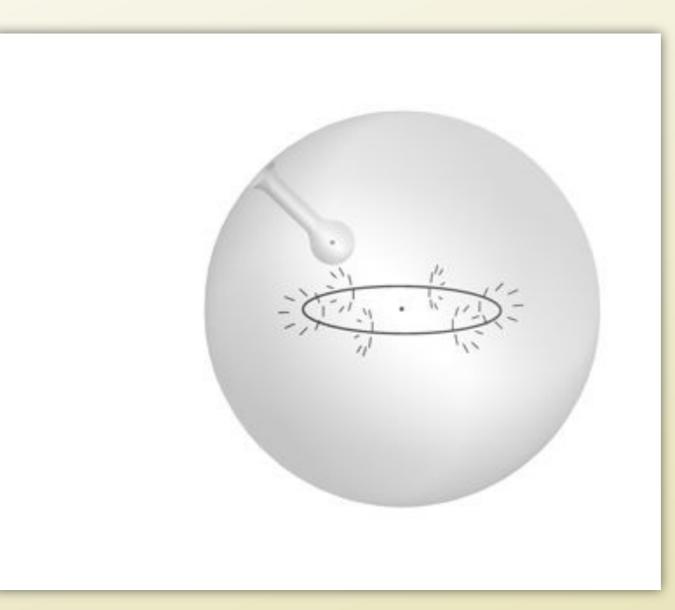


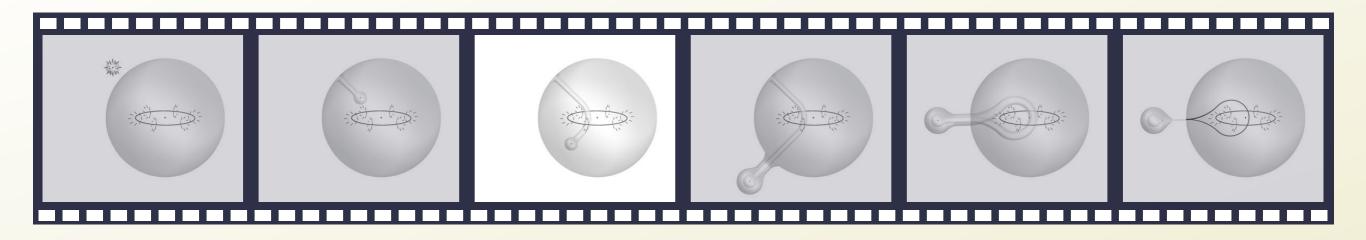
disclination loop

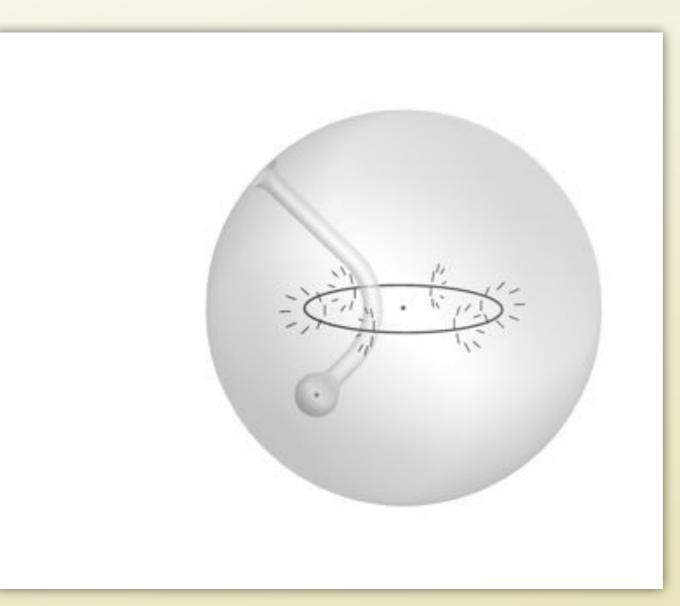


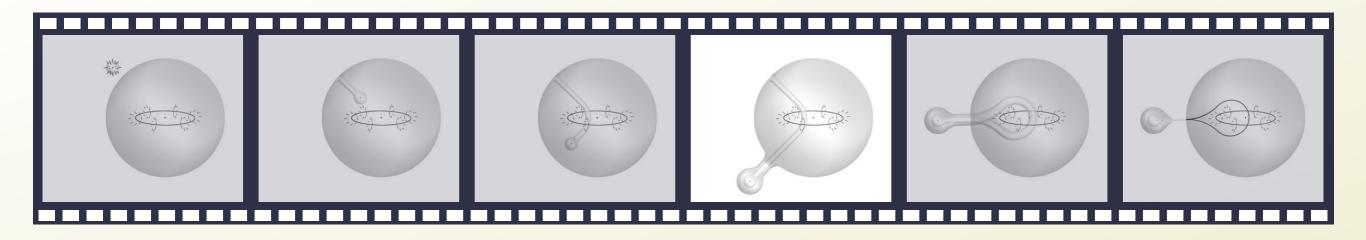


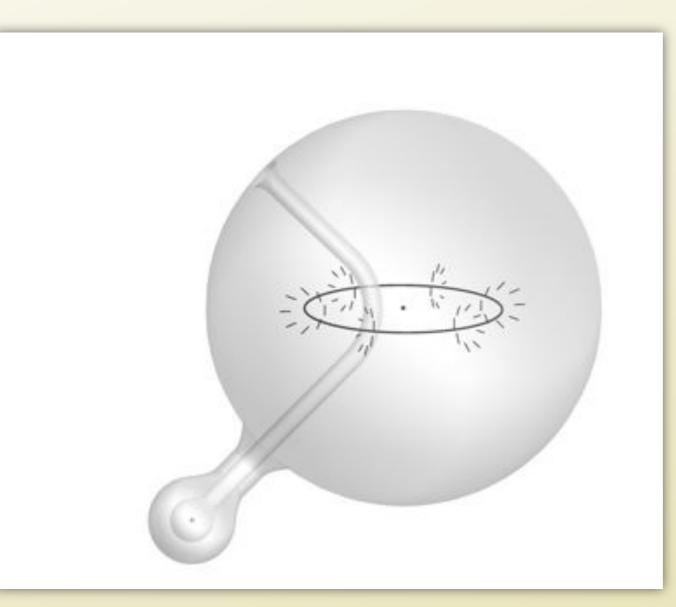


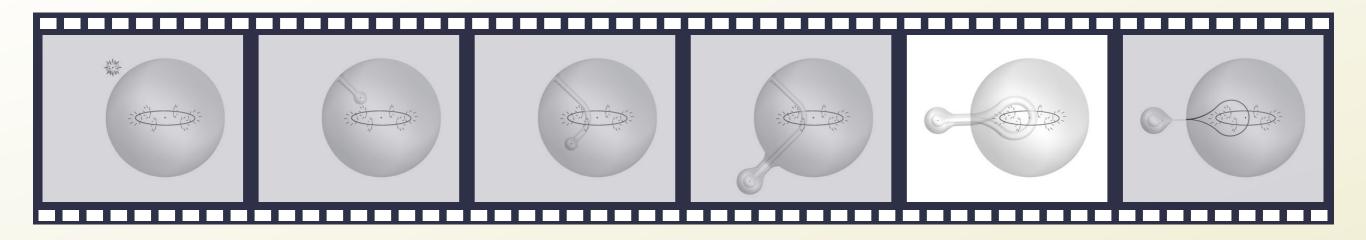


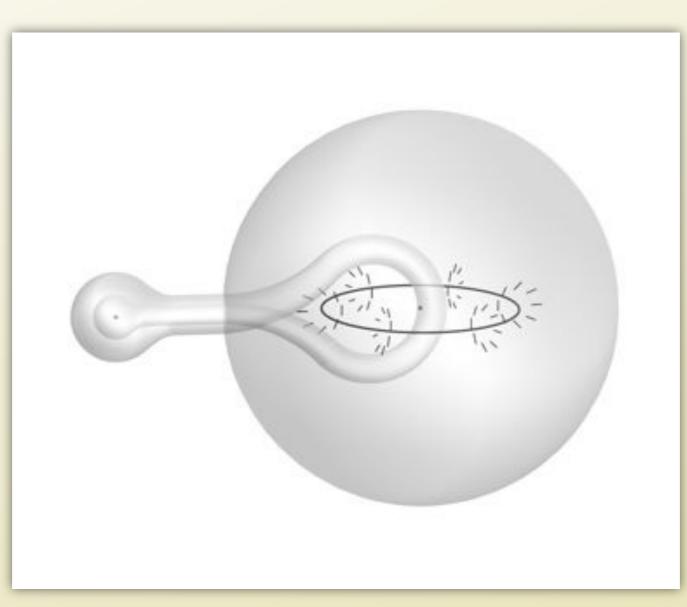




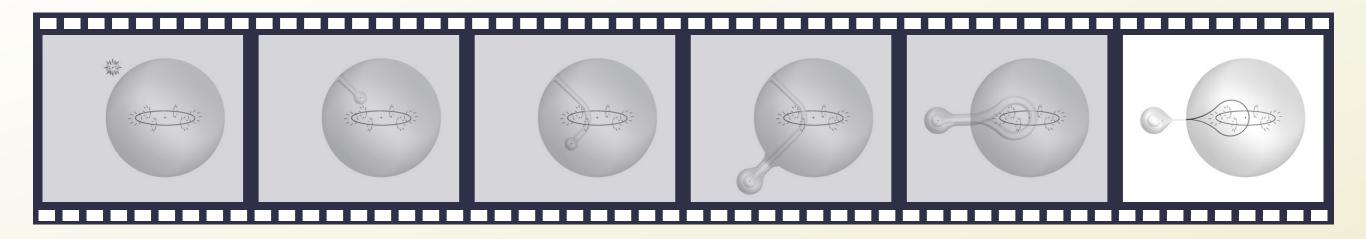


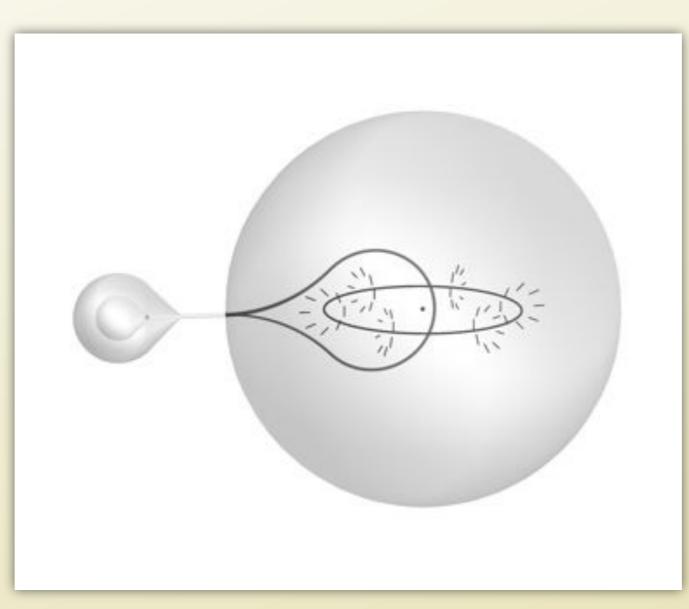






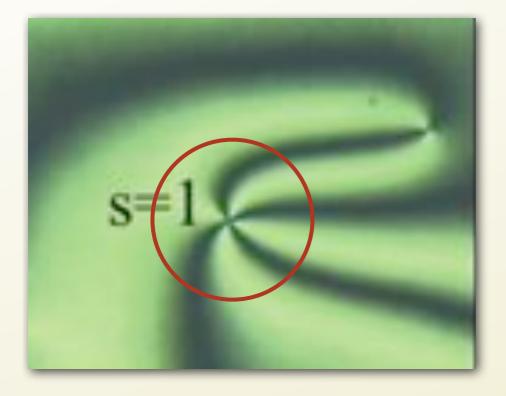
MOVING A HEDGEHOG AROUND A DISCLINATION





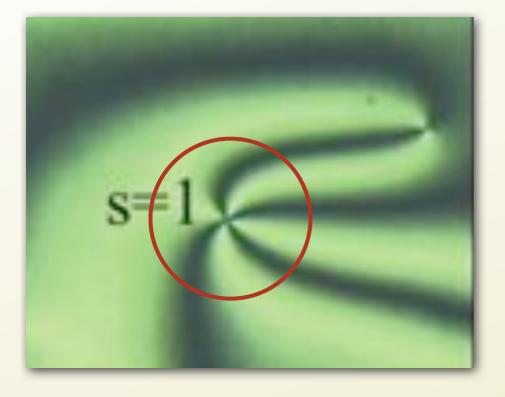
images: Sabetta Matsumoto

TEXTURES

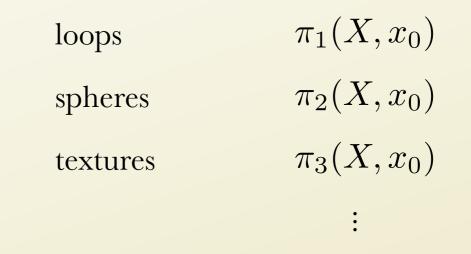


so far we have thought about:

TEXTURES



so far we have thought about:



famous result:

$$\pi_3(\mathbb{RP}^2, x_0) = \mathbb{Z}$$

generated by the Hopf fibration

NO TEXTURES FOR NEMATICS

Derrick's theorem

suppose $\theta(x) = \Theta(x)$ satisfies Euler-Lagrange for the energy

$$E = \int d^d x \left[\frac{1}{2} \left(\nabla \theta \right)^2 + U(\theta) \right] = I_1 + I_2$$

consider a scaled version: $\theta_{\lambda}(x) = \Theta(\lambda x)$

$$E_{\lambda} = \lambda^{2-d} I_1 + \lambda^{-d} I_2$$

minimise over λ

$$\left. \frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda} \right|_{\lambda=1} = (2-d)I_1 - dI_2 = 0$$

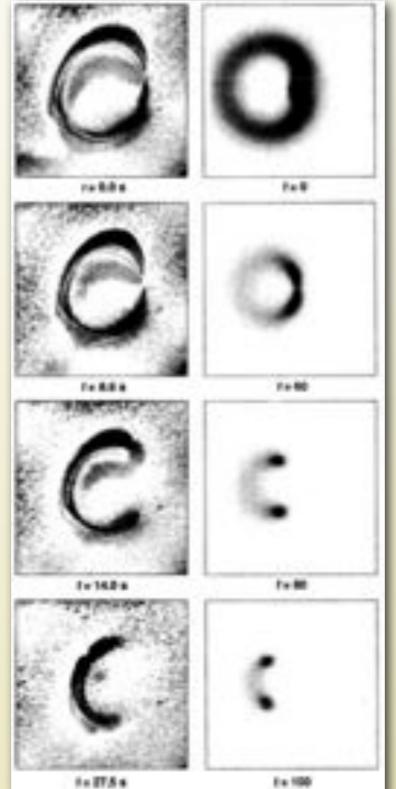
$$\frac{\mathrm{d}^2 E_\lambda}{\mathrm{d}\lambda^2}\Big|_{\lambda=1} = (2-d)I_1$$

textures are unstable

DERRICK J. Math. Phys. 5, 1252–1254 (1964)

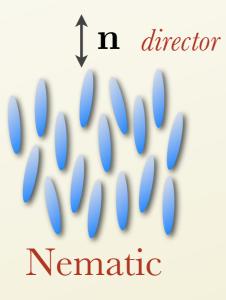
NO TEXTURES FOR NEMATICS

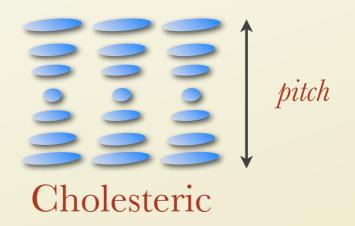
Derrick's theorem

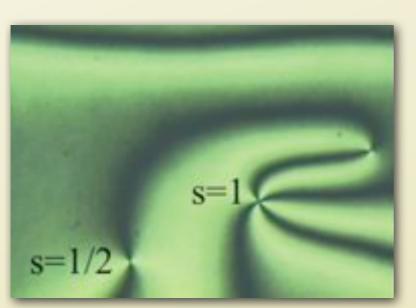


DERRICK J. Math. Phys. 5, 1252–1254 (1964) CHUANG, DURRER, TUROK & YURKE Science 251, 1336–1342 (1991)

there's no length in this problem because there's no length in this problem







courtesy of Ingo Dierking

Photo by Michi Nakata

double twist

double twist

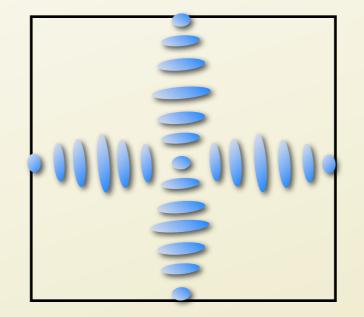
double twist



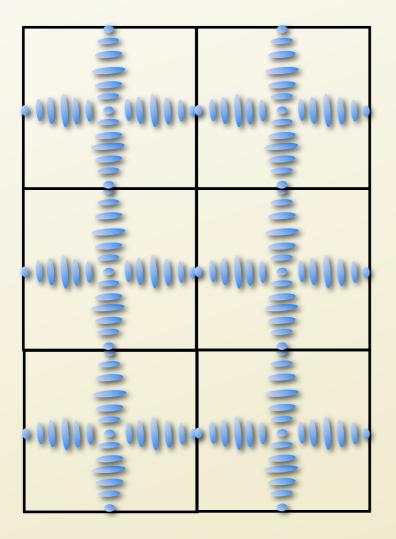
double twist



double twist

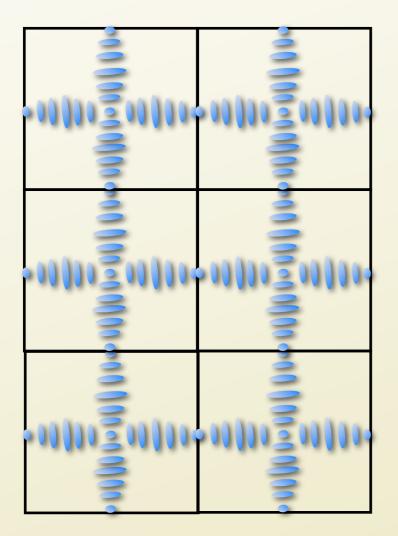


double twist



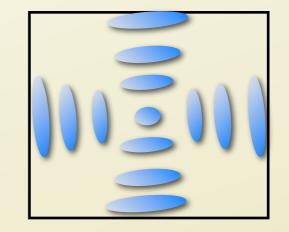
doubly periodic texture

double twist

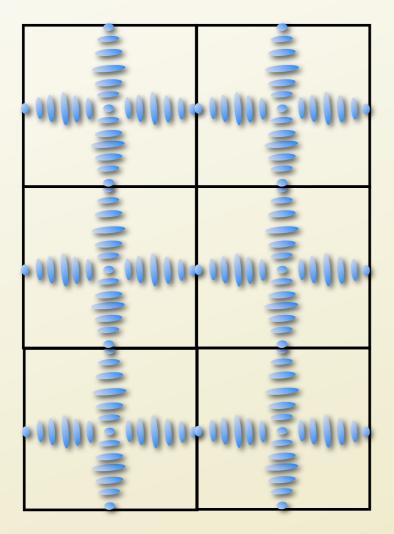


doubly periodic texture

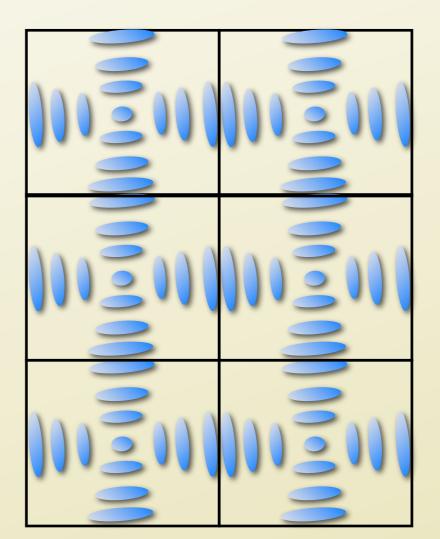
what about this?



double twist

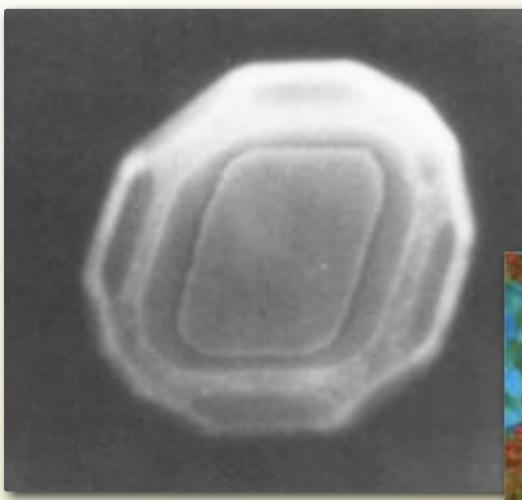


doubly periodic texture

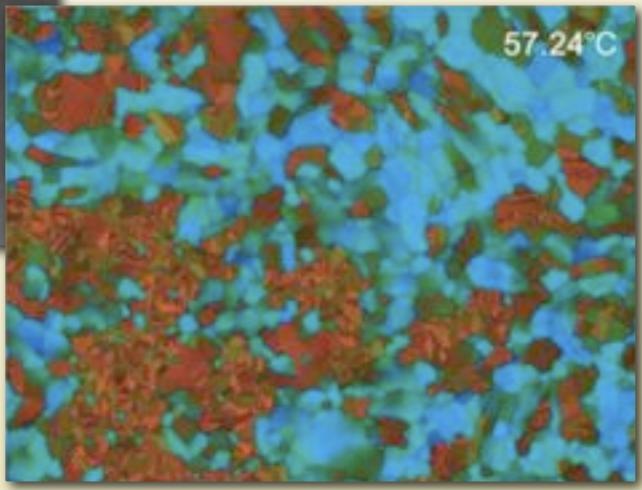


doubly periodic texture with defects

BLUE PHASES

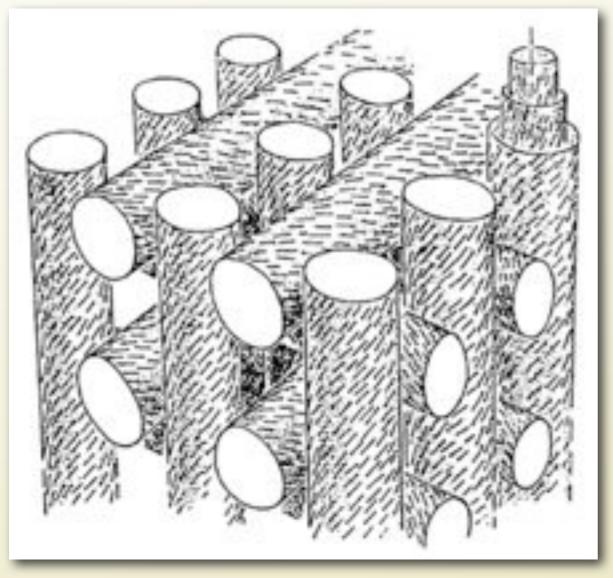


Grow as facetted monocrystals Bragg scatter in the visible range *indexed by cubic space groups*

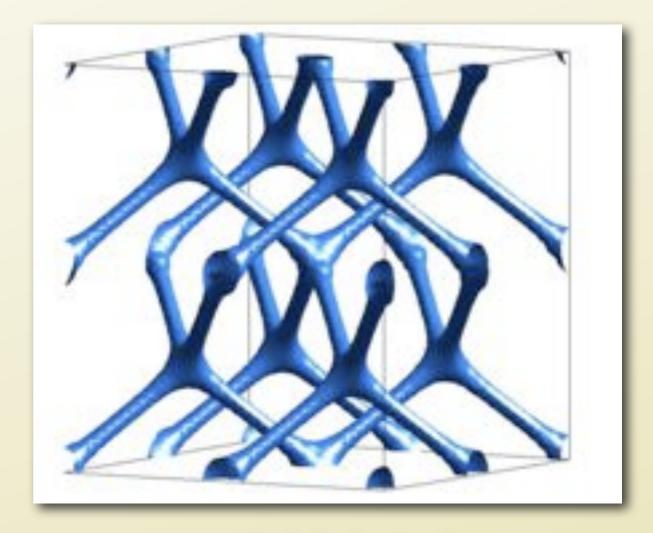


BLUE PHASES

triply periodic stacking of double twist cylinders



BOULIGAND, LAGERWALL, STEBLER Comptes rendus-Chimie 11, 212–220 (2008)



network of disclination lines

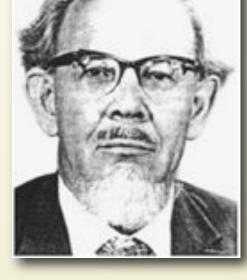
"They are totally useless, I think, except for one important intellectual use, that of providing tangible examples of topological oddities, and so helping to bring topology into the public domain of science, from being the private preserve of a few abstract mathematicians and particle theorists."

Sir Charles Frank, 1983

"They are totally useless, I think, except for one important intellectual use, that of providing tangible examples of topological oddities, and so helping to bring topology into the public domain of science, from being the private preserve of a few abstract mathematicians and particle theorists."

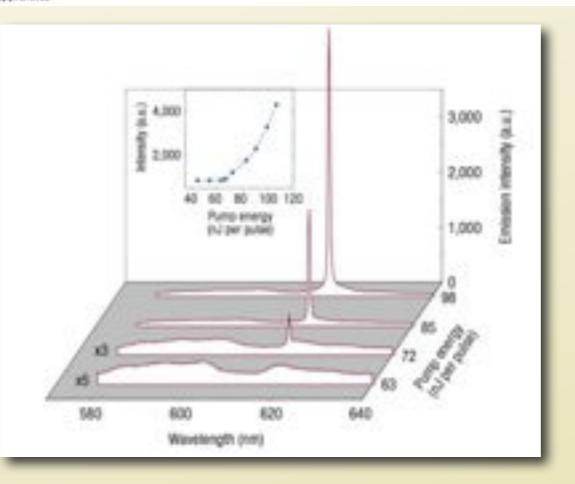
Sir Charles Frank, 1983

LETTERS



Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II

WENYI CAO¹, ANTONIO MUÑOZ², PETER PALFFY-MUHORAY*¹ AND BAHMAN TAHERI¹ 'Liquid Crystal Institute. Kent State University. Kent, Ohio 44242, USA 'Dept. de Fisica, Universidad Autonoma Metropolitana, Mexico City 09340, Mexico *e-mail: mpalfty@cpip.kent.edu



"They are totally useless, I think, except for one important intellectual use, that of providing tangible examples of topological oddities, and so helping to bring topology into the public domain of science, from being the private preserve of a few abstract mathematicians and particle theorists."

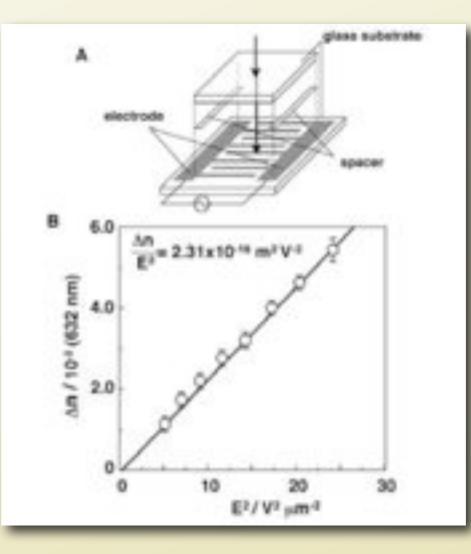
Sir Charles Frank, 1983

Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases**

By Yoshiaki Hisakado, Hirotsugu Kikuchi,* Toshihiko Nagamura, and Tisato Kajiyama

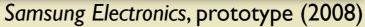
Adv. Mater. 17, 96 (2005).

"These achievements can contribute to providing fast-response flat-panel liquidcrystal displays that need not undergo a rubbing process during manufacture."



"They are totally useless, I think, except for one important intellectual use, that of providing tangible examples of topological oddities, and so helping to bring topology into the public domain of science, from being the private preserve of a few abstract mathematicians and particle theorists."

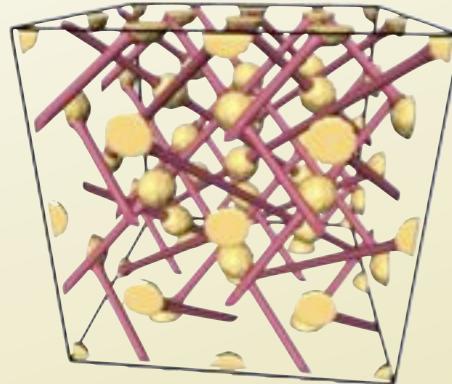
Sir Charles Frank, 1983

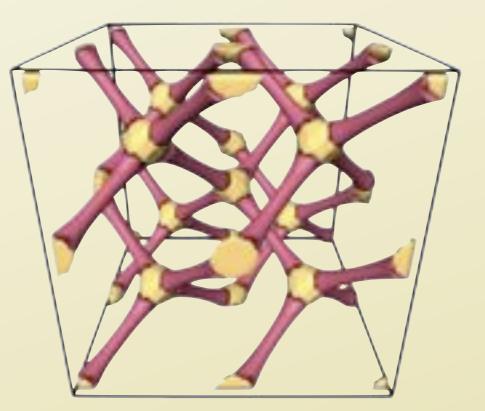


"They are totally useless, I think, except for one important intellectual use, that of providing tangible examples of topological oddities, and so helping to bring topology into the public domain of science, from being the private preserve of a few abstract mathematicians and particle theorists."

Sir Charles Frank, 1983

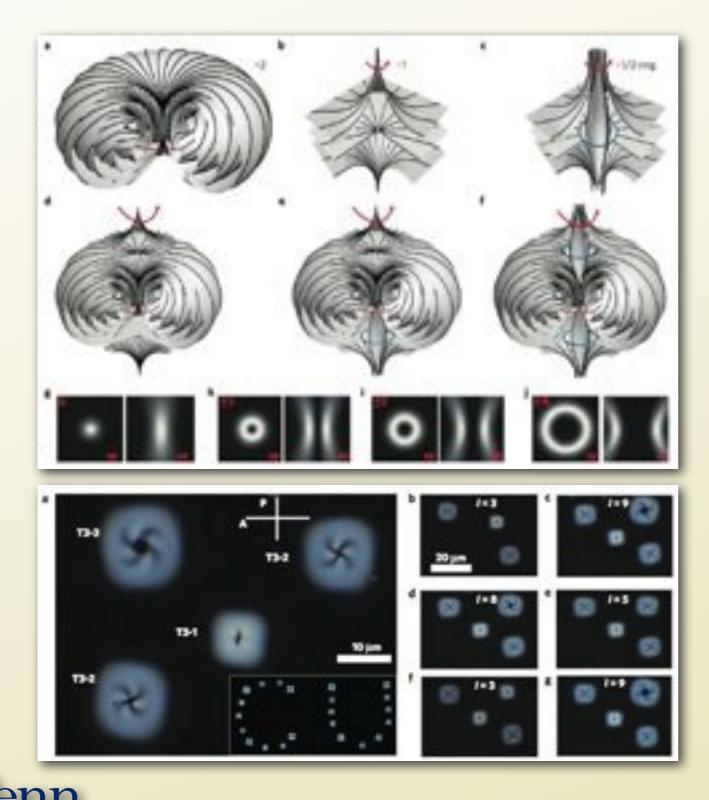
Miha Ravnika, Gareth P. Alexander, Julia M. Yeomans, and Slobodan Žumera,d,1





INDUCING TOPOLOGY WITH CHOLESTERICS

torons

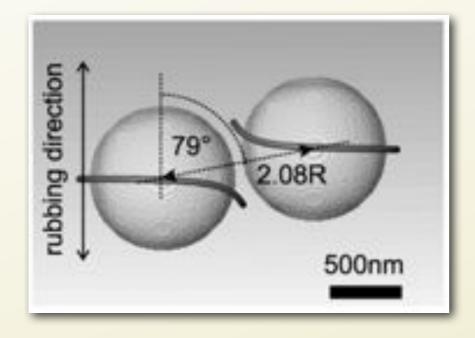


non-trivial localised textures in thin cell cholesterics induced by laser beams

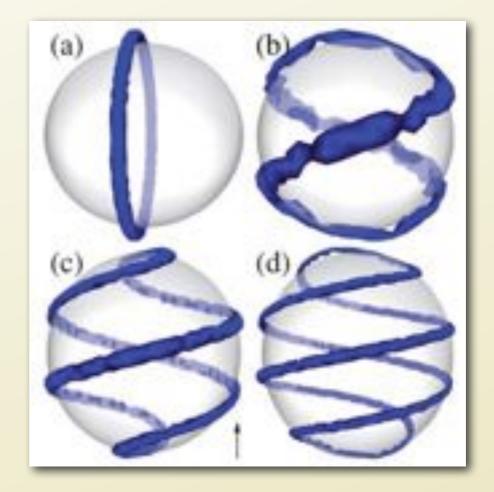
SMALYUKH ET AL Nat. Mater. 9, 1–7 (2009)

INDUCING TOPOLOGY WITH CHOLESTERICS

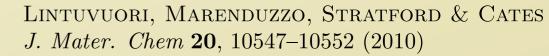
colloids in cholesterics



energetically favourable *not* to entangle only *two* "rewiring sites"

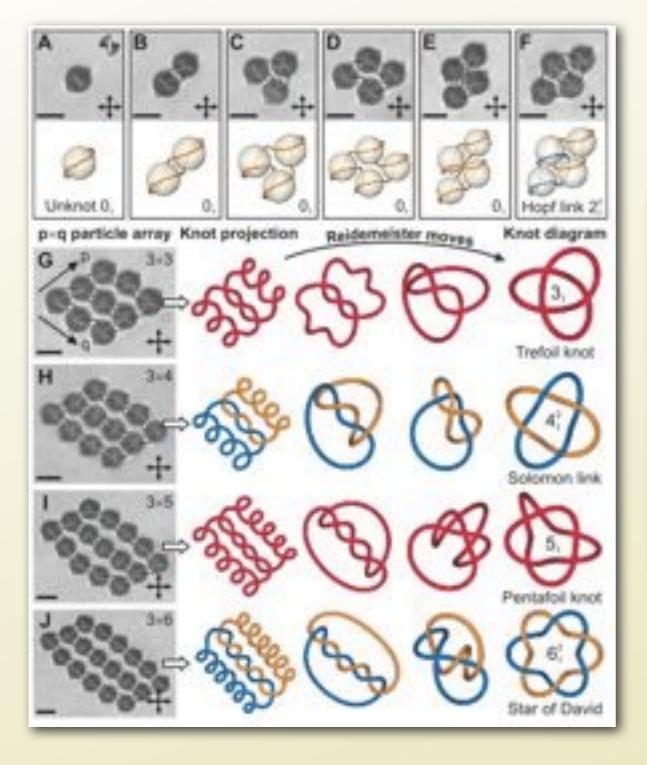


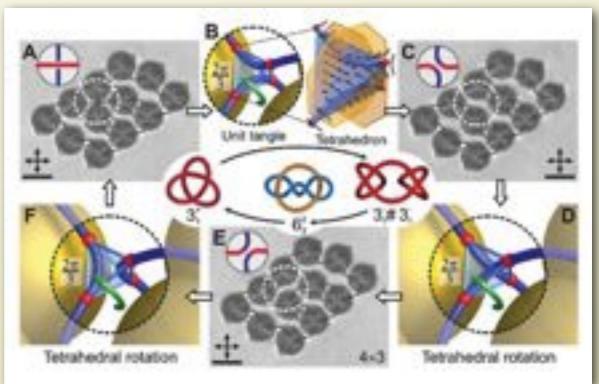
energetically favourable to entangle number of "rewiring sites" grows with the ratio of the colloid size to the pitch *many* more configurations possible



INDUCING TOPOLOGY WITH CHOLESTERICS

colloids in cholesterics



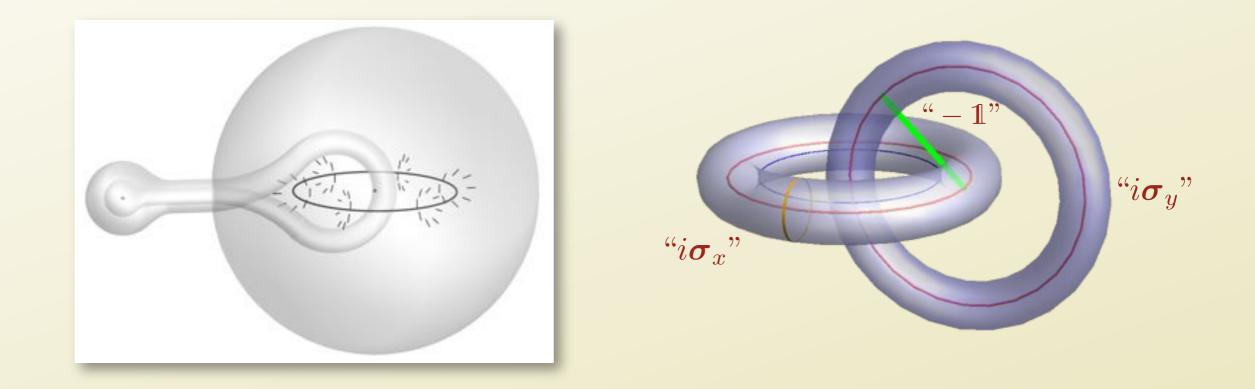


every knot up to crossing number seven!

TKALEC ET AL *Science* **333**, 62–65 (2011)

THANKS!

BRYAN CHEN, ELISABETTA MATSUMOTO, RANDY KAMIEN



ACKNOWLEDGEMENTS We are grateful to Fred Cohen, Simon Čopar, Tom Lubensky, Carl Modes, Miha Ravnik and Jeffrey Teo for insightful discussions