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Preface

The core topic of the book is this cluster of methods, lying at the intersection
of extremal combinatorics, probability theory, and mathematical logic, which
allow us to approach finite counting problems by using the tools of probability
in a genuinely infinite setting.

A motivating example is Szemerédi’s Theorem:

Theorem (Szemerédi’s Theorem). For every ε > 0 and every k, there is an
N so that whenever n ≥ N and A ⊆ {1, 2, . . . , n} is a set with |A|n ≥ ε, there
is an a ∈ A and a d > 0 such that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d ∈ A.

The set {a, a+ d, a+ 2d, . . . , a+ (k − 1)d} is an arithmetic progression
of length k, so this theorem says that whenever A is a “dense set”—a set
which contains at least ε of the points in the interval {1, 2, . . . , n}—A must
contain an arithmetic progression of length k.

This looks like a statement about counting finite sets of numbers, but
most of the work in this book will be about developing probability theory
for certain kinds of infinite graphs and hypergraphs∗.

We will present a proof of this theorem, eventually: the case when
k = 3 will be proven in Chapter 6, and the full result will wait until
Chapter 8. Instead of working directly towards this proof, the book develops
the machinery needed in a general way and takes many digressions to discuss
related ideas.

There has been a great deal of work in this area in the last twenty years,
and only a small fragment is covered here; the remarks at the end of each
chapter give a very non-comprehensive list of further developments and
applications in the literature.

∗This is far from the only way to prove Szemerédi’s Theorem, which has a rather large
number of proofs—e.g. [13, 65, 66, 71, 75, 76, 80, 87, 121, 134, 145, 149, 150, 165], though
these proofs are far from completely distinct.
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The proximate motivation for this book was a conversation with a co-
author. I told him that the answer to a technical question he’d asked was
“obvious” and outlined an argument. When he asked where this was written
down, I admitted that the proof was scattered across three or four different
papers, with perhaps one or two others needed to translate between the
different formalisms being used so the ideas from different papers could be
combined.

Nonetheless, I insisted, the result was “obvious”—if you just happened
to already be thinking about the problem in precisely the right way.

My guiding light while writing this book has been to try to make obvious
the things that I think should be obvious: to attempt to illustrate the way my
preferred formalism falls naturally out of the questions we are investigating,
and to illustrate why this way of thinking about limits of sequences of large
graphs gives us the insight needed to understand them.

Books in mathematics have to choose a position somewhere between
serving as an introduction to a topic and serving as a reference. There is
some tension between these roles—should I state the most general form of
a theorem, or the more concrete version needed? Should I give the most
elegant proof, or the most convenient one at the moment?

I wrote this book thinking of it as an introduction. I have tolerated
some repetition of proofs, proving the special case when it is needed and
waiting to state the general result later, even when it means repeating the
proof. I (mostly) resisted the temptation to comprehensively list corollaries
and applications from the literature; instead, many chapters end with stray
tidbits I like and references to the literature where those directions are further
explored.

Acknowledgements: This book benefitted immeasurably from many
conversations with colleagues too numerous to mention.

I am grateful to my Math 571 students—Koby Frank, Stephen Gillen,
Perry Hart, Mary-Frances Jagod, Alec Korman, Martin Rubin, Anschel
Schaffer-Cohen, Owain West, and Yuqing Zhao—for many helpful suggestions
and comments made while suffering through a course based on an early draft.

This book would not have been possible without the patient support
of the NSF, through grants DMS-1600263 and DMS-2054379, as well the
American Institute of Mathematics and the Institut Henri Poincaré.

Finally, I am grateful to my family for their support. My husband, Jon,
helped remind me so many times that this was worth finishing even when
the amount left to do seemed unsurmountable. This book is dedicated to
my son, Solomon, who was willing (occasionally) to sleep quietly in my lap
while wrote a section or two.



Chapter 1

Random and Quasi-random
Graphs

We will begin with the notion of a randomly generated finite graph. We are
interested in how, faced with a particular graph, we can decide whether or
not it is a “typical” example of a randomly generated graph. This will lead
us to distill the notion of a quasi-random graph and investigate the ways in
which any quasi-random graph has many of the properties we would expect,
with high probability, of a graph we generated randomly.

1.1 Random Finite Graphs

We start by investigating what it means for a graph to be random.

Definition 1.1. When V is a set, we write
(V
k

)
for the set of subsets of V of

size exactly k.
When V is a non-empty set, a graph on V is a set E ⊆ (V2). The elements

of E are the edges of the graph and the elements of V are the vertices.

This definition excludes the possibility of “loops” (edges between a vertex
and itself): by definition, an edge is a pair of distinct vertices. Similarly, this
definition excludes directed graphs—E is a set of unordered pairs, so there
is no difference between saying {v, w} ∈ E and {w, v} ∈ E. We also prohibit
a graph with no vertices at all (though we allow graphs with no edges).

We frequently write “G = (V,E) is a graph” to mean that V is the set
of vertices of a graph and E ⊆ (V

2
)
is the set of edges, but we will also

sometimes refer to E by itself as a graph with the set of vertices implied.

9



10 CHAPTER 1. RANDOM AND QUASI-RANDOM GRAPHS

When V is a finite set—usually a large finite set—we want to consider
a random graph on V . Informally speaking, this is the graph we obtain by
flipping a fair coin for each pair {v, w} ∈ (V2) and placing an edge between v
and w if the coin comes up heads.

Since we will deal with this graph repeatedly, we give it a name: we will
call this random graph R1/2, or R1/2(V ) if we wish to be explicit about
the set of vertices V . We will abuse notation to write R1/2 for both the
graph and the set of edges. Note that we follow the convention that random
variables are written in bold.

One of the basic questions we’ll be concerned with is which graphs “look
like” random graphs. Of course, a random graph could look like anything—a
random graph on 100 vertices could end up having no edges at all if every
coin comes up tails. With a probability 2−4950, this isn’t likely, however. So
we want to ask which properties a random graph will probably have.

A good place to start is observing that it’s unlikely for a random graph
to have no edges at all. More specifically, there are

(|V |
2
)
pairs which might

be edges, and a random graph ought to have just about half of them. We
make this concrete by showing that, when |V | is large, R1/2 is very likely to
have close to half the edges.

Theorem 1.2. For every ε > 0 and every δ > 0, whenever V is sufficiently
large,

P
(∣∣∣∣∣|R1/2| −

1
2

(
|V |
2

)∣∣∣∣∣ < ε

(
|V |
2

))
≥ (1− δ).

It will be more natural for us to think in terms of “densities” rather than
quantities: rather than looking at the size of R1/2, we will look at |R1/2|

(|V |2 ) ,
which represents the fraction of “possible edges” which are present in R1/2.
So we will show the equivalent statement

P
(∣∣∣∣∣ |R1/2|(|V |

2
) − 1

2

∣∣∣∣∣ < ε

)
≥ 1− δ.

Proof. The idea is that each edge is placed in R1/2 independently, so |R1/2|
is a sum of independent random variables: for each {v, w}, let 1{v,w} be the
random variable which is 1 if {v, w} ∈ R1/2 and 0 if {v, w} 6∈ R1/2. Then
|R1/2| =

∑
{v,w}∈(V2) 1{v,w}. Since each of these random variables 1{v,w} is

chosen independently, it is very likely that close to half of them are 1 while
the other half are 0.

Slightly more formally, what 1{v,w} means is that we first pick a particular
pair of vertices, {v, w}, and then generate the set of edges R1/2 by flipping
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coins, and 1{v,w} is 1 in the event that the potential edge we picked in
advance actually turns up in our final graph. In particular, 1{v,w} is simply
the result of a single coin flip, so its expected value, E(1{v,w}), is 1/2, since
half the time the coin comes up heads and 1{v,w} = 1, and the other half of
the time the coin comes up tails and 1{v,w} = 0.

The expected value of |R1/2|
(|V |2 ) is also 1/2: by the the linearity of expected

value

E(
|R1/2|(|V |

2
) ) = E

(∑
{v,w}∈(V2) 1{v,w}(|V |

2
) )

= 1(|V |
2
) ∑
{v,w}∈(V2)

E(1{v,w})

= 1(|V |
2
) ∑
{v,w}∈(V2)

1
2

= 1
2 .

That is, before we actually flip the coins, we expect the average value of
|R1/2|
(|V |2 ) to be 1/2. But we must consider the possibility that we reach this
average because the graphs that have almost all the edges are cancelled out
by graphs with very few edges. What remains is to show that the distribution
is narrow: that most of these graphs have close to the right number of edges.

This should happen because |R1/2|
(|V |2 ) is the sum of a large number of

independent random variables. The Hoeffding inequality covers precisely this
situation.

Theorem (Hoeffding Inequality). If X = 1
k

∑
i≤k Xi where the Xi are

independent random variables such that 0 ≤ Xi ≤ 1 always holds then

P(|X− E(X)| ≥ ε) ≤ 2e−2kε2 .

We take X to be the random variable |R1/2|
(|V |2 ) , so the Hoeffding inequality

says that

P
(∣∣∣∣∣ |R1/2|(|V |

2
) − 1

2

∣∣∣∣∣ ≥ ε
)
≤ 2e−2(|V |2 )ε2 .

So by choosing |V | sufficiently large (on the order of −
√

ln δ/ε), we can make
the bound on the right smaller than δ.
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Of course, this property—having roughly half the possible edges—is not
unique to random graphs: it is not difficult to produce examples which
have the same number of edges as a random graph, but are quite clearly
non-random.

Example 1.3. The complete bipartite graph, Kn,n, is the graph (V ∪W,E)
where |V | = |W | = n, V and W are disjoint sets, and E consists of all pairs
of vertices between V and W . Then |E| = n2 while 1

2
(|V ∪W |

2
)

= 1
2

2n(2n−1)
2 =

n2 − n
2 .

Figure 1.1: K5,5

In this example, |E| is not quite identical to half
the possible edges, but the error—n/2—is small relative(|V ∪W |

2
)
. Specifically, for any ε > 0, when n is sufficiently

large we have n/2
(|V ∪W |2 ) < ε, so the error is within the

margins given by the preceding theorem. (We could
eliminate this error entirely by removing n/2 edges—
say, choosing a single vertex in V and removing half its
edges.)

It seems clear that generating a graph randomly
would be very unlikely to produce a complete bipartite
graph. But we would like to prove this by identifying
some property that random graphs are likely to have
but which Kn,n does not.

One observation is that while Kn,n has the “correct”
number of edges, it has no triangles—there are no triples

{v0, v1, v2} ∈ V ∪W with all three edges (v0, v1), (v0, v2), and (v1, v2) present
in Kn,n.

This behavior seems non-random, and we will now set out to prove that
it is indeed extremely improbable in a random graph.

1.2 Subgraph Density

First, we must identify how many triangles a random graph should have. It
will not be much more complicated to ask a more general question: if H
is any finite graph, we can ask how many different ways H appears as a
subgraph. More precisely, in keeping with our preference for a probabilistic
perspective, we will ask what fraction of the possible copies of H are actually
present.



1.2. SUBGRAPH DENSITY 13

Definition 1.4. When H = (W,F ) and G = (V,E) are graphs, a copy of
H in G is a function π : W → V such that, for each edge {w,w′} ∈ F ,
{π(w), π(w′)} ∈ E.

A potential copy of H in V is a function π : W → V .
We define tH(G) to be the fraction of potential copies of H which are

actual copies:

tH(G) = |{π : W → V | π is a copy of H in G}|
|V ||W | .

We call tH(G) the subgraph density of H in G.

A potential copy doesn’t really depend on the edges: it’s just a function
mapping the vertices of W to the vertices of V . A potential copy is an actual
copy if every edge of H is mapped to an edge of G.

We think of G being a graph on n vertices where n is large, and H as a
small graph like a triangle. There are two subtleties to note in the definition
of tH(G). To see the first, consider the case where H is a triangle—the graph
we call C3 (a cycle of length 3).

Definition 1.5. C3 is the graph ({0, 1, 2}, ({0,1,2}2
)
)—that is, the triangle

with three vertices and all three edges:

Then a potential copy of C3 is an ordered choice of 3 vertices allowing
repetition∗. That means that any time we have three distinct vertices in
V , we count that as 6 potential triangles, one for each order of the three
vertices.

This doesn’t make much difference in the calculation of tC3(G): since
tC3(G) is a fraction, the factor of 6 appears in both the numerator and the
denominator and therefore cancels out. This also means that the denominator
includes some cases where we choose three vertices but at least two are the
same; we will sometimes call these “degenerate” triangles. However there
aren’t very many of these—there are only O(n2) cases where we have repeated
vertices—so when n is large (say, much larger than 1/ε), these degenerate
triangles will get absorbed into the error terms of our calculations.

The second subtlety is that while we require that edges in W map to
edges in V , we do not require that non-edges get mapped to non-edges: we

∗This is sometimes called counting “labeled triangles”. This come from the view that
we are counting, not just triangles, but specifically three vertices labeled “0”, “1”, or “2”,
and we consider it a different triangle if we choose the same three vertices but with different
labels.
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still consider π to represent a copy of H even if π(W ) contains extra edges.

For instance, suppose G is the graph on 4 vertices arranged like . If H

is the cycle on four vertices, , then by our definition, tH(G) is positive:
we count the copies where π maps the four vertices of H to the four vertices
of G, and the extra edge in G is no obstacle.

This is consistent with the usual definition of a subgraph in graph theory.
The stricter notion, where π(W ) should have exactly the same edges as W ,
is called an induced subgraph, and there is a corresponding variant of tH(G).

Definition 1.6. When H = (W,F ) and G = (V,E) are graphs, an induced
copy of H in V is a possible copy π : W → V such that, for each pair
{w,w′} ∈ (W2 ),

{w,w′} ∈ F if and only if {π(w), π(w′)} ∈ E.

We define tind
H (G) to be the fraction of potential copies of H which are

induced copies:

tind
H (G) = |{π : W → V | π is an induced copy of H in G}|

|V ||W | .

We call tH(G) the induced subgraph density of H in G.

For the triangle these definitions are the same, but as soon as F (
(W

2
)
,

we can have tind
H (G) < tH(G).

We can now set out to show that, with high probability, a random graph
has the “right” number of copies of each small graph. First we need to figure
out what the right number of copies is—that is, what the expected value of
tH(R1/2) is.

Suppose we set out to generate a random graph R1/2(V ) on the set
of vertices V . If H = (W,F ) and we pick in advance a potential copy
π : W → V , we can take 1π to be the random variable which is 1 if π
turns out to be an actual copy of H—that is, if, for each {w,w′} ∈ F ,
{π(w), π(w′)} ∈ R1/2(V ). 1π is 0 if π is not an actual copy of H in R1/2(V ).
As long as π is injective, for each pair {w,w′} ∈ F , there is a 1/2 chance that
{π(w), π(w′)} ends up being put into R1/2(V ) and each edge is determined
independently, so E(1π) = 2−|F |—we flip |F | coins, one for each edge of H,
and 1π is 1 if all these coins come up heads.
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When π is not injective, the issue is messier, but we include this case in
the error term: there are fewer than |W | · |V ||W |−1 non-injective functions
π : W → V . When we divide by |V ||W |, these terms will contribute at most
|W |
|V | to tH(G)—that is, an error term on the order O( 1

|V |).
Since tH(R1/2(V )) = 1

|V ||W |
∑
π 1π, the linearity of expectation says that

E(tH(R1/2(V ))) = 1
|V ||W |

∑
π

E(1π) = 2−|F | +O( 1
|V |).

In particular,
lim
|V |→∞

E(tH(R1/2(V ))) = 2−|F |.

(In the next two chapters we will actually pass to the limit, allowing us to
dispense with error terms entirely.)

Of course, we should not be surprised that we have to worry a little about
the size of V : after all, if W were larger than V , we wouldn’t expect there to
be any copies of H in R1/2(V ). We only expect R1/2(V ) to have the right
number of copies of H when V is much larger than W .

Once again, we must rule out the possibility that this average is the result
of having some cases where the random graph contains too many copies of
H being canceled out by cases where there are too few.

Theorem 1.7. For every ε > 0, every δ > 0, and every finite graph H =
(W,F ), whenever V is sufficiently large,

P
(∣∣∣tH(R1/2)− 2−|F |

∣∣∣ < ε
)
≥ (1− δ).

Proof. The idea is similar to the proof of Theorem 1.2 above: we want to
argue that tH(R1/2) is the sum of a large number of separate events, and
therefore it is likely that the sum comes close to the average. Unfortunately,
the various random variables 1π are no longer independent: if π(H) and
π′(H) share an edge, 1π and 1π′ are correlated.

However the edges are still independent, and each edge only appears in
a small fraction of the potential copies of H. This means that, although
tH(R1/2) is no longer a sum of many independent random variables, tH(R1/2)
is a function of many independent random variables where each individual
random variable (that is, each edge) only has a small impact on the value of
the function. This is precisely the situation to which McDiarmid’s inequality
applies.
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Theorem (McDiarmid’s inequality). Let X1, . . . ,Xk be independent
random variables and let f(x1, . . . , xk) be a function with the following
property: for each i ≤ k there is a ci ≥ 0 such that, for any values
x1, . . . , xi−1, xi+1, . . . , xk and any xi, x′i,∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xk)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk)

∣∣ < ci.

Then

P (|E(f(X1, . . . ,Xk))− f(X1, . . . ,Xk)| ≥ ε) ≤ 2e
− 2ε2∑k

i=1 c
2
i .

The Hoeffding and McDiarmid inequalities belong to a general family
of results in probability theory called concentration inequalities which
describe the way that random variables “concentrate” near their expected
value under suitable assumptions.

The condition∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xk)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk)

∣∣ < ci

says that no individual random variable has a disproportionate impact on
the function: we can change any individual value xi and not change the value
of the function by much.

In this case, our independent random variables are the random variables
1{v,w} for the individual edges, and the function f({1{v,w}}{v,w}∈(V2)) is
tH(R1/2), the density of copies of H in the randomly generated graph. The
difference∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xk)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk)

∣∣ < ci

in the statement of McDiarmid’s inequality is then asking how much tH(R1/2)
can change if a single edge flips from present to absent or vice versa. The
edge {v, w} only matters to those potential copies of H which contain both
vertices.

Starting with an edge {v, w} ∈ (V2), how many potential copies π : W →
V of H contain it? There are |W | · (|W | − 1) ways to pick one vertex from
W to map to v and then one to map to w, and then |V ||W |−2 ways to assign
the remaining |W | − 2 vertices, so there are ≤ |W |2|V ||W |−2 potential copies
containing this edge. (In fact, this is slightly over-counting, because the
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copies where multiple vertices from W get mapped to either v or w get
counted more than once.) So, at worst, flipping the edge {v, w} could mean
losing or gaining |W |2|V ||W |−2 copies of H. This means that the density tH
changes by at most |W |

2|V ||W |−2

|V ||W | = |W |2
|V |2 .

So the values ci we use for McDiarmid’s inequality are each bounded by
|W |2
|V |2 , so

∑k
i=1 c

2
i =

(|V |
2
) |W |4
|V |4 ≤

|W |4
|V |2 .

If V is big enough that
∣∣∣E(tH(R1/2))− 2−|F |

∣∣∣ < ε/2 then McDiarmid’s
inequality says that

P
(∣∣∣2−|F | − tH(R1/2)

∣∣∣ ≥ ε) ≤ P
(∣∣∣E(tH(R1/2))− tH(R1/2)

∣∣∣ ≥ ε/2)
≤ 2e−

ε2
|W |4 |V |

2
.

Once we pick an ε, the value ε2

2|W |4 is fixed, so by choosing V large enough,
we can make this bound as small as we like, and in particular smaller than
δ.

The same ideas apply to tind
H (R1/2); in this case when we fix an individual

potential copy π : W → V , if π is injective then the probability that π
becomes an induced copy is 2−(|W |2 ), irrespective of how many edges H has:
in order for π to be an induced copy, each pair {π(w), π(w′)} has to do
exactly the right thing—become an edge if {w,w′} ∈ F or a non-edge if
{w,w′} 6∈ F—and each pair has a 1/2 chance of doing that. Other than that,
the arguments go through unchanged:

Theorem 1.8. For every ε > 0, every δ > 0, and every finite graph H,
whenever V is sufficiently large,

P
(∣∣∣∣tind

H (R1/2)− 2−(|W |2 )
∣∣∣∣ < ε

)
≥ (1− δ).

In particular, we can now conclude that it is very unlikely for a randomly
generated graph to look like the bipartite graph Kn,n: in a random graph,
about 1

8 of the potential triangles will almost certainly be actual triangles,
while in Kn,n none of them will be.

However it turns out that there are other, more complicated graphs,
which do a better job of imitating a random graph: they have 1/2 the edges
and also have 1

8 of the potential triangles. Before building these, however, it
will be useful to develop some tools for calculating tH(G).
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1.3 tH(G) as an Integral
It will be helpful to introduce a measure-theoretic notation for counting
things like subgraph densities.

Definition 1.9. Let V be a finite set of vertices. For each k, we write µk
for the counting measure on V k given by

µk(S) = |S|
|V |k

for every S ⊆ V k.

For example, the set of triples (v0, v1, v2) ∈ V 3 which are triangles in E
is a set, and tC3(G) is precisely the measure of this set under µ3.

Note that we are counting ordered pairs here—in particular, strictly
speaking E is not a subset of V 2 (the set of ordered pairs) because E is a subset
of
(V

2
)
(the set of unordered pairs). However there is a closely related set of

ordered pairs—{(v, w) | {v, w} ∈ E}—and |{(v, w) | {v, w} ∈ E}| = 2|E|, so
µ2({(v, w) | {v, w} ∈ E}) is close to |E|

|(V2)| (but slightly smaller, because of
the presence of repetitive ordered pairs like (v, v) in the denominator |V 2|).

It will be convenient to identify tH(G) with an integral.

Definition 1.10. When E is a graph on V , χE : V 2 → {0, 1}, the charac-
teristic function of E, is the function given by:

χE(v, w) =
{

1 if (v, w) ∈ E
0 otherwise

We will sometimes abuse notation and write tH(E) or tind
H (E) if the vertex

set is clear.
This lets us write, for instance,

tC3(G) =
∫∫∫

χE(x, y)χE(x, z)χE(y, z) dµ3.

Definition 1.11. K2 is the graph with two elements and an edge between
them.

That is, K2 is the graph consisting of a single edge. Then

tK2(G) = µ2({(v, w) | {v, w} ∈ E}) = {(v, w) | {v, w} ∈ E}
V 2 = 2|E|

|V |2 ,
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which differs from |E|
(|V |2 ) by an amount on the order of 1/|V |, which we can

treat as negligible when V is large enough. Going forward, we will often
focus on the quantity tK2(G) rather than |E|

(|V |2 ) , and call this the edge density
of G.

More generally, we have

Theorem 1.12. For any graph H = (W,F ) with W = {w1, . . . , wk} and
any graph G = (V,E),

tH(G) =
∫ ∏

1≤i<j≤k,{wi,wj}∈F
χE(vi, vj)dµk.

Note that, since these are finite spaces, integrals are really averages:∫ ∏
1≤i<j≤k,{wi,wj}∈F

f(vi, vj)dµ|W |

= 1
|V ||W |

∑
{v1,...,v|W |}∈V |W |

∏
1≤i<j≤k|{wi,wj}∈F

f(vi, vj).

Motivated by this, we can define tH for functions, not just graphs:

Definition 1.13. We say f : V 2 → R is symmetric if, for all (v, w) ∈ V 2,
f(v, w) = f(w, v).

When f : V 2 → R is symmetric, we define

tH(f) =
∫ ∏

1≤i<j≤k,{wi,wj}∈F
f(vi, vj)dµ|W |.

This precisely generalizes our definition for graphs: when G = (V,E),
tH(G) = tH(χE).

The reason we demand symmetry is:

Lemma 1.14. When f is symmetric, tH(f) does not depend on the ordering
of vertices W = {w1, . . . , wk}.

If f were not symmetric, the behavior of tH(f) could be strange, since
the definition only includes f(vi, vj) in the product when i < j. By swapping
the order of two vertices in the enumeration of W , we could replace some
f(vi, vj) with f(vj , vi); if f is not symmetric, this would change the value of
the product.
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For instance,

tC3(f) =
∫
f(x, y)f(x, z)f(y, z) dµ3.

But, since we do not attach any significance to the order of the vertices, this
should be equal to ∫

f(x, y)f(z, x)f(y, z) dµ3.

One advantage of this notation is that it gives us a quick way to calculate
things like E(tH(R1/2)): for the purposes of calculating expected subgraph
density, an edge which exists half the time (when the corresponding coin is
heads) is equivalent to a “weighted edge” which is always equal to 1/2. So
instead of looking at subgraph density in a random graph, we can look at
subgraph density in a function which is constantly equal to 1/2.

Theorem 1.15. Let f : V 2 → R be the function which is constantly equal to
1/2. Then for each H = (W,F ), there is a constant C so that

∣∣∣E(tH(R1/2))− tH(f)
∣∣∣ < C

|V | .

Proof. Using the linearity of expectation, E(tH(R1/2)) = 1
|V ||W |

∑
π:W→V E(1π)

where 1π is the indicator variable which is 1 if π is a copy of H.
When π is injective,

E(1π) = 1 · P(π is a copy of H) + 0 · P(π is not a copy of H)
= 2−|F |

=
∏

1≤i<j≤k,{wi,wj}∈F
f(vi, vj).

So E(tH(R1/2)) and tH(f) are both averages which agree on all the
injective π; since the non-injective π contribute less than C

|V | , we have

∣∣∣E(tH(R1/2))− tH(f)
∣∣∣ < C

|V | .
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1.4 Counting Triangles

We now return to the question of when a graph “looks random”. Having
shown that a random graph should have about 1/8 of the possible triangles,
we would like to show that this is not enough to identify a graph as random:
that there are graphs which have 1/2 of the possible edges, 1/8 of the possible
triangles, and are still non-random.

Our approach will be to start with two graphs, both of which have the
right number of edges, but where one has too many triangles and the other
has too few. Then we’ll interpolate between these graphs to find one with
the right number of triangles.

We’ve already seen a graph with too few triangles: Kn,n has about half
the edges, but no triangles at all. For a graph with too many triangles,
the “complement” of Kn,n, which we will call Kn,n, works: the graph (V ∪
W,
(V

2
) ∪ (W2 )).

Kn,n has two pieces V and W and all edges within V , all edges within
W , and none between the two parts. We could think of Kn,n as the disjoint
union of the complete graph on V with the complete graph on W .

Kn,n has roughly half the edges, but about 1/4 of the possible triangles:
an ordered triple (v0, v1, v2) is a triangle in this graph as long as both
v1 and v2 are in the same part as v0, so if we select a possible triangle
π : {0, 1, 2} → V ∪W , for any choice v0 = π(0), half the choices for π(1) and
half the choices for π(2) will give us an actual triangle.

We’ll combine these as follows. First, fix some value of n. We’ll work in
a graph with 4n vertices V divided into four disjoint equally sized sets of
vertices, V = V0 ∪ V1 ∪ V2 ∪ V3, each with n vertices. We’ll define two graphs
on these vertices:

• E0 consists of all pairs with one vertex in V0 ∪ V3 and one vertex in
V1 ∪ V2, and

• E1 =
(V0∪V1

2
) ∪ (V2∪V3

2
)
—all pairs with both vertices in V0 ∪ V1, or all

pairs with both vertices in V2 ∪ V3.
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V0 V1

V3V2

V0 V1

V3V2

E0 E1
In these pictures, the lines mean that we have all edges between the two

parts, and the filled circles mean we have all edges within that part. There
are no edges within the empty circles, and no edges between parts with no
line between them.

Notice that G0 = (V,E0) is really Kn,n—the two parts are V0 ∪ V3 and
V1 ∪ V2. Similarly, G1 = (V,E1) is really Kn,n, except the parts are V0 ∪ V1
and V2 ∪ V3.

Next we define a family of partially random graphs interpolating between
these. For the purposes of this section, we will call these graphs Gp for
p ∈ [0, 1]. Gp = (V,Ep) will be a graph on the same set of vertices V =
V0 ∪ V1 ∪ V2 ∪ V3. For each pair {v, w}, we flip a weighted coin which comes
up heads with probability p and tails with probability 1 − p. If the coin
comes up heads, we place the edge in Ep if it’s present in E1. If the coin
comes up tails, we place the edge in Ep if it’s present in E0. As usual, all
the coins are flipped independently.

It is convenient to represent Gp with a grid
V0 V1 V2 V3

V0 p 1 1-p 0
V1 1 p 0 1-p
V2 1-p 0 p 1
V3 0 1-p 1 p

which indicates that we have all the edges between V0 and V1 (because
those edges are present in both G0 and G1) but none of the edges between
V1 and V2 (because those are absent in both G0 and G1). Each edge within
V0 has probability p of being included—that edge is only present in G1, so
only appears when the coin for that pair comes up heads, while each edge
between V0 and V2 has probability 1− p of being included, because it only
appears when the coin for that pair comes up tails.

Analogously to the way we counted densities in the random graph using
a function constantly equal to 1/2, we can count densities in Gp using a
function fp which reflects the grid above.
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Theorem 1.16. Let Gp be the randomly generated graph defined above. Let
fp : V 2 → [0, 1] be the function given by

fp(v, w) =


1 if (v, w) ∈ (V0 × V1) ∪ (V1 × V0) ∪ (V2 × V3) ∪ (V3 × V2)
p if (v, w) ∈ (V0 × V0) ∪ (V1 × V1) ∪ (V2 × V2) ∪ (V3 × V3)

1− p if (v, w) ∈ (V0 × V2) ∪ (V2 × V0) ∪ (V1 × V3) ∪ (V3 × V1)
0 if (v, w) ∈ (V0 × V3) ∪ (V3 × V0) ∪ (V1 × V2) ∪ (V2 × V1)

.

Then for any H = (W,F ), there is a C so that |E(tH(Gp))− tH(fp)| < C
|V | .

The function fp looks like this:

V0 V1

V3V2

p p

pp

1 − p 1 − p

fp

where the gray

circles indicate that the vertices in these are present with probability p, edges
between the parts connected by dashed lines are present with probability
1− p.

Proof. The method is the same as the one we used in the previous section:

E(tH(Gp)) = 1
|V ||W |

∑
π:W→V

E(1π)

where 1π is 1 if π is a copy of H and 0 otherwise.
When π is injective, E(1π) = ∏

{w,w′}∈F E(1{π(w),π(w′)}) where 1{π(w),π(w′)}
is 1 if {π(w), π(w′)} is an edge in Gp and 0 otherwise. Since fp is exactly
defined so that E(1{v,w}) = fp(v, w), we have

E(tH(Gp)) = 1
|V ||W |

∑
π:W→V,π injective

∏
{w,w′}∈F

fp(π(w), π(w′)) +O( 1
|V |)

= tH(fp) +O( 1
|V |).

We also have
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Theorem 1.17. For every ε > 0, every δ > 0, and every finite graph
H = (W,F ), whenever n is sufficiently large,

P (|tH(Gp)− E(tH(Gp))| < ε) ≥ (1− δ).

Proof. This is the same argument using McDiarmid’s inequality as for the
random graph: the quantity tH(Gp) is a function of the random variables
1{v,w} with the property that changing any single edge can only change
tH(Gp) by at most |W |

2|V ||W |−2

|V ||W | = |W |2
|V |2 .

So, by McDiarmid’s inequality, the probability that tH(Gp) differs from
E(tH(Gp)) by more than ε is at most

2e
− 2ε2

(|V |2 )
(
|W |2
|V |2

)2

≤ 2e−
ε2|V |2

|W |4 .

In particular, when n = |V |/4 is sufficiently large, the probability that
|tH(Gp)− E(tH(Gp))| ≥ ε is < δ.

Theorem 1.18. For any ε > 0, when n is sufficiently large, with probability
≥ (1− ε):

• |tK2(Gp)− 1/2| < ε, and

• |tC3(Gp)− 1
8(p3 − 2p2 + 3p)| < ε.

Proof. Combining the previous two theorems, it suffices to show that tK2(fp) =
1/2 and tC3(fp) = 1

8(p3 − 2p2 + 3p).
For the first claim, tK2(fp) =

∫
fp(v, w)dµ2. The four components V0, V1,

and so on are symmetric, so∫
fp(v, w)dµ2 = 4

∫
V0×V

fp(v, w)dµ2

= 4(
∫
V0×V0

fp(v, w)dµ2 +
∫
V0×V1

fp(v, w)dµ2

+
∫
V0×V2

fp(v, w)dµ2 +
∫
V0×V3

fp(v, w)dµ2)

= 4(pµ(V0 × V0) + µ(V0 × V1) + (1− p)µ(V0 × V2) + 0µ(V0 × V3))

= 4(p4 + 1
4 + 1− p

4 )

= 1/2.
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The calculation of tC3(fp) is similar but more complicated. Again, the
symmetry of the four components means it suffices to consider the case
where the first vertex is in V0; this leaves 16 cases, which is tedious but not
infeasible, especially when we combine symmetric cases:

tC3(fp) =
∫
fp(u, v)fp(u,w)fp(v, w)dµ3

= 4
∫
V0×V×V

fp(u, v)fp(u,w)fp(v, w)dµ3

= 4
(∫

V0×V0×V0
fp(u, v)fp(u,w)fp(v, w)dµ3 + 2

∫
V0×V0×V1

fp(u, v)fp(u,w)fp(v, w)dµ3

+ 2
∫
V0×V0×V2

fp(u, v)fp(u,w)fp(v, w)dµ3 + 2
∫
V0×V0×V3

fp(u, v)fp(u,w)fp(v, w)dµ3

+
∫
V0×V1×V1

fp(u, v)fp(u,w)fp(v, w)dµ3 + 2
∫
V0×V1×V2

fp(u, v)fp(u,w)fp(v, w)dµ3

+ 2
∫
V0×V1×V3

fp(u, v)fp(u,w)fp(v, w)dµ3 +
∫
V0×V2×V2

fp(u, v)fp(u,w)fp(v, w)dµ3

+2
∫
V0×V2×V3

fp(u, v)fp(u,w)fp(v, w)dµ3 +
∫
V0×V3×V3

fp(u, v)fp(u,w)fp(v, w)dµ3

)
= 4 1

43 (p3 + 2p+ 2p(1− p)2 + 0 + p+ 0 + 0 + p(1− p)2 + 0 + 0)

= 1
8(p3 − 2p2 + 3p).

Of course, G1 should just be the graph G1 we started with, so we are
not surprised that tC3(G1) is 1/4; similarly, G0 should just be the graph G0,
so tC3(G0) = 0.

But since E(tC3(Gp)) is continuous in p, there must be some value
p∗ ∈ (0, 1) so that E(tC3(Gp∗)) = 1/4.

So the graph Gp∗ more closely resembles a random graph. But it still has
some distinctly “non-random” features: the components V0, V1, and V3 are
all large sets, each with a quarter of the total vertices, but there are no edges
at all between V0 and V3, while every edge between V0 and V1 is present.

This is suspicious, and indeed, we can rule it out:
Theorem 1.19. For each ε > 0 and δ > 0 there is a C so that, when V is
sufficiently big, with probability ≥ (1 − δ), for all subsets X ⊆ V , Y ⊆ V
with |X| ≥ C ln |V | and |Y | ≥ C ln |V |,∣∣∣∣∣ |R1/2 ∩ (X × Y )|

|X| · |Y | − 1
2

∣∣∣∣∣ < ε.
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This says that in a random graph, we expect to have the property that
not only are about half the edges present, but whenever we look at subsets
X and Y which aren’t too tiny, the “edge density” between X and Y is also
close to one half.

Note that by R1/2 ∩ (X × Y ), we mean the set of ordered pairs (x, y)
such that x ∈ X, y ∈ Y , and {x, y} ∈ R1/2. In particular, if x, y ∈ X ∩ Y ,
this means the pair (x, y) should be counted twice—once for the order (x, y),
and once for the order (y, z).

Proof. The idea is that if we pick a single pair of sets X and Y in advance,
we expect close to half the edges in X × Y will belong to R1/2. If we
then look at many pairs of sets, each pair of sets has a small probability of
“being defective”—of having either too many or too few edges between them.
Exactly how small that probability is depends on the sizes of X and Y—it is
some value p(|X|, |Y |). (More precisely, the probability depends not just on
|X| and |Y |, but on |X ∩ Y |. We will take p(|X|, |Y |) to be the maximum of
this probability over possible values of |X ∩ Y |.)

So we could fix sizes x and y, consider all pairs of sets where |X| = x and
|Y | = y, and ask what the probability that there is at least one “defective”
pair X and Y with |X| = x and |Y | = y. At worst, this is

(|V |
x

)(|V |
y

)
p(x, y)—

that is, at worst, the probability that there is at least one defective pairs is
the number of pairs times the probability that an individual pair is defective.
(This is called the union bound.) There is a bit of a tradeoff: when we make
x and y are small relative to |V |, (|V |x ) and (|V |y ) get small, but p(x, y) gets
bigger.

Furthermore, we want to consider all pairs x, y ≥ C ln |V |, which we do
by using the union bound again:

(|V |
x

)(|V |
y

)
p(x, y) is an upper bound on the

probability that there is a defective pair with |X| = x and |Y | = y, so (using
the union bound again)

∑
x≥C ln |V |,y≥C ln |V |

(
|V |
x

)(
|V |
y

)
p(x, y)

is an upper bound on the probability that there is any defective pair. The
bound C ln |V | comes from doing out the calculations and figuring out how
big x and y need to be to keep this sum small.

To find the actual value of p(x, y), suppose we have arbitrary sets X and
Y with |X| = x and |Y | = y. By the same arguments we used for the whole
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graph R1/2, we see that

E
(
|R1/2 ∩ (X × Y )|

xy

)
= 1
xy

∑
(x,y)∈X×Y

1{x,y}

= 1/2.

The quantity |R1/2∩(X×Y )|
xy is a function of at least x(y−1)

2 ≥ xy
4 random

variables (accounting for the worst case where X = Y ); changing a single
edge affects the total by at most 2

xy (since the edge is counted at most twice).
So by McDiarmid’s inequality,

P
(∣∣∣∣∣ |R1/2 ∩ (X × Y )|

xy
− 1

2

∣∣∣∣∣ ≥ ε
)
≤ 2e−2ε2xy.

So the probability that there is at least one “defective pair” in R1/2—that
is, the probability that there are some sets X and Y with |X| ≥ C ln |V | and
|Y | ≥ C ln |V | so that ∣∣∣∣∣ |R1/2 ∩ (X × Y )|

xy
− 1

2

∣∣∣∣∣ ≥ ε
is at most ∑

x≥C ln |V |,y≥C ln |V |

(
|V |
x

)(
|V |
y

)
2e−2ε2xy.

Using Stirling’s Approximation, we have the bound
(n
k

) ≤ (nek )k, so(
|V |
x

)(
|V |
y

)
≤ ex ln |V |+y ln |V |+x+y.

Then the probability that there is at least one “defective pair” is at most∑
x≥C ln |V |,y≥C ln |V |

ex ln |V |+y ln |V |+x+y2e−2ε2xy

=
∑

x≥C ln |V |,y≥C ln |V |
2ex(ln |V |+1)+y(ln |V |+1)−2ε2xy

=
∑

x≥C ln |V |,y≥C ln |V |
2eε2(x(ln |V |+1−y)+y(ln |V |+1−x).
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By taking C a bit larger than 1/
√

2ε, we can bound this by:∑
x≥C ln |V |,y≥C ln |V |

2eε2(x(ln |V |+1−y)+y(ln |V |+1−x)

≤
∑

x≥C ln |V |,y≥C ln |V |
2e−

ε√
2 ln |V |(x+y)

≤
∑

x≥C ln |V |,y≥C ln |V |
2e−

√
2εC ln2 |V |

≤
∑

x≥C ln |V |,y≥C ln |V |
2e− ln2 |V |

≤2|V |2e− ln2 |V |.

In particular, when V is large enough, the probability is less than δ.

So the graph Gp∗ still does not resemble R1/2:
|Gp∗∩(V0×V3)|
|V0|·|V3| = 0, which

would be very unlikely in R1/2.

1.5 Counting Cycles of Length 4

Another way to try to distinguish Gp∗ from R1/2 would be to investigate
other subgraph densities. The next natural density to find is the graph C4,
the cycle of length 4:

Definition 1.20. C4 is the graph with 4 vertices and 4 edges arranged in a

cycle: .

We could also call this graph K2,2, and sometimes that perspective is
more useful: there are two pairs of vertices, {x, x′} and {y, y′}, and the edges
are exactly those with one vertex from each pair.

Theorem 1.21. For each ε > 0 and δ > 0, when n is sufficiently large, with
probability ≥ 1− δ, |tC4(Gp)− 1

8(p4 − 2p3 + 3p2 − 2p+ 1)| < ε (where Gp is
the graph from the previous section).

Sketch. Again, it suffices to show that tC4(fp) = 1
8(p4 − 2p3 + 3p2 − 2p+ 1).

The calculation is still a little tedious: since

tC4(fp) =
∫
fp(x, y)fp(y, x′)fp(x′, y′)fp(y′, x)dµ4,
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there are 44 cases to consider, depending on which of the four parts the
four vertices belong to. Using symmetry, it suffices to consider only the case
where u ∈ V0:

tC4(fp) = 4
∫
V0×V 3

fp(x, y)fp(y, x′)fp(x′, y′)fp(y′, x)dµ4,

which leaves us with “only” 64 cases to consider. Considering each of these
cases in turn will give the stated polynomial.

As it happens, that means that tC4(Gp∗) ≈ 0.07123, which is not the
1/16 that we would expect in a random graph. Indeed, there is no value of p
which gives E(tC4(Gp)) = 1/16: the polynomial 1

8(p4 − 2p3 + 3p2 − 2p+ 1)
achieves its minimum when p = 1/2, and even then, it is equal to 9/128. So
no matter what p is, Gp will (with high probability) have too many cycles of
length 4 to be a truly random graph.

This turns out to be general: there are no graphs with too few copies of
C4.

Lemma 1.22. For any graph G,

tC4(G) ≥ (tK2(G))4.

Proof. This follows by a couple applications of a simple form of the Cauchy-
Schwarz inequality.

Theorem (Cauchy-Schwarz).∣∣∣∣∫ f(x) dµ
∣∣∣∣2 ≤ ∫ |f(x)|2 dµ.
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(tK2(G))4 =
(∫

χE(x, y) dµ2

)4

=
(∫

(
∫
χE(x, y)dµ(y)) dµ(x)

)4

≤
(∫ (∫

χE(x, y)dµ(y)
)2
dµ(x)

)2

=
(∫ ∫

χE(x, y)dµ(y)
∫
χE(x, y′)dµ(y′)dµ(x)

)2

=
(∫

χE(x, y)χE(x, y′)dµ3

)2

=
(∫ (∫

χE(x, y)χE(x, y′)dµ(x)
)
dµ2(y, y′)

)2

≤
∫ (∫

χE(x, y)χE(x, y′)dµ(x)
)2
dµ2(y, y′)

=
∫
χE(x, y)χE(x, y′)χE(x′, y)χE(x′, y′)dµ4

= tC4(G).

In graphs with very few edges (for instance, a “perfect matching” with
2n vertices and n edges where each vertex has exactly one neighbor), this is
a little counterintuitive—it depends on the fact that our definition of tC4(G)
includes “degenerate cycles” in which x = x′ and y = y′. However this
only matters in very sparse graphs (the perfect matching has edge density
tK2(G) = 1

4n). In the case we are mostly interested in, where tK2(G) is some
fixed real number p ∈ (0, 1) and n is quite large, there are at least p4n4

copies of C4, of which at most around n3 are degenerate, so the degenerate
copies contribute only a small error term to tC4(G).

This lemma rules out any hope of repeating what we did for triangles:
we can’t find a graph with too few copies of C4 to balance against a graph
with too many.

Instead, we’ll take the idea that graphs with the correct number of copies
of C4 really are special in some way, and our goal for the rest of the chapter
will be to explore what properties they have. Towards this, we define:
Definition 1.23. A graph G = (V,E) is ε-quasirandom if

|tC4(G)− (tK2(G))4| < ε.
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We have written this with an absolute value to emphasize that the point
is that tC4(G) is close to (tK2(G))4; however, because of the previous lemma,
it is equivalent just to have tC4(G)− (tK2(G))4 < ε.

Although we have only discussed R1/2 so far, it is not a big jump to
generalize to the graph Rp, which is generated by independently flipping, for
each pair {v, w}, a weighted coin∗ which comes up heads with probability p
and including this edge if the coin comes up heads.

Our choice of the name “quasirandom” indicates that when tC4(G) ≈
(tK2(G))4, tK2(G) = p, and G has a large number of vertices, G is supposed
to resemble Rp, a claim we will justify below.

Note that being quasirandom is a very different sort of property than
being random. R1/2 is not a particular graph, nor even a property of a graph:
it is a method of producing a graph. If we encounter a graph “in the wild”, it
is not meaningful to ask “is this graph R1/2?”; all we can ask is the question
we have been asking: how does this graph resemble, or fail to resemble, a
typical graph generated according to R1/2.

By contrast, quasirandomness is a conventional property of graphs; a
given graph either does or does not have the property of being ε-quasirandom.

At a minimum if the terminology is reasonable, when a graph is generated
randomly, it should, with high probability, be quasirandom.

Theorem 1.24. For every ε > 0, every δ > 0, and every p ∈ (0, 1), when V
is sufficiently large, Rp is ε-quasirandom with probability ≥ (1− δ).

Proof. We can choose ε′ so that if |a− p| < ε′ then |a4 − p4| < ε/2. By the
same argument using McDiarmid’s inequality as in Theorem 1.7, when V is
big enough, the probability that both

|tK2(Rp)− E(tK2(Rp))| < ε′

and
|tC4(Rp)− E(tC4(Rp))| < ε/2

is ≥ (1− δ).
Let fp be the function which is constantly equal to p. Then

E(tK2(Rp)) = tK2(fp) = p

∗A theoretical weighted coin, since such a contraption is not possible in practice, as
discussed in [69]
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and

E(tC4(Rp)) = tC4(fp) =
∫
fp(x, y)fp(y, x′)fp(x′, y′)fp(y′, x)dµ4 = p4.

Therefore, with probability ≥ 1− δ∣∣∣tC4(Rp)− (tK2(Rp))4
∣∣∣ ≤ ∣∣∣tC4(Rp)− p4

∣∣∣+∣∣∣(tK2(Rp))4 − p4
∣∣∣ < ε/2+ε/2 = ε.

1.6 Quasirandom Graphs
We now turn to justifying the name “quasirandom”, showing that quasiran-
dom graphs really do resemble random ones.

First, as something of a warm-up, we show that in a quasirandom graph,
the edges are evenly distributed—most vertices have the same number of
neighbors.

Definition 1.25. When G = (V,E) is a graph and x ∈ V , Ex = {y ∈ x |
{x, y} ∈ E} is the neighborhood of x.

The (normalized) degree of x in G = (V,E) is degG(x) = |Ex|
|V | .

Note that degG(x) =
∫
χE(x, y)dµ. (Usually the degree would be |Ex|,

but the normalized version will be more useful for us.)

Theorem 1.26. For every ε > 0 there is a δ so that if G is δ-quasirandom
and tK2(G) = p ∈ [0, 1] then the set of x such that

|degG(x)− p| ≥ ε

has measure < ε.

Proof. We’ll prove the contrapositive. Suppose the conclusion fails, so
tK2(G) = p but there is a set S ⊆ V such that µ(S) ≥ ε and, for each x ∈ S,
|degG(x)−p| ≥ ε. Then we wish to show that the graph has too many copies
of C4. We will do this by first counting an intermediate shape, the V-shaped
graph consisting of three vertices {1, 2, 3} with {1, 2} and {1, 3} as
the only edges. We will show that we have too many—that is, more than
p2—copies of this V-shaped graph, and then use Cauchy-Schwarz to conclude
that we have more than p4 copies of C4.

Our integral notation helps us focus on the “deviation” from the copies
that would be present in a random graph. We define f(x, y) = χE(x, y)−
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p, the “balanced” version of χE , so that, in particular,
∫
f(x, y) dµ2 =∫

χE(x, y) − p dµ2 = 0. Then, writing χE(x, y) = p + f(x, y), we can
calculate∫

χE(x, y)χE(x, z)dµ3 =
∫

(p+ f(x, y))(p+ f(x, z))dµ3

= p2 + 2p
∫
f(x, y)dµ2 +

∫
f(x, y)f(x, z)dµ3.

The p2 term accounts for all the copies of the V-shaped graph which we
“should” have in a quasirandom graph. The second term vanishes since∫
f(x, y)dµ2 = µ(E) − p = 0. So it suffices to show that our assumption

about the set S will force
∫
f(x, y)f(x, z)dµ3 to be non-zero.

We can give a bound∫
f(x, y)f(x, z)dµ3 =

∫
(
∫
f(x, y)dµ(y))2dµ(x)

=
∫

(
∫
χE(x, y)− p dµ(y))2dµ(x)

=
∫

(degG(x)− p)2dµ

≥
∫
S

(degG(x)− p)2dµ

≥ µ(S)ε2

≥ ε3.

Putting these together, we have∫
χE(x, y)χE(x, z)dµ3 ≥ p2 + ε3.

Now we use Cauchy-Schwarz:

tC4(G) =
∫ (∫

χE(x, y)χE(x, z)dµ(x)
)2
dµ2(y, z)

≥
(∫

χE(x, y)χE(x, z)dµ3

)2

≥ (p2 + ε3)2

≥ p4 + ε6.

So we see that G cannot be ε6-quasirandom.
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Using this, we will now show that quasirandom graphs satisfy a weakened
form of Theorem 1.19. That theorem showed that when X and Y are
sufficiently large subsets of V (of size ≥ C ln |V | for some constant C),
|R1/2∩(X×Y )|
|X|·|Y | is approximately 1/2. We will show the same property in

quasirandom graphs, but only when X and Y are much larger.

Definition 1.27. When G = (V,E) is a graph and X ⊆ V, Y ⊆ V , the edge
density between X and Y is dE(X,Y ) = |E∩(X×Y )|

|X|·|Y | .

Theorem 1.28. For every ε > 0 there is a δ > 0 so that whenever G = (V,E)
is δ-quasirandom with tK2(G) = p, X ⊆ V , Y ⊆ V , and |X||V | ≥ ε and

|Y |
|V | ≥ ε,

|dE(X,Y )− p| < ε.

Proof. Suppose G is δ-quasirandom for a sufficiently small δ, and consider
any sets X ⊆ V and Y ⊆ V with µ(X) ≥ ε and µ(Y ) ≥ ε.

Then, as in the previous proof, we will show that there are too many
copies of C4. Again, we evaluate tC4(G) by looking at the deviation of χE
from the function which is constantly equal to p. Let f(x, y) = χE(x, y)− p.
Then

tC4(G) =
∫
χE(x, y)χE(y, x′)χE(x′, y′)χE(y′, x)dµ4

=
∫

(f(x, y)− p)(f(y, x′)− p)(f(x′, y′)− p)(f(y′, x)− p)dµ4

= p4 + 4p
∫
f(x, y)f(y, x′)f(x′, y′)dµ4 + 4p2

∫
f(x, y)f(y, x′)dµ3

+ 2p2
∫
f(x, y)f(x′, y′)dµ4 + 4p3

∫
f(x, y)dµ2 + tC4(f).

Again, p4 accounts for all the copies of C4 we should have. tC4(f) will
have to be non-negative (it is an integral of the square of a quantity), so it
will suffice to show that it is large, and that the middle terms are all small
enough that they do not cancel out tC4(f).

Consider a typical middle term,∫
f(x, y)f(y, x′)f(x′, y)dµ4 =

∫
f(x, y)f(y, x′)(degG(x′)− p)dµ3.

Using the previous theorem, since G is δ-quasirandom for some small enough
δ, we can ensure that there is a set S such that µ(S) < ε12/56 and, for x 6∈ S,
|degG(x)− p| < ε/56, so | ∫ f(x, y)f(y, x′)(degG(x′)− p)dµ3| < ε12/28.
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The same holds for the other middle terms, so we have
|tC4(G)− (p4 + tC4(f))| < ε12/2.

What remains is showing that tC4(f) is large. For convenience, let us
abbreviate

F (x, x′, y, y′) = f(x, y)f(y, x′)f(x′, y′)f(y′, x).
First, we split into four cases, based on whether x and x′ are in the set X
that we began with:

tC4(f) =
∫
F (x, x′, y, y′)dµ4

=
∫
F (x, x′, y, y′)χX(x)χX(x′)dµ4

+ 2
∫
F (x, x′, y, y′)χX(x)χV \X(x′)dµ4

+
∫
F (x, x′, y, y′)χV \X(x)χV \X(x′)dµ4.

Since∫
F (x, x′, y, y′)χV \X(x)χV \X(x′)dµ4 =

∫
(
∫
f(x, y)f(y, x′)dµ)2χV \X(x)χV \X(x′)dµ2

and∫
F (x, x′, y, y′)χX(x)χV \X(x′)dµ4 =

∫
(
∫
f(x, y)f(y, x′)dµ)2χX(x)χV \X(x′)dµ2,

we have
tC4(f) ≥

∫
F (x, x′, y, y′)χX(x)χX(x′)dµ4

because the other two integrals are integrals of squares, and therefore non-
negative.

We then do the same split on the other variables, based on whether y
and y′ are in the set Y , and then use Cauchy-Schwarz twice:

tC4(f) ≥
∫
F (x, x′, y, y′)χX(x)χX(x′)dµ4

≥
∫
F (x, x′, y, y′)χX(x)χX(x′)χY (y)χY (y′)dµ4

≥
(∫

f(x, y)χX(x)χY (y)dµ
)4

≥ ((dE(X,Y )− p)µ(X)µ(Y ))4

≥ ε8dE(X,Y )4.



36 CHAPTER 1. RANDOM AND QUASI-RANDOM GRAPHS

Therefore

tC4(G) ≥ p4 + tC4(f)− ε12/2 ≥ p4 + ε8dE(X,Y )4 − ε12/2.

In particular, since G is δ-quasirandom, when δ ≤ ε12/2, we must have
ε8dE(X,Y )4 − ε12/2 < ε12/2 and therefore dE(X,Y ) < ε.

This property is useful enough to merit a name.

Definition 1.29. G = (V,E) is ε-regular if whenever X ⊆ V , Y ⊆ V with
|X|
|V | ≥ ε and

|Y |
|V | ≥ ε,

|dE(X,Y )− p| < ε

where p = tK2(G).

So Theorem 1.28 can be rephrased

Theorem 1.28, Rephrased. For every ε > 0 there is a δ > 0 so that if G
is δ-quasirandom then G is ε-regular.

δ-regularity turns out to be a useful property to work with. In fact, we
can use it to show that if a graph has roughly the same number of copies of
C4 as a random graph then it has roughly the same number of every small
graph.

We illustrate the main idea by counting triangles.

Theorem 1.30. For every ε > 0 and every p ∈ [0, 1] there is a δ > 0 so that
whenever G = (V,E) is δ-quasirandom with tK2(G) = p and V is sufficiently
large, |tC3(G)− p3| < ε.

Proof. Suppose G is δ-quasirandom for some δ small enough (based on
the calculations to follow), and we assume that ε is much smaller than p
(otherwise we can replace it with a smaller ε and obtain a stronger conclusion).

For each x, let Ex = {y | {x, y} ∈ E}, so degG(x) = µ(Ex). Then,
for most x, µ(Ex) ≈ p by Theorem 1.26. Furthermore, by Theorem 1.28,
dE(Ex, Ex) ≈ p. But a triangle whose first vertex is x is exactly an edge
between Ex and itself, so there are about p3 triangles whose first vertex is
x. Since this holds for most vertices, it should give us the right number of
triangles.

More precisely, by Theorem 1.26, there is a set S with µ(S) < ε/2 such
that, x 6∈ S, |degG(x)− p| < ε/6p. We can divide tC3(G) into those triangles
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whose first vertex is in S and those whose first vertex isn’t: So

tC3(G) =
∫
χE(x, y)χE(x, z)χE(y, z)dµ3

=
∫
χV \S(x)χE(x, y)χE(x, z)χE(y, z)dµ3 +

∫
χS(x)χE(x, y)χE(x, z)χE(y, z)dµ3

=
∫
χV \S(x)µ(Ex)2dE(Ex, Ex)dµ3 +

∫
χS(x)χE(x, y)χE(x, z)χE(y, z)dµ3.

Since S is small, there aren’t many triangles whose first vertex is in S:∫
χS(x)χE(x, y)χE(x, z)χE(y, z)dµ3 ≤ µ(S) < ε/2.

On the other hand, by Theorem 1.28 with X = Y = Ex, we also have
|dE(Ex, Ex)− p| < ε/6p. So∣∣∣∣∫ χV \S(x)µ(Ex)2dE(Ex, Ex)dµ3 − p3

∣∣∣∣ < ∣∣∣(p+ ε/6p)2(p+ ε/6p)− p3
∣∣∣

≤ 3pε/6p
≤ ε/2.

So ∣∣∣tC3(G)− p3
∣∣∣ < ε.

This generalizes to all subgraphs, which perhaps explains what the
quasirandom graphs look sufficiently random to merit the name.

Theorem 1.31. For every finite graph H = (W,F ), each ε > 0, there is
a δ > 0 so that if G = (V,E) is δ-quasirandom with tK2(G) = p, |tH(G)−
tK2(G)|F || < ε.

The main idea has already appeared in the previous proof: we want to
prove this by induction on H, showing that quasirandom graphs have the
right number of copies of larger and larger graphs. The difficulty is that the
induction hypothesis needs to be strengthened: it isn’t enough to know that
G has the right number of copies of H: we need to be able to start with a
copy of some subgraph of H and be able to extend it to the right number
of copies of H. We already saw this issue in the previous proof: it wasn’t
enough to know that there are the right number of edges; we needed to know
that most vertices x have the right number of neighbors.
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Rather than work out this notationally messy induction now, we will
postpone the proof until much later when we will have some additional tools
to simplify it.

While we used quasirandomness in the proof, we could actually have used
regularity instead. In particular, δ-regularity for sufficiently small δ implies
tC4(G) ≈ p4, which means
Theorem 1.32. For every ε > 0 there is a δ > 0 such that whenever
G = (V,E) is δ-regular and V is sufficiently large, G is ε-quasirandom.

This means that quasirandomness and regularity are, in some sense,
equivalent. The proof is essentially a step in the proof of Theorem 1.31, so
we defer it to later as well.

1.7 Sequences of Graphs
One inconvenience of ε-quasirandomness is that it’s always an approximate
notion—a finite graph can be ε-quasirandom, but never just quasirandom.

We can address this by considering, instead of individual graphs, sequences
of graphs:
Definition 1.33. A sequence of graphs 〈Gn〉 is quasirandom if, for each
ε > 0, there is an m so that whenever n ≥ m, Gn is ε-quasirandom.

So a quasirandom sequence of graphs is a sequence that is “getting more
and more random”. Since ε-quasirandomness can’t be small, this implies that
the graphs in the sequence must be getting larger and larger.

Then the results in the previous section can be stated:
Theorem 1.34. Let 〈Gn〉 be a sequence of graphs with p = limn→∞ tK2(Gn).
The following are equivalent:

• the sequence is quasirandom,

• for every finite graph H = (W,F ), limn→∞ tH(Gn) = p|F |,

• limn→∞ tC4(Gn) = p4.

1.8 Digression: Spectral Graph Theory
The previous section suggested two perspectives on quasirandom graphs: the
counting perspective based on tC4(G), and an “equidistribution” perspec-
tive based on showing that edges are evenly distributed, in the sense that
dE(X,Y ) ≈ p whenever X and Y are large sets.
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We now describe a third perspective, in terms of eigenvalues associated
to a graph.

When E is a graph on V , we can associate a symmetric |V | × |V | matrix,
the adjacency matrix, whose value at (x, y) is 1 when {x, y} ∈ E, and 0
otherwise. We can describe the same idea in more abstract terms.

The space of functions from V to R is a |V | dimensional vector space.
Furthermore, it has a natural choice of inner product and a corresponding
norm:

Definition 1.35. If f, g : V → R then 〈f, g〉 =
∫
f(x)g(x)dµ and ||f ||L2 =√

〈f, f〉 =
√∫

(f(x))2dµ.

Then a graph—and, more generally, a symmetric function—gives us a
linear transformation on this space:

Definition 1.36. When h : V 2 → R is a symmetric function, we associate a
linear transformation Th: given f : V → R, we define Thf : V → R by

(Thf)(x) =
∫
h(x, y)f(y)dµ(y).

When h = χE , we write TE instead of TχE .

Thf has an asymmetry between the variables, but this vanishes when we
look at the inner product:

〈Thf, g〉 =
∫
h(x, y)f(x)g(y)dµ2.

The symmetry of h means that Th is self-adjoint:

Lemma 1.37. Th is self-adjoint; that is, 〈Thf, g〉 = 〈f, Thg〉.

This means the Spectral Theorem applies.

Theorem (Spectral Theorem). Let T be a self-adjoint operator on an
n-dimensional vector space. Then there exist eigenvalues (not necessarily
distinct) λ1, . . . , λn and vectors f1, . . . , fn such that:

• for each i ≤ n, ||fi||L2 = 1,

• for each i ≤ n, Tfi = λifi,

• for each i < j ≤ n, 〈fi, fj〉 = 0.
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Furthermore, the values λi are unique and, for each λ, the space generated
by {fi | λi = λ} is uniquely determined.

In particular, the vectors f1, . . . , fn form an orthonormal basis.

For example, recall our bipartite graph Kn,n, consisting of two pieces, say
X and Y , with n vertices each, and exactly the edges between those two parts.
Then λ1 turns out to be within O(1/|V |) of 1/2, and the corresponding f1 is
the function which is constantly equal to 1.

The next eigenfunction explains the bipartite structure: f2 is the function
which is 1 on one of the pieces and −1 on the other. Then

λ2 = 〈TEf2, f2〉

=
∫
χE(x, y)f2(x)f2(y)dµ2

=
∫
X×X

0 · 1 · 1dµ2 +
∫
X×Y

1 · 1 · −1dµ2 +
∫
Y×X

1 · −1 · 1dµ2 +
∫
Y×Y

0 · −1 · −1dµ2

= −1
2 .

In fact, these two eigenvalues completely explain the space—all other eigen-
values are 0. To see this, observe that we can write

χE(x, y) = 1
2f1(x)f1(y)− 1

2f2(x)f2(y).

The fact that we can write χE as a weighted sum of the eigenvectors is
not a coincidence.

Theorem 1.38. When λ1, . . . , λn and f1, . . . , fn are the eigenvalues and
eigenvectors associated to Th, h(x, y) = ∑

i≤n λifi(x)fi(y).

Proof. First we show that h and ∑i≤n λifi(x)fi(y) give the same operator.
Consider any g : V → R. Since the {fi} form an orthonormal basis, we

can write g(x) = ∑
i≤n cifi(x) for some unique sequence of coefficients ci.

Then we can check that∫
h(x, y)g(y)dµ(y) =

∫
h(x, y)

∑
i≤n

cifi(x)dµ(y)

=
∑
i≤n

ci

∫
h(x, y)fi(x)dµ(y)

=
∑
i≤n

ciλifi(x)
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while, similarly,

∫ ∑
i≤n

λifi(x)fi(y)

 g(y)dµ(y) =
∫ ∑

i≤n
λifi(x)fi(y)

 (
∑
i≤n

cifi(y))dµ(y)

=
∑
i≤n

∑
j≤n

∫
λifi(x)fi(y)cjfj(y)dµ(y)

=
∑
i≤n

∑
j≤n

cjλifi(x)
∫
fi(y)fj(y)dµ(y).

But
∫
fi(y)fj(y)dµ is 0 if i 6= j and 1 if i = j, so this last line is equal to∑

i≤n
ciλifi(x)

as well.
The equality as transformations is really the important fact, but we can

use this to show that these are literally the same as functions as well. Start
with any y0 ∈ V and consider the function χ{y0} which is 1 on y0 and 0
everywhere else. Then

(Thχ{y0})(x) =
∫
h(x, y)χ{y0}(y)dµ(y) = 1

|V |h(x, y0).

But that means that∫ ∑
i≤n

λifi(x)fi(y)

χ{y0}(y)dµ(y) = 1
|V |h(x, y0)

as well, which means that ∑i≤n λifi(x)fi(y0) = h(x, y0) for every x. Since
this holds for every y0, ∑

i≤n
λifi(x)fi(y) = h(x, y).

This gives a convenient proof of the standard result relating the trace of
a matrix to the sum of its eigenvalues:

Theorem 1.39. If h : V 2 → R is symmetric and λ1, . . . , λn are the associated
eigenvalues, ∫

h(x, x)dµ =
∑
i≤n

λi.
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Proof. This follows from the previous theorem since∫
h(x, x)dµ =

∫ ∑
i≤n

λifi(x)fi(x)dµ

=
∑
i≤n

λi

∫
(fi(x))2dµ

=
∑
i≤n

λi

since each fi has norm 1.

It is also not a coincidence that the largest eigenvalue of Kn,n was equal
to 1/2—it will always be the case that when degG(x) is constant, the largest
eigenvalue is equal to this constant. More generally, we obtain a lower bound
on the largest eigenvalue:

Lemma 1.40. When λ1 is the largest eigenvalue (in absolute value) of Th,
|λ1| ≥ tK2(h).

Proof. Consider the function g(x) which is constantly equal to 1. Then

〈Thg, g〉 =
∫
h(x, y)g(x)g(y)dµ2 =

∫
h(x, y)dµ2 = tK2(h).

We can stop here if we invoke a standard fact about eigenvalues, that the
largest eigenvalue λ1 satisfies |λ1| = maxu〈Thu, u〉 where u ranges over the
unit vectors: since g is a unit vector, |λ1| ≥ 〈Thg, g〉 = tK2(h).

If we do not wish to invoke this, we can show that |λ1| ≥ 〈Thg, g〉 by
writing g in terms of the orthonormal basis f1, . . . , fn: for some choice of
constants ci, g(x) = ∑

i≤n cifi(x), and we have

1 =
∫

(g(x))2dµ

=
∫ ∑

i≤n
cifi(x)

∑
j≤n

cjfj(x)

 dµ
=
∑
i≤n

∑
j≤n

cicj

∫
fi(x)fj(x)dµ

=
∑
i≤n

c2
i .
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Then

tK2(h) =
∫
h(x, y)g(x)g(y)dµ2

=
∫ ∑

i≤n
λifi(x)fi(y)

∑
j≤n

cjfj(x)

∑
k≤n

ckfk(y)

 dµ2

=
∑
i≤n

λi

∫ ∑
j≤n

cjfi(x)fj(x)dµ

∫ ∑
k≤n

ckfi(x)fk(y)dµ


=
∑
i≤n

λic
2
i

≤ |λ1|
∑
i≤n

c2
i

= |λ1|.

The connection to quasirandomness comes from the observation that

tC4(h) =
∫
h(x, y)h(y, x′)h(x′, y′)h(y′, x)dµ4 =

∫
h4(x, x)dµ

where h4(x, z) =
∫
h(x, y)h(y, x′)h(x′, y′)h(y′, z)dµ3(x′, y, y′), and therefore

tC4(h) will be the sum of the eigenvalues of h4. We call this function h4

because it corresponds to the fourth power of the matrix corresponding to
h, and we have another standard fact about the relationship between the
eigenvalues of h and the powers of h:

Theorem 1.41. • When h : V 2 → R is symmetric, (Th)2 = Th2 where
h2 : V 2 → R is a symmetric function given by

h2(x, y) =
∫
h(x, z)h(z, y)dµ(z).

• If λ1, . . . , λn and f1, . . . , fn are the eigenvalues and eigenvectors asso-
ciated with h then λ2

1, . . . , λ
2
n and f1, . . . , fn are the eigenvalues and

eigenvectors associated with h2.
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Proof. For the first part, observe that for any f : V → R,

((Th)2f)(x) =
∫
h(x, y) [(Thf)(y)] dµ(y)

=
∫
h(x, y)

[∫
h(y, z)f(z)dµ(z)

]
dµ(y)

=
∫ (∫

h(x, y)h(y, z)dµ(y)
)
f(z)dµ(z)

=
∫
h2(x, z)f(z)dµ(z).

For the second part, observe that for each eigenvalue fi of h,

((Th)2fi)(x) =
∫
h2(x, y)fi(y)dµ(y)

=
∫ (∫

h(x, z)h(z, y)dµ(z)
)
fi(y)dµ(y)

=
∫
h(x, z)h(z, y)fi(y)dµ2(y, z)

=
∫
h(x, z)(Thfi)(z)dµ(z)

= λi

∫
h(x, z)fi(z)dµ(z)

= λi(Thfi)(x)
= λ2

i fi(x).

This allows us to prove that a graph is quasirandom exactly when all the
eigenvalues other than the largest eigenvalue are small. (Where λ1 is always
the largest eigenvalue, and we always mean largest in the sense of absolute
value.)
Theorem 1.42. G = (V,E) is δ-quasirandom if and only if

(λ1 − tK2(G))4 +
∑

1<i≤n
λ4
i < δ.

Proof. Observe that

tC4(G)− tK2(G)4 =
∑
i≤n

λ4
i − tK2(G)4

= (λ4
1 − tK2(G)4) +

∑
1<i≤n

λ4
i .
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We are usually not concerned with the exact quantity (λ1 − tK2(G))4 +∑
1<i≤n λ

4
i—the point is that G is δ-quasirandom exactly when two things

happen: first, λ1 is close to tK2(G), and second, the remaining eigenvalues
are all small.

1.9 An Example: The Payley Graph
It is possible to have graphs constructed in a completely deterministic way
which are nonetheless quasirandom.

Definition 1.43. When q is a prime with q ≡ 1 mod 4, the Paley graph Qq
is the graph with vertices {0, 1, . . . , q − 1} where {x, y} is an edge precisely
when x− y is a quadratic residue modulo q (that is, x− y 6= 0 and there is a
k so that k2 ≡ x− y mod q).

It is a standard fact about quadratic residues that when q is a prime with
q ≡ 1 mod 4, −1 is a quadratic residue, and therefore x− y is a quadratic
residue exactly when y − x is. (This is not the case when q ≡ 3 mod 4, so
we need q ≡ 1 mod 4 to make Qp symmetric.)

Half the elements of {1, . . . , q−1} are quadratic residues, so each element
of Qq has q−1

2 neighbors. In particular, this graph has density

tK2(Qq) =
∫
χQq(x, y)dµ = 1

2 −
1
2q ,

which approaches 1/2 when q is large.

Theorem 1.44. For every δ > 0 there is a q0 so that when q > q0 is a prime
with q ≡ 1 mod 4, Qq is δ-quasirandom.

Proof. Let us write Qq = (V,E), so V = {1, . . . , q − 1}. If Qq is going to be
quasirandom, each pair x, y should have about q/4 neighbors in common.
Recall that, for x ∈ V , Ex is the set of neighbors of x.

Rather than looking directly at Ex ∩ Ey, we can look at those z which
are neighbors to either both x and y or neighbors to neither

C(x, y) = {z | z ∈ Ex ∩ Ey or z ∈ Ex ∩ Ey}.

That is, C(x, y) = {z | χEx(z) + χEy(z) ≡ 0 mod 2}.
The product of two quadratic residues is also a quadratic residue, and

the product of non-quadratic residues is also a quadratic residue. (To see
this, recall that Q×q = {1, . . . , q− 1} is a group under multiplication, and the
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quadratic residues form a subgroup of index 2, so the non-quadratic residues
are the other conjugacy class.)

So, given vertices x and y, the value z−x
z−y is a quadratic residue if either

z − x, z − y are both quadratic residues, or neither is—that is, z−x
z−y is a

qudratic residue exactly when z ∈ C(x, y).
Assume x and y are distinct. There are 1

2(q − 1) quadratic residues a. If
a = 1, we cannot have z−x

z−y = a. If a 6= 1, z−xz−y = a exactly when z = x−ay
1−a .

So for each of the 1
2(q − 1)− 1 choices of a to be a quadratic residue other

than 1, there is a corresponding vertex which is either a neighbor of both x
and y, or a neighbor of neither.

So |C(x, y)| = q−1
2 − 1. Since |Ex| = |Ey| = q−1

2 , we can conclude that
|Ex ∩ Ey| = q−5

4 . Therefore

tC4(Qq) =
∫ (∫

χE(x, z)χE(y, z)dµ(z)
)2
dµ2 =

∫ |Ex ∩ Ey|2
q2 dµ2 = 1

16+O(1
q

).

So—despite being completely deterministic in their construction—the
Paley graphs are quasirandom.

A finer analysis, which we will not consider here, distinguishes the Paley
graph from truly random graphs. For example, for infinitely many q, there
is a set X with with |X| ≥ log q log log q which is a clique in Qq [79]: every
pair of distinct elements of X is an edge. That means that dE(X,X) is very
close to 1, but Theorem 1.19 says that in R1/2, whenever |X| has size at
least C log q, dE(X,X) should be close to 1/2.

1.10 Remarks
The theory of random graphs goes far beyond what we have touched on here.
We have only considered one specific model of a random graph, in which
the edges are generated independently and where the probability of an edge
being present is some fixed value p independent of the size of the graph—that
is, where the graphs generated are dense, so the number of edges is typically
εn2 for some ε > 0. Many investigations of random graphs consider the case
where the probability of an edge being present depends on n, so that the
typical graph has, say, Cn3/2 edges. Other models weaken or modify the
assumption that edges are present independently. Bollobás’ book [18] is a
canonical reference, especially when supplemented by more recent books [7,
63, 92].
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The study of quasirandom graphs was introduced by Chung, Graham,
and Wilson in [30], and most of this chapter is drawn from that paper. Since
then, a number of additional characterizations of quasirandomness have been
investigated [120, 123, 136, 137, 142, 143, 144, 163]. The notion is strikingly
robust, and the results in later chapters will shed some light on why.

Nonetheless, as the Payley graph illustrates, quasirandom graphs can still
be distinguished from random ones. Stricter notions than quasirandomness,
like the notion of jumbledness introduced by Thomason [156, 157] have also
been investigated [104]. A theme we will see again later is that quasirandom-
ness captures the “dense” part of randomness—the properties which only
consider what happens in dense sets—but that stronger notions are needed
if one wants to consider sets X ⊆ V with |X| much smaller than |V |.

There are others graphs H with the property that tH(G) ≈ (tK2(G))k
(for suitable k) implies that G is quasirandom. Graphs with this property
are called forcing. Which graphs (or, more generally, sets of graphs) are
forcing has been studied extensively [37, 131, 144]; many graphs in addition
to C4 are known to be forcing, but it is not known in general which graphs
are forcing. The question of which bipartite graphs are forcing is closely
related to Sidorenko’s conjecture [140], which concerns a generalization of
the Cauchy-Schwarz calculations we were using above [82].

The quantity maxX,Y⊆V |dE(X,Y )|X| · |Y | − |E|| (or the restriction where
X = Y ) is called the discrepancy of a graph. Erdős and Spencer [50] showed
that there is a constant so that every graph with |V | has discrepancy at least
cn3/2, and that random graphs have close to this minimum discrepancy. The
behavior of the discrepancy and related quantities in random, quasirandom,
and other graphs has also been further studied; Chazelle’s book [21] gives an
introduction to this subject.

The investigation of graphs in terms of their eigenvalues and eigenvectors
is its own subject—spectral graph theory—with a standard reference by
Chung [33].
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Chapter 2

Ultraproducts

We develop an infinitary setting, the ultraproduct, which allows us to identify
sequences of graphs with a single limit object, which will be an infinite
(indeed, uncountably infinite) graph.

2.1 Convergent Subsequences
Keeping track of the ε’s and δ’s and worrying about things which approach
0 as the number of vertices approaches infinity gets increasingly messy as
we move to more intricate arguments, so we’d like to move to a different,
infinitary setting where these terms disappear.

Suppose we have a sequence of graphs Gn = (Vn, En) where |Vn| is
approaching infinity. We would like to assemble the graphs Gn into a limiting
graph—temporarily, we might call this hypothetical graph limn→∞Gn—
which should be an infinite graph which somehow captures the “eventual”
properties of the graphs Gn.

For example, we should have the property that for any finite graph H,

lim
n→∞

tH(Gn) = tH( lim
n→∞

Gn).

This immediately points out a potential pitfall: the sequence 〈tH(Gn)〉n∈N
need not be a convergent sequence of real numbers. For example, suppose
that whenever n is even, Gn is Kn/2,n/2, but when n is odd, Gn is the
complete graph ({1, . . . , n}, ({1,...,n}n

)
). Then the sequence tC3(Gn) is the

sequence 〈1, 0, 1, 0, 1, 0, . . .〉.
In order to obtain a limit, we will need to pass to a subsequence—we

need to decide to either “concentrate” on the case where n is even, or the
case where n is odd.

49
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Before considering graphs further, let us recall some facts about the
convergence of sequences of real numbers.

Theorem 2.1 (Bolzano–Weierstrass). If 〈rn〉n∈N is a sequence of real num-
bers in some bounded interval [a, b] then there is a convergent subsequence:
there is a sequence n1 < n2 < · · · so that 〈rnk〉k∈N converges to some value
in the interval [a, b].

It is worth reviewing the proof, which will be a model for later arguments.

Proof. For notational convenience, let us assume that [a, b] = [0, 1]. (We can
obtain the general case from this by working with the sequence sn = rn−a

b−a ,
since 〈snk〉k∈N converges exactly when 〈rnk〉k∈N does.)

We will construct the sequence n1 < n2 < · · · iteratively. Divide the
interval [0, 1] in half—[0, 1] = [0, 1/2] ∪ (1/2, 1]. Consider the two sets

{n | rn ∈ [0, 1/2]} and {n | rn ∈ [1/2, 1]}.

Every n ∈ N is in at least one of these, so at least one of these two sets must
be infinite. We pick one of these two halves which is infinite, and choose n1
so that rn1 belongs to the chosen half.

Now consider the half we have chosen, and divide it in half again—for
instance, if we chose rn1 ∈ [0, 1/2], next write [0, 1/2] = [0, 1/4] ∪ (1/4, 1/2].
Again, one of the sets

{n | rn ∈ [0, 1/4]} and {n | rn ∈ [1/4, 1/2]}

must be infinite because their union is {n | rn ∈ [0, 1/2]} which (since we
only would have picked r1 ∈ [0, 1/2] if {n | rn ∈ [0, 1/2]} was infinite) must
be infinite. Again, we pick a half which is infinite and chose n2 > n1 so that
rn2 belongs to the chosen half.

We repeat this process: after k stages, we have chosen n1 < n2 < · · · < nk
and an interval [ a2k ,

a+1
2k ] so that there are infinitely many n with rn ∈ [ a2k ,

a+1
2k ].

We divide the interval in half—

[ a2k ,
a+ 1

2k ] = [ 2a
2k+1 ,

2a+ 1
2k+1 ] ∪ (2a+ 1

2k+1 ,
2a+ 2
2k+1 ],

choose a subinterval containing infinitely many rn, and choose nk+1 > nk so
that rnk+1 belongs to the chosen subinterval.

We have chosen nk so that for all m ≥ k, rnm ∈ [ a2k ,
a+1
2k ]. In particular,

that means that when m ≥ k, |rnm − rnk | ≤ 2k. That means that the
sequence 〈rnk〉k∈N converges.
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In general, it might be the case that both subintervals contain infinitely
many rn, and this might happen for many values of k, so we would have to
make an arbitrary choice many times. This reflects the fact that 〈rn〉n∈N
could have many different convergent subsequences which converge to many
different values, and there is not generally a “best” convergent subsequence.

The idea of a convergent subsequence is useful enough to warrant a
definition of its own, and it will be convenient for us to view the indices as
an infinite set.

Definition 2.2. Let K ⊆ N be an infinite set. We say 〈rn〉n∈N converges to
r on K, written

lim
n→K

rn = r

if, for every ε > 0,
{n ∈ K | |r − rn| ≥ ε}

is finite. We say 〈rn〉 converges on K, or limn→K rn exists, if there is some r
so that limn→K rn = r.

This definition generalizes ordinary convergence, which is the case where
K = N, by “concentrating” on a particular set K—deciding that only
elements ofK matter, while ignoring N\K. Every subsequence of a convergent
sequence also converges—that is, if J ⊆ K is infinite and limn→K rn = r
then also limn→J rn = r—so by “concentrating” on a smaller set K, we make
more sequences converge.

Consider the sequence 〈rn〉n∈N where rn = n mod 2—that is, the se-
quence 〈1, 0, 1, 0, 1, 0, . . .〉. Then if we choose a K so that limn→K rn con-
verges, K cannot contain both infinitely many even numbers and infinitely
many odd numbers—either K consists of infinitely many even numbers
and finitely many odd numbers, in which case limn→K rn = 0, or K con-
sists of infinitely many odd numbers and finitely many even numbers and
limn→K rn = 1.

If we next consider the sequence 〈sn〉n∈N which repeats in the pattern
〈0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, . . .〉, we have no reason to think that limn→K sn
also exists. However we can apply the argument of Bolzano–Weierstrass again
to obtain a J ⊆ K so that both limn→J rn and limn→J sn exist. Furthermore,
our choice of limn→K rn constrains the possible values for limn→J sn—if
limn→K rn = 0 then, since J ⊆ K, limn→J sn ∈ {2, 3}.

Once limn→J rn and limn→J sn both exist, we can conclude that other
related limits exist—for instance,

lim
n→J

(rn + sn) = ( lim
n→J

rn) + (lim
n∈J

sn).
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Suppose now that we have many sequences—say, for each i ∈ N we have a
sequence 〈rin〉n∈N. Then we can ask for all these sequences to converge simul-
taneously: we can ask for a single set K so that, for each i, 〈rin〉n∈N converges
on K. If there were only finitely many sequences we could find a simulta-
neously convergent subsequence by simply iterating Bolzano–Weierstrass
finitely many times: each time we use it, Bolzano–Weierstrass further thins
out our subsequence, but ensure that one more sequence converges.

With infinitely many sequences, however, this approach no longer works:
each time we apply Bolzano–Weierstrass, we might lose elements from our
set, and if we’re not careful, after infinitely many applications there might
be no elements left.

Theorem 2.3. Suppose that, for each i ∈ N, 〈rin〉n∈N is a sequence of real
numbers in a bounded interval [ai, bi]. Then there is a set K and values
ri ∈ [ai, bi] so that, for every i, limn→K r

i
n = ri.

Proof. The idea is to repeatedly apply Bolzano–Weierstrass, but remember
to save an element each time.

Let J1 = N and let n1 = 1, the least element of J1. By Bolzano–
Weierstrass, we can choose J2 ⊆ J1 so that 〈r1

n〉n∈N converges on J2, and let
n2 be the smallest element of J2 larger than n1.

In general, at the k-th stage we have a set Jk so that, for each i < k,
〈rin〉n∈N converges on Jk, and we have chosen n1 < · · · < nk. Choose
Jk+1 ⊆ Jk so that 〈rkn〉n∈N converges on Jk+1 and let nk+1 be the smallest
element of Jk+1 larger than nk.

Let K = {n1 < n2 < · · · } and consider any 〈rkn〉n∈N. For each i ≥ k,
ni ∈ Jk+1, and therefore {nk < nk+1 < · · · } ⊆ Jk+1. Since 〈rkn〉n∈N converges
on Jk+1, 〈rkn〉n∈N also converges on {nk < nk+1 < · · · }, and therefore
〈rkn〉n∈N converges on K (which differs only on the finitely many elements
{n1 < · · · < nk−1}).

So, for every k, 〈rkn〉n∈N converges on K.

Once we have arranged for these sequences to converge simultaneously,
we can work with all sorts of combinations. For instance, we have

lim
n→K

∑
i

1
2i max{|ai|, |bi|}

rin =
∑
i

1
2i max{|ai|, |bi|}

lim
n→K

rin

(having chosen the denominator precisely to ensure that the sum is finite).
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2.2 Ultralimits
We would like to go a step further: we would like to choose an infinite set K
on which every single sequence converges simultaneously. This is too much
to ask, so we will have to weaken our notion of what it means for sequences
to converge simultaneously.

We would at least like to choose, for every sequence 〈rn〉n∈N, a limiting
value lim

?
rn, which we temporarily denote with a question mark since we

have not identified this prospective notion of convergence. Our choice of
lim

?
rn should certainly be a plausible limit of the sequence—that is, there

should be some set K witnessing the convergence, so that lim
?
rn = lim

n→K
rn.

We need the choice of limiting values to be compatible—for instance, we
should have

lim
?

(rn + sn) = (lim
?
rn) + (lim

?
sn).

Recall the sequences 〈1, 0, 1, 0, . . .〉 and 〈0, 2, 1, 3, 0, 2, 1, 3, . . .〉 from above. If
we decide that lim

?
〈1, 0, 2, 0, . . .〉 = 0, we should commit to having

lim
?
〈0, 2, 1, 3, 0, 2, 1, 3, . . .〉 ∈ {2, 3}.

That is, the decision that lim
?
〈0, 1, 0, 1, . . .〉 = 0 means that we must be

“concentrating” on the even indices, and our choices for all other sequences
should reflect that the even indices matter while the odd ones do not.

If we have chosen J so that lim
?
rn = lim

n→J
rn and K so that lim

?
sn =

lim
n→K

sn, this amounts to requiring that J ∩K also be infinite, so that we can
take lim

?
(rn + sn) = lim

n→J∩K
(rn + sn).

This suggests that we can work with the collection of witnessing sets: we
will let F be some collection of infinite sets, and we can define lim

?
rn = lim

n→K
rn

for some set K ∈ F such that 〈rn〉n∈N converges on K. In order for sequences
to converge simultaneously, we need to require that when J ∈ F and K ∈ F ,
also J ∩K ∈ F .

This quickly leads us to the notion of a free filter.

Definition 2.4. A collection F of subsets of N is a free filter if:

• whenever J,K ∈ F , also J ∩K ∈ F ,

• whenever J ∈ F and J ⊆ K, also K ∈ F ,

• ∅ 6∈ F , and
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• if N \K is finite (that is, if K is cofinite) then K ∈ F .

These conditions imply that every set in F is infinite. (We will not need
the slightly more general notion of a filter, which weakens the last condition
to merely N ∈ F .)

While the definition of a free filter only considers intersections of two sets,
induction says that free filters contain intersections of finitely many sets:

Lemma 2.5. If F is a free filter and K1, . . . ,Kn ∈ F then K1∩· · ·∩Kn ∈ F .
Proof. By induction on n. For n = 1 this is tautological and for n = 2 this
is part of the definition of a free filter.

Suppose the claim holds for n and K1, . . . ,Kn,Kn+1 ∈ F . Then, by the
inductive hypothesis, K1 ∩ · · · ∩Kn ∈ F , and by the definition of a free filter,
also (K1 ∩ · · · ∩Kn) ∩Kn+1 ∈ F .

Definition 2.6. If F is a free filter and 〈rn〉n∈N is a sequence, we can define
limn→F rn = r if, for each ε > 0, {n | |rn − r| < ε} ∈ F .

When K is an infinite set, the collection of all sets J such that K \ J is
finite forms a free filter FK , and limn→FK rn = limn→K rn (where one side
exists exactly when the other does) for any sequence 〈rn〉n∈N.

So convergence on a free filter is a generalization of the idea of convergence
of on a set. We still need a free filter with the property that every sequence
converges. For that, we need one more condition.

Definition 2.7. An ultrafilter is a free filter U such that, for every set
K ⊆ N, either K ∈ U or (N \K) ∈ U . ∗

We sometimes refer to this additional property as the “ultra” property of
an ultrafilter.

The properties of ultrafilters combine to give the useful property that
whenever we have a finite union of sets in U , it must be because one of these
sets is in U .
Lemma 2.8. If U is an ultrafilter and K1 ∪K2 ∪ · · · ∪Kn ∈ U then there is
an i ≤ n so that Ki ∈ U .
Proof. Suppose not, so Ki 6∈ U for all i ≤ n. By the ultra property, each
(N \ Ki) ∈ U . So also the intersection ⋂

i≤n(N \ Ki)) ∈ U , which is a
contradiction, since this intersection is the empty set.

∗Technically we have defined a nonprincipal ultrafilter, but since this is the main case,
and the only case we are interested in, we will omit the word “nonprincipal”.
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Ultrafilters have exactly the property we want: they make every sequence
converge to a unique value.

Theorem 2.9. For every ultrafilter U and every sequence 〈rn〉n∈N in a
bounded interval [a, b], there is a unique r so that limn→U rn = r.

Proof. The proof is similar to the proof of Bolzano–Weierstrass. Each time
we split the interval in half, it could be that there are infinitely many rn in
both halves, and therefore we have to choose which half to continue in. In
the proof of Bolzano–Weierstrass, we could choose arbitrarily because we
only cared about showing that there was some convergent subsequence.

When we have an ultrafilter, it forces a choice on us—exactly one of the
two halves is consistent with the ultrafilter. Indeed this is precisely what an
ultrafilter does: whenever N = J ∪K, an ultrafilter tells us to concentrate
on exactly one of J or K.

Again, assume that [a, b] = [0, 1]. We will construct a sequence 〈sn〉n∈N
which converges in the usual sense to a real number r = limn→∞ sn while
ensuring that, for each ε > 0, {n | |rn − r| < ε} ∈ U .

Divide the interval [0, 1] in half, so [0, 1] = [0, 1/2] ∪ (1/2, 1]. Consider
{n | rn ∈ [0, 1/2]}; if this set is in U then we take s1 = 1/4 and promise that,
for all n > 1, sn ∈ [0, 1/2]. In particular, that will mean r ∈ [0, 1/2], and so

{n | |rn − r| ≤ 1/2} ⊆ {n | rn ∈ [0, 1/2]} ∈ U .

Otherwise, by the “ultra” property of the ultrafilter, N \ {n | rn ∈
[0, 1/2]} = {n | rn ∈ (1/2, 1]} must belong to U , and we will take s1 = 3/4
and promise that, for all n > 1, sn ∈ (1/2, 1]. In particular, that will mean
r ∈ [1/2, 1], and so

{n | |rn − r| ≤ 1/2} ⊆ {n | rn ∈ [1/2, 1]} ∈ U .

Next we split the interval in half again. For instance, if s1 = 1/4 then we
split [0, 1/2] = [0, 1/4] ∪ (1/4, 1/2]. If {n | rn ∈ [0, 1/4]} ∈ U then we take
s2 = 1/8 and promise that, for all n > 2, sn ∈ [0, 1/4], which will mean that
r ∈ [0, 1/4], and therefore that

{n | |rn − r| ≤ 1/4} \ {n | rn ∈ [0, 1/4]} ∈ U .

Otherwise {n | rn ∈ (1/4, 1]} ∈ U , so also

{n | rn ∈ (1/4, 1]} ∩ {n | rn ∈ [0, 1/2]} = {n | rn ∈ (1/4, 1/2]} ∈ U .
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In this case we take s2 = 3/8 and promise that, for all n > 2, sn ∈ (1/4, 1/2].
This means that r ∈ [1/4, 1/2], and therefore that

{n | |rn − r| ≤ 1/4} ⊆ {n | rn ∈ (1/4, 1/2]} ∈ U .

In general, after k stages we have chosen s1, . . . , sk and an interval
I = [ a2k ,

a+1
2k ] so that:

• when i < j, |si − sj | ≤ 1
2i ,

• sk ∈ I,

• {n | rn ∈ I} ∈ U .

We divide this interval in half, as

[ a2k ,
a+ 1

2k ] = [ 2a
2k+1 ,

2a+ 1
2k+1 ] ∪ (2a+ 1

2k+1 ,
2a+ 2
2k+1 ]

and observe that exactly one of the sets

{n | rn ∈ [ 2a
2k+1 ,

2a+ 1
2k+1 ]} and {n | rn ∈ (2a+ 1

2k+1 ,
2a+ 2
2k+1 ]}

belongs to U . We choose sk+1 to be the midpoint of the corresponding
interval.

The sequence 〈sn〉n∈N is certainly convergent since, whenever i < j, we
have |si − sj | ≤ 1

2i . Letting r = limn→∞〈sn〉, for any ε > 0 we can choose k
large enough so that 1

2k < ε, note that |sk − r| ≤ 1
2k , so

{n | |rn − r| < ε} ⊆ {n | |rn − r| ≤
1

2k+1 } ⊆ {n | |rn − sk| ≤
1
2k } ∈ U .

Definition 2.10. When U is an ultrafilter and 〈rn〉n∈N is a sequence of real
numbers in [a, b], we call limn→U rn the ultralimit (with respect to U) of
〈rn〉n∈N.

Once we have an ultrafilter, we no longer need to worry about convergence
issues: every bounded sequence converges with respect to that ultrafilter.
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2.3 Ultrafilters
We defined ultrafilters as collections of sets satisfying certain properties, and
then derived the striking conclusion that they make every sequence converge.
We should worry that this is so strong precisely because no such collections
exist. Free filters certainly exist: let F0 be the collection of all cofinite sets.
This is called the Fréchet filter, and we can see that it has the properties of
a free filter.

• If J and K are cofinite, so N \ J and N \ K are both finite, then
N \ (J ∩K) = (N \J)∪ (N \K) is also finite, and therefore J ∩K ∈ F0.

• If J is cofinite and J ⊆ K then N \K ⊆ N \ J is also finite, so K ∈ F0.

Indeed, F0 is the smallest possible free filter. We will try to expand F0 into
an ultrafilter. If we have any free filter F which is not an ultrafilter, so there
is some set with both K 6∈ F and N \K 6∈ F , then we can at least extend
the free filter to contain one of these sets.

Lemma 2.11. Let F be a free filter such that N \K 6∈ F . Then there is a
free filter F ′ ⊇ F ∪ {K}.

Proof. There is a unique choice of a minimal F ′ ⊇ F ∪ {K}—F ′ needs to
be the collection of all I such that, for some J ∈ F , we have K ∩ J ⊆ I.
Certainly F ′ ⊇ F since for any J ∈ F , J ⊇ K ∩ J so J ∈ F ′. Also N ∈ F so
K ⊇ K ∩ N, so K ∈ F ′. The closure properties of a free filter force F ′ to
contain all these sets, so we just need to prove that (under the assumption
that N \K 6∈ F) this is a free filter.

Suppose I0, I1 ∈ F ′, so I0 ⊇ K ∩ J0 an I1 ⊇ K ∩ J1 with J0, J1 ∈ F .
Then I0 ∩ I1 ⊇ (K ∩ J0) ∩ (K ∩ J1) = K ∩ (J0 ∩ J1) and since J0 ∩ J1 ∈ F ,
also I0 ∩ I1 ∈ F ′.

If I0 ∈ F ′ and I0 ⊆ I1 then I1 ⊇ I0 ⊇ K ∩ J0 so I1 ∈ F ′.
If ∅ ∈ F ′ then ∅ ⊇ K ∩ J for some J ∈ F . But then J ⊆ (N \K), so

N \K 6∈ F , which contradicts our assumption. Since every cofinite set is in
F and F ⊆ F ′, every cofinite set is in F ′.

Since F ′ ⊇ F , it is the desired free filter.

So we can now imagine how we would obtain an ultrafilter: we begin with
the Fréchet filter and successively extend this filter over and over again using
Lemma 2.11, once for each subset of N, until we obtain an ultrafilter. At
each step we can consider one set K ⊆ N and extend our filter, if necessary,
to ensure that it either contains K or N \K.
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This process is very non-canonical. For example, if we begin with F0, we
might decide to add either the even numbers or the odd numbers to give the
next filter. Both choices are reasonable—they give us valid free filters—but
they lead to different ultrafilters. So this approach suggests that if we obtain
an ultrafilter, it will only be because there are many ultrafilters and we
happen to have found one of them.

If there were countably many subsets of N, this approach would simply
work; the problem is that there are uncountably many subsets of N, so
in order to have enough steps to consider every subset of N, we need an
uncountably long construction.

In particular, we will encounter the situation where we have long “chains”
of filters—where we have chosen a long sequence of filters F0 ⊆ F1 ⊆ F2 ⊆ · · ·
where this sequence is infinitely long and we need to combine these into a
single filter.

Lemma 2.12. Let (L,≤) be a non-empty ordered set, and suppose that, for
each i ∈ L, Fi is a free filter so that when i ≤ j, Fi ⊆ Fj. Then there is a
free filter F such that, for all i ∈ L, Fi ⊆ F .

Proof. We simply take F = ⋃
i∈LFi.

Suppose J,K ∈ F . Then there are i, j so that J ∈ Fi and K ∈ Fj .
Either i ≤ j or j ≤ i; without loss of generality, assume j ≤ i, so Fj ⊆ Fi,
so K ∈ Fi. Then J ∩K ∈ Fi, so also J ∩K ∈ Fi.

If J ∈ F and J ⊆ K then J ∈ Fi, so K ∈ Fi, so K ∈ F .
Since ∅ 6∈ Fi for all i, ∅ 6∈ F .
If K is cofinite then K ∈ Fi for any i, so K ∈ F .

There are different ways to put these lemmata together to construct an
ultrafilter. They all depend, in an essential way, on some use of the Axiom
of Choice, and differ mostly in how they phrase the use of the Axiom of
Choice. One way is to place the subsets of N in an order so that we can use
transfinite recursion to construct an ultrafilter—that is, arrange a sequence
F0 ⊆ F1 ⊆ · · · so that, at stage i, we ensure that either Ki ∈ Fi+1 or
N \Ki ∈ Fi+1. Doing this requires some use of Axiom of Choice (the version
usually called the “well-ordering principle”) to obtain an ordering of the
subsets of N on which transfinite recursion works.

A different form of the Axiom of Choice, Zorn’s Lemma, suggests a more
abstract approach.
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Theorem 2.13 (Zorn’s Lemma). Let P be a set partially ordered by
⊆ so that whenever (L,≤) is a totally ordered set and f : I → P is
an order preserving function (so i ≤ j implies f(i) ⊆ f(j)), there is a
P ∈ P such that, for every i ∈ I, f(i) ⊆ P . Then there is a maximal
element of P—a P ∈ P such that, for any Q ∈ P such that P ≤ Q,
P = Q.

Zorn’s Lemma is exactly suited to the situation we are in. One interpretation
of Lemma 2.11 is that it says that ultrafilters are precisely the maximal
free filters—if F is a maximal free filter and N \ K 6∈ F then there is a
F ′ ⊇ F ∪ {K} which, by maximality, must already be F , so K ∈ F .

But what if there were no maximal free filters? One way we might fail to
have a maximal free filter is if there were chains that got larger and larger—
some sequence F0 ⊆ F1 ⊆ · · · (potentially infinitely or even uncountably
infinitely long) of larger and larger free filters that never ends and never
concludes with some object above all of them. Zorn’s Lemma says that this
is the only obstacle to finding a maximal object: if every sequence has a top
then there must actually be a maximal element.

Theorem 2.14. There is an ultrafilter.

Here it really matters that we mean a nonprincipal ultrafilter (that is, we
require that all sets in the ultrafilter be infinite). The existence of principal
ultrafilters is fairly trivial—the collection of all sets containing 3 is one.

Proof. Let P be the set of free filters, ordered by ⊆. Using Lemma 2.12 and
Zorn’s Lemma, there must be some maximal free filter F . As shown above,
F is an ultrafilter.

The use of the Axiom of Choice (in the form of Zorn’s Lemma) further
suggests that the choice of an ultrafilter is non-canonical. Indeed, there is no
“best” or “unique” ultrafilter, and no way to construct one concretely. One
way to say this formally is to observe that in the axioms of ZF—that is, set
theory without the Axiom of Choice—one cannot prove that an ultrafilter
exists [17, 54].∗

∗It is not quite true that having an ultrafilter requires the Axiom of Choice, since the
existence of an ultrafilter follows from weaker axioms, though ones that still go beyond
ZF. In this sense the existence of an ultrafilter is essentially a weak form of the Axiom of
Choice. The relationship between various many Axiom of Choice-like principles has been
extensively studied [88].
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One might think that, since the existence of ultrafilters depends on (a
weak form of) the Axiom of Choice, the proofs we will give using ultrafilters
depend on the Axiom of Choice as well. In fact, this will not be true: despite
using ultrafilters in our construction, we will ultimately give proofs about
finite graphs which do not require the use of the Axiom of Choice. This is
a subtle point which we will return to later: the use of ultrafilters, in the
applications we are interested in, can be systematically removed by purely
syntactic manipulations on the proofs.

2.4 Products
We now return to our original concern: how to take the limit of sequences of
graphs.

We will suppose we have a sequence of graphs Gn = (Vn, En) where |Vn|
is approaching infinity, and we set out to define a graph which serves as a
limit of the sequence Gn. For concreteness, let us take an example: Gn will
be the bipartite graph Kn,n. Specifically, we will take Vn to be the set of
integers {1, 2, . . . , 2n} and En will consist of all pairs {i, j} where exactly
one element is even, so the two parts of Gn are the even vertices and the
odd vertices.

A vertex in our limit graph will be based on a sequence of vertices from
the graphs Gn. As a first attempt, we will consider the product of the sets
of vertices: the set of vertices will be ∏n∈N Vn, which consists of sequences
〈vn〉n∈N such that, for each n, vn ∈ Vn. (Recall that we required that graphs
have at least one vertex, so this product is always non-empty—for each n
there is at least one possible choice of vn.)

When we consider two sequences 〈vn〉n∈N and 〈wn〉n∈N, we need to decide
whether to put an edge between them. The sequence 〈vn〉n∈N could be a
mix of even and odd values, as could 〈wn〉n∈N—it could be that, for some
value of n, vn and wn have the same parity, and therefore {vn, wn} 6∈ En,
while for other values of n, vn and wn have opposite parity, and therefore
{vn, wn} ∈ En.

This leads to two sets which partition N:

N = {n | {vn, wn} ∈ En} ∪ {n | {vn, wn} 6∈ En},

and this perhaps makes clear where our ultrafilter will come in. Exactly
one of these two sets belongs to the ultrafilter, so we will place an edge
between 〈vn〉n∈N and 〈wn〉n∈N exactly if {n | {vn, wn} ∈ En} belongs to U .
That is, some values of n think there should be an edge while others thing
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there should not be, and we go with the choice of “most” n, where “most” is
determined by the ultrafilter. In formal notation, we define:

[En]U = {{〈vn〉n∈N, 〈wn〉n∈N} | {n | {vn, wn} ∈ En} ∈ U .

Note that it is very important that our choice of “most” n is “coherent”.
Suppose we take three elements of ∏n∈N Vn, 〈un〉n∈N, 〈vn〉n∈N, and 〈wn〉n∈N.
It could be that, for some values of n, {un, vn} ∈ En, and also for some
values of n, {un, wn} ∈ En, and for yet other values of n, {vn, wn} ∈ En.
Any two of these possibilities are consistent, but there are no values of n
for which all three happen at once. We want to make sure that we do not
add edges between all three sequences in E—there are no triangles in any
(Vn, En), so there should be no triangles in (∏n∈N Vn, [En]U ).

But our decision about which pairs to put in [En]U is made pair by
pair—we place {〈un〉n∈N, 〈vn〉n∈N} ∈ [En]U if {n | {un, vn} ∈ En} ∈ U , and,
separately, we place {〈vn〉n∈N, 〈wn〉n∈N} ∈ [En]U if {n | {vn, wn} ∈ En} ∈ U ,
and similarly for {〈un〉n∈N, 〈wn〉n∈N} ∈ [En]U . Yet these three decisions
cannot be independent, because we cannot place all three pairs in [En]U .

Coordinating all the different choices is the job of the ultrafilter U . (This
is the simultaneous part of asking that all sequences converge simultaneously.)
Suppose all three pairs did somehow end up in E; that would mean

{n | {un, vn} ∈ En}, {n | {un, wn} ∈ En}, {n | {vn, wn} ∈ En} ∈ U .

But since the intersection of elements of the ultrafilter is also in the ultrafilter,

{n | {un, vn} ∈ En} ∩ {n | {un, wn} ∈ En} ∩ {n | {vn, wn} ∈ En} ∈ U .

That is impossible, because there are no such n and ∅ 6∈ U , so this cannot
happen.

At least in this (very simple) case, the object we get is a plausible limit:
the limit of larger and larger finite bipartite graphs is an infinite bipartite
graph.

Theorem 2.15. There is a partition
∏
n∈N Vn = V1∪V2 such that if v, w ∈ V ,

{v, w} ∈ [En]U if and only if v and w are in different parts.

Proof. Let us take V1 to consist of those sequences 〈vn〉n∈N such that {n |
vn is even} ∈ U , and V2 to consist of all other sequences. For any sequence
〈vn〉n∈N, we have

N = {n | vn is even} ∪ {n | vn is odd},
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so if 〈vn〉n∈N 6∈ V1, we must have {n | vn is odd} ∈ U . So V1 is the sequences
which are “mostly even” and V2 is the sequences which are “mostly odd”.

Consider a pair with 〈vn〉n∈N ∈ V1 and 〈wn〉n∈N ∈ V2. Then

{n | {vn, wn} ∈ En} ⊇ {n | vn is even} ∩ {n | wn is odd} ∈ U ,

so {〈vn〉n∈N, 〈wn〉n∈N} ∈ [En]U .
Similarly, if 〈vn〉n∈N ∈ V1 and 〈wn〉n∈N ∈ V1 (the case where both are in

V2 is similar), then

{n | {vn, wn} 6∈ En} ⊇ {n | vn is even} ∩ {n | wn is even} ∈ U ,

so {〈vn〉n∈N, 〈wn〉n∈N} 6∈ [En]U .

Let us consider a second example, which will highlight a problem with
simply using the product. Let Gn be the complete graph on n vertices:
Vn = {1, 2, . . . , n} and En =

(Vn
2
)
. The limit should be a complete infinite

graph.
Suppose we take the same definition: the vertices are ∏n∈N Vn, the set

of all sequences 〈vn〉n∈N such that vn ∈ Vn for all n, and [En]U consists of all
pairs {〈vn〉n∈N, 〈wn〉n∈N} such that {n | {vn, wn} ∈ En} ∈ U .

Consider two elements of ∏n∈N Vn which differ at only one index—say,
the sequence 〈vn〉n∈N where vn = 1 for all n, and the sequence 〈wn〉n∈N where
w2 = 2 but wn = 1 for all n 6= 2. Then {n | {vn, wn} ∈ En} = {2}, which is
a finite set and therefore not in U .

If we believe—and we do—that the limit of complete graphs should be a
complete graph, this is a problem, because we have found two sequences in∏
n∈N Vn which are not adjacent.
The problem is that these two sequences are too similar—for “most”

values of n we have vn = wn. We should accept majority rule for = as well as
for E: since most indices think these sequences are equal, we should decide
they actually are equal.

Definition 2.16. We write 〈vn〉n∈N ∼U 〈wn〉n∈N if {n | vn = wn} ∈ U .

Theorem 2.17. ∼U is an equivalence relation.

Proof. Reflexivity holds because, for any sequence 〈vn〉n∈N, {n | vn = vn} =
N ∈ U .

Symmetry follows from the symmetry of equality, since if 〈vn〉n∈N ∼U
〈wn〉n∈N then

{n | wn = vn} = {n | vn = wn} ∈ U .
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And transitivity holds because if 〈vn〉n∈N ∼U 〈wn〉n∈N and 〈vn〉n∈N ∼U
〈xn〉n∈N then

{n | vn = xn} ⊇ {n | vn = wn} ∩ {n | wn = xn} ∈ U .

We will decide that two sequences represent the same vertex of our graph
if they are equivalent to each other using ∼U . That is, we will use the
quotient [Vn]U = ∏

n∈N Vn/ ∼U .
Formally, a vertex of [Vn]U is an equivalence class of sequences—that is,

it is a set of sequences which are all ∼U equivalent to each other.

Definition 2.18. When 〈vn〉n∈N, we will write [vn]U for the equivalence
class of 〈vn〉n∈N in [Vn]U .

We call 〈vn〉n∈N a representative of the equivalence class [vn]U .

It would not be unreasonable to write limn→U vn = [vn]U , and we will
sometimes view [vn]U as a sort of limit of the sequence 〈vn〉n∈N.

When we want to talk about an element v ∈ [Vn]U , we will often pick
some sequence 〈vn〉n∈N such that [vn]U = v. The notation [vn]U is supposed
to remind us that we are working with one of the sequences which represents
the equivalence class.

Note that [vn]U = [wn]U exactly when 〈vn〉n∈N ∼U 〈wn〉n∈N, and there-
fore exactly when {n | vn = wn} ∈ U—two sequences represent the same
equivalence class when they are equivalent.

There are many different sequences representing an equivalence class,
so when working with the notation [vn]U , we have to be careful that we
really are talking about the equivalence class, not the sequence—that is, we
need to be sure that we would get the same result if we used a different
representative.

For instance, we need to revisit our definition of [En]U : we defined
adjacency for sequences, not equivalence classes. Suppose [vn]U = [v′n]U and
[wn]U = [w′n]U , and {〈vn〉n∈N, 〈wn〉n∈N} ∈ [En]U . We have to worry about
the possibility that {〈v′n〉n∈N, 〈w′n〉n∈N} 6∈ [En]U—in other words, that we
could have equivalent sequences which disagree about whether or not the
pair belongs to [En]U .

Again, the fact that ultrafilters are closed under intersection comes to
our rescue: if {〈vn〉n∈N, 〈wn〉n∈N} ∈ [En]U then

{n | {v′n, w′n} ∈ En} ⊇ {n | {vn, wn} ∈ En}∩{n | vn = v′n}∩{n | wn = w′n} ∈ U ,
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so also {〈v′n〉n∈N, 〈w′n〉n∈N} ∈ [En]U .
So we can define an edge relation on ∏n∈N Vn/ ∼U—which we will also

call [En]U—by saying {[vn], [wn]} ∈ [En]U when {n | {vn, wn} ∈ En} ∈ U .
This fixes the example that gave us trouble. If Gn is the complete graph

({1, 2, . . . , n}, ({1,2,...,n}2
)
) then {[vn], [wn]} ∈ EU if and only if

{n | vn 6= wn} = {n | {vn, wn} ∈ En} ∈ U ,

so exactly when [vn]U 6= [wn]U . So, with this modification, the limiting graph
is the complete graph on the set [Vn]U .

2.5 Ultraproducts
We can assemble what we said in the previous section into the full definition
of our limit objects.

Definition 2.19. If Gn = (Vn, En) is a sequence of graphs and U is an ultra-
filter, the ultraproduct, written

∏
n→U

Gn or [Gn]U is the graph ([Vn]U , [En]U )

where:

• [Vn]U = ∏
n Vn/ ∼U—that is, [Vn]U consists of equivalence classes [vn]U

where 〈vn〉n∈N is a sequence with vn ∈ Vn for all n and [vn]U = [wn]U
if {n | vn = wn} ∈ U , and

• [En]U consists of pairs {[vn]U , [wn]U} such that {n | {vn, wn} ∈ En} ∈
U .

We call the graphs Gn the ground graphs of ∏n→U Gn.

The point is that, in many ways, the ultraproduct ∏n→U Gn will capture
the “limiting” behavior of the ground graphs. Understanding how the
ultraproduct resembles the ground graphs will concern us throughout the
rest of the book. Although the ultraproduct can depend on the particular
ultrafilter U , we will generally work with an arbitrary ultrafilter and focus
on the relationship between the ground graphs and the ultraproduct.

Clearly there are ways that the ultraproduct differs from the ground
structures; for example, even if the Gn are finite, [Gn]U is typically infinite,
and indeed, uncountably infinite.
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For our purposes, the only sizes are finite ones, countably infinite, and
uncountably infinite. Recall that a set S is countable (that is, either
finite or countably infinite) if there is surjective function f : N→ S, and
countably infinite if there is a bijection f : N→ S.

There are many different incfinite cardinalities, but we will not be
concerned with the distinctions among them.

Theorem 2.20. Suppose that limn→∞ |Vn| =∞. Then [Vn]U is uncountably
infinite.

Proof. Suppose not—that is, suppose [Vn]U were countable. Then there
would be a surjective function v : N→ [Vn]U . We can choose a representative
for each element: v(i) = [vin]U . (We do not need to be particular about
this—any representatives will do.) We need to find a sequence 〈wn〉n∈N so
that [wn]U 6= [vin]U for all i.

For each n, choose wn ∈ Vn\{v1
n, . . . , v

|Vn|−1
n }. Since we are only excluding

at most |Vn|−1 values form Vn, we know some choice of wn is possible. (Note
that, when we work index-wise, considering each index n individually, we
also only consider the n-th terms of the representatives—we are considering
vin because this is an element of Vn.)

For any i, we need to show that [wn]U 6= [vin]U . This is the same as
showing that {n | wn 6= vin} ∈ U . We chose wn to avoid vin when i < |Vn|.
Therefore

{n | wn 6= vin} ⊇ {n | |Vn| > i}.
Since limn→∞ |Vn| = ∞, {n | |Vn| > i} is cofinite and therefore in U , so
{n | wn 6= vin} ∈ U .

Therefore, for each i, [wn]U 6= [vin]U , contradicting the surjectivity of v.
So whenever we have a countable list of elements of V , we can obtain a new

element different from all of them. Therefore V is uncountably infinite.

We said at the beginning of the chapter that we want the subgraph
density of the limit to be the limit of the subgraph densities; in our new
terminology, we can say that we want

tH(
∏
n→U

Gn) = lim
n→U

tH(Gn).

Working with subgraph density will have to wait until the next chapter, when
we develop a probability measure in ultraproducts, but we can at least show
that the presence of finite graphs in the ultraproduct reflects their presence
in the ground graphs.
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Theorem 2.21. Let H be a finite graph. There is a copy of H in [Gn]U if
and only if

{n | there is a copy of H in Gn} ∈ U .

Proof. First, suppose there is a copy of H = (W,F ) in [Gn]U . Recall, that
means there is a function π : W → V such that, for each edge {w,w′} ∈ F ,
{π(w), π(w′)} ∈ [En]U . For each w ∈W , pick a representative π(w) = [vwn ]U .
Then, for each {w,w′} ∈ F , we must have a set

Kw,w′ = {n | {vwn , vw
′

n } ∈ En} ∈ U

in the ultraproduct which witnesses the presence of the edge between π(w) =
[vwn ]U and π(w′) = [vw′n ]U .

Since W , and therefore F , is finite, the intersection of all these sets,⋂
{w,w′}∈F Kw,w′ is also in U . For any n ∈ ⋂{w,w′}∈F Kw,w′ , we claim there

is a copy of H in Gn: take πn(w) = vwn . Then for any {w,w′} ∈ F ,
{πn(w), πn(w′)} = {vwn , vw

′
n } ∈ En because n ∈ Kw,w′ .

For the converse, suppose that there is a set K ∈ U such that, for every
n ∈ K, we have a copy of H in Vn—that is, a function πn : W → Vn so
that, whenever {w,w′} ∈ F , {πn(w), πn(w′)} ∈ En. For each n 6∈ K, define
πn : W → Vn arbitrarily—we do not require that πn be a copy of H when
n 6∈ K.

Then we define π : W → V by assigning π(w) to be [πn(w)]U . For any
{w,w′} ∈ F , {n | {πn(w), πn(w′)} ∈ En} ⊇ K, so {π(w), π(w′)} ∈ [En]U .
Therefore π is an actual copy of H.

The same argument would also show that there is an induced copy of H
in [Gn]U if and only if {n | there is an induced copy of H in Gn} ∈ U .

Properties like this will be a recurring theme: properties P such that P
is true of the ultraproduct exactly when {n | P is true of Gn} ∈ U . We give
one more (somewhat artificial) example right now to illustrate the technique,
and to get more practice working with ultraproducts.

Let us temporarily say that a graph G = (V,E) has an isolated triangle if
it contains three vertices u, v, w with {u, v}, {u,w}, {v, w} ∈ E where none
of the vertices u, v, w has any neighbors other than the other vertices in the
triangle. (That is, the triangle is a connected component of the graph.) We
consider this example because it is essentially the simplest property we can
ask about which is not just the presence or absence of a finite graph.

Theorem 2.22. The ultraproduct [Gn]U has an isolated triangle if and only
if {n | Gn has an isolated triangle} ∈ U .
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Proof. First, suppose [Gn]U has an isolated triangle, u, v, w. We can choose
representatives u = [un]U , v = [vn]U , and w = [wn]U . We claim that the set
of n such that un, vn, wn is an isolated triangle belongs to U .

Let K1 = {n | {un, vn} ∈ En}, K2 = {n | {un, wn} ∈ En}, and K3 = {n |
{vn, wn} ∈ En}; since u, v, w is a triangle in the ultraproduct, each of these
sets belongs to U , so also K = K1 ∩K2 ∩K3 belongs to U .

Let J1 be the set of n such that un has a neighbor other than vn or wn,
let J2 be the set of n such that vn has a neighbor other than un or wn, and
let J3 be the set of n such that wn has a neighbor other than un or vn.

For each n ∈ J1, there is a vertex xn with {un, xn} ∈ En, xn 6= vn, and
xn 6= wn. If J1 were in U then we could take a vertex x = [xn]U (where xn
is any element of Vn for n 6∈ J1). But then we would have {x, u} ∈ [En]U ,
x 6= v, and x 6= w, contradicting the fact that we started with an isolated
triangle.

By the same argument, neither J2 nor J3 can be in U . Since U is an
ultrafilter, that means their complements N \ Ji must be in U , so

K ∩ (N \ J1) ∩ (N \ J2) ∩ (N \ J3) ∈ U .

But for any n in this set, un, vn, wn is an isolated triangle.
To prove the converse, let K be the set of n such that Gn contains

an isolated triangle and suppose that K ∈ U . Then, for each n ∈ K,
we can choose a particular isolated triangle un, vn, wn. We can take the
elements [un]U , [vn]U , [wn]U of [Vn]U (where, once again, we take un, vn, wn
to be any element of Vn we like when n 6∈ K). For every n ∈ K we have
{un, vn}, {un, wn}, {vn, wn} ∈ En, so [un]U , [vn]U , [wn]U form a triangle in
[Gn]U .

Suppose this triangle is not isolated, so there is some vertex x = [xn]U
adjacent to one of the vertices in the triangle but not equal to any of
the vertices in the triangle; we may as well assume {[xn]U , [un]U} ∈ [En]U ,
[xn]U 6= [vn]U , and [xn]U 6= [wn]U . That means {n | {xn, un} ∈ En} ∈ U ,
{n | xn 6= vn} ∈ U , and {n | xn 6= wn} ∈ U . Therefore also

K ∩ {n | {xn, un} ∈ En} ∩ {n | xn 6= vn} ∩ {n | xn 6= wn} ∈ U .

Since ∅ 6∈ U , there must be an n in all these sets. But this gives a contradiction:
we chose un, vn, wn to be an isolated triangle in Vn, and xn contradicts that
isolation.

So [un]U , [vn]U , [wn]U does form an isolated triangle in [Gn]U .

On the other hand, there will also be important properties which do not
pass from the ground graphs to the ultraproduct.
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Theorem 2.23. There is a sequence of finite connected graphs Gn = (Vn, En)
such that [Gn]U is not connected.

Recall that a graph is connected if for any vertices v, w, there is a finite
path v = v1, v2, . . . , vn = w so that, for each i < n, {vi, vi+1} ∈ E.

Proof. Take Gn to be the path of length n: Vn = {1, 2, . . . , n} and {i, j} ∈ En
exactly when |i− j| = 1—that is, the graph with n
vertices.

To see that the ultraproduct is not connected, consider the vertex [vn]U
where vn = 1 for all n, and the vertex [wn]U where wn = n for all n.
Suppose there were a finite path between these vertices; let us write this
path u1, u2, . . . , uk where u1 = [vn]U and uk = [wn]U and, for each i < k,
{ui, ui+1} ∈ E. Pick representatives ui = [uin]U where u1

n = vn and ukn = wn.
For each i < k, let Ki = {n | {uin, ui+1

n } ∈ En}, so Ki ∈ U . Then also⋂
i<kKi ∈ U . In particular, ⋂i<kKi must be infinite, so we can choose

n ∈ ⋂
i<kKi with n > k. Then we have u1

n = vn = 1 adjacent to u2
n,

so u2
n = 2. Since u2

n is adjacent to u3
n, we must have u3

n = 3 or u3
n = 1.

Continuing in this way, we must have uin ≤ i for each i, which would mean
that k ≥ ukn = wn = n, contradicting the choice that k < n.

Therefore there cannot be a finite path from [vn]U to [wn]U .

This example is worth investigating slightly further. Recall that when a
graph (V,E) is not connected, we can partition V = X ∪ Y so that X and Y
are non-empty but there are no edges between X and Y . The ultraproduct
in the previous example is disconnected; one fairly natural choice of a
disconnected partition is to take X to be all the vertices represented by
constant sequences—the vertices of the form [vn]U where vn = c for c ≤ n
and vn arbitrary for n < c; we abbreviate these [c]U . Then Y can be all
other vertices. The argument in the proof shows that these sets are not
adjacent—that the vertices in X are only adjacent to other vertices in X
(indeed, [c]U is adjacent exactly to [c+ 1]U and [c− 1]U ).

The sets X and Y have an important property: they cannot be described
“coordinate-wise” in terms of subsets of the Vn.
Definition 2.24. When Xn ⊆ Vn is a sequence of sets, let [Xn]U consist of
all points [vn]U such that {n | vn ∈ Xn} ∈ U .

Note that, despite being stated in terms of coordinates, this definition
does not depend on the choice of representatives for the point [vn]U : if
[vn]U = [v′n]U and [vn]U ∈ [Xn]U then

{n | v′n ∈ Xn} ⊇ {n | vn ∈ Xn} ∩ {n | vn = v′n} ∈ U ,
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so we also have [v′n]U ∈ [Xn]U .

Lemma 2.25. In the ultraproduct [Gn]U = ([Vn]U , [En]U) where Gn is the
path of length n, the set X = {[c]U | c ∈ N} is not equal to [Xn]U for any
sequence of sets Xn ⊆ X.

Proof. Consider some sequence of sets Xn ⊆ Vn. We will show that X 6=
[Xn]U . Assume [Xn]U ⊇ X, and we will construct a point [vn]U ∈ [Xn]U \X.
For each n, take vn to be the largest element of Xn if Xn 6= ∅, and vn = 1 if
Xn = ∅. We have

{n | vn ∈ Xn} = {n | Xn 6= ∅} ⊇ {n | 1 ∈ Xn}

where {n | 1 ∈ Xn} ∈ U since [1]U ∈ X ⊆ [Xn]U .
For any c, we have [c+ 1]U ∈ X ⊆ [Xn]U , so

{n | vn 6= c} ⊇ {n | vn > c} ⊇ {n | c+ 1 ∈ Xn} ∈ U ,

which shows that [vn]U 6= [c]U .
Since [vn]U 6= [c]U for every c, we conclude that [vn]U ∈ [Xn]U \X.

2.6 A Few Examples
Before going on, we should consider a few examples of ultraproducts of
graphs. Of course, since we are only beginning to investigate the properties
of ultraproducts, we will be limited in what we can say about them, but we
will be able to flesh them out later.

First, consider the ultraproduct K∞,∞ = [Kn,n]U .

Lemma 2.26. K∞,∞ = (V,E) is a complete bipartite graph with two infinite
parts.

Proof. For each n, we have Kn,n = V 0
n ∪ V 1

n with |V 0
n | = |V 1

n | and En =
(V 0
n × V 1

n ) ∪ (V 1
n × V 0

n ).
For each x = [xn]U ∈ V , we have N = {n | xn ∈ V 0

n } ∪ {n | xn ∈ V 1
n }, so

exactly one of these sets belongs to U . Naturally, we take V0 to be those [xn]U
where {n | xn ∈ V 0

n } ∈ U and V1 to be those [xn]U where {n | xn ∈ V 1
n } ∈ U}.

If x = [xn]U and y = [yn]U then {x, y} ∈ E if and only if {n | {xn, yn} ∈
En} ∈ U , which happens if and only if {n | xn and yn are in different parts} ∈
U , which happens if and only if x and y are in different parts.

We could also consider variants, like K∞,∞2 = [Kn,n2 ]U . By the same
argument, we can see that
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Lemma 2.27. K∞,∞2 = (V,E) is a complete bipartite graph with two infinite
parts.

It will be slightly harder to make sense of the idea that, in K∞,∞, the
two parts have the same size, while in K∞,∞2 one part is much larger than
the other. Indeed, as graphs, K∞,∞ and K∞,∞2 are actually isomorphic.
However we will show later that only in K∞,∞ can we find a bijection between
the two parts which “respects the ultraproduct” in a certain sense.

If, for each n, we take Gn = Rp({1, . . . , n}), a random graph on n vertices,
we get an ultraproduct we will call Rp,U = [Gn]U . Instead of talking about
what happens “with high probability”, the interesting properties of Rp,U will
turn out to be mostly settled up to probability 1.

2.7 Internal Sets

Sets which can be represented coordinate-wise will be central to our under-
standing of ultraproducts and their uses.

Definition 2.28. We say a set X ⊆ [Vn]U is internal if there is some
sequence Xn ⊆ Vn such that X = [Xn]U (as sets—that is, v ∈ X if and only
if v ∈ [Xn]U ).

More generally, we will speak of internal subsets of the product set
[Vn]kU = [V k

n ]U for k > 1 in the same way—X ⊆ [Vn]kU is internal if there are
sets Xn ⊆ V k

n so that X is precisely the set of tuples ([v1
n]U , . . . , [vkn]U ) such

that
{n | (v1

n, . . . , v
k
n) ∈ Xn} ∈ U .

For example, the set {(v, w) | {v, w} ∈ [En]U} is an internal subset of [Vn]2U .
(Indeed, as the notation suggests, we could think of [En]U itself as an internal
subset of

([Vn]U
2
)
.)

An internal set X has many representations in the form [Xn]U , but these
representations are as similar as we could hope for—they are equal almost
everywhere.

Lemma 2.29. If [Xn]U = [Yn]U (as sets—any element of one set is also an
element of the other) then {n | Xn = Yn} ∈ U .

Proof. We prove the contrapositive. Suppose {n | Xn = Yn} 6∈ U . Then

{n | Xn 6= Yn} = {n | Xn \ Yn 6= ∅} ∪ {n | Yn \Xn 6= ∅} ∈ U .
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So one of these sets must in U ; without loss of generality, assume K =
{n | Xn \ Yn 6= ∅} ∈ U . Then, for each n ∈ K, take an ∈ Xn \ Yn.
Letting an be arbitrary for n 6∈ K, we have {n | an ∈ Xn} ⊇ K ∈ U and
{n | an 6∈ Yn} ⊇ K ∈ U , so [an]U ∈ [Xn]U \ [Yn]U .

In the previous section we showed that a particular set X coming from
a partition of an ultraproduct into disconnected components was external.
That example reflects a general phenomenon: an ultraproduct of connected
graphs may not be connected, but it is “internally connected”, in the sense
that it cannot be partitioned into non-empty internal sets without edges
between them.

Theorem 2.30. Suppose that {n | Gn is connected} ∈ U . Then for any
internal set X ⊆ [Vn]U such that X and [Vn]U \X are non-empty, there is a
v ∈ X and a w ∈ [Vn]U \X with {v, w} ∈ [En]U .

Proof. Since X is internal, we have X = [Xn]U for some sequence Xn ⊆ Vn.
Let I = {n | Xn 6= ∅} and let J = {n | Vn \Xn 6= ∅}. Since X and [Vn]U \X
are both non-empty, I, J ∈ U . Also, let K be {n | Gn is connected}, which
is also in U .

For any n ∈ I ∩J ∩K, we know that Gn is connected, there is a vertex in
Xn, and a vertex in Vn \Xn. There must be a path between these vertices, so
by starting with the vertex in Xn and following the path until we leave Xn,
we must find a point vn ∈ Xn which is adjacent to some wn ∈ Vn \Xn—that
is, {vn, wn} ∈ En. (Choose vn and wn arbitrarily for n 6∈ I ∩ J ∩K.)

Since I∩J∩K ∈ U , we can conclude that all three properties pass up to the
ultraproduct: [vn]U ∈ [Xn]U , [wn]U ∈ V \[Xn]U , and {[vn]U , [wn]U} ∈ EU .

This sort of phenomenon will be common: when we consider only internal
sets, rather than all sets, the ultraproduct will often closely resemble the
ground graphs.

Analogous to internal sets, we have internal functions.

Definition 2.31. A function f : [Vn]kU → [Vn]mU is internal if there is a
sequence of functions fn : V k

n → V m
n such that, for any [~vn]U ∈ [Vn]k,

f([~vn]U ) = [fn(~vn)]U .

This lets us characterize the difference between K∞,∞ and K∞,∞2 : in
K∞,∞, there is an internal bijection between the two parts, but not in K∞,∞2 .

The internal sets have some natural closure properties. They form an
algebra.
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Definition 2.32. If B ⊆ P(V ) (the power set of V ), we say B is an algebra
if:

• ∅ ∈ B and V ∈ B,

• whenever B ∈ B, V \B ∈ B,

• whenever B0, B1 ∈ B, also B0 ∪B1 ∈ B.

These properties immediately imply that if B is an algebra and B0, B1 ∈ B
then also B0 ∩B1 ∈ B.

Lemma 2.33. For each k, the internal subsets of [Vn]kU form an algebra.

Proof. ∅ = [∅]U and [Vn]kU = [V k
n ]U .

Let B ⊆ [Vn]kU be internal, so B = [Bn]U . Then

[xn]U ∈ [Vn]kU \B if and only if [xn]U 6∈ B
if and only if {n | xn ∈ Bn} 6∈ U
if and only if {n | xn ∈ V k

n \Bn} ∈ U
if and only if [xn]U ∈ [V k

n \Bn]U ,

so [Vn]kU \B = [V k
n \Bn]U .

If B0, B1 ⊆ [Vn]kU are internal, so B0 = [B0
n]U and B1 = [B1

n]U ,

[xn]U ∈ B0 ∪B1 if and only if [xn]U ∈ B0 or [xn]U ∈ B1

if and only if {n | xn ∈ B0
n} ∈ U or {n | xn ∈ B1

n} ∈ U
if and only if {n | xn ∈ B0

n ∪B1
n} ∈ U

if and only if [xn]U ∈ [B0
n ∪B1

n]U ,

so B0 ∪B1 = [B0
n ∪B1

n]U .

Since the union (or intersection) of two internal sets is internal, induction
shows that the union (or intersection) of finitely many internal sets is internal.
The union (or intersection) of countably many internal sets is almost never
internal, however, as we will see later.

Internal sets have an additional important closure property. They are
closed under projections:
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Lemma 2.34. If B ⊆ [Vn]k+1
U is internal then

{~b | ∃x (~b, x) ∈ B}

and
{~b | ∀x (~b, x) ∈ B}

are internal.

Proof. Since {~b | ∀x (~b, x) ∈ B} is

[Vn]kU \ {~b | ∀x (~b, x) ∈ [Vn]k+1 \B},

it suffices to show only the first case and use the closure under complements
we have already shown.

If B ⊆ [Vn]k+1
U is internal, so B = [Bn]U , for each n let Cn ⊆ V k

n be given
by Cn = {~b | ∃x ∈ Vn (~b, x) ∈ Bn}. Then

∃x ([~bn]U , x) ∈ B if and only if there is a [xn]U such that ([~bn]U , [xn]U ) ∈ B
if and only if there is a [xn]U such that {n | (~bn, xn) ∈ Bn} ∈ U
if and only if {n | ~bn ∈ Cn} ∈ U
if and only if [~bn]U ∈ [Cn]U .

Analogously to internal sets, we could speak of “internal statements”—
that is, satements P such that P is true in [Vn]U if and only if {n |
P is true in Vn} ∈ U . For instance, Theorem 2.21 shows that “there ex-
ists a copy of H” is an “internal statement” in this sense.

To make this more rigorous, we would have to precisely formulate what
we mean by a “statement”. The right choice would be first-order logic: the
closure properties above are are exactly what we need to align the internal
sets with the definable sets of first-order logic. Indeed, the lemmata above
immediately give the following:

Corollary 2.35. Let [Vn]U be an ultraproduct L a language of first-order
logic, and suppose that each predicate symbol in L is interpreted by an internal
set and each function symbol in L is interpreted by an internal function.
Then all definable sets are internal.
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More concretely, we have the following theorem directly relating first-
order logic to what happens in ultraproducts. In particular, if each Vn is
the universe of an L-structure Mn, the ultraproduct [Vn]U is immediately an
L-structure [Mn]U with all symbols interpreted by internal sets and functions.
(For instance, for each predicate symbol R, R[Mn]U = [RMn

n ]U ). Then all the
definable sets are internal, and furthermore we have
Theorem 2.36 (Łoś’s Theorem). Let L be a language of first-order logic.
Suppose that, for each n, Vn is the universe of an L-structure Mn.

Then:

• [Vn]U is a L-structure [Mn]U with all symbols interpreted by internal
sets and functions,

• for any formula φ,

{~a ∈ [Vn]kU | [Mn]U � φ(~a)} = [{~a ∈ Vn |Mn � φ(~a)}]U .

We will mostly not need this perspective, since we will work directly with
the internal sets, but the connection between internal and definable sets is a
substantive one. In fact, one can think of the internal sets as exactly those
sets which are “potentially definable”—the sets definable, not necessarily in
the current language, but in any extended language. To make this precise,
one identifies first-order logic with the functors from structures to sets which
respect ultraproducts [113].

We will be particularly interested in the following question: how do prop-
erties of ultraproducts correspond to the properties of the ground structures?
Łoś’ Theorem gives the beginning of an answer.
Corollary 2.37. Suppose P is a property which can be represented by a
first-order sentence—that is, there is a formula σ with no free-variables such
that a graph G has property P if and only if the formula σ is true in G.

Then [Gn]U has the property P if and only if {n | Gn has the property P} ∈
U .

In particular, properties like “contains a triangle” (or, more generally,
contains a copy of the finite graph H) are first-order—that is, we have the
following two equivalent facts:

• there is a sentence σ (in the language of graphs) so that G contains a
triangle exactly when G � σ,

• [Gn]U contains a triangle if and only if {n | Gn contains a triangle } ∈
U .
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2.8 Saturation
Every finite set is internal (the set {a1, . . . , ak} can be defined as {x ∈ V |
x = a1 ∨ x = a2 ∨ · · · ∨ x = ak}) and it is easy to produce uncountably
infinite internal sets (like [Vn]U itself). But there are no countably infinite
internal sets. This follows from a much more general compactness property
of ultraproducts called saturation.

Theorem 2.38 (Saturation). Suppose that, for each i ∈ N, Xi = [Xi
n]U is

an internal set, and that, for every k,
⋂
i≤kX

i is non-empty. Then
⋂
i∈NX

i

is non-empty.

Proof. For each n, let k be maximal so that ⋂i≤kXi
n is non-empty, and

choose vn ∈
⋂
i≤kX

i
n. (If X1

n is empty, choose vn arbitrarily.)
For each i,

{n | vn ∈ Xi
n} ⊇ {n | i ≤ n and

⋂
i≤k

Xi
n is non-empty} ∈ U ,

so [vn]U ∈ [Xi
n]U = Xi. Since this holds for every i, [vn]U ∈

⋂
iX

i.

This immediately implies that there can be no countably infinite internal
set: if X is internal and v1, . . . , vi, . . . are distinct elements of X then we can
take Xi = X \ {v1, . . . , vi}. vk+1 ∈ ⋂i≤kXi, so by saturation, there is some
v ∈ ⋂iXi, so v 6∈ {v1, . . . , vi, . . .}.

Saturation also implies the following, which we will need later.

Theorem 2.39. Suppose that, for each i, Xi is internal. If
⋃
iX

i is internal
then there is a k so that

⋃
iX

i = ⋃
i≤kX

i.

Proof. Suppose X = ⋃
iX

i were internal. Then the sets Y i = X \Xi would
also be internal. There can be no v ∈ ⋂i Y i = ⋂

i(X \Xi) = ∅, so by the
contrapositive of saturation, there must be some k so that ⋂i≤k Y k = ∅.
Therefore X = ⋃

i≤kX
i.

Saturation is one of the essential properties that characterizes how ultra-
products behave.

Definition 2.40. If G = (V,E) is a graph and v, w ∈ V , the distance between
v and w is the smallest k such that there is a path v = v0, v1, . . . , vk = w
such that {vi, vi+1} ∈ E for all i < k, or ∞ if there is no such path.

G has finite diameter if there is a single value of k such that, for every
v, w ∈ V , the distance between v and w is ≤ k.
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Theorem 2.41. [Gn]U is connected if and only if [Gn]U has finite diameter.

Proof. A graph with finite diameter is connected by definition. For the other
direction, suppose [Gn]U = ([Vn]U , [En]U ) does not have finite diameter. For
each i ∈ N, letXk = {(v, w) ∈ V 2

U | the distance between v and w is greater than k}.
Xk is internal. One way to see this is to note that

{(v, w, y1, . . . , yk) | {v, y1} ∈ E and {y1, y2 ∈ E} and · · · and {yk−1, w} ∈ E}

is internal, so the projection Y k—onto those (v, w) so that there is a path of
length exactly k between them—is also internal. Then Xk = ⋂

j≤k([Vn]2U \Yj)
is a finite intersection of the complements of these sets: Xk is those (v, w)
so that, for each j ≤ k, there is not a path of length j.

Since [Gn]U does not have finite diameter, each Xk = ⋂
i≤kX

j is non-
empty. Therefore, by saturation, ⋂iXi is non-empty—there are a pair of
vertices (v, w) such that the distance between v and w is larger than k for
every k, and therefore there is no path between v and w, so [Gn]U cannot be
connected.

This example is typical of the behavior of ultraproducts. Saturation
forces a great deal of uniformity on an ultraproduct: if every pair of vertices
has a finite distance (that is, if the graph is connected) then there must
be a uniform bound on that distance—that is, the graph must have finite
diameter.

We will later need an additional saturation-like property. Suppose we
have internal sets A1 ⊆ A2 ⊆ A3 ⊆ · · · . We have already seen that, unless the
sequence stops growing at some finite Ai, the union ⋃i∈NAi is not internal.
However we can find internal sets which contain the union and are somehow
related to the sequence.

This is an instance of a more general property of ultraproducts called se-
quential comprehensiveness which, roughly speaking, lets us extend countable
sequences.∗

Pick representations Ai = [Ain]U . Then there is a “diagonal” set A∗ =
[⋃i≤nAin]U . (One might wonder why we use ⋃i≤nAin rather than just Ann,
since ⋃i≤nAi = An. However we only know that when i ≤ j, Ain ⊆ Ajn for

∗At a technical level, sequential comprehensiveness is more powerful than saturation—
that is, there exist structures which are saturated but do not have sequential comprehen-
siveness. For our purposes, where we just work in ultraproducts, we do not notice the
difference because ultraproducts have both properties, but the distinction comes up in
axiomatic approaches to nonstandard analysis; see [70], for instance. This distinction is
reflected in the proof: we cannot use saturation, but must instead return again to looking
at sets in terms of their sequences of representatives.
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many n, with the set of n depending on i and j. So we might not have
Ain ⊆ Ann when i ≤ n.)

Certainly ⋃i∈NAi ⊆ A∗: if [vn]U ∈
⋃
i∈NA

i then there is some i so that
{n | vn ∈ Ain} ∈ U , and therefore {n | i ≤ n and vn ∈ Ain} ∈ U as well, so
[vn]U ∈ A∗.

Note that this is a coordinate-wise definition which does depend on the
specific choice of representatives—the set A∗ is not canonically associated
with the sequence A1 ⊆ A2 ⊆ · · · . Indeed, there are many sets with the
same properties as A∗.

More generally, whenever f : N → N is a function, we can define an
internal set Af = [⋃i≤f(n)A

i
n]U . As long as {n | i ≤ f(n)} ∈ U , we will have

Ai ⊆ Af . (Indeed, more generally, if {n | g(n) ≤ f(n)} ∈ U then we have
Ag ⊆ Af .) By choosing the function f carefully, we can sometimes construct
internal sets with additional properties we need.

An application we need in the next chapter is showing that if we have an
increasing sequence of internal sets below a decreasing sequence of internal
sets, we can find an internal set C in between the two sequences.

Theorem 2.42. Suppose that

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ B3 ⊆ B2 ⊆ B1

are internal sets. Then there is an internal set C such that, for every i,
Ai ⊆ C ⊆ Bi.

Proof. Fix representatives Ai = [Ain]U and Bi = [Bi
n]U . Let C = Af where

f(n) is the smallest j such that, for all i, i′ ≤ j, Ain ⊆ Bi′
n . (If A1

n 6⊆ B1
n then

f(n) = 0, which is fine, since the set of n on which this happens is not in U .)
For each i, i′, let Ki,i′ = {n | Ain ⊆ Bi′

n} ∈ U . Since Ai ⊆ Bi′ , Ki,i′ ∈ U .
Therefore, for each j, ⋂i≤j,i′≤jKi,i′ ∈ U . But if n ∈

⋂
i≤j,i′≤jKi,i′ and j ≤ n

then f(n) ≥ j. In particular, for each j, {n | f(n) ≥ j} ∈ U , so Aj ⊆ C.
Similarly, whenever f(n) ≥ j, ⋃i≤f(n)A

i
n ⊆ Bj

n. Since {n | f(n) ≥ j} ∈
U , we also have C ⊆ Bj .

2.9 Related Topic: Arrow’s Theorem

When we build an ultraproduct, we have a sequence of graphs Gn, and the
graphs “vote” on what should be true in the ultraproduct: for instance,
{[an]U , [bn]U} ∈ EU when {n | {an, bn} ∈ En} ∈ U , which we can think of as
saying that a “majority” of the n’s voted for an and bn to be adjacent.
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This perspective can be taken somewhat literally, as a digression to voting
theory shows: we can use ultraproducts to prove Arrow’s famous theorem
that there is no voting system satisfying certain reasonable properties.

Suppose there is a finite list of candidates, C, running for some office. We
have a set of voters, N , and each voter has a list of preferences among this
candidates—that is, for each n ∈ N , there is a linear ordering ≺n on C. (We
assume voters always have a linear ordering of preferences.)

A preference aggregation rule is a function F which produces a single
linear ordering ≺= F ({≺n}n∈N ) on C depending on the voter preferences.
(Note that we are requiring that F produce a full, linear ranking on C, not
merely that it select the winner.)

For example, a familiar voting system is that each voter votes for their first
choice—that is, chooses the top ranked candidate in ≺n—and the ordering
≺ is given by the number of votes cast for each candidate, so the candidate
with the most votes is highest in ≺, then the candidate with the next most
votes, and so on. (We will assume, here and throughout this section, that
ties never come up, since ties raise minor notational complications without
changing the main ideas.)

This particular example ignores how the voters compare candidates other
than their first choice. A different function might be to have each voter
assign points to the candidates: perhaps each voter n gives |C| points to
the top candidate in ≺n, |C| − 1 points to the second highest candidate in
≺n, and so on, and then the aggregate ordering ≺ orders candidates by the
number of points received.

Theorem 2.43 (Arrow’s Impossibility Theorem). If N is finite and there
are at least three candidates, there is no preference aggregation rule such that:

(1) If a �n b for every n ∈ N then a � b.

(2) Suppose that {≺n}n∈N and {≺′n}n∈N are two different lists of prefer-
ences, a, b ∈ C, and for every n ∈ N ,

a ≺n b⇔ a ≺′n b.

Then also
a ≺ b⇔ a ≺′ b.

(3) There is no n0 ∈ N such that � is always equal to �n0.

The first requirement seems natural enough: it says that if every voter
prefers a to b then a gets ranked above b; this is called the “unanimity”
requirement.



2.9. RELATED TOPIC: ARROW’S THEOREM 79

The second requirement is more subtle. It is called “independence of
irrelevant alternatives”. It says that whether a is ranked above b depends
only on which voters prefer a to b, and not on how other candidates compare
to a and b. It will be useful to think of ≺n and ≺′n as “before” and “after”
situations: an initial poll shows that the each voter n has the view ≺n, which
would give the outcome ≺. Later, the voters have changed their views about
other candidates, and have the new views ≺′n, but no one has changed their
mind about a and b—each voter who thought a ≺n b still thinks a ≺′n b and
vice versa. Then the outcome between a and b still hasn’t changed: if a ≺ b,
so b was ahead of a in the earlier poll, then a ≺′ b, so b is still ahead of a.

Both the examples above violate this second requirement. To see why
the example where we base ≺ on the number of first-place votes violates it,
suppose that there are three candidates {a, b, c} and that, initially, 60% of
the voters have the view a �n c �n b while 40% have the view b �n a �n c.
Then a gets more first place votes than b, so a � b. But then suppose c
runs an effective campaign and half of the first group of voters change their
mind about a and c: now 30% of voters have c �n a �n b, 30% still have
a �n c �n b, and 40% still have b �n a �n c. Now we have b � a. This
sort of “spoiler” effect is exactly what the second requirement is trying to
prevent.

The third requirement says there is no dictator: there is no single voter
whose preferences just get imposed.

Proof. We suppose there is such a preference aggregation rule satisfying the
first two requirements, and we show that there is a dictator. We will do
this by showing that a preference aggregation rule satisfying the first two
conditions gives rise to a collection of sets resembling an ultrafilter.

Let us say that a set K ⊆ N is victorious for a over b such that for any
set of preferences {≺n}n∈N , if a �n b for every n ∈ K then a � b: if a can
beat b with every voter in K then a will beat b in the final result.

In fact, being a victorious set does not depend on the particular candidates
a and b: we first show that if K is victorious for some pair a over b then K
is victorious for every pair of candidates.

Suppose K is victorious for a over b. Then we also show that, for any c,
K is victorious for a over c. Suppose the voters have views {≺n}n∈N such
that, for every n ∈ K, a �n c. Whatever their views of b are, let us have
them change their mind about b to have preferences {≺′n}n∈N so that every
voter has b �′n c, and in particular, every voter n ∈ K has a �′n b �′n c. Since
a �′n b for every n ∈ K, a �′ b. Since b �′n c for every n, by unanimity we
have b �′ c. Since �′ is a linear ordering, a �′ c, and then by independence
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of irrelevant alternatives, a � c as well. This works whenever a �n c for
every n ∈ K, so K is victorious for a over c.

By a symmetric argument, K is victorious for every d over b. Combining
these steps, K is victorious for every d over every c.

So let us just speak of victorious sets. By unanimity, N is victorious.
From the definition, if K is victorious and K ⊆ J then J is victorious.

Suppose J and K are both victorious and consider some situation
{≺n}n∈N where a �n b for every n ∈ J ∩ K. Choose a third outcome
c (we assumed that a third outcome exists). Suppose voters change their
minds about c to have preferences {≺′n}n∈N as follows. For each n ∈ J ∩K,
we have a �′n c �′n b. For each n ∈ J \K, we have c �′n b. For each n ∈ K \J ,
we have a �′n c.

Then, since J is victorious and for every n ∈ J we have c �′n b, we must
have c �′ b. For every n ∈ K we have a �′n c, so a �′ c. Therefore a �′ b and,
by independence of irrelevant alternatives, also a � b. This works whenever
a �n b for every n ∈ J ∩K, so J ∩K is victorious.

We have shown that the victorious sets form a filter.∗
Next, suppose K is not victorious. That means there is some list of

preferences {≺−n }n∈N so that a �−n b for every n ∈ K, but b �− a. We will
show that N \K is victorious. Consider a third candidate c, and any situation
{≺n}n∈N so that b �n c for every n ∈ (N \K). We will change the voter
preferences about a to a third situation, {≺′n}n∈N , which incorporates some
information from {≺−n }n∈N : for every n ∈ K, a will become the voters first
choice (so, in particular, both a �′n b and a �′n c), while for every n ∈ N \K,
we will have a �′n c and will also have a �′n b if and only if a �−n b. The
voters views of a and b in {≺′n}n∈N are the same as in {≺−n }n∈N , so, by
independence of irrelevant alternatives, since b �− a also b �′ a. For every
n ∈ N we have a �′n c, so by unanimity, a �′ c. Therefore b �′ c.

Then, by independence of irrelevant alternatives, we must have b � c.
Since this works whenever c ≺n b for every n ∈ N \K, so N \K is victorious
for b over c, and therefore is victorious.

Therefore the victorious sets have the “ultra” property. Therefore the
victorious sets are an ultrafilter.† But, since N is finite, N = {n1} ∪ · · · {nk}
for some finite k, and therefore there is some i so that {ni} ∈ N . But then
ni is a dictator: whenever a �ni b, we have a � b.

Indeed, this argument shows that when N is not finite, if F satisfies the
∗Though not necessarily a free filter—we have not promised that every cofinite set is

victorious, and indeed, N is finite, so every set is cofinite.
†In the conventional definition, where we work over filters rather than free filters.
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first two requirements then the victorious sets form an ultrafilter on N .

2.10 Remarks

We considered ultrafilters over N—that is, ultrafilters which consist of subsets
of N—but we can consider an ultrafilter made out of subsets of any sets, or,
more generally ultrafilters in any partially ordered set. This leads to more
general ultraproducts whose ground models are indexed by sets other than
N.

If one replaces the last property of a free filter—that it contains all cofinite
sets—with the weaker assumption that the collection is non-empty (and
therefore contains N), one obtains a filter. Adding the ultra property to a
filter gives the conventional definition of an ultrafilter. The only difference is
that the definition of an ultrafilter given in this chapter excludes the principal
ultrafilters: for each n, the collection of all sets containing n is a principal
ultrafilter. Since the principal ultrafilters are a degenerate case, we have
simply excluded them from the definition rather than repeatedly specifying
"non-principal" everywhere.∗

The space of ultrafilters has a structure of its own, as a topological
semi-group—indeed, with a discrete space like N, the collection of ultrafilters
coincides with the maximal compactification of the space, the Stone-Čech
compactification. Ultrafilters have a number of direct (that is, without
constructing an ultraproduct) applications in mathematics [16, 84], and it
is an interesting open question whether all the uses of ultrafilters can be
channeled through ultraproducts [42].

The ultraproduct construction applies to structures much more general
than graphs. Indeed, the ultraproduct construction applies to a vast array
of mathematical objects—it is usually defined for structures of first-order
logic [49], which includes combinatorial structures like directed graphs and
hypergraphs; algebraic structures like groups, rings, fields, and so on; and
also models of set theory. Ultraproducts of the natural numbers and the
reals have become a standard way to approach non-standard analysis [41,
70]. Ultraproducts also pay an important role in set theory [93, 105], where
one can even consider ultraproducts of the entire universe of sets. The
ultraproduct construction, with a suitable modification, also applies to

∗To paraphrase an old joke, if the reader is ever stranded on a desert island, I recommend
giving a talk to the ocean about ultrafilters without specifying that you mean non-principal
ultrafilters. Someone will promptly arrive to remind you that, surely, you meant to specify
the non-principal ultrafilters.
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structures in continuous logic [14], including Banach spaces and C∗-algebras,
and normed spaces more generally [83]. (Indeed, one of the motivations for
the development of continuous logic was to explain the already-observed
existence of ultraproducts in non-first-order structures like Banach spaces.)



Chapter 3

Density as Probability

3.1 Density is not Cardinality

We now turn to making sure that for any H, the density tH has the property
that

tH([Gn]U ) = lim
n→U

tH(Gn).

We have only even defined tH(G) when G is finite, so we need to figure out
how to define the left side of this equation. First, we should notice that we
can’t just define tH([Gn]U ) as a ratio of cardinalities the way we did for finite
graphs.

Consider a sequence of graphs with few (but not zero) edges: let Gn be
the graph Cn consisting of n vertices arranged in a cycle. In a cycle, every
vertex has exactly two neighbors, and this is a property that passes to the
ultraproduct—observe that [xn]U has exactly two neighbors if and only if
{n | xn has exactly two neighbors} ∈ U .

For any fixed finite cycle k, TCk(Cn) = ∅ once n > k—that is, there are
no small loops. So, for each k, {n | TCk(Cn) = ∅} ∈ U , so [Gn]U does not
contain any copies of Ck for any k.

So each vertex in GU has two neighbors, each of which has an additional
neighbor, each of which has an additional neighbor, and since we cannot
loop, we get infinite chains that look like . A chain like
this has countably many vertices, so [Gn]U must contain uncountably many
of these chains. This gives a complete description of [Gn]U as a graph:
uncountably many chains which stretch forever in both directions, and
therefore uncountably many edges (indeed, the same uncountable cardinality
as the set of vertices).

83
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However limn→U tK2(Gn) = 0: the graph Gn has n vertices and n edges,
so tK2(Gn) = n

n2 = 1
n . So even though [Gn]U has uncountably many edges,

the “density” of these edges should still be 0.
On the other hand, if G′n is the complete graph on n vertices, [G′n]U is a

complete graph on uncountably many vertices. Since tK2(G′n) = 1 for every
n, the density of edges in [G′n]U should also be 1.

So [Gn]U and [G′n]U have the same cardinality of both vertices and edges,
but very different densities. Infinite cardinality is a much coarser notion than
finite cardinality, and we will need are more refined notion to make sense of
density on ultraproducts.

3.2 Probability on Internal Sets
Our approach will be to turn [Gn]U = ([Vn]U , [En]U ) into a probability space.
When V is a set, a probability measure is a function µ which assigns, to
subsets of V , a probability in the interval [0, 1].

When X ⊆ [Vn]U is internal, there is a natural choice for the probability
of X: since X is internal, X = [Xn]U and we should have

µ(X) = lim
n→U

|Xn|
|Vn|

.

To make this even more explicit, recall that in Section 1.3 we defined a
counting measure: when S ⊆ Vn, let us write µn(S) = |S|

|Vn| for the counting
measure on the n-th ground model. Then our definition is simply

µ(X) = lim
n→U

µn(Xn).

This is a coordinate-wise definition, so we should make sure it doesn’t
depend on the representation of X we choose.

Lemma 3.1. If [Xn]U = [Yn]U then

lim
n→U

µn(Xn) = lim
n→U

µn(Yn).

Proof. If [Xn]U = [Yn]U then there is a K ⊆ U so that, for all n ∈ K,
Xn = Yn. Therefore, for each n ∈ K, µn(Xn) − µ(Yn) = 0, and therefore
limn→U (µn(Xn)− µ(Yn)) = 0, so also

lim
n→U

µn(Xn) = lim
n→U

µn(Yn).
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For example, suppose that each Gn is a complete bipartite graph where
the sides have almost the same size: take Gn = Kn,n+1 = (Vn, En), where
|Vn| = 2n+ 1 and we have Vn = Xn ∪ Yn where |Xn| = n+ 1 and |Yn| = n,
and En = {{x, y} | x ∈ Xn and y ∈ Yn}. Then, as in the previous chapter,
[En]U will be a complete bipartite graph on [Vn]U . [Xn]U and [Yn]U are
subsets of [Vn]U and

µ([Xn]U ) = lim
n→U

µn(Xn) = lim
n→U

|Xn|
|Vn|

= lim
n→U

n+ 1
2n+ 1 = 1

2 .

In the finite graphs Kn,n+1, Xn is approximately half the vertices (at least
when n is large), but in the ultraproduct, the measure of [Xn]U is exactly
one half. In Chapter 1, dealing with the finite case, we sometimes noted that
we were disregarding error terms that were sufficiently small—specifically,
erros which were less than ε|Vn| for each ε > 0 (and when n was much larger
than 1/ε). In the ultraproduct, these error terms are literally 0.

This demonstrates that the relationship between statements about mea-
sure in the ground models and the corresponding statements in ultraproducts
is slightly more complicated than the straightforward relationship given by
first-order formulas. In this example, {n | µn(Xn) > 1/2} = N ∈ U , but
µ([Xn]U ) ≤ 1/2.

However this is the most that µ([Xn]U ) can deviate from the behavior of
the µn(Xn):

Lemma 3.2. Whenever X ⊆ [Vn]U is internal, taking X = [Xn]U we have:

• if {n | µn(Xn) ≤ c} ∈ U then µ(X) ≤ c,

• if µ(X) ≤ c then, for every ε > 0, {n | µn(Xn) < c+ ε} ∈ U ,

• if {n | µn(Xn) ≥ c} ∈ U then µ(X) ≥ c,

• if µ(X) ≥ c then, for every ε > 0, {n | µn(Xn) > c− ε} ∈ U .
All parts of the lemma follow from the definition of limn→U .
It will be convenient, once in a while, to have approximations of µ which

are internal.

Definition 3.3. µ([Xn]U ) % ε holds exactly when {n | µ(Xn) ≥ ε} ∈ U .
The lemma above then says that

µ([Xn]U ) > ε ⇒ µ([Xn]U ) % ε ⇒ µ([Xn]U ) ≥ ε.
µ inherits many of the rules we expect of probability from the ground

models:
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Lemma 3.4. If X and Y are internal sets then µ(X ∪ Y ) = µ(X) + µ(Y )−
µ(X ∩ Y ).

Proof. Pick representativesX = [Xn]U and Y = [Yn]U . Observe thatX∪Y =
[Xn ∪ Yn]U :

[vn]U ∈ X ∪ Y if and only if [vn]U ∈ X or [vn]U ∈ Y
if and only if {n | vn ∈ Xn} ∈ U or {n | vn ∈ Yn} ∈ U
if and only if {n | vn ∈ Xn or vn ∈ Yn} ∈ U
if and only if [vn]U ∈ [Xn ∪ Yn]U .

Similarly, X ∩ Y = [Xn ∩ Yn]U :

[vn]U ∈ X ∪ Y if and only if [vn]U ∈ X and [vn]U ∈ Y
if and only if {n | vn ∈ Xn} ∈ U and {n | vn ∈ Yn} ∈ U
if and only if {n | vn ∈ Xn and vn ∈ Yn} ∈ U
if and only if [vn]U ∈ [Xn ∩ Yn]U .

Therefore

µ(X ∪ Y ) = lim
n→U

µn(Xn ∪ Yn)

= lim
n→U

(µn(Xn) + µn(Yn)− µn(Xn ∩ Yn))

= lim
n→U

µn(Xn) + lim
n→U

µn(Yn)− lim
n→U

µn(Xn ∩ Yn)

= µ(X) + µ(Y )− µ(X ∩ Y ).

More generally, we have finite additivity.

Corollary 3.5. Suppose B1, . . . , Bk are pairwise disjoint internal sets. Then
µ(⋃i≤k Bi) = ∑

i≤k µ(Bi).

Proof. By induction on k, using the previous lemma

The conventional setting for probability theory is a σ-algebra, in which
we have not only finite unions and intersections, but countable ones.

Definition 3.6. We say B is a σ-algebra if B is an algebra and, additionally,
whenever Bi ∈ B for every i ∈ N, ⋃i∈NBi ∈ B.

When B ⊆ P(V ) is a σ-algebra, a probability measure on (V,B) is a
function µ : B → [0, 1] such that:
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• µ(V ) = 1,

• if Bi ∈ B for each i and Bi ∩Bj = ∅ whenever i 6= j then µ(⋃i∈I Bi) =∑
i∈I µ(Bi).

A probability measure space is a triple (V,B, µ) where B ⊆ P(V ) is a
σ-algebra and µ is a probability measure.

Since σ-algebras are closed under complements and countable unions,
they are also closed under countable intersections.

We saw in the previous chapter that the union or intersection of countably
many internal sets is generally not an internal set, so if we want to do
probability theory properly, we will need to extend µ beyond the internal
sets. As a first step, we can show that µ satisfies the countable additivity it
is supposed to have as long as the countable union happens to be internal.

Lemma 3.7. Suppose that, for each i, Bi ∈ B is internal and Bi ∩Bj = ∅
whenver i 6= j. If

⋃
i∈NB

i is internal then µ(⋃i∈NBi) = ∑∞
i=1 µ(Bi).

Proof. In the previous chapter, we proved Theorem 2.39: if ⋃i∈NBi is internal
then ⋃i∈NBi = ⋃

i≤k B
i for some finite k. Since the Bi are pairwise disjoint,

that means Bi = ∅ for i > k and therefore µ(Bi) = 0 for i > k. Therefore
this follows from finite additivity.

This makes µ a pre-measure on the internal sets: it has the properties a
probability measure should have as long as the sets involved are internal.

Although the union of countably many internal sets is not internal, we
can get close to a countable union: the union of countably many internal
sets is contained in a set with the same measure as the sum.

Lemma 3.8. If each Ai is internal then there is an internal set A+ such
that:

• ⋃
i∈NA

i ⊆ A+, and

• µ(A+) = limm→∞ µ(⋃i≤mAi).
Proof. Name the target measure c = limm→∞ µ(⋃i≤mAi)

We first show that we can prove the statement up to ε: for each ε > 0,
we will define an internal set A+ε so that ⋃i∈NAi ⊆ A+ε and µ(A+ε) ≤ c+ ε.
Define a function f ε by setting f ε(n) to be the largest m so that

|
⋃
i≤m Ain|
|Vn| ≤

c+ε and set A+ε = Af
ε—that is, A+ε = [⋃i≤fε(n)A

i
n]U . Since

|
⋃
i≤fε(n) A

i
n|

|Vn| ≤
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c+ ε for each n, certainly µ(A+ε) ≤ c+ ε. Since limm→∞ µ(⋃i≤mAi) = c, for

each m, µ(⋃i≤mAi) ≤ c < c+ ε, and therefore {n | |
⋃
i≤m Ain|
|Vn| ≤ c+ ε} ∈ U ,

so {n | Ain ⊆
⋃
i≤fε(n)A

i
n} ∈ U , and therefore Ai ⊆ A+ε. Similarly, when

δ < ε, A+δ ⊆ A+ε.
Now consider the sequences

A1 ⊆
⋃
i≤2

Ai ⊆
⋃
i≤3

Ai ⊆ · · · ⊆ A+1/3 ⊆ A+1/2 ⊆ A+1.

Then by Theorem 2.42, there is an internal A+ with ⋃i∈NAi ⊆ A+, and
A+ ⊆ A+1/i for all i. Therefore µ(A+) ≤ c+ 1/i for all i, so µ(A+) = c.

We will usually apply this lemma when the sets Ai are pairwise disjoint,
in which case limm→∞ µ(⋃i≤mAi) = ∑

i µ(Ai).
There is one further property of finite sets that we will want µ to share.

When A and B are finite sets with the same cardinality, we also expect A and
B to have the same measure. In the ultraproduct setting, we have already
seen that this is too much to expect.

Instead, we should re-examine what we mean by cardinality: two sets have
the same cardinality if there is a bijection between them. In the ultraproduct,
we should only expect the measure to respect internal bijections.

Lemma 3.9. If A and B are internal sets and f : A → B is an internal
bijection then µ(A) = µ(B).

It will be convenient later to have the more general form of this:

Lemma 3.10. If R ⊆ A×B is an internal relation such that

• for each a ∈ A, |{b | (a, b) ∈ R}| = k,

• for each b ∈ B, |{a | (a, b) ∈ R}| = m,

then kµ(A) = mµ(B).

Then the graph of a bijection is exactly such a relation with k = m = 1.
We do not need the full generality, but we will need, for instance, the case
where k = 2 and m = 1, saying that each element of A is matched to exactly
two elements of B. Then the measures behave the way we expect: if each
element of A is matched to two elements of B then µ(B) = 2µ(A).
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Proof. We have A = [An]U , B = [Bn]U , and R = [Rn]U . Since the properties
“for every a, |{b | (a, b) ∈ R}| = k” and “for every b, |{a | (a, b) ∈ R}| = m”
are first-order, we know that the set of n so that Rn ⊆ An ×Bn has these
properties is in U .

For any such n, we have k|An| = m|Bn|, so kµ(An) = mµ(Bn). Since
this holds for a set of n belonging to U , we also have kµ(An) = mµ(Bn).

This makes sense of the difference between K∞,∞ and K∞,∞2 we saw in
Section 2.6: these structures both uncountable complete bipartite graphs,
and are therefore isomorphic, but they have different internal sets. In K∞,∞,
there is an internal bijection between the two parts, so for instance each
part has measure 1/2. On the other hand, in K∞,∞2 , for every m there is an
m-to-1 relation between the two parts, so the left part has measure 0 while
the right part has measure 1.

3.3 Probability Spaces

What about non-internal sets? We cannot hope to extend µ to make sense
for all the subsets of [Vn]U : just as in the more familiar case of the Lebesgue
measure on [0, 1], there is not a way to consistently define a probability on
every single subset of [Vn]U . There will have to be some unmeasurable sets
which are not in the domain of µ.

There is one class of sets we can immediately extend our measure to: if
A is an internal set with µ(A) = 0 then certainly we could say µ(B) = 0 for
every subset B ⊆ A, internal or not. Slightly more generally, a set might be
contained in arbitrarily small internal sets:

Definition 3.11. We say B ⊆ [Vn]U is µ-null if, for every ε > 0, there is an
internal set Aε such that B ⊆ Aε and µ(Aε) < ε.

It is almost immediate that a finite union of µ-null sets is also µ-null.
Less trivally, even a countable union of µ-null sets is µ-null.

Lemma 3.12. If each Bi is µ-null then so is
⋃
i∈NBi.

Proof. Let ε > 0 be given. For each i, choose an internal set Ai ⊇ Bi so that
µ(Ai) < ε · 2−i. Let A′i = Ai \

⋃
j<iA

′
j , so the A′i are pairwise disjoint and⋃

i∈NA
′
i = ⋃

i∈NAi.
Then by Lemma 3.8 there is an internal set A+ ⊇ ⋃i∈NAi ⊇ ⋃i∈NBi

with µ(A+) = ∑
i µ(A′i) ≤

∑
i µ(Ai) < ε.
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More generally, we could extend µ to any set which is within a null set
of an internal set:

Definition 3.13. We say B ⊆ [Vn]U is µ-approximable if there is an internal
set A so that A4B is µ-null. We call A a µ-approximation of B.

We write B(µ) for the set of µ-approximable sets. We define µ : B(µ)→
[0, 1] by µ(B) = µ(A) where A is any µ-approximation of B.

Note that this definition gives a unique value for the measure of each µ-
approximable set: if A and A′ are two µ-approximations of B then A4A′ ⊆
(A4B)∪ (A′4B) is an internal µ-null set, and therefore has measure 0, so
µ(A) = µ(A′).

The µ-approximable sets are a suitable family of sets to use as the basis
for probability theory.

Theorem 3.14. The µ-approximable sets are a σ-algebra.

Proof. ∅ and V are internal, so certainly µ-approximable. IfB is µ-approximable,
so A4B is µ-null then V \A is internal as well, and (V \A)4(V \B) = A4B
is µ-null, so V \B is µ-approximable.

Suppose Bi is µ-approximable for i ∈ N, so for each i we have an internal
set Ai so Ai4Bi is µ-null. Let A′i = Ai \

⋃
j<iAj , so

⋃
i∈NA

′
i = ⋃

i∈NAi and
the A′i are pairwise disjoint. Then by Lemma 3.8, we have a set A+ ⊇ ⋃i∈NAi
with µ(A+) = ∑

i µ(A′i).
Then the internal sets A+ \⋃j<iA′i must have measures approaching 0,

so A+ \⋃i∈NAi is µ-null.
Then

(A+ 4
⋃
i∈N

Bi) ⊆ (A+ \
⋃
i∈N

Ai) ∪
⋃
i

(Ai 4Bi).

This is a countable union of µ-null sets, so is also µ-null.
Since ⋂i∈N = V \ (⋃i∈N(V \Bi)),

⋂
i∈NBi is µ-approximable as well.

Theorem 3.15. µ is a probability measure on B(µ).

Proof. The only thing to check is countable additivity. Suppose each Bi
is µ-approximable and Bi ∩ Bj = ∅ whenever i 6= j. For each Bi, fix a
µ-approximation Ai. Observe that when i 6= j, µ(Ai ∩ Aj) = 0: since
Bi ∩Bj = ∅, Ai ∩Aj ⊆ (Ai 4Bi) ∪ (Aj 4Bj), and is therefore µ-null.

So let A′i = Ai \
⋃
j<iAj , so µ(A′i) = µ(Ai). Choose A+ ⊇ ⋃i∈NAi with

µ(A+) = ∑
i µ(A′i) = ∑

i µ(Ai). Since

A+ 4
⋃
i

Bi ⊆ (A+ \
⋃
i∈N

Ai) ∪
⋃
i∈N

(Ai 4Bi)
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is µ-null, A+ is a µ-approximation of ⋃i∈NBi, so
µ(
⋃
i∈N

Bi) = µ(A+) =
∑
i

µ(Ai) =
∑
i

µ(Bi).

The µ-approximable sets are naturally complete: any subset of a measure
0 set is measurable.

Lemma 3.16. Suppose X ⊆ Y , Y ∈ B(µ), and µ(Y ) = 0. Then X ∈ B(µ)
and µ(X) = 0.

Proof. First, we show that the empty set is a µ-approximation of Y . Since
Y ∈ B(µ) with measure 0, there is an internal set A with µ(A) = 0 so that
Y 4 A is µ-null. Then, for each ε > 0, there is a Bε with µ(Bε) < ε and
Y 4A ⊆ Bε. But since µ(A) = 0, µ(Bε ∪A) < ε and (Y 4∅) = Y ⊆ Bε ∪A.

But then (X 4∅) = X ⊆ Bε ∪A as well, so ∅ is a µ-approximation of X,
so µ(X) = 0.

Corollary 3.17. If X ⊆ [Vn]U and, for every ε > 0, there is a Yε ∈ B(µ)
with X ⊆ Yε and µ(Yε) < ε then X ∈ B(µ) and µ(X) = 0.

Proof. If the Yε were internal, this would be immediate because X would be
µ-null. Instead, note that X ⊆ ⋂d Y1/d = Y and, since B(µ) is a σ-algebra,
Y ∈ B(µ) and µ(Y ) = 0. Therefore X ∈ B(µ) and µ(X) = 0.

3.4 Probability Spaces on [Vn]kU
The sets whose densities we’re interested in are not just subsets of [Vn]U
itself, but also subsets of [Vn]kU for various k. For instance, we are interested
in the measure of {(x, y) | {x, y} ∈ [En]U} ⊆ [Vn]2U , or the measure of
{(x, y, z) | {x, y} ∈ [En]U and {x, z} ∈ [En]U and {y, z} ∈ [En]U} ⊆ [Vn]3U
(that is, the density of the set of triangles).

The sets [Vn]kU are themselves ultraproducts—[Vn]kU is the same as [V k
n ]U .

That is, we can forget about the fact that the elements of V k
n happen to

be tuples: taking Wn = V k
n , we can apply the previous section to [Wn]U =

[V k
n ]U = [Vn]kU .

Definition 3.18. For any k ∈ N, we define µk on internal subsets X =
[Xn]U ⊆ [Vn]kU by

µk(X) = lim
n→U

(µk)n(Xn) = lim
n→U

|Xn|
|Vn|k

.
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A set B ⊆ [Vn]kU is µk-null if, for every ε > 0, there is an internal set Aε
such that B ⊆ Aε and µk(Aε) < ε.

A set B ⊆ [Vn]kU is µk-approximable if there is an internal set A such that
A4B is µ-null, and we call A a µk-approximable of B.

We write B(µk) for the set of µk-approximable sets and define µk :
B(µk)→ [0, 1] by µk(B) = µk(A) where A is any µk-approximation of B.

As in the previous section, we have

Theorem 3.19. B(µk) is a σ-algebra and µk is a probability measure on
B(µk).

However the spaces [Vn]kU are more interesting than just [Vn]U by itself,
because these spaces are related to each other—the measure on [Vn]2U has
something to do with the measure on [Vn]U .

Indeed, there is a second way we could have tried to define µ2: by an
integral. For instance, when X ⊆ [Vn]2U , we could also evaluate∫

µ({y | (x, y) ∈ X}) dµ(x).

Of course, when X is not symmetric, we have to worry about the possibility
that integrating in the other order∫

µ({x | (x, y) ∈ X}) dµ(y)

might give a different value.
These integrals mean something different than the simple measure µ2(X).

The measure µ2 is looking at the set of pairs X as simply an unstructured set,
ignoring the fact that its elements are pairs. For instance, when X = [Xn]U ,
µ2(X) = limn→U

|Xn|
|V 2
n |
. On the other hand, the integral is calculating the

average, across all values of x, of the measure of the set of neighbors of x.
Another way to look at this is to think of measuring a set by randomly

sampling points. µ2 corresponds to the uniform measure on the set of pairs:
we determine µ2(X) by randomly choosing pairs of points, with each pair
equally likely, and checking whether that pair belongs to X.

∫
µ({x | (x, y) ∈

X}) dµ(x) corresponds to first choosing a value of x randomly, with each
possible x equally likely, and only after choosing a point y and checking
whether y belongs to the set {x | (x, y) ∈ X}.

Despite the different meanings, you may have a strong intuition that
these should be the same, which we should be a bit careful about. The fact
that these are the same for Lebesgue measure is Fubini’s Theorem, a familiar
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fact from multi-variable calculus. But Fubini’s Theorem does not apply here:
Fubini’s Theorem only applies to the product of probability measure spaces,
and we will see later that ([Vn]kU ,B(µk), µk) is not a product space.

These different interpreations are still the same here, but for a different
reason. This distinction is important, because we will be interested in the
product spaces, which we will define precisely later. In fact, the distinction
between the product space and ([Vn]kU ,B(µk), µk) is a central concern: we
will discover that the sets which are measurable in the sense of the product
space are exactly the “non-random” sets, and that B(µk) contains additional
measurable sets which are random.

For the moment, however, we want to understand how the spaces
([Vn]kU ,B(µk), µk) relate to each other. First, we need to consider several
ways we could use the description of a set by coordinates to define other sets.

Definition 3.20. If X ⊆ V r and π : [1, r]→ [1, r] is a bijection then

Xπ = {(x1, . . . , xr) | (xπ(1), . . . , xπ(r)) ∈ X} ∈ Br.

If k ≤ r and x1, . . . , xk ∈ V , the slice of X corresponding to x1, . . . , xk is

Xx1,...,xk = {(xk+1, . . . , xr) ∈ V r−k | (x1, . . . , xk, xk+1, . . . , xr) ∈ X}.

We can now write down an abstract description of the properties we
would expect a family of probability measure spaces to have.

Definition 3.21. Let V be a set and suppose that, for each k, we have a
probability measure space (V k,Bk, µk). The spaces {(V k,Bk, µk)}k∈N are a
Keisler graded probability space if:

• (Symmetry) whenever π : [1, k]→ [1, k] is a bijection and X ∈ Bk,

– Xπ ∈ Bk, and
– µk(Xπ) = µk(X),

• (Products) whenever B ∈ Bk and C ∈ Br, B × C ∈ Bk+r,

• (Fubini Property) whenever X ∈ Bk+r

– the set of x1, . . . , xk ∈ V such that Xx1,...,xk ∈ Br belongs to Bk
and has µk-measure 1, and

– µk+r(X) =
∫
µr(Xx1,...,xk)dµk(x1, . . . , xk).
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These properties seem technical, but they are exactly the properties we
would expect a family of probability measures on V k to have. The first two
properties guarantee that there are enough measurable sets.

However we are allowed to—as we typically will—have additional sets
beyond those required by the product property. The Fubini property puts a
restriction on these new sets, requiring that these additional sets be assigned
measures in a way that is consistent with the measures assigned to sets of
lower arity: their slices have to exist in the lower arity σ-algebras, and the
measure must be the one obtained by integrating over the slices.

In particular, we can calculate measures by integrating over one of the
coordinates. For example, let TC3 = {(x, y, z) | {x, y} ∈ E and {x, z} ∈
E and {y, z} ∈ E} be the set of triangles. Then (TC3)x = E ∩ (Ex × Ex) is
the set of pairs (y, z) which are both neighbors of x and are also neighbors of
each other (so that (x, y, z) is a triangle), and, when {x, y} ∈ E, (TC3)(x,y) =
Ex ∩ Ey.

If we want to find the measure of the set of triangles, µ3(TC3), we can
calculate either

∫
µ2((TC3)x)dµ(x) or

∫
µ((TC3)(x,y))dµ2(x, y) if one of these

is easier to calculate. Indeed, we will routinely find ourselves switching
between different integrals which calculate the same measure.

The Fubini property is only stated for a single order of integration, but
symmetry allows us to rearrange the coordinates to consider other orders
of integration. For instance, if X is a set of pairs (x1, x2) and π is the
permutation swapping 1 and 2, we have

µ2(X) = µ2(Xπ) =
∫
µ1(Xπ

x2) dµ1(x2) =
∫
µ1(Xx1) dµ1(x2).

We also note that having the Fubini property for measures is enough to
obtain the same for integrals:

Lemma 3.22. If {(V k,Bk, µk)}k∈N is a Keisler graded probability space then
for any measurable function on V k+r,

∫
f dµk+r =

∫ (∫
f(x1, . . . , xk+r) dµr(xk+1, . . . , xk+r)

)
dµk(x1, . . . , xk).

Proof. For any ε > 0, we may choose a simple function g = ∑
i≤d ciχBi with
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|f(x1, . . . , xk+r)− g(x1, . . . , xk+r)| < ε for almost all x1, . . . , xk+r. Therefore∫
f dµk+r =

∫
g dµk+r + e |e| < ε

=
∑
i≤d

ciµk+r(Bi) + e where |e| < ε

=
∑
i≤d

ci

∫
µr((Bi)x1,...,xk) dµk + e where |e| < ε

=
∫ ∑

i≤d
ciµr((Bi)x1,...,xk) dµk + e where |e| < ε

=
∫ (∫

f(x1, . . . , xk+r) dµr(xk+1, . . . , xk+r)
)
dµk(x1, . . . , xk) + e′ where |e′| < 2ε.

Since this holds for every ε > 0,∫
f dµk+r =

∫ (∫
f(x1, . . . , xk+r) dµr(xk+1, . . . , xk+r)

)
dµk(x1, . . . , xk).

The key fact we need is that the natural measure spaces on the ultra-
product form a Keisler graded probability space. The proof is routine, but
long and technical, so we finish the section with it.

Theorem 3.23. The collection of probability measure spaces ([Vn]kU ,B(µk), µk)
is a Keisler graded probability space.

Proof. The approach is that, for each property, we first show that the property
holds for internal sets, and then lift that to all of B(µk) by looking at an
approximation.

First we show symmetry for internal sets. Let A = [An]U be internal. For
any bijection π : [1, k]→ [1, k], since Aπ = [Aπn]U and (µk)n(Aπn) = (µk)n(An),
we have µ(Aπ) = µ(A).

Next, consider an arbitraryX ∈ Bk and take a µk-approximation A. Then,
for any ε > 0, we have an internal set Aε with µk(Aε) < ε and (A4X) ⊆ Aε.
But also µk(Aπε ) = µk(Aε) < ε and (Aπ 4 Xπ) ⊆ Aπε , so Aπ is a µk-
approximation to Xπ, so Xπ ∈ Bk and µk(Xπ) = µk(Aπ) = µk(A) = µk(X).

Products of internal sets are certainly internal: if A = [An]U ⊆ [Vn]kU and
B = [Bn]U ⊆ [Vn]rU are internal then A×B = [An ×Bn]U .

Suppose that, X ∈ Bk and Y ∈ Br. Consider a µk-approiximation A of X
and µr-approximation B of Y . Then for any ε > 0, we may choose internal
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sets Aε ⊇ (A4X) and Bε ⊇ (B 4 Y ) with µk(Aε) < ε/2 and µr(Bε) < ε/2.
Then

(A×B)4 (X × Y ) ⊆ [(A4X)× [Vn]rU ] ∪
[
[Vn]kU × (B 4 Y )

]
(Aε × [Vn]rU ) ∪ ([Vn]kU ×Bε),

and µk+r((Aε × [Vn]rU ) ∪ ([Vn]kU ×Bε)) < ε.
Finally, we turn to the Fubini property. Once again, we start with internal

sets. When A = [An]U ∈ Bk+r is internal, Ax1,...,xk is also internal for any
choice of x1, . . . , xk, and therefore is in Br.

The ground graphs are finite, so the analogous statements hold by count-
ing:∫

(µr)n((An)x1,...,xk)d(µk)n(x1, . . . , xk) = 1
|Vn|k

∑
(x1,...,xk)∈V n

k

|(An)x1,...,xk |
|Vn|r

= 1
|Vn|k+r

∑
(x1,...,xk)∈V n

k

|(An)x1,...,xk |

= |An|
|Vn|k+r = µk+r

n (An).

Moreover, we have limn→U µ
k+r
n (An) = µk+r(An), so what we need to do is

show that

lim
n→U

∫
(µr)n((An)x1,...,xk)d(µk)n(x1, . . . , xk) =

∫
µr((An)x1,...,xk)dµk(x1, . . . , xk).

This does not immediately follow from our definitions—to prove this,
we have to look carefully at how integrals are calculated. Integrals are
approximated by finite sums: we can break the interval [0, 1] into small
sub-intervals: let J = b1/εc and take [0, 1] = I0 ∪ I1 ∪ I2 ∪ · · · ∪ IJ where
Ij = [jε, (j + 1)ε). Then, for each (x1, . . . , xk), (µr)n(Ax1,...,xk) ∈ Ij for
exactly one j; let Cjn = {(x1, . . . , xk) | µr(Ax1,...,xk) ∈ Ij}. Then—still
working in the ground model—we notice that

(µk+r)n(An) =
∫

(µr)n(Ax1,...,xk)d(µk)n(x1, . . . , xk)

=
∑
j≤J

∫
Cjn

(µr)n(Ax1,...,xk)d(µk)n(x1, . . . , xk)

≈
∑
j≤J

(µk)n(Cjn)(j + 1/2)ε.
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More precisely, since each interval Ij has radius ε/2, we have∣∣∣∣∣∣
∫

(µr)n(Ax1,...,xn)d(µk)n(x1, . . . , xn)−
∑
j≤J

(µk)n(Cjn)(j + 1/2)ε

∣∣∣∣∣∣ < ε/2.

Consider the corresponding sets in the ultraproduct, Cj = [Cjn]U . Note
that Cj is not quite {(x1, . . . , xk) | µr(Ax1,...,xk) ∈ Ij}—because of the behav-
ior at limits, when µr(Ax1,...,xk) = jε, we could have either (x1, . . . , xk) ∈ Ij
or (x1, . . . , xk) ∈ Ij−1. Instead, what we have is that µr(Ax1,...,xk) is in the
closure of Ij : if (x1, . . . , xk) = ([x1

n]U , . . . , [xkn]U ) ∈ Cj then

µr(Ax1,...,xn) = lim
n→U

(µr)n((An)x1
n,...,x

k
n
) ∈ Ij = [jε, (j + 1)ε].

Moreover, µk(Cj) = limn→U (µk)n(Cjn). Therefore∫
µr(Ax1,...,xk)dµk(x1, . . . , xk) =

∑
j≤J

∫
Cj

µr(Ax1,...,xk)dµk(x1, . . . , xk)

and so ∣∣∣∣∣∣
∫
µr(Ax1,...,xk)dµk(x1, . . . , xk)−

∑
j≤J

µk(Cj)(j + 1/2)ε

∣∣∣∣∣∣ < ε/2.

Putting this together,

µk+r(A) = lim
n→U

(µk+r)n(An)

≈ lim
n→U

∑
j≤J

(µk)n(Cjn)(j + 1/2)ε

=
∑
j≤J

∫
Cj

µr(Ax1,...,xk)dµk(x1, . . . , xk)

=
∫
µr(Ax1,...,xk)dµk(x1, . . . , xk)

where the ≈ indicates an error of size < ε/2. Since we can make ε as small
as we like, we have

µk+r(A) =
∫
µr(Ax1,...,xk)dµk(x1, . . . , xk).
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Finally, we must show the Fubini property for an arbitrary internal set
X ∈ Bk+r(µk+r). Let A be a µk+r-approximation of X. We will show that,
for almost every x1, . . . , xk, Ax1,...,xk is a µr-approximation of Xx1,...,xk .

Let D ⊆ V k
U consist of the “defective” points—those points for which

Ax1,...,xk is not a µr-approximation of Xx1,...,xk . Then Ax1,...,xk 4Xx1,...,xk is
not µr-null, so there must be some natural number d > 0 so that Ax1,...,xk 4
Xx1,...,xk is not contained in an internal set of measure < 1/d. Let Dd consist
of those x1, . . . , xk such that Ax1,...,xk 4 Xx1,...,xk is not contained in an
internal set of measure < 1/d, so D = ⋃

dDd.
We will show that each Dd is in B(µ) and has measure 0, and therefore

D does as well. For any ε > 0, A4X is contained in some internal set B
with µk+r(B) < ε/2d. Since ε/d > µk+r(B) =

∫
µr(Bx1,...,xk)dµk(x1, . . . , xk),

the set of x1, . . . , xk such that µr(Bx1,...,xk) ≥ 1/d must be have measure
< ε. This set contains Dd, so Dd is contained in a set of measure < ε. Since
Dd is contained in a set of measure < ε for every ε > 0, by Corollary 3.17,
µ(Dd) = 0.

Then for almost every x1, . . . , xk we have µr(Ax1,...,xk) = µr(Xx1,...,xk),
so

µk+r(X) = µk+r(A)

=
∫
µr(Ax1,...,xk)dµk(x1, . . . , xk)

=
∫
µr(Xx1,...,xk)dµk(x1, . . . , xk).

3.5 Subgraph Density
The work above justifies the definition of a measurable graph. Ultraproducts
are our main example, and whenever we see a measurable graph, an ultra-
product will not be far behind, but is convenient to sometimes forget about
the extra structure of an ultraproduct.

Definition 3.24. A Keisler graded probability space {(V k,Bk, µk)}k∈N is
atomless if, for all v ∈ V , µ1({v}) = 0.

Ameasurable graph is a Keisler graded probability space {(V k,Bk, µk)}k∈N
together with a symmetric set E ∈ B2. We say a measurable graph is atomless
if the underlying Keisler graded probability space is atomless.

We often say “G = (V,E, µ1) is a measurable graph”, leaving the spaces
Bk and measures µk for k > 1 implicit. In the rare situation where the space
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Bk is significant and not implicit from the context, we will spell out the
measurable graph more carefully.

Finite graphs are always measurable graphs, taking Bk to be the set of
all k-tuples and µk to be the counting measure. The work above shows that
ultraproducts of finite graphs are also measurable graphs, and these will be
our main examples of measurable graphs.

We are only interested in either finite or atomless measurable graphs.
The notion includes other examples—for instance, imagine a measurable
graph where there is a single vertex with half the measure, but the other
half of the measure has no atoms—but we are generally not interested in
those cases.

We are now, finally, ready to define subgraph density in an ultraproduct
and, more generally, in a measurable graph.

Definition 3.25. If H = (W,F ) is a finite graph with W = {v1, . . . , vk}
and G = (V,E, µ1) is a measurable graph, for any (x1, . . . , xk) ∈ V k

U we
can define a potential copy πx1,...,xk of H in V by setting πx1,...,xk(vi) = xi.
TH(G) is the set of (x1, . . . , xk) such that πx1,...,xk is an actual copy.

This is the definition we would expect: TH(G) is precisely the set of
tuples (x1, . . . , xk) which form a copy of H. When G = [Gn]U is an ultraprod-
uct, TH([Gn]U) is certainly internal: it is the set ⋂{vi,vj}∈F {(x1, . . . , xk) |
{xi, xj} ∈ [En]U}. By the Lós Theorem, TH(G) = [TH(Gn)]n, where TH(Gn)
is the set of copies of H in Gn.

The definition of the Keisler graded probability space ensures that each
of the sets {(x1, . . . , xk) | {xi, xj} ∈ [En]U} is measurable, and therefore their
intersection is as well.

Definition 3.26. We define tH(G), the subgraph density of H in G, to be
µ(TH(G)).

When G = [Gn]U , since the TH are internal, we have tH([Gn]U) =
limn→U µn(TH(Gn)) = limn→U tH(Gn). This is the property we originally
demanded our notion of a limit graphs should have, which we have finally
achieved—not with a big final proof, but falling right out of our definitions
and the work we did to show that those definitions made sense.

The quantity tK2(G) has a particular significance, since it is essentially
the density of E itself. Indeed, by definition,

tK2(E) = µ2({(x, y) | {x, y} ∈ E}).

We can generalize tH to symmetric functions:
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Definition 3.27. If H = (W,F ) then

tH(f) =
∫ ∏
{vi,vj}∈F

f(xi, xj) dµ|W |

if the integral is defined.

Often we restrict to L∞ functions (that is, functions f so that there is a c
with |f(x)| < c for almost all x), for which such integrals are always defined.
We need f to be symmetric because the edge {vi, vj} ∈ F is unordered, so if
f(xi, xj) and f(xj , xi) were not the same, we wouldn’t know which one to
include in our product.

Then tH(χE) = tH(E). At least when f only takes on positive values,
we can think of this as counting the density of “copies” of H in a “weighted
graph” where an edge with f(x, y) = 2 counts as a double edge, an edge with
f(x, y) = 1/2 counts as half an edge, and so on.

It is convenient to count not only the number of copies of a graph, but
the number of extensions of a partial copy. That is, suppose H = (W,F ) is a
graph with W = {w1, w2, . . . , wk}, and we have already picked, for instance,
vertices x1 and x2 in V to correspond to w1 and w2. We would like to know
how many choices of x3, . . . , xk correspond to copies of H.

Definition 3.28. Let H = (W,F ) with W = {w1, . . . , wk}. For any d ≤ k
and any x1, . . . , xd ∈ V , define

TH(G, x1, . . . , xd) = {(xd+1, . . . , xk) ∈ V k−d | πx1,...,xk is an actual copy of H}

and
tH(G, x1, . . . , xd) = µk−d(TH(G, x1, . . . , xd)).

The Fubini property assures us that when H = (W,F ) is a graph and
H ′ = (W0, F �

(W0
2
)
) is a subgraph,

tH(G) =
∫
T ′H(G)

tH(G, x1, . . . , x|W0|) dµ|W0|.

This notation generalizes our earlier approach to degree: tK2(G, x) =∫
χE(x, y) dµ1(y) = degG(x). More generally, this lets us count things like

tK3(G, x) =
∫
χE(x, y)χE(x, z)χE(y, z) dµ2(z),

the number of pairs {y, z} which form a triangle with x, and

tK3(G, x, y) = χE(x, y)
∫
χE(x, z)χE(y, z) dµ1(z),
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the number of ways to extend a pair x, y to a triangle. As this example
illustrates, tH(G, x1, . . . , xd) is 0 if it is impossible to extend x1, . . . , xd to a
copy of H because an edge from H is already missing—if there is no edge
between x and y, there are no choices of z which will make {x, y, z} a triangle.

The Fubini property promises that∫
tK3(G, x) dµ1 = tK3(G)

—that is, if we add up, over all vertices, how many extensions there are to a
triangle, we get the number of triangles—and∫

χE(x, y)tK3(G, x, y) dµ2 = tK3(G)

—if we add up, over all edges, how many extensions there are to a triangle, we
again get the average number of triangles. (A non-edge, of course, belongs
to no triangles.)

Note that even though only H appears in the notation tH , the definition
depends not only on the graph (W,F ), but on the ordering {w1, . . . , wk}: if

H is the graph , the function tH(G, x, y) could be either∫
χE(x, z)χE(y, z)χE(x,w)χE(y, w) dµ2

or
χE(x, y)

∫
χE(x, z)χE(y, w)χE(z, w) dµ2,

depending on whether w1, w2 are chosen to be adjacent or non-adjacent
vertices from H.

3.6 Sampling
Every ultraproduct of finite graphs is a measurable graph and we can now
show that, at least for questions of subgraph density, every atomless measur-
able graph resembles an ultraproduct.

There is a canonical way to sample a random finite graph from a measur-
able graph G = (V,E, µ1): choose finitely many vertices v1, . . . ,vn according
to the measure µ1 on V , and let Gn = ({v1, . . . ,vn}, E � {v1, . . . ,vn}).
Our requirement that µ1({v}) = 0 for each v ∈ V means that when i 6= j,
P(vi = vj) = 0, so, with probability 1, Gn is a well-defined finite graph
whose properties we can consider.
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Actually, we can say something slightly more general: whenever {(V k,Bk, µk)}k∈N
is an atomless Keisler graded probability space and f is a symmetric, B2-
measurable function with values in [0, 1], we can choose finitely many vertices
v1, . . . ,vn according to the measure µ1 on V and then, for each pair vi,vj , let
p{i,j} ∈ {0, 1} be a random value obtained by flipping a coin which comes up
heads with probability f(vi,vj). We can set Gn = ({v1, . . . ,vn}, {{vi,vj} |
p{i,j} = 1}).

Lemma 3.29. Let {(V k,Bk, µk)}k∈N be an atomless Keisler graded proba-
bility space and let f be a symmetric B2-measurable function with values on
[0, 1]. For any finite graph H and any ε > 0, there is an m so that whenever
we sample an n vertex graph Gn from f with n ≥ m,

P[|tH(f)− tH(Gn)| < ε] > 1− ε.

Proof. Our arguments look much like they did for Rp.
Let H = (W,F ), write W = {w1, . . . , wk}, and suppose n is a large finite

number. First, we consider E(tH(Gn)). For each π : W → {1, . . . , n}, let cπ
be the random variable whose value is∏

{wi,wj}∈F
f(vπ(i),vπ(j)).

When π is injective, observe that E(cπ) is simply tH(f).
By the linearity of expectation,

E(tH(Gn)) = 1
n|W |

∑
π

E(cπ).

Since there are at most Cn|W |−1 non-injective functions π : W → {1, . . . , n}
for some constant C, ths means that

E(tH(Gn)) = tH(f) +O( 1
n

).

As in the proof of Theorem 1.7, we use McDiarmid’s inequality. This
time the random variables are the vi and the function of v1, . . . ,vn is the
subgraph density tH in the graph induced by these vertices. A single vertex
participates in at only |W |n|W |−1 copies of π, and therefore changing a
single vertex can change the subgraph density by at most |W |/n. Then
McDiarmid’s inequality says

P(|E(tH(Gn))− tH(Gn)| ≥ ε) ≤ 2e
− 2ε2

n
|W |2
n2 = 2e−

2ε2n
|W |2 .
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Once we pick ε, the value 2ε2
|W |2 is fixed, so by choosing n large enough, we

can make this bound as small as we like.

Specializing to the case where f = χE gives the following.

Corollary 3.30. Let G = (V,E) be an atomless measurable graph. For any
finite graph H and any ε > 0, there is an m so that whenever we sample an
n vertex graph Gn from G with n ≥ m,

P[|tH(G)− tH(Gn)| < ε] > 1− ε.

This immediately implies the same claim for finitely many graphs at
once.

Corollary 3.31. Let G = (V,E) be an atomless measurable graph. For any
finite list of finite graphs H1, . . . ,Hk and any ε > 0, there is an m so that
whenever we sample an n vertex graph Gn from G with n ≥ m, for each
i ≤ k,

P[|tHi(G)− tHi(Gn)| < ε] > 1− ε.

Proof. Apply the lemma with ε/k.

Corollary 3.32. Let G = (V,E) be an atomless measurable graph. For
each n, let Gn be an n vertex graph sampled from G (with the Gn sampled
independently from each other). Then, with probability 1, for every finite
graph H,

lim
n→∞

tH(Gn) = tH(G).

Proof. There are countably many finite graphs, so it suffices to show that,
for each one individually, the probability that limn→∞ tH(Gn) 6= tH(G) is 0.
So fix a finite graph H and fix ε > 0. We will show that, there is an m so
that, with probability > 1− ε, for every n ≥ m, |tH(Gn)− tH(G)| < ε.

For a given m, the probability that there is any n ≥ m with |tH(Gn)−
tH(G)| ≥ ε is at most

∑
n≥m

P(|tH(Gn)−tH(G)| ≥ ε) <
∑
n≥m

2e−
ε2
|W |2 n ≤

∫ ∞
m

2e−
ε2
|W |2 xdx = 2|W |2

ε2
e
− ε2
|W |2m.

In particular, choosing m large enough, this probability is smaller than ε.

Note that this corollary gives us true limits, not just ultralimits: every
ultraproduct of the Gn has the same subgraph densities as G.
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Consider the following: we begin with the function f which is constantly
equal to 1/2. By sampling, we obtain a sequence of graphs Gn whose
ultraproduct G is a proper graph—it is either 1 or 0 everywhere. But this
ultraproduct is clearly related to the original graph: for instance, tH(G) =
tH(f) for all finite graphs H. One of our goals later will be seeing how we
recover the function f from the graph G; indeed, we will discover that f is
the “non-random part” of the graph G.

3.7 The Possible Subgraph Densities are Compact
One reason to consider atomless measurable graphs, even if our main interest
is finite graphs, is that they compactify the space of subgraph densities: rather
than speaking of sequences of graphs with subgraph densities approaching
some limiting values of interest, we can focus on a single measurable graph
achieving these limiting values.

Theorem 3.33. Let ζ be a function assigning, to each finite graph H, a
density ζ(H). Suppose that for every finite list of finite graphs H1, . . . ,Hk

and every ε > 0, there is a finite or atomless measurable graph G so that, for
all i ≤ k, |ζ(Hi)− tHi(G)| < ε.

Then there is a finite or atomless measurable graph G such that tH(G) =
ζ(H) for all finite graphs H.

A more formal approach to this idea, which we do not investigate in
detail because we will not otherwise need it, is to call ζ a possible subgraph
density if there exists some finite or atomless measurable graph G so that, for
every H, ζ(H) = tG(H). There is a natural topology on the space of possible
subgraph densities—take a basic open set to be {ζ | ζ(H) ∈ I} for an open
interval I. (This topology is even metrizable—if we put the finite graphs
in an order H1, H2, . . ., we can define d(ζ, ζ) = ∑

i
|ζ(Hi)−ζ(Hi)|

2i .) Then the
theorem says that the space of possible subgraph densities are compact.

Proof. One way to prove this is to drop through the world of finite graphs.
Fix an ordering of the finite graphs, H1, H2, . . .. For each k, choose a finite or
atomless measurable graph G′k so that, for all i ≤ k, |ζ(Hi)−tHi(G′k)| < 1/2k.
If G′k is finite, let Gk = G′k. If G′k is atomless, by Corollary 3.31, we may
sample a graph Gk from G′k with |tHi(Gk)− tHi(G′k)| < 1/2k for each i ≤ k,
so |ζ(Hi)− tHi(Gk)| < 1/k.

Then for each Hi, we have

tHi([Gk]U ) = lim
k→U

tHi(Gk) = ζ(Hi).
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We will need to know that the same results apply if we restrict ourselves
to graphs omitting certain subgraphs entirely.

Theorem 3.34. Let ζ be a function assigning, to each finite graph H, a
density ζ(H). Let X be a collection of forbidden finite graphs.

Suppose that for every finite list of finite graphs H1, . . . ,Hk and every
ε > 0, there is a measurable graph G so that:

• for all i ≤ k, |ζ(Hi)− tHi(G)| < ε,

• for each H ∈ X , TH(X) = ∅.

Then there is a measurable graph G such that tH(G) = ζ(H) for all finite
graphs H and TH(G) = ∅ for all H ∈ X .

Proof. This follows by the same proof, noting that when we sample Gn from
G, if TH(G) = ∅ then TH(Gn) = ∅ (because Gn is in fact a subgraph of
G), and when TH(Gn) = ∅ for all n then TH([Gn]U) = ∅ as well (by Łos’
Theorem).

3.8 Remarks
The development of measures in ultraproducts (and nonstandard models
more generally) goes back to Loeb [108], and measures of this kind are called
Loeb measures. More precisely, the measure we have defined is the completion
of the usual Loeb measure; the construction of Loeb measure is more robust
than the construction we have used here (for instance, it can be carried
out in settings of nonstandard analysis other than ultraproducts). See, for
instance, [70] for details.

The notion of a graded probability space was introduced by Keisler [97]
and used, in a context very close to the one we are concerned with, by
Keisler’s student Hoover [86].

The Furstenberg correspondence—a correspondence between finite sets
and dynamical systems introduced by Furstenberg to give his proof of Sze-
merédi’s Theorem [66]—can be understood as a special case of the ultra-
product construction, where the use of an ultrafilter can be replaced by a
well-chosen countable filter. (In proofs using the Furstenberg correspondence,
this takes the form of some sort of diagonalization argument.)
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Chapter 4

Extrema

We have now developed enough machinery to begin applying it to prove
some facts about finite graphs. One natural application is to questions
about extrema—to questions about what the largest or smallest value of
some tH(G) can be. Since the atomless measurable graphs compactify the
possible subgraph densities, they are the natural setting to look for optimal
(as opposed to “nearly optimal”) graphs.

In this chapter we consider two related problems of this kind:

• What is the maximum possible value of tK2(G) given that G is large
and does not contain any copies of some finite graph H?

• What is the smallest possible value of tKr(G) given that G is large and
tK2(G) = c?

4.1 Mantel’s Theorem

The simplest case of these questions is also the first result of extremal graph
theory, Mantel’s Theorem.

Theorem 4.1. If G has no triangles then tK2(G) ≤ 1
2 .

The bipartite graph illustrates that this bound is optimal: the bipartite
graph Kn,n has no triangles and tK2(Kn,n) ≈ 1/2.

Proof. Since the graph has no triangles, whenever {x, y} ∈ E, x and y must

107
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have no neighbors in common. In particular, degG(x) + degG(y) ≤ 1, so

tK2(G) =
∫
χE(x, y) · 1 dy dx

≥
∫
χE(x, y)(

∫
χE(x, z)dz +

∫
χE(y, w)dw)dy dx

= 2
∫

(χE(x, y)dy)2 dx

≥ 2
(∫

χE(x, y)dxdy
)2

= 2tK2(G)2,

so 1
2 ≥ tK2(G).

Our approach to generaling this will be to use the basic insight that
makes calculus relevant to optimization: at an extremum, the derivative in
every direction must be 0. In our context, that means that if G is a graph
maximizing tK2(G) subject to TH(G) = ∅ and we “change G a little bit” to
some graph Gδ where we still have TH(Gδ) = ∅, we need tK2(Gδ) ≤ tK2(G).
In particular, this means that “the derivative in the direction of Gδ” must
be ≤ 0.

This will allow us to take global information—like “tK2(G) is maximal”—
and convert it into local information—like “almost every vertex in G has the
same number of neighbors”.

4.2 Shifting Measures

We already showed, in Section 3.7, that extremal graphs exist. We next need
to make precise the idea of taking a graph and “changing it a little bit” in
some direction.

We want to consider what happens if we take a measurable graph G =
(V,E, µ1) and modify µ1 slightly. First, consider the analog in a finite graph.
We could imagine modifying a large finite graph by making changes to a
small number of vertices—say, by deleting a small fraction of the vertices, or
taking one vertex and “duplicating” it (adding another vertex with the same
neighbors). These modifications become natural operations in a measurable
graph, because we can change the measure slightly to get a new measurable
graph.

If this new measure could concentrate on a set of measure 0, it could end
up having totally different behavior than the original one. So the case to
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focus on is where the new measure is absolutely continuous with respect to
the old one.
Definition 4.2. If µ and ν are both measures on B, we say ν is absolutely
continuous with respect to µ, written ν � µ, if there is a measurable function
f such that, for every S ∈ B, ν(S) =

∫
S f dµ. In this case f is called the

Radon-Nikodym derivative of ν.
We can sometimes think of f as a “weight”—when f(x) is more than 1,

it means x is “more imporant” to ν than it was to µ.
Lemma 4.3. Suppose {(V k,Bk, µk)}k∈N is a Keisler graded probability
space and ν � µ1. Then there is a unique Keisler graded probability space
{(V k,Bk, νk)}k∈N such that ν1 = ν and, for all k, νk � µk.
Proof. Let f be the Radon-Nikodym derivative of ν. Then for S ∈ Bk, we
define

νk(S) =
∫
χS(x1, . . . , xk)

∏
i≤k

f(xi) dµk.

Then νk � µk and ν1 = ν by definition.
We must check that {(V k,Bk, µk)}k∈N is a Keisler graded probability

space. Symmetry of νk follows by the definition and the symmetry of µk.
The Fubini Property holds since

νk+r(S) =
∫
χS(x1, . . . , xk+r)

∏
i≤k+r

f(xi) dµk+r

=
∫ ∫ χS(x1, . . . , xk+r)

∏
k<i≤k+r

f(xi) dµr(xk+1, . . . , xk+r)

∏
i≤k

f(xi) dµk(x1, . . . , xk)

=
∫
νr(Sx1,...,xk)

∏
i≤k

f(xi) dµk

=
∫
νr(Sx1,...,xk) dνk.

To see uniqueness, suppose {(V k,Bk, ν ′k)}k∈N is a Keisler graded proba-
bility space with ν ′1 = ν1 and each ν ′k � µk. We proceed by induction on k,
showing that ν ′k = νk. Since ν ′1 = ν1 by assumption, we assume that ν ′k = νk.
Then for any S ∈ Bk+1, we have

ν ′k+1(S) =
∫
ν ′k(Sx1) dν ′1(x1)

=
∫
νk(Sx1) dν1(x1)

= νk+1(S).
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In light of this lemma, when we have a measurable graph G with measure
µ and a new measure ν � µ, we immediately have a new measurable graph
with the same underlying measurable sets as G, but the new measure.

We will mostly be interested in a particular choice of ν: when we take a
particular set B ⊆ V and look at the measure in which B has slightly more
(or less) measure and the rest of the graph has slightly less (or more).

Definition 4.4. For any B ⊆ V with µ1(B) > 0, let

νBδ (S) = 1
1 + δ

[µ1(S \B) + (1 + δ

µ1(B))µ1(S ∩B)].

The Radon-Nikodym derivative of νBδ is the function whose value is
1

1+δ (1 + δ
µ1(B)) on B and 1

1+δ outside of B.
Then we have:

• νBδ is a probability measure,

• νBδ � µ1,

• νBδ (B) = µ(B)+δ
1+δ ,

• νB0 = µ1.

The measure νBδ with δ > 0 corresponds to the following idea: suppose
we take a small number of points from the set B and duplicate them in such
a way that we add a set of new points of measure δ; we then renormalize the
measure so that the measure of the new, larger set is still 1 (by dividing by
1 + δ).

To see why we are interested in the measure νBδ , consider the case where

B = {x ∈ V | tK2(G, x) ≥ µ2(E) + ε}

has positive measure. Recall that tK2(G, x) =
∫
χE(x, y) dµ1(y) is the nor-

malized degree of x, so B is the vertices with more than their share of
neighbors.

Consider what we expect νBδ to do when δ > 0: we are making the vertices
with too many neighbors “count for more”, so the edge density tK2 should
increase. But there is a countervailing trend: it might be that tK2(G, x) is
large because x has many neighbors in V \B, and those neighbors count for
less in νBδ .
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But the first trend is linear in δ while the second is quadratic. For
instance, when we think of νBδ as meaning that we duplicate a small number
of points in B, when we select two points x, y randomly according to νBδ ,
the probability that one of these is a new point is about 2δ

(1+δ)2 . However the
probability that both are new points is about δ2

(1+δ)2 .
The linear part contributes about 2δ(µ2(E)+ε)

(1+δ)2 edges—in particular, it
increases the edge density by about 2δε

(1+δ)2 . Taking the derivative with
respect to δ lets us focus on the linear part.

We can state this in the following general form, considering the density
of Kr for any y.

Lemma 4.5. Let G = (V,E, µ1) be a measurable graph with tKr(G) = c, let
B ⊆ V with positive measure, and let u = 1

µ(B)
∫
B tKr(G, x) dµ1. Let Gδ =

(V,E, νBδ ). Let h be the function with h(δ) = tKr(Gδ). Then h′(0) = r(u− c).

In words, u− c is the amount by which vertices in B belong to too many
copies of Kr. (When u− c is negative, vertices in B belong to too few copies
instead.) This lemma says that when δ is very small, so we add a very small
number of new copies of vertices in B then we add about r(u − c)δ new
copies of Kr.

The change in copies of Kr comes from copies where at least one of the
vertices in the copy is a “new” vertex. We get a coefficient of r because a
copy of Kr has r vertices, each of which could be a new vertex. We look at
what happens when δ is very small because in this case the number of copies
of Kr containing multiple new vertices is negligible.

Proof. Observe that

tKr(Gδ) =
∫ ∏

1≤i<j≤r
χE(xi, xj) d(νδ)r

= 1
(1 + δ)r

∫ ∏
1≤i<j≤r

χE(xi, xj) dµr + r
δ

µ(B)

∫
χB(x1)

∏
1≤i<j≤r

χE(xi, xj) dµr

+
(
r

2

)
δ2

µ(B)

∫
χB(x1)χB(x2)

∏
1≤i<j≤r

χE(xi, xj) dµr + · · ·

+ δr

(µ(B))r
∫ ∏

i≤r
χB(xi)

∏
1≤i<j≤r

χE(xi, xj) dµr

 .
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In particular, since hr(0) = c = tKr(G),

h′r(0) = lim
δ→0

tKr(Gδ)− tKr(G)
δ

= lim
δ→0

c+ ruδ + δ2(· · · )− c(1 + δ)r
δ(1 + δ)r

= r(u− c).

4.3 Turán’s Theorem
We are now in a position to prove the generalization of Mantel’s Theorem
from triangles to Kr.

Theorem 4.6 (Turán’s Theorem). For any r ≥ 3, if TKr(G) = ∅ then
tK2(G) ≤ 1− 1

r−1 .

Proof. Suppose not, so there is a measurable graph G = (V,E, µ) with
tK2(G) > 1− 1

r−1 and TKr(G) = ∅. By Theorem 3.34, there is a measurable
graph G with TKr(G) = ∅ maximizing the value tK2(G) among all such
measurable graphs.

We claim that, for almost every x, tK2(G, x) = tK2(G). Suppose not. Let
c = tK2(G) and, for any ε > 0, let B = {x | tK2(G, x) ≥ c + ε}. Suppose
µ1(B) > 0. Consider the graphs Gδ = (V,E, νBδ ). By Lemma 4.5, when
h(δ) = tK2(Gδ), h′(δ) ≥ 2ε > 0. In particular, when δ is small, tK2(Gδ) > c.
But TKr(Gδ) = ∅, so this contradicts the maximality of G. Therefore, for
every ε > 0, µ1(B) = 0.

Since G is evenly distributed, let V ′ ⊆ V be a set with µ(V ′) = 1 and,
for all x ∈ V ′, tK2(G, x) = c > 1 − 1

r−1 . We obtain a copy of Kr in G by
successively choosing elements: given x1, . . . , xm a copy of Km in V ′ with
m < r, for each i ≤ m, {y ∈ V ′ | {xi, y} 6∈ E} has measure < 1

r−1 , and
therefore the set of y ∈ V ′ such that {xi, y} ∈ E for each i has measure
> 1− m

r−1 ≥ 0, and in particular is non-empty, so we may choose xm+1 ∈ V ′
so that x1, . . . , xm, xm+1 is a copy of Km+1. This gives us a copy of Kr,
showing that |TKr(G)| > 0.

This immediately gives a finite version.

Corollary 4.7. For each r ≥ 3 and any ε > 0, there is an n so that if G is
a graph on ≥ n vertices with tK2(G) > 1− 1

r−1 + ε then |TKr(G)| > 0.
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Proof. Suppose not. Then for some r and some ε > 0, for each n there is a
graph Gn with ≥ n vertices and tK2(Gn) > 1− 1

r−1 + ε and |TKr(Gn)| = 0.
Then take any ultrafilter U and considerG = [Gn]U : tK2(G) = limn→U tK2(Gn) ≥

1 − 1
r−1 + ε while TKr(G) = ∅ by Łoś’s Theorem, contradicting the theo-

rem.

It is typical that our finite consequences have an asymptotic character—
our ultraproduct arguments naturally lend themselves to working with “suffi-
ciently large” graphs. In some cases, including this one [19, 34, 51], there are
sharper results available by other methods: these ultraproduct techniques
are not well suited to identifying the exact number of edges at which copies
of Kr appear.

Turán’s bound is optimal:

Lemma 4.8. For every r ≥ 3, there is a measurable graph G with tK2(G) =
1− 1

r−1 and |TKr(G)| = 0.

Proof. Take G to be the complete r − 1-partite graph where the parts all
have the same size. That is, let G = (V,E) where V is a disjoint union of
r − 1 parts, V = ⋃

i<rXi, µ1(Xi) = 1
r−1 , and let E consist of all pairs {x, y}

such that x ∈ Xi and y ∈ Xj where i 6= j. Then µ2(E) = 1− 1
r−1 , but if we

have r vertices x1, . . . , xr, two must belong to the same part and therefore
do not have an edge between them.

4.4 Counting Kt in the Equal s-partite Graphs
We will spend most of the rest of this chapter investigating the minimum
number tKr(G) can be in large graphs given that tK2(G) = c for some value
c ∈ [0, 1]. This turns out to be a difficult problem which took more than fifty
years to resolve (from Goodman’s work in 1959 [74] to Reiher’s solution in
2012 [132]).

The first step will be showing that the complete s-partite graphs with all
parts the same size have as few copies of Kr as possible; this will answer the
question at the specific series of values tK2(G) = 1/2, 2/3, 3/4, . . ..

It will be convenient to give names to the complete s-partite graphs from
Lemma 4.8.

Definition 4.9. Let Ps be the measurable graph Ps = (V,E) where:

• V is a disjoint union V = ⋃
i≤sXi where µ1(Xi) = 1

s for all i,

• {x, y} ∈ E if and only if x and y are in different parts.
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tKr(Ps) is easy to count by considering what happens when we successively
choose r vertices randomly: we get a copy of Kr if the vertices all end up in
different parts. The first vertex can be in other part, the second vertex must
in any of the other parts, which happens with probability 1− 1

s , the third
must be in any part other than the two already used, and so on.

Lemma 4.10. When s ≥ r, tKr(Ps) = ∏
i<r(1− i

s).

We will calculate a lower bound on tKr(G). This lower bound won’t be
sharp in general, but it happens to be sharp at exactly the values 1− 1

s .
In order to do this, we will need a more sophisticated way to relate the

values of tG for different values of G. We noted earlier that our notion of
counting subgraphs really counts “ordered” or “labeled” graphs—we defined
tG to be an integral involving ordered tuples (x1, . . . , xn). We now define a
symmetric analog, which we abbreviate using the letter c (for “counting”).

Definition 4.11. If H is a graph with n vertices,

cH(x1, . . . , xn) = 1
n! |{π a permutation of {1, . . . , n} | (xπ(1), . . . , xπ(n)) ∈ TH(G)}|.

That is, cH(x1, . . . , xn) is the fraction of orderings of the vertices x1, . . . , xn
which give us a copy of H. When G is a symmetric graph, cG(x1, . . . , xn) is
either 1 or 0, but when G is not symmetric, we could get intermediate values;
for instance, if V is the graph with two edges on 3 vertices (the triangle
minus one edge), and {x1, x2, x3} are vertices so that {x1, x2}, {x1, x3} ∈ E
but {x2, x3} 6∈ E, cV(x1, x2, x3) = 1

3—there are six possible orderings of the
three vertices, and the only ones which give copies of V are the ones which
match x1 to the tip of the V.

Integrating over cH just gives us tH again.

Lemma 4.12.
∫
cH dµn = tH(G)

Proof. ∫
cH(x1, . . . , xn) dµn =

∫ 1
n!
∑
π

χTH (xπ(1), . . . , xπ(n)) dµn

= 1
n!
∑
π

∫
χTH (xπ(1), . . . , xπ(n)) dµn

= 1
n!
∑
π

tH(G)

= tH(G).
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The power of cH comes from comparing different graphs, as in the
following lemma.

Lemma 4.13. Let K−r be the graph on r ≥ 2 vertices with
(r
2
) − 1 edges.

Then
tK−r (G) ≤ r − 2

r − 1 tKr(G) + 1
r − 1 tKr−1(G).

Proof. Note that:

• if {x1, . . . , xr} is a copy of Kr then cK−r (x1, . . . , xr) = 1,

• if {x1, . . . , xr} is missing exactly one edge then cK−r (x1, . . . , xr) =
2

(r−1)r ,

• if {x1, . . . , xr} is missing more than one edge then cK−r (x1, . . . , xr) = 0.

Let Kr−1(r) be the graph on r vertices where the first r − 1 vertices are

complete but the r-th vertex is isolated. (For instance, K3(4) is .) Note
that tKr−1(r)(G) = tKr−1(G) (the extraneous vertex has no effect when calcu-
lating the integral since we are counting ordinary, not induced, subgraphs).
Then

• if {x1, . . . , xr} is a copy of Kr then cKr−1(r)(x1, . . . , xr) = 1,

• if {x1, . . . , xr} is missing exactly one edge then cKr−1(r)(x1, . . . , xr) = 2
r .

In particular, considering cases, we see that for any (x1, . . . , xr), we have

cK−r (x1, . . . , xr) ≤
r − 2
r − 1cKr(x1, . . . , xr) + 1

r − 1cKr−1(r)(x1, . . . , xr).

Integrating, we get

tK−r (G) ≤ r − 2
r − 1 tKr(G) + 1

r − 1 tKr−1(G).

We should expect many inequalities of this kind to be true—we should
expect that the presence of some subgraphs requires the presence of other
subgraphs in various quantities. This lemma—saying that if we have copies
of K−r , we ought to have either some copies of Kr or a large number of copies
of Kr−1—is typical. Finding the right inequalities for a given proof is a
matter of trial and error, though automated tools can now help in some
situations [162].
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Theorem 4.14. If tK2(G) = c ≥ r−2
r−1 then

tKr(G) ≥ c(2c− 1)(3c− 2) · · · · · ((r − 1)c− (r − 2)).

This inequality, for various values of r and in various forms, is from [74,
81, 109, 118, 124, 132]

Proof. Unsurprisingly, the argument is by induction on r. The main step
is identifying an inductive relationship between the number of copies of Kr

and the number of copies of Kr−1. We will show, by induction on r,

if r ≥ 2 and tK2(G) = c ≥ r−1
r then

tKr+1(G) ≥ (rc− (r − 1))tKr(G).

Applying this inequality inductively immediately gives the statement of the
theorem, so all that remains is inductively proving this inequality.

When r = 1, this is immediate (noting that we always have tK1(G) = 1).
So suppose r ≥ 2 and that the statement holds for r − 1.

We get an upper bound on tKr(G) using Cauchy-Schwarz:

(tKr(G))2 =
(∫∫

cKr(x1, . . . , xr) dµ1(xr) dµr−1(x1, . . . , xr−1)
)2

=
(∫

cKr−1(x1, . . . , xr−1)
∫ ∏

i<r

χE(xi, xr) dµ1(xr) dµr−1(x1, . . . , xr−1)
)2

≤ tKr−1(G)
∫
cKr−1(x1, . . . , xr−1)

(∫ ∏
i<r

χE(xi, xr) dµ1(xr)
)2

dµr−1(x1, . . . , xr−1)

= tKr−1(G)
∫
cKr−1(x1, . . . , xr−1)

∏
i<r

χE(xi, y)χE(xiz) dµr+1(x1, . . . , xr−1, y, z)

= tKr−1(G)
∫
cKr−1(x1, . . . , xr−1)

∏
i<r

χE(xi, y)χE(xiz) dµr+1(x1, . . . , xr−1, y, z)

= tKr−1(G)tK−r+1
(G)

where K−r+1 is the graph from the preceding lemma containing all but one of
the edges on r + 1 vertices.

Combining this with the inequality from the previous lemma gives:

(tKr(G))2 ≤ tKr−1(G)tK−r+1
(G)

≤ tKr−1(G)(r − 1
r

tKr+1(G) + 1
r
tKr(G)).
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But applying the inductive hypothesis to one copy of tKr(G) on the left side
of this inquality,

((r − 1)c− (r − 2))tKr(G)tKr−1(G) ≤ tKr−1(G)(r − 1
r

tKr+1(G) + 1
r
tKr(G)),

so canceling tKr−1 (G)
r (which we may do since c ≥ r−1

r > 1 − 1
r−1 , so

tKr−1(G) > 0) from both sides gives

(r(r − 1)c− r(r − 2))tKr(G) ≤ (r − 1)tKr+1(G) + tKr(G),

or

tKr+1(G) ≥ r(r − 1)c− r(r − 2)− 1
r − 1 tKr(G) = (rc− (r − 1))tKr(G).

When tK2(G) = 1−1
s = s−1

s , the bound on the right is s−1
s

s−2
s · · ·

s−(r−1)
s =

tKr(Ps), so we have:

Theorem 4.15. If tK2(G) = 1− 1
s then tKr(G) ≥ tKr(Ps).

That is, for the specific edge densities 1− 1
s , the graph with s equal parts

has as few copies of Kr as possible.

4.5 Interpolating Between s-Partite Graphs

The remaining question is what happens in the gaps between the graph
Ps—say, the interval tK2(G) ∈ (1/2, 2/3). We know that tK3(G) ≥ c(2c− 1)
in this interval, but we don’t yet have examples of graphs achieving this
minimum, so there might be a better lower bound.

There is a natural way to interpolate between the graphs Ps and Ps+1:

Definition 4.16. When a ∈ [0, 1
s ], Ps,a = (V,E) is the measurable graph

where:

• V is a disjoint union V = ⋃
i≤s+1Xi where µ1(Xs+1) = 1−sa

s+1 and
µ1(Xi) = 1+a

s+1 for i ≤ s,

• {x, y} ∈ E if and only if x and y are in different parts.
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So Ps,1/s = Ps while Ps,0 = Ps+1, and when a is strictly between 0 and 1
s ,

Ps,a is a graph with s+1 parts where one part is smaller than the others. We
can imagine the sequence of graphs growing, starting with P1,1—the empty
graph—and growing to P1,a (a bipartite graph where one part is small); as a
approaches 0, P1,a begins to resemble the equal bipartite graph, and when a
reaches 0, P1,0 = P2 = P2,1/2, and a third part begins growing.

Our choice to index the graphs Ps,a in precisely this way may seem odd—
for instance, our choice to arrange that a decreases as the density increases.
The main reason is that, however we paramaterize the intermediate graphs,
we will be more interested in tK2(Ps,a) than in a, and with this choice, we
get the comparatively simple formula

tK2(Ps,a) = s(1 + a)
s+ 1

[(s− 1)(1 + a)
s+ 1 + 1− sa

s+ 1

]
+ 1− sa

s+ 1
s(1 + a)
s+ 1

= s

s+ 1(1− a2)

Lemma 4.17. tKr(Ps,a) = (1+a)r−1

(s+1)r
(s+1
r

)
(1− a(r − 1)).

Proof. There are two ways to find a copy of Kr in Ps,a: by choosing all r
vertices from the s large pieces, or by choosing one vertex from the small
piece. So

tKr(Ps,a) = r!
(
s

r

)(1 + a

s+ 1

)r
+ r!

(
s

r − 1

)(1 + a

s+ 1

)r−1 1− sa
s+ 1

= r!(1 + a)r−1

(s+ 1)r

[(
s

r

)
(1 + a) +

(
s

r − 1

)
(1− sa)

]

= r!(1 + a)r−1

(s+ 1)r

[(
s+ 1
r

)
+ a

((
s

r

)
− s

(
s

r − 1

))]

= r!(1 + a)r−1

(s+ 1)r

(
s+ 1
r

)
(1− a(r − 1)).

It will be convenient to name these values. For the remainder of this
chapter, for any c ∈ [0, 1), we define:

• s(c) is the unique integer s so that c ∈ [1− 1
s , 1− 1

s+1), and

• a(c) =
√

1− s(c)+1
s(c) c.
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We have chosen these values precisely so that tK2(Ps(c),a(c)) = c.
We define

Fr(c) = r!(1 + a(c))r−1

(s(c) + 1)r

(
s(c) + 1

r

)
(1− a(c)(r − 1))

so that tKr(Ps(c),a(c)) = Fr(c).
We can compare these densities to the lower bound we found in the

previous section. For instance, in the case where r = 3,

0.5 0.55 0.6 0.65 0.7 0.750

0.2

0.4

0.6

tK2(G)

t K
3
(G

)

The solid curve is the lower bound tK2(G)(2tK2(G)−1) from the previous
section. The dashed lines are tK3(Ps,a) when s, a are chosen to have the
correct value of tK2(Ps,a). There is a gap, though a small one—that is, based
on what we have seen so far, it is possible that there is a graph G with, say
tK2(G) = 0.6 but tK3(G) < tK3(Ps(0.6),a(0.6)).

It was conjectured for decades that, in fact, there are no such graphs.
This was settled in steps, for values of r and s, and shown in full generality
by Reiher in 2012.

Theorem 4.18 ([132]). For any G, tKr(G) ≥ tKr(Ps(tK2 (G)),a(tK2 (G))).

Equivalently, for any G, tKr(G) ≥ Fr(tK2(G)). That is, Ps,a is actually
the graph that has as few copies of tKr(G) as possible subject to tK2(G) =
tK2(Ps,a).

The proof involves looking at a graph which violates the conjecture by as
much as possible—that is, a graph maximizing Fr(tK2(G))− tKr(G)—and
combining a great deal of careful work investigating the specific behavior
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of the functions Fr(c) and F ′r(c) in various intervals with several different
techniques for relating subgraph densities to limit the possibilities for what
such an extremal graph can look like.

Rather than give the full proof, we will give the special case where r = 3
and tK2(G) ∈ (1/2, 2/3) in the next section.

In order to do this, we need some specific elementary calculations involving
F3, which we collect in the rest of this section. The calculations are purely
algebra and calculus, and we gather them here only to avoid interrupting
the flow of more substantive arguments to carry them out; the reader likely
wishes to skip to the next section and refer back to these as needed.
Lemma 4.19. F3 is concave down in each of the intervals (1 − 1/s, 1 −
1/(s+ 1)).
Proof. From the formula for F3(c), we can calculate F ′′3 . Within each of
these intervals, s(c) is constant. Letting s = s(c), we calculate:

a′(c) = − s+ 1
2s
√

1− s+1
s c

= − s+ 1
2s · a(c) .

Then

F ′3(c) = − 36
(s+ 1)3

(
s+ 1

3

)
a(c)(1 + a(c))a′(c) = 18

s(s+ 1)2

(
s+ 1

3

)
(1 + a(c))

and finally

F ′′3 (c) = 18
s(s+ 1)2

(
s+ 1

3

)
a′(c)

which is negative since a′(c) is always negative.

Lemma 4.20. lim
c→1− 1

s+1
− F ′3(c) = 3(s−1)

s+1 .

Proof. We can use the calculation from the previous proof: since limc→1− 1
s+1−

a(c) =
0, we have

lim
c→1− 1

s+1
−
F ′3(c) = lim

c→1− 1
s+1
−

18
s(s+ 1)2

(
s+ 1

3

)
(1 + a(c))

= 18
s(s+ 1)2

(
s+ 1

3

)

= 18
s(s+ 1)2

(s+ 1)s(s− 1)
6

= 3(s− 1)
s+ 1 .
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Lemma 4.21. If s > 2 and c ∈ (1−1/s, 1−1/(s+1)) then F3(c) < 2
3F ′3(c)c.

Proof. Since, on each interval (1 − 1/s, 1 − 1/(s + 1)), F3(c) is increasing
while F ′3(c) is decreasing, it suffices to consider the limit as c approaches
1− 1

s+1 from the left. At this limit, F ′3(c) = 3(s−1)
s+1 by the previous lemma

while F3(c) = (s−1)(s−2)
s2 . In this whole interval, c > 1− 1

s , so

2
3F
′
3(c)c−F3(c) > 2c(s− 1)

s+ 1 −
(s− 1)(s− 2)

s2

> 2(s− 1)2

s(s+ 1) −
(s− 1)(s− 2)

s2

= s− 1
s

[
2s− 1
s+ 1 −

s− 2
s

]
= s− 1

s

2s2 − 2s− (s2 − s− 2)
s(s+ 1)

= s− 1
s

s2 − 3s+ 2
s(s+ 1) .

The polynomial s2 − 3s+ 2 has roots 1 and 2; in particular, this means that
once s > 2, each of these terms is positive, so the expression is positive as
well.

4.6 Minimizing Triangles when the Density is in
(1/2, 2/3)

We consider a graph maximizing F3(tK2(G))− tK3(G) and spend most of this
section deriving various properties such a graph must have. We will conclude
the section by proving the special case of Theorem 4.18 where r = 3 and
tK2(G) ∈ (1/2, 2/3). (This was shown in [130], and the proof here follows
that paper closely.)

The main insight is the generalization of what we did in the proof of
Turán’s Theorem: an extremal graph (that is, a graph maximizing a function)
must have some corresponding derivative equal to 0.

Lemma 4.22. Suppose that H(z2, . . . , zd) is a function and G is a graph
such that among all graphs, G maximizes

H(tK2(G), . . . , tKd(G))
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and all partial derivatives of H exist at (tK2(G), . . . , tKd(G)).
Then, for almost every vertex x,

∑
2≤i≤d

i
∂H

∂zi
tKi(G, x) =

∑
2≤i≤d

i
∂H

∂zi
tKi(G).

In our case, we will apply this with the function H(z2, zr) = Fr(z2)− zr,
so that

H(tK2(G), tKr(G)) = Fr(tK2(G))− tKr(G).

This function measures how big the “deficiency” in G is—how many copies
of Kr it is missing relative to Ps(tK2 (G)),a(tK2 (G)).

Proof. Suppose not. Then there is some ε > 0 so that there is a set A of
positive measure such that, for all x ∈ A,∣∣∣∣∣∣

∑
2≤i≤d

i
∂H

∂zi
tKi(G, x)−

∑
2≤i≤d

i
∂H

∂zi
tKi(G)

∣∣∣∣∣∣ ≥ ε.
Either those x ∈ A such that

∑
2≤i≤d

i
∂H

∂zi
tKi(G, x) ≥

∑
2≤i≤d

i
∂H

∂zi
tKi(G) + ε

or those x such that

∑
2≤i≤d

i
∂H

∂zi
tKi(G) ≥

∑
2≤i≤d

i
∂H

∂zi
tKi(G, x) + ε

must have positive measure. Without loss of generality, let B be a set of
positive measure so that, for all x ∈ B,

∑
2≤i≤d

i
∂H

∂zi
tKi(G, x) ≥

∑
2≤i≤d

i
∂H

∂zi
tKi(G) + ε.

(This other case is symmetric.)
For i ∈ [2, d], let ui = 1

µ1(B)
∫
B tKi(G, x) dµ1. Let Gδ = (V,E, νBδ ) as

in Lemma 4.5 and let hi(δ) = tKi(Gδ). Then, by Lemma 4.5, h′i(0) =
i(ui − tKi(G)).
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Therefore

d

dδ
H(tK2(Gδ), . . . , tKd(Gδ))|δ=0 =

∑
2≤i≤d

t′Ki(Gδ)|δ=0
∂H

∂i

=
∑

2≤i≤d
i(ui − tKi(G))∂H

∂i

= 1
µ1(B)

∫
B

∑
2≤i≤d

i(tKi(G, x)− tKi(G))∂H
∂i

≥ ε

µ1(B) .

Since this derivative is positive, there must be some small enough δ so
that H(tK2(Gδ), . . . , tKd(Gδ)) > H(tK2(G), . . . , tKd(G)), contradicting the
maximality of G. This contradiction completes the proof.

In this section, we just need the following consequence. Let us write K+
3

for the graph —that is, K3 with one extra edge attached.

Lemma 4.23. Suppose G is a graph maximizing F3(tK2(G))− tK3(G) and
a(tK2(G)) 6= 1

s(tK2 (G)) . Then, taking λ = F ′3(tK2(G)),

2λtV(G)− 3tK+
3

(G) = (2λtK2(G)− 3tK3(G))tK2(G).

Proof. Since a(tK2(G)) 6= 1
s(tK2 (G)) , we are not at one of the sharp corners in

F3, so F ′3 exists and by the previous lemma, for almost every x we have

2F ′3(tK2(G))tK2(G, x)− 3tK3(G, x) = 2λtK2(G)− 3tK3(G).

So we may calculate

2λtV(G)− 3tK+
3

(G) = 2λ
∫
χE(x, y)tK2(G, x) dµ2 − 3

∫
χE(x, y)tK3(G, x) dµ2

=
∫
χE(x, y)(2λtK2(G, x)− 3tK3(G, x)) dµ2

=
∫
χE(x, y) dµ2(2λtK2(G)− 3tK3(G))

= tK2(G)(2λtK2(G)− 3tK3(G)).
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This is a typical application. By replacing χE with some other graph, we
could prove a more general result: in a graph maximizing F3(tK2(G))−tK3(G),

for any graph H (for instance, ) we have

2λtH+K2(G)− 3tH+K3(G) = (2λtK2(G)− 3tK3(G))tH(G)

where H + K2 is the result of attaching an edge to a vertex of H ( )

and H+K3 is the result of attaching a triangle to the same vertex ( )
In this notation, V is K2 + K2 and K+

3 is K2 + K3.∗
We can do something similar with edges.

Lemma 4.24. Suppose that H(z2, . . . , zd) is a function and G is a graph
such that among all graphs, G maximizes

H(tK2(G), . . . , tKd(G))

and all partial derivatives of H exist at (tK2(G), . . . , tKd(G)).
Then, for almost every edge {x, y} ∈ E,

∑
2≤i≤d

(
i

2

)
∂H

∂zi
tKi(G, x, y) ≥ 0.

Note that with vertices we obtained an equality, but with edges we
get an inequality. This is because when edges are “suboptimal”, we could
delete them and improve G, but when edges are “superoptimal”, we cannot
duplicate them. In the language of optimization, we are encountering a
boundary condition—an edge cannot have value greater than 1—and so, at
such the boundary, we can only expect a derivative to be non-positive. (We
could find a dual lemma, showing an inequality in the other direction when
{x, y} ∈ V 2 \ E, but we will not need this here.)

Proof. Again, suppose not. When χE(x, y) = 0, also tKt(G, x, y) = 0, so for
the claim to fail, there must be an ε > 0 so that, letting B = {(x, y) ∈ E |

∗Strictly speaking, we are attaching K2 and K3 not to just a graph H, but to a graph
with a distinguished vertex. In the terminology of [130], we are “adding 1-flags”—taking
two graphs, each with a distinguished vertex, and combining the distinguished vertices.
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∑
2≤i≤d

(i
2
)
∂H
∂zi
tKi(G, x, y) < −ε}, µ2(B) > 0. For each δ ∈ (0, µ2(B)), choose

some Bδ ⊆ B with µ1(Bδ) = δ. Set Gδ = (V,E \Bδ, µ1). Then

tKi(Gδ) =
∫ ∏

j,j′≤i
χE\Bδ(xj , xj′) dµi

=
∫ ∏

j,j′≤i
χE(xj , xj′)(1− χBδ(xj , xj′)) dµi

=
∫ ∑

S⊆(i2)
(−1)|S|

∏
(j,j′)∈(t2)\S

χE(xj , xj′)
∏

(j,j′)∈S
χBδ(xj , xj′) dµi.

Once again, we can take the limit as δ goes to 0, so all terms where |S| > 1
will become negligible:

lim
δ→0+

tKi(Gδ)− tKi(G)
δ

= 1
δ

∫ ∑
S⊆(i2),0<|S|

(−1)|S|
∏

(j,j′)∈(t2)\S
χE(xj , xj′)

∏
(j,j′)∈S

χBδ(xj , xj′) dµi

= −
(
i

2

)∫
χBδ(x1, x2)

∏
(j,j′)∈(i2)\{(1,2)}

χE(xj , xj′) dµi

= −
(
i

2

)∫
Bδ

tKi(G, x, y) dµ2.

Therefore the right-hand derivative

d

d+δ
H(tK2(Gδ), . . . , tKd(Gδ))|δ=0 =

∑
2≤i≤d

−
(
i

2

)∫
Bδ

tKi(G, x, y) dµ2
∂H

∂zi

> ε.

But this means that, for some sufficiently small δ,H(tK2(Gδ), . . . , tKd(Gδ)) >
H(tK2(G), . . . , tKd(G)), contradicting the maximality of G.

Recall the graphs Kr−1(r) from Lemma 4.13; in particular, we need the

graphs K2(3)— —and K3(4)— .

Lemma 4.25. Suppose G is a graph maximizing F3(tK2(G)) − tK3(G)
a(tK2(G)) 6= 1

s(tK2 (G)) . Then, taking λ = F ′3(tK2(G)),

3tindK+
3

(G) + 3tindK3(4)(G) ≤ F ′3(tK2(G))tindK2(3)(G).
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Proof. Since a(tK2(G)) 6= 1
s(tK2 (G)) , we are not at one of the sharp corners in

F3, so F ′3 exists and by the previous lemma, for almost every x, y we have

0 ≤ 2F ′3(tK2(G))χE(x, y)− 6tK3(G, x, y),

which is equivalent to

3tK3(G, x, y) ≤ F ′3(tK2(G))χE(x, y).

Therefore

3tindK+
3

(G) + 3tindK3(4)(G) = 3
∫
χE(x, y)χE(x,w)χE(y, w)

· (1− χE(x, z))(1− χE(y, z)) [χE(z, w) + (1− χE(z, w))] dµ4

= 3
∫
χE(x, y)χE(x,w)χE(y, w)(1− χE(x, z))(1− χE(y, z)) dµ4

=
∫

3tK3(G, x, y)(1− χE(x, z))(1− χE(y, z)) dµ3

≤
∫
F ′3(tK2(G))χE(x, y)(1− χE(x, z))(1− χE(y, z)) dµ3

= F ′3(tK2(G))tindK2(3)(G).

We could think of the first two lines of the calculation as expressing the
“equality”

+ =
where the dashed line represents an edge which may or may not be

present. In particular, the quantity∫
χE(x, y)χE(x,w)χE(y, w)(1− χE(x, z))(1− χE(y, z)) dµ4

counts the induced copies of this third “graph”, consisting of a triangle x, y, w
and an additional vertex which is definitely not adjacent to x or y but might
or might not be adjacent to w.

Again, the quantity (1 − χE(x, z))(1 − χE(y, z)) could be replaced by
any other function of x, y when we apply the inequality, giving relationships
between other pairs of graphs, and the flag algebra framework [130] introduces
notation for dealing with these combinations, as well as more general notation
for graphs where some edges must be present, some must be absent, and
some might be present or absent.
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The reader might wonder where these graphs are coming from and why
we are counting them. We have no satisfying answer to that, except that they
will make the proof work: discovering the argument presumably involved a
substantial amount of experimenting with the relationships between various
graph densities to discover the essential ones.

We also need two general relationships, in the style of Lemma 4.13, among
different subgraph densities in arbitrary graphs.

Lemma 4.26.

tK4(G) + 2tK3(G) ≤ 3tK+
3

(G) + 3tindK+
3

(G) + 3tindK3(4)(G).

Proof. As in the proof of Lemma 4.13, we do this by considering each possible
set of four vertices and considering how many copies of each of these graphs
it could contribute. For this we need the analog

cindH (x1, . . . , xn) = 1
n! |{π a permutation of {1, . . . , n} | (xπ(1), . . . , xπ(n)) ∈ T indH (G)

of cH . Then we have
∫
cindH dµn = tindH (G) as in Lemma 4.12. So it suffices

to show that, for every (x, y, z, w),

cK4(x, y, z, w)+2cK3(4)(x, y, z, w) ≤ 3cK+
3

(x, y, z, w)+3cindK+
3

(x, y, z, w)+3cindK3(4)(x, y, z, w)

Observe that:

• if {x, y, z, w} contains no triangles, all four terms are 0,

• if {x, y, z, w} contains one triangle and no extra edges,

cK4(x, y, z, w) = 0, cK3(4)(x, y, z, w) = 1/4,

cK+
3

(x, y, z, w) = 0, cindK+
3

(x, y, z, w) = 0, cindK3(4)(x, y, z, w) = 1/4,

• if {x, y, z, w} contains one triangle and one extra edge,

cK4(x, y, z, w) = 0, cK3(4)(x, y, z, w) = 1/4,

cK+
3

(x, y, z, w) = 1/4, cindK+
3

(x, y, z, w) = 1/4, cindK3(4)(x, y, z, w) = 0,

• if {x, y, z, w} contains one triangle and two extra edges,

cK4(x, y, z, w) = 0, cK3(4)(x, y, z, w) = 1/2,

cK+
3

(x, y, z, w) = 1/3, cindK+
3

(x, y, z, w) = 0, cindK3(4)(x, y, z, w) = 0,
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• if {x, y, z, w} is a copy of K4,

cK4(x, y, z, w) = 1, cK3(4)(x, y, z, w) = 1,

cK+
3

(x, y, z, w) = 1, cindK+
3

(x, y, z, w) = 0, cindK3(4)(x, y, z, w) = 0.

We need one more equality of this kind. We could show it the same way,
by counting up what happens in each configuration, but we can also simply
calculate the integrals.

Lemma 4.27.
tindK2(3) + 2tV(G) = tK2(G) + tK3(G).

Proof. We can just combine the integrals in the correct way. For illustration,
we draw the “graphs” whose counting is represented by the integral:

tindK2(3) + 2tV(G)

=
∫
χE(x, y)(1− χE(x, z))(1− χE(y, z)) + 2χE(x, y)χE(x, z) dµ3 + 2

=
∫
χE(x, y)(1− χE(x, z))(1− χE(y, z)) + χE(x, y)χE(x, z)χE(y, z)

+ χE(x, y)χE(x, z)(1− χE(y, z)) + χE(x, y)χE(x, z) dµ3 + + +

=
∫
χE(x, y)(1− χE(y, z)) + χE(x, y)χE(x, z)χE(y, z)

+ χE(x, y)χE(x, z) dµ3 + +

=
∫
χE(x, y)(1− χE(y, z)) + χE(x, y)χE(x, z)χE(y, z)

+ χE(x, y)χE(y, z) dµ3 + +

=
∫
χE(x, y) + χE(x, y)χE(x, z)χE(y, z) dµ3 +

= tK2(G) + tK3(G).

With just a bit of calculating, we are prepared to prove the first case of
Theorem 4.18.
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Theorem 4.28. For any G with tK2(G) ∈ (1/2, 2/3), tK3(G) ≥ F3(tK2(G)).

Proof. By Theorem 3.33, there must be someGmaximizing the gap F3(tK2(G))−
tK3(G), and we will work in this G. Let c = tK2(G), b = tK3(G), s = s(c) = 2,
and a = a(c). The function F3 is differentiable in the interval (1−1/2, 1−1/3),
so let λ = F ′3(c).

Combining, in order, Lemmata 4.26, 4.25, 4.23, and 4.27 we have

tK4(G) + 2b ≤ 3tK+
3

(G) + 3tindK+
3

(G) + 3tindK3(4)(G)

≤ 3tK+
3

(G) + λtindK2(3)(G)

= 2λtV(G)− (2λc− 3b)c+ λtindK2(3)(G)
= 2λtV(G)− (2λc− 3b)c+ λ(c+ b− 2tV(G))

In particular, since tK4(G) ≥ 0, we can isolate b:

b(2− 3c− λ) ≤ λc(1− 2c).

By Lemma 4.19, the function F3(x) is concave down on the interval (1/2, 2/3).
In particular, for every c ∈ (1/2, 2/3), F ′3(c) > limc→2/3F ′3(c) = 1 by Lemma
4.20, so

b ≥ λc(1− 2c)
2− 3c− λ.

We are left with some tedious algebra to show that the right side of this
equality is, in fact, equal to F3(c). Since s(c) = 2, we have

F3(c) = 2(1 + a)2

9 (1− 2a) and F ′3(c) = 1 + a.

It is more convenient to work in terms of a, so noting that c = 2
3(1− a2), we



130 CHAPTER 4. EXTREMA

have
λc(1− 2c)
2− 3c− λ = (1 + a) · c(1− 2c)

2− 3c− (1 + a)

= (1 + a)
2
3(1− a2)(1− 4

3(1− a2))
2− 2(1− a2)− (1 + a)

= 2
9(1 + a)−1 + 5a2 − 4a4

2a2 − a− 1

= 2
9(1 + a)−(a− 1)(a+ 1)(2a− 1)(2a+ 1)

(2a+ 1)(a− 1)

= 2
9(1 + a)(−(a+ 1)(2a− 1))

= 2(1 + a)2

9 (1− 2a)

= F3(c).

Therefore b ≥ F3(c).
This holds for the graphGmaximizing F3(c)−b, so for allG, F3(tK2(G)) ≤

tK3(G).

4.7 Remarks
We have cheated a bit with our definition of absolute continuity: normally
one says that ν � µ if, for every set S with µ(S) = 0, also ν(S) = 0. It is
immediate that our definition—that ν(S) =

∫
S f dµ for some f—implies this,

and the quite non-trivial Randon-Nikodym theorem shows that these two
definitions are equivalent.

While we have focused in this chapter on proving exact inequalities for
densities in measurable graphs, any of these theorems could also be viewed as
a statement about approximate inequalities in sufficiently large finite graphs.
Since statements about measures and integrals are not first-order, finding
the right statement can sometimes be a bit trickier. Many arguments in the
literature handle this in an ad hoc way (as in [90]), which usually suffices.
A general framework extending first-order logic by predicates for measures
exists as well [71].

Razborov’s flag algebra framework [130] gives a sort of calculus for
calculating the sorts of inequalities between graph densities we needed several
of. For examples much beyond the sorts here, working by hand quickly
becomes unwieldy, but examples have been calculated using the Flagmatic
software [162], including a variety of proofs of new extremal results [52, 53].



Chapter 5

Structure and Randomness

5.1 Quasirandomness

We can identify quasirandom (rather than just ε-quasirandom) measurable
graphs.

Definition 5.1. G = (V,E, µ1) is quasirandom if tC4(G) = (tK2(G))4.

By Lemma 1.22, tC4(G) ≥ (tK2(G))4 for any graph G. (We originally
proved this in the setting of finite graphs, but our proof, written entirely
in terms of calculations with integrals, was really always in the measurable
graph setting.) So again, quasirandomness means that tC4(G) is as small as
possible: the value of tK2(G) forces there to be a certain number of cycles of
length 4, and a quasirandom graph has only as many as it has to.

Theorem 5.2. [Gn]U is quasirandom if and only if, for every ε > 0, {n |
Gn is ε-quasirandom} ∈ U .

Proof. We have tC4([Gn]U ) = limn→U tC4(Gn) and (tK2([Gn]U ))4 = limn→U (tK2(Gn))4.
If, for every ε > 0, {n | Gn is ε-quasirandom} ∈ U then, for every ε > 0,

tC4([Gn]U ) = lim
n→U

tC4(Gn) ≤ lim
n→U

(tK2(Gn))4 + ε = (tK2([Gn]U ))4 + ε,

so tC4([Gn]U ) = (tK2([Gn]U ))4.
If there is an ε > 0 such that {n | Gn is ε-quasirandom} 6∈ U then

tC4([Gn]U ) = lim
n→U

tC4(Gn) ≥ lim
n→U

(tK2(Gn))4 + ε = (tK2([Gn]U ))4 + ε.

131
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As in the finite case, quasirandomness implies that edges are evenly
distributed, in the sense that whenever X and Y are sets, the density of
edges between X and Y is the same as the density of edges in total.

Theorem 5.3. If G = (V,E, µ1) is quasirandom then whenever X ⊆ V and
Y ⊆ V are sets in B1,

µ2(E ∩ (X × Y )) = µ2(E)µ1(X)µ1(Y ).

The proof we gave of the analogous theorem in the finite setting, Theorem
1.28, goes through essentially unchanged. Rather than repeat that here, we
will wait for Corollary 5.23, where we will give another proof building on the
machinery we develop below.

Using this, we can give our long delayed proof of Theorem 1.31, that
quasirandom graphs have the correct subgraph density for all finite graphs.
We first show an analogous statement for the ultraproduct and then, in the
next section, use properties of ultraproducts to prove the original version of
the theorem.

Theorem 5.4. If G = (V,E, µ1) is quasirandom then for every finite graph
H = (W,F ), we have tH(G) = p|F | where p = tK2(G) = µ2(E).

Proof. First, consider the case where H = C3, the triangle, to get the main
idea. In this case

tC3(G) =
∫
χE(x, y)χE(y, z)χE(z, x) dµ3.

That is, tC3(G) is the probability that, when we select three random vertices
x, y, and z, that they form a triangle. Using the Fubini property, this is
equal to ∫ (∫

χE(x, y)χE(y, z)χE(z, x)dµ2(x, y)
)
dµ(z).

That means that we fix the vertex z and, for each z, ask what the probability
that two random vertices x and y will form a triangle with z is.

So consider some fixed vertex z. It has a neighborhood NG(z) = {x ∈ V |
{x, z} ∈ E}. In order for (x, y) to form a triangle with z, we need x ∈ NG(z),
y ∈ NG(z), and also {x, y} ∈ E.

That is, we are looking for

µ2([NG(z)×NG(z)] ∩ E).

Quasirandomness—specifically, Theorem 5.3—implies that this is equal to

pµ(NG(z))2.
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If we pick two random vertices, the probability that they have an edge
between them is p. Quasirandomness tells us that if we pick two random
neighbors of z, the probability that they have an edge between them is still
p—the neighbors of z are neither more nor less likely to have edges between
them.

In particular, that means

tC3(G) = p

∫
χE(y, z)χE(z, x) dµ3.

Notice that
∫
χE(y, z)χE(z, x) dµ3 is the same as tV (G) where V is the graph

, so we have reduced counting triangles to counting copies of a graph
with one fewer edge.

To find tV (G), we can repeat this argument with a different edge:

tC3(G) = p · tV (G) = p

∫
(χE(y, z)χE(z, x)dµ2(y, z)) dµ(x).

That is, we are fixing x and looking for

µ2([V ×NG(x)] ∩ E).

Theorem 5.3 applies again: for each x, this is equal to

pµ(V )µ(NG(x)) =
∫
χE(z, x)dµ(y),

so
tC3(GU ) = p2

∫
χE(z, x) dµ3 = p3.

The general argument follows the same structure. We proceed by induc-
tion on the number of edges, and at each step, we choose a single edge e ∈ F
and look at the iterated integral where we fix all the vertices except the two
vertices on that edge. Quasirandomness will show that tH(G) = p · tH−(G)
where H− = (W,F \ {e}). This reduces us to finding tH−(G), which is
covered by the inductive hypothesis since H− has one fewer edge.

Formally, note that

tH(G) = µ|W |({(x1, . . . , x|W |) | for each {vi, vj} ∈ F , {xi, xj} ∈ EU})

=
∫ ∏
{vi,vj}∈F

χE(xi, xj)dµ|W |(x1, . . . , x|W |).

We proceed by induction on |F |. If |F | = 0, so H is a graph with no edges,
then tH(G) = 1 and the claim is immediate.
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So suppose |F | > 0. Pick some edge {vj0 , vj1} ∈ F . Then we will calculate
tH(G) using the integral

tH(G) =
∫
µ2({(xj0 , xj1) | for each {vi, vj} ∈ F , {xi, xj} ∈ E})µ|W |−2.

This corresponds to first choosing x̄ ∈ V |W |−2, representing all the vertices
other than xj0 and xj1 , and then asking how many ways there are to choose
xj0 and xj1 so that we get a copy of H.

In order for x̄, xj0 , xj1 to be a copy of H, we need four things to happen:
x̄ needs to contain all the edges it supposed to have, xj0 has to be adjacent
to certain vertices in x̄, xj1 has to be adjacent to certain vertices in x̄, and
xj0 and xj1 have to themselves be adjacent.

We can split up these requirements. First, let us take P− ⊆ V |W |−2 to
consist of those x̄ = (x1, . . . , xk) ∈ V |W |−2 (omitting the indices xj0 and xj1)
such that whenever {vi, vj} ∈ F with i, j 6∈ {j0, j1}, {xi, xj} ∈ E. (Phrased
another way, if we let H ′ be the subgraph of H obtained by deleting vj0 and
vj1 , and all edges incident on either, P− is precisely TH′(G), the set of copies
of H ′, indexed appropriately.)

Given x̄ = (x1, . . . , xk) (omitting the indices xj0 and xj1), let P 0
x̄ ⊆ V

consist of those x which are suitable choices for xj0 : x ∈ P 0 if, for each
i such that {vi, vj0} ∈ F , {xi, x} ∈ E. Similarly, let P 1

x̄ ⊆ V consist of
those x which are suitable choices for xj1 : x ∈ P 1 if, for each i such that
{vi, vj1} ∈ F , {xi, x} ∈ E.

Then
tH(G) =

∫
P−

µ2(E ∩ (P 0
x̄ × P 1

x̄ ))dµ|W |−2(x̄).

Here we use quasirandomness: no matter what x̄ we choose, µ2(E ∩ (P 0
x̄ ×

P 1
x̄ )) = pµ(P 0

x̄ )µ(P 1
x̄ ), so

tH(G) = p

∫
P−

µ(P 0
x̄ )µ(P 1

x̄ )dµ|W |−2(x̄).

But
∫
P− µ(P 0

x̄ )µ(P 1
x̄ )dµ|W |−2(x̄) is precisely t(W,F\{{vj0 ,vj1})(G), which, by

the inductive hypothesis, is equal to p|F |−1, so tH(G) = p · p|F |−1 = p|F |.

5.2 Consequences for Finite Graphs

We can use Theorem 5.4 to give a proof of Theorem 1.31. The technique is
typical of the way we obtain results about finite graphs using ultraproducts.
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Theorem (1.31). For every finite graph H = (W,F ), each ε > 0, there is a
δ > 0 so that if G = (V,E) is δ-quasirandom, |tH(G)− tK2(G)|F || < ε.

Proof. Suppose not. Then there is a finite graph H = (W,F ) and an ε > 0
so that for every n > 0 there is a Gn = (Vn, En) which is 1/n-quasirandom,
|Vn| ≥ n, and

|tH(Gn)− (tK2(Gn))|F || ≥ ε.
Let [Gn]U be an ultraproduct of the sequence 〈Gn〉n∈N. Let p = limn→U tK2(Gn) =

tK2([Gn]U). Since Gn is 1/n-quasirandom, tC4([Gn]U) = limn→U tC4(Gn) =
p4, so [Gn]U is quasirandom.

By Theorem 5.4, limn→U tH(Gn) = tH([Gn]U ) = p|F |. Therefore, taking
δ small enough,

{n | |tK2(Gn)− p| < δ} ∩ {n | |tH(Gn)− p|F || < ε/2} ∈ U .

But consider some n in both of these sets: we have

|tH(Gn)−(tK2(Gn))|F || ≤ |p|F |−(tK2(Gn))|F ||+|tH(Gn)−p|F || ≤ ε/2+ε/2 < ε,

which is a contradiction.

The basic structure here is almost ubiquitous in our proofs. When
we wish to prove a statement about sufficiently large finite graphs, we
begin by assuming the statement is false. This will lead to a sequence of
counterexamples; we work with the ultraproduct of this sequence and get a
property which contradicts our claim about the sequence.

We could have carried out this proof without ever mentioning ultra-
products. Indeed, we could take the arguments in the proof of Theorem
5.4 and translate them, step by step, into arguments in the finite setting.
The difficulty is that the arguments would become peppered with addi-
tional ε’s; for instance, each time we used quasirandomness to argue that
µ2([X × Y ] ∩ E) = pµ(X)µ(Y ), we would have to instead argue that ε-
quasirandomness ensures |µ2([X × Y ] ∩ E) − pµ(X)µ(Y )| < δ for some δ.
The main value of the ultraproduct in this argument is hiding all those ε’s
and δ’s by letting them reach the limit value of 0.

5.3 The L2 Norm
We are going to develop tools for working with quasirandom graphs: we will
develop a “norm” which will let us measure how random a graph, and more
generally, a function is. This will give us an explanation for why tC4(G) is
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significant in ways that, say, tC3(G) is not: tC3 does not have an associated
norm.

As a preview, we recall the properties of the L2 norm, which will be a
model for the seminorm we are interested in.
Definition 5.5. When f : V k → R is measurable, we define ||f ||L2(µk) =√∫

(f(x1, . . . , xk))2 dµk.
We define L2(µk) to be the set of measurable functions such that ||f ||L2(µk)

is finite (i.e. the integral exists).
When considering the space L2(µk), it is standard to identify functions

“up to almost everywhere equality”—that is, when ||f − g||L2(µk), we treat
f and g as equivalent, and even write f = g. Note that this is weaker than
pointwise equality—two functions could agree in this sense, but actually
have f(x) 6= g(x) for some values of x. However this is the same as requiring
that {x | f(x) 6= g(x)} have measure 0. So when we write f = g, we mean
equality except possibly on a set of measure 0. This is consistent with our
view that sets of measure 0 are negligible.

It is a standard fact that the L2 norm is a norm; that is:
• for any f , ||f ||L2(µk) ≥ 0,

• if ||f ||L2(µk) = 0 then f = 0 (the function constantly equal to 0, or at
least equal to 0 except on a set of measure 0),

• for any real number c, ||c · f ||L2(µk) = |c| · ||f ||L2(µk), and

• ||f + g||L2(µk) ≤ ||f ||L2(µk) + ||g||L2(µk).
The last property is the triangle inequality.

One might ask why we use the power 2—why not work with (
∫

(f(x1, . . . , xk))p dµk)1/p

for some other value of p? One good reason is that the L2 norm associated
to an inner product.
Definition 5.6. When f, g ∈ L2(µk), 〈f, g〉L2(µk) =

∫
f(x1, . . . , xk)·g(x1, . . . , xk) dµk.

With this definition, ||f ||L2(µk) =
√
〈f, f〉L2(µk).

This inner product is bilinear:
〈f, ag + bh〉 = a〈f, g〉+ b〈f, h〉

and
〈af + bh, g〉 = a〈f, g〉+ b〈h, g〉.

The Cauchy-Schwarz inequality can be stated in the form
〈f, g〉L2(µk) ≤ ||f ||L2(µk) · ||g||L2(µk).
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5.4 The U 2 Seminorm
We will define a norm-like operation based on tC4 :

Definition 5.7.

||f ||U2 = 4

√∫
f(x, y)f(x′, y)f(x, y′)f(x′, y′)dµ4.

Of course, when f = χE is the characteristic function of a graph, ||f ||U2 =
4
√
tC4(E). We will establish the basic properties of this operation and then

use those to see how it relates to quasirandomness.
For an arbitrary measurable function f , this integral might not exist. It

would be enough to restrict to functions f whose fourth power is integrable—
the L4(µ2) functions, which are the functions for which

∫ |f |4 dµ2 exists—but
it will be sufficient for us, and simpler, to impose a stricter restriction and
consider only the almost everywhere bounded functions.

Definition 5.8. L∞(µk) ⊆ L2(µk) is the space of functions f such that there
is a real number c > 0 such that µk({(x1, . . . , xk) | |f(x1, . . . , xk)| > c}) = 0.

That is, L∞(µk) is the functions which are restricted to [−c, c] for some
c, except on a set of measure 0.
|| · ||U2 is known as the Gowers U2 seminorm. It is the first of the Gowers

uniformity seminorms. (The others will appear later, when we generalize to
hypergraphs.)

As the name suggests, || · ||U2 is a seminorm, not a norm: it is possible
to have ||f ||U2 = 0 even when f is non-zero function, but the other three
properties of a norm (non-negativity, multiplication by scalars, and the
triangle inequality) are satisfied, as we will prove shortly.

Definition 5.9. An operation || · || is a seminorm if it satisfies:

• for every f , ||f || ≥ 0,

• for any real number c and any f , ||c · f || = |c| · ||f ||,

• for any f and g, ||f + g|| ≤ ||f ||+ ||g||.

We could define operations like || · ||U2 corresponding to other graphs,
like ||f ||C3 = 3

√∫
f(x, y)f(y, z)f(z, x) dµ3. However for most graphs, this

fails to be a seminorm. Even the form suggests immediately that the result
will not always be non-negative: there is no squaring going on, and indeed,
it is not hard to find f so that ||f ||C3 is negative.
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Example 5.10. Let A ⊆ V be a set with µ(A) = 1/2 and define f(x, y) by:

f(x, y) =


−1 if x ∈ A and y ∈ A
−1 if x 6∈ A and y 6∈ A
0 if x ∈ A and y 6∈ A
0 if x 6∈ A and y ∈ A

Then, for any x, y, z, f(x, y)f(y, z)f(z, y) is 0 unless all three belong to A
or all three do not belong to A, in which case f(x, y)f(y, z)f(z, y) is −1. In
particular, ||f ||C3 = −1/4 < 0.

However C4 is not the only graph which gives us a seminorm, and it will
be useful to consider a second example in parallel.

Definition 5.11. When f ∈ L∞(µ2),

||f ||V =
√∫

f(x, y)f(x, z) dµ3.

We call this the V seminorm because it corresponds to the graph .
The V seminorm is not as common (or important) as the U2 seminorm, but
belongs to a larger family of seminorms which extends the Gowers uniformity
seminorms.

Before proving that || · ||U2 and || · ||V are seminorms, it is helpful to
introduce the inner product-like notions corresponding to them. Unlike
an ordinary inner product, the U2 version of an inner product has four
arguments.

Definition 5.12.

〈f1, f2〉V =
∫
f1(x, y)f2(x, z) dµ3

and
〈f1, f2, f3, f4〉U2 =

∫
f1(x, y)f2(x, y′)f3(x′, y)f4(x′, y′) dµ4.

Analogous to the equality ||f ||2L2(µk) = 〈f, f〉L2(µk), we have ||f ||2V =
〈f, f〉V and ||f ||4U2 = 〈f, f, f, f〉U2 .

Linearity in each coordinate follows by the linearity of integrals; for
instance,

〈f, ag + bg〉V = a〈f, g〉V + b〈f, h〉V
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and

〈f1, f2, f3, ag + bh〉U2 = a〈f1, f2, f3, g〉U2 + b〈f1, f2, f3, h〉U2 .

Most importantly, the V and U2 norms satisfies a version of Cauchy-
Schwarz we will use over and over again.

Theorem 5.13 (Gowers–Cauchy–Schwarz).

• |〈f1, f2〉V| ≤ ||f1||V · ||f2||V, and

• |〈f1, f2, f3, f4〉U2 | ≤ ||f1||U2 · ||f2||U2 · ||f3||U2 · ||f4||U2.

Proof. Both parts follow by the use of Cauchy-Schwarz.
For the first part,

|〈f1, f2〉V|2 =
∣∣∣∣∫ f1(x, y)f2(x, z) dµ3

∣∣∣∣2
=
∣∣∣∣∫ (∫ f1(x, y)dµ(y)

)(∫
f2(x, z)dµ(z)

)
dµ(x)

∣∣∣∣2
≤
∫ (∫

f1(x, y)dµ(y)
)2
dµ

∫ (∫
f2(x, y)dµ(y)

)2
dµ

= ||f1||2V · ||f2||2V,

so taking square roots of both sides,

|〈f1, f2〉V| ≤ ||f1||V · ||f2||V.

The second part is similar, but we use Cauchy-Schwarz twice.

|〈f1, f2, f3, f4〉|4U2

=
∣∣∣∣∫ f1(x, y)f2(x, y′)f3(x′, y)f4(x′, y′) dµ4

∣∣∣∣4
=
∣∣∣∣∫ (∫ f1(x, y)f3(x′, y) dµ(y)

)(∫
f2(x, y′)f4(x′, y′)dµ(y′)

)
dµ2(x, x′)

∣∣∣∣4
≤
∣∣∣∣∣
∫ (∫

f1(x, y)f3(x′, y) dµ(y)
)2
dµ2(x, x′)

∣∣∣∣∣
2

·
∣∣∣∣∣
∫ (∫

f2(x, y′)f4(x′, y′)dµ(y′)
)2

dµ2(x, x′)
∣∣∣∣∣
2

≤
∣∣∣∣∫ f1(x, y)f1(x, y′)f3(x′, y)f3(x′, y′) dµ4

∣∣∣∣2 · ∣∣∣∣∫ f2(x, y)f2(x, y′)f4(x′, y)f4(x′, y′) dµ4

∣∣∣∣2 .
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Consider one of these pieces:∣∣∣∣∫ f1(x, y)f1(x, y′)f3(x′, y)f3(x′, y′) dµ4

∣∣∣∣2
=
∣∣∣∣∫ (∫ f1(x, y)f1(x, y′)dµ(x)

)
·
(∫

f3(x′, y)f3(x′, y)dµ(x′)
)
dµ2(y, y′)

∣∣∣∣2
≤
∫ (∫

f1(x, y)f1(x, y′)dµ(x)
)2
dµ2(y, y′) ·

∫ (∫
f3(x′, y)f3(x′, y)dµ(x′)

)2
dµ2(y, y′)

=
∫
f1(x, y)f1(x, y′)f1(x′, y)f1(x′, y′)dµ4 ·

∫
f3(x, y)f3(x, y′)f3(x′, y)f3(x′, y′)dµ4

=||f1||4U2 · ||f3||4U2 .

Similarly,∣∣∣∣∫ f2(x, y)f2(x, y′)f4(x′, y)f4(x′, y′) dµ4

∣∣∣∣2 ≤ ||f2||4U2 · ||f4||4U2 .

Putting these together,

〈f1, f2, f3, f4〉4 ≤ ||f1||4U2 · ||f3||4U2 · ||f2||4U2 ||f4||4U2 ,

and therefore

|〈f1, f2, f3, f4〉| ≤ ||f1||U2 · ||f2||U2 · ||f3||U2 · ||f4||U2 .

This argument gives some idea what makes C4 and the V graphs special:
they correspond to “doubling vertices”. If we begin with a single edge {x, y}
and “double” the y vertex, we get the V graph—the single vertex x adjacent
to two different vertices. If we take the V graph and now double the x vertex,
we get the graph C4: two copies of y and two copies of x, with both y vertices
adjacent to both x vertices.

This doubling is exactly what lets us apply the Cauchy-Schwarz inequality,
and helps explain why C4 and V give us seminorms while most other graphs
don’t.

Theorem 5.14. || · ||V and || · ||U2 are seminorms.

Proof. For any L∞ function f , ||f ||V =
√∫

(
∫
f(x, y) dµ(y))2 dµ(x); since

the quantity (
∫
f(x, y) dµ(y))2 is non-negative, ||f ||V is always defined and

non-negative. Similarly, ||f ||U2 = 4
√∫

(
∫
f(x, y)f(x′, y) dµ(y))2 dµ2(x, x′);
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since the quantity (
∫
f(x, y)f(x′, y) dµ(y))2 is non-negative, we ensure that

||f ||U2 is always defined and non-negative.
For any real number c,

||c · f ||V =
√∫

c2f(x, y)f(x, z) dµ3 = |c| · ||f ||V

and

||c · f ||U2 = 4

√∫
c4f(x, y)f(x′, y)f(x, y′)f(x′, y′)dµ4 = |c| · ||f ||U2 .

To see the triangle inequality for || · ||V , observe that

||f + g||2V = 〈f + g, f + g〉V
= 〈f, f〉V + 2〈f, g〉V + 〈g, g〉V
≤ ||f ||2V + 2||f ||V · ||g||V + ||g||2V
= (||f ||V + ||g||V)2,

so ||f + g||V ≤ ||f ||V + ||g||V.
Similarly, to see the triangle inequality for || · ||U2 , we work with the

fourth power;

||f + g||4U2 = 〈f + g, f + g, f + g, f + g〉U2

= 〈f, f, f, f〉U2 + 〈f, f, f, g〉U2 + ·+ 〈g, g, g, g〉U2

≤ ||f ||4U2 + ||f ||4U2 ||g||U2 + · · ·+ ||g||4U2

= (||f ||U2 + ||g||U2)4.

Therefore
||f + g||U2 ≤ ||f ||U2 + ||g||U2 .

It will be convenient to place the V and U2 norms in an order with the
L2 norm and the absolute value.
Lemma 5.15. For any f , | ∫ f dµ2| ≤ ||f ||V ≤ ||f ||U2 ≤ ||f ||L2(µ2).
Proof. Write 1 for the function constantly equal to 1. Then∣∣∣∣∫ f(x, y)dµ2

∣∣∣∣ =
∣∣∣∣∫ f(x, y)1(x, z) dµ3

∣∣∣∣
= |〈f, 1〉V|
≤ ||f ||V · ||1||V
= ||f ||V
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since ||1||V =
∫

1 dµ3 = 1.
Similarly,

||f ||2V =
∫
f(x, y)f(x, z) dµ3

= 〈f, f, 1, 1〉U2

≤ ||f ||2U2 · ||1||2U2

= ||f ||2U2

since ||1||U2 =
∫

1 dµ4 = 1. Taking the square root of both sides gives
||f ||V ≤ ||f ||U2 .

Finally,

||f ||4U2 =
∫
f(x, y)f(x, y′)f(x′, y)f(x′, y′) dµ4

≤ ||f ||4L2

by Cauchy-Schwarz.

The inequality | ∫ f dµ2| ≤ ||f ||U2 is an extension of our old observation
that tK2(G)4 ≤ tC4(G). This suggests that we might think of an arbitrary
function f as quasirandom exactly when ||f ||U2 = | ∫ f dµ2|.

The V and U2 norms satisfy an additional inequality which connects them
directly to the structure of the graded probability space, which characterizes
what makes them useful:

Theorem 5.16. For any measurable set B and any f ∈ L∞(µ2),

||f(x, y)χB(x)||V ≤ ||f ||V

and

||f(x, y)χB(x)||U2 ≤ ||f ||U2 and ||f(x, y)χB(y)||U2 ≤ ||f ||U2 .

Applying the U2 version of this lemma twice, once in the x coordinate
and once in the y coordinate, shows that

||f(x, y)χB(x)χC(y)||U2 ≤ ||f ||U2 .

That is, when we restrict a function to a rectangle, the U2 norm does not
increase.
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Proof. Let B be measurable and let f ∈ L∞(µ2) be given. Letting B = V \B,
we have

f(x, y) = f(x, y)χB(x) + f(x, y)χB(x).

For the V norm, observe that

||f ||2V = 〈f, f〉V
= 〈fχB + fχB, fχB + fχB〉V
= 〈fχB, fχB〉V + 2〈fχB, fχB〉V + 〈fχB, fχB〉V
= ||fχB||2V + 2

∫
f(x, y)χB(x)f(x, z)χB(x) dµ3 + ||fχB||2V

= ||fχB||2V + ||fχB||2V
≥ ||fχB||2V.

For the U2 norm, the argument is similar except that there are more
terms to worry about. We prove the first inequality for the U2 norm since
the last inequality follows symmetrically by the same argument.

||f ||4U2 = 〈f, f, f, f〉U2

= 〈fχB + fχB, fχB + fχB, fχB + fχB, fχB + fχB〉U2

= 〈fχB, fχB, fχB, fχB〉U2 + 〈fχB, fχB, fχB, fχB〉U2 + · · ·+ 〈fχB, fχB, fχB, fχB〉U2 .

There are a total of 16 terms we need to consider in this sum. We will show
that each term is non-negative.

Each term has the form∫
f(x, y)χS1(x)f(x′, y)χS2(x′)f(x, y′)χS3(x)f(x′, y′)χS4(x′) dµ4

where S1, S2, S3, S4 are each either B or B.
If S1 6= S3 or S2 6= S4 then this integral is 0, like the middle term in the

V norm argument above. For instance,∫
f(x, y)χB(x)f(x′, y)χBf(x, y′)χB(x)f(x′, y′)χB(x′) dµ4 = 0

because for every x, one of χB(x) and χB(x) must be 0, so the product is
always 0.

However there are four terms,∫
f(x, y)χS1(x)f(x′, y)χS2(x′)f(x, y′)χS1(x)f(x′, y′)χS2(x′) dµ4
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which do not cancel out so simply. But∫
f(x, y)χS1(x)f(x′, y)χS2(x′)f(x, y′)χS1(x)f(x′, y′)χS2(x′) dµ4

=
∫ (∫

f(x, y)χS1(x)f(x′, y)χS2(x′) dµ(y)
)2
dµ2(x, x′),

which is always non-negative because the integrand is squared.
Since all the terms are non-negative,

||f ||4U2 ≥ 〈fχB, fχB, fχB, fχB〉U2 = ||fχB||4U2 .

This implies that when ||f ||U2 = 0, f is orthogonal to any “rectangle” of
the form X × Y .

Lemma 5.17. If ||f ||U2 = 0 then whenever X ⊆ V and Y ⊆ V are sets in
B(µ), ∫

f(x, y)χX(x)χY (y) dµ2 = 0.

Proof. We have∣∣∣∣∫ f(x, y)χX(x)χY (y) dµ2

∣∣∣∣ ≤ ||f(x, y)χX(x)χY (y)||U2 ≤ ||f ||U2 = 0.

5.5 Seminorms, Even Distribution, and Quasiran-
domness

We would like to identify the relationship between the U2 norm and quasir-
andomness. When E ⊆ V 2 is a symmetric measurable set, the definitions
say that E is quasirandom exactly when ||χE ||U2 = µ2(E).

However this turns out not to be the most important perspective on the
relationship. We will ultimately want to be able to take any L∞(µ2) function
f and decompose it into a structured part and a random part—to write
f = f+ + f− where ||f−||U2 = 0 and f+ has some sort of nice description.
This is similar to the spectral perspective, where we write f as a sum of
eigenfunctions; indeed, one way to give a description of f+ will be as the
sum of the eigenfunctions.
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When f = χE is quasirandom—and, more generally, when ||f ||U2 =
|∫ f dµ2|—this decomposition will be particularly useful because f+ will turn
out to be a constant function.

Before proving this, it will be useful to develop the analogous theory for
the V norm, both to preview the techniques and as a step in the proof.

The V norm corresponds to a weaker notion of randomness than quasir-
andomness.

Definition 5.18. f is evenly distributed if, for almost every x,
∫
f(x, y) dµ(y) =∫

f(x, y) dµ2.

Like the V norm itself, the definition of even distribution is asymmetric in
the two variables, so we will most often apply it when f itself is symmetric.

In particular, when f = χE is the characteristic function of a graph, f is
evenly distributed when (outside of a set of measure 0), every point x has
the “right number” of neighbors.

For instance, the bipartite graph with two equal parts—the graph where
there is an A ⊆ V with µ(A) = 1/2 and E = A× (V \ A) ∪ (V \ A)× A—
is evenly distributed, since µ2(E) = 1/2 and, for every x, µ(Ex) = 1/2.
(But this graph is very far from being quasirandom—for instance, it has no
triangles.)

Theorem 5.19. Let f ∈ L∞(µ2) and take p = | ∫ f dµ2|. The following are
equivalent:

• f is evenly distributed,

• ||f ||V = p,

• ||f − p||V = 0.

Proof. If f is evenly distributed then

||f ||V =
√∫

f(x, y)f(x, z) dµ3

=
√∫

(
∫
f(x, y) dµ(y))2dµ

=
√∫

p2 dµ

= p.
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If ||f ||V = p then

||f − p||2V = 〈f − p, f − p〉V
= 〈f, f〉V − 2〈f, p〉V + 〈p, p〉V
= p2 − 2

∫
f(x, y)p dµ3 + p2

= p2 − 2p
∫
f(x, y) dµ2 + p2

= 0.

If ||f − p||V = 0 then

0 = ||f − p||2V

=
∫ (∫

f(x, y) dµ(y)− p
)2
dµ(x).

Therefore {x | ∫ f(x, y) dµ(y) = p} must have measure 1, so f is evenly
distributed.

Knowing that χE is evenly distributed—that is, that tV(E) = tK2(E)2—
is not enough to guarantee that E contains the right number of copies of
all graphs, as the example of the bipartite graph above shows. However
equidstributed graphs satisfy an analog of Theorem 5.4 for a limited family
of graphs:

Theorem 5.20. If G = (V,E) is evenly distributed with tK2(E) = p then
whenever H = (W,F ) is a tree—that is, H contains no cycles—tH(E) = p|F |.

Problem 5.21. Adapt the proof of Theorem 5.4 to prove this. Adapt the
proof of Theorem 1.31 to prove the finite analog: for every tree H and every
ε > 0, there is a δ > 0 so that if |tV(G)− tK2(G)2| < δ and G is sufficiently
large, then |tH(G)− tK2(G)|F || < ε.

Theorem 5.22. Let f ∈ L∞(µ2) be symmetric and take p = | ∫ f dµ2|. The
following are equivalent:

• ||f ||U2 = p,

• ||f − p||U2 = 0.

Note that when f = χE , ||f ||U2 = | ∫ f dµ2| is saying that E is quasiran-
dom.
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Proof. First, suppose ||f ||U2 = p. Since p ≤ ||f ||V ≤ ||f ||U2 , we also have
||f ||V = p, so f is evenly distributed. We can calculate

||f − p||4U2 = 〈f − p, f − p, f − p, f − p〉U2

= 〈f, f, f, f〉U2 − 〈f, f, f, p〉U2 + · · ·+ 〈p, p, p, p〉U2 .

There are sixteen total terms in this sum which we need to consider; we will
show that all of them are equal to p4. The first and last terms are certainly
equal to p4.

Consider the four terms with f three times and p once. For instance

〈f, f, f, p〉U2 =
∫
f(x, y)f(x, y′)f(x′, y)p dµ4

= p

∫
f(x, y)f(x′, y)

∫
f(x, y′) dµ(y′) dµ3(x, x′, y)

= p2
∫
f(x, y)f(x′, y) dµ3

= p2||f ||2V
= p4.

The other three of these terms are equal to p4 by symmetric arguments.
Consider the six terms with f twice and p twice. These are not all

symmetric: four of them are like

〈f, p, f, p〉V =
∫
f(x, y)pf(x′, y)p dµ4

where the two copies of f share a variable, while two are like

〈f, p, p, f〉V =
∫
f(x, y)p2f(x′, y′) dµ4.

For the first group,∫
f(x, y)pf(x′, y)p dµ4 = p2tV (f) = p4.

For the second group,∫
f(x, y)p2f(x′, y′) dµ4 = p2(

∫
f(x, y) dµ2)2 = p4.

There are four terms where f only appears once, all of which are symmetric
with

〈f, p, p, p〉V =
∫
f(x, y)p3 dµ4 = p4.
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Putting these sixteen terms together,

||f − p||4U2 = p4 − 4p4 + 6p4 − 4p4 + p4 = 0.

Conversely, suppose ||f − p||U2 = 0. Since

||f ||U2 = ||f − p+ p||U2 ≤ ||f − p||U2 + ||p||U2 = 0 + p,

we have ||f ||U2 ≤ p. Since we always have p ≤ ||f ||U2 , it follows that
||f ||U2 = p.

This gives us an almost trivial proof of a version of Theorem 1.28. (Care-
fully comparing the finite proof we gave with the work above will show that
this is really the same argument, with all the work packaged into various
lemmata.)

Corollary 5.23. If E is quasirandom then whenever X ⊆ V and Y ⊆ V
are sets in B(µ),

µ2(E ∩ (X × Y )) = µ2(E)µ(X)µ(Y ).

Proof. Let p = µ2(E). Since E is quasirandom, ||χE − p||U2 = 0, so by
Lemma 5.17 we have

0 =
∫

(χE(x, y)−p)χX(x)χY (y) dµ2 =
∫
χE(x, y)χX(x)χY (y) dµ2−p

∫
χX(x)χY (y) dµ2,

which is the same as saying that

µ(E ∩ (X × Y )) = pµ(X)µ(Y ).

5.6 Transfer
We would like a systematic way of drawing conclusions about finite graphs
from theorems about measurable graphs. We have pointed out that “internal
statements” have the property that they are true in an ultraproduct exactly
when they are true of most of the ground graphs.

However the last two chapters have been mostly concerned with state-
ments which are not internal. Consider Turán’s Theorem, Theorem 4.6. The
statement

for each r ≥ 3, if tK2(G) > 1− 1
r−1 then |TKr(G)| > 0



5.6. TRANSFER 149

is not internal. First, the “for each r” is considering only natural numbers
r—it is not the sort of “for all” contemplated by Lemma 2.34. Second, we
know that expressions about measure like tK2(G) > 1 − 1

r−1 are generally
not internal.

However (recalling our internal comparison % from Definition 3.3) this is
equivalent to the statement:

for every r ≥ 3 and every e > 0, if tK2(G) % 1 − 1
r−1 + 1

e then
|TKr(G)| > 0.

The last part—“tK2(G) % 1 − 1
r−1 + 1

e then |TKr(G)| > 0”—is the sort of
statement that passes between ultraproducts and ground models, so this has
the form “for all natural numbers r, e, σr,e” where, for each r and e, σr,e is
an internal statement. This is the perspective taken in the proof of Corollary
4.7: we first fix values of the natural numbers r and e and then use the
internality of σr,e.

This leads to a general principle, which we could formulate as follows.
(We will restate it more formally and more generally later in this section.)

Suppose that, for every natural number k, σk is an internal
statement. If, for every k, σk is true in [Gn]U then, for each k,
{n | σk is true in Gn} ∈ U}.

Note that it might not be the case that {n | every σk is true in Gn} ∈ U .
For instance, consider the case where σk is the statement “there are at least
k elements” and each Gn has n elements: then σk is true in Gn if and only
if k ≤ n, but [Gn]U is infinite, so every σk is true in [Gn]U . That is, we
are comparing the situation where every σk is true, simultaneously, in the
ultraproduct to the case where each σk, individually, is true in “most” of the
Gn.

Next, let us consider a more complicated statement. Theorem 5.4 says
that

whenever G is a measurable graph, for every finite graph H =
(W,F ), if tC4(G) = (tK2(G))4 then tH(G) = (tK2(G))|F |

while the corresponding statement about finite graphs is Theorem 1.31:

for every finite graph H = (W,F ) and every ε > 0, there is
a δ > 0 so that if |tC4(G) − (tK2(G))4| < δ and |V | > 1/δ,
|tH(G)− (tK2(G))|F || < ε.
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These are clearly related claims, but there has been some transformation,
from the exact equalities in the measurable graph to approximate equalities
in the finite graph.

The “for every finite graph” quantifies over the countable set of finite
graphs, and we can replace exact equalities between integrals with % com-
parisons: the statement of Theorem 5.4 is equivalent to

whenever G is a measurable graph, for every finite graph H =
(W,F ), if, for every δ > 0, |tC4(G) − (tK2(G))4| - δ, then for
every ε > 0, |tH(G)− (tK2(G))|F || - ε.

Then we can reorganize the quantifiers to get the also equivalent statement:

whenever G is a measurable graph, for every finite graph H =
(W,F ) and every e > 0, there is a d > 0 such that if |tC4(G) −
(tK2(G))4| - 1/e then |tH(G)− (tK2(G))|F || - 1/d.

The statement “if |tC4(G)−(tK2(G))4| - 1/e then |tH(G)−(tK2(G))|F || - 1/d”
is internal. So Theorem 5.4 is ultimately equivalent to a statement of the
form “for all H, e there exists a d such that σH,e,d holds” where σH,e,d is
internal.

This is more complicated than the structure of Turán’s Theorem—there
are now two “external quantifiers”—first the “for all H and e” and then
“there exists a d” followed by an internal statement.∗

Theorem 5.24 (Transfer). Suppose that for every pair of natural numbers
y and z, σy,z is an internal statement†. Then the following are equivalent:

• in [Gn]U , for every y there is a z so that σy,z is true,

• for every y, there is a z so that {n | σy,z is true in Gn} ∈ U .

Note that the second clause has a built-in uniformity: it requires that,
for each y, there is a single choice of a value z which works for most Gn.

Proof. Let [Gn]U be given. First, suppose that, for every y there is a z so that
σy,z is true in [Gn]U . Then, since σy,z is internal, {n | σy,z is true in Gn} ∈ U .

Conversely, suppose that, for each y, there is a z so that {n | σy,z is true in Gn} ∈
U . Then for this z, again since σy,z is internal, σy,z is true in [Gn]U .

∗As is common, we count “for all H and for all e” as a single quantifier over the pair
(H, e).

†Here—and everywhere we use the term “internal statement”—one can replace it with
“formula of first-order logic”, which means essentially the same thing.
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There is an analogous statement for internal sets: suppose we want to
consider sets of the form S = ⋂

y∈N
⋃
z∈N S

y,z where the Sy,z are internal.
The set S is not internal (unless the unions and intersections trivialize).

Theorem 5.25. Suppose that, for every pair of natural numbers y and z and
each n, Sy,zn ⊆ Gkn. Then, for any [~bn]U ∈ [Gn]kU , the following are equivalent:

• for every natural number y there is a natural number z so that [~bn]U ∈
[Sy,zn ]U ,

• for every natural number y there is a natural number z so that {n |
~bn ∈ Sy,zn } ∈ U .

That is, ⋂y∈N⋃z∈N[Sy,zn ]U consists of those elements [~bn]U which belong
“uniformly” to ⋂y∈N⋃z∈N Sy,zn . The proof is exactly the same as the proof
of the Transfer Theorem. We have stated this for single natural number
parameters y and z, but it would be the same if we had several, y1, . . . , ym
and z1, . . . , zn.

5.7 Remarks
The U2 norm was well-known prior to Gowers work, at least as early as
the original papers on graph quasirandomness [30]. Gowers’ name and the
notation U2 have become attached to it since [75] gave the right generalization
to hypergraphs. The name “V norm” and notation || · ||V are nonstandard;
the perspective here emphasizing this norm as a building block to the U2

norm comes from [158], where a generalization of this approach is used for
hypergraphs.

The question of when a graph G = (V,E) has, like V and C4, the propety
that tG(·)1/|E| is a norm, has been studied ([37, 82]) and is closely related to
Sidorenko’s conjecture [140].

The transfer theorem, as we have stated it, is more commonly stated in
the setting of nonstandard analysis [10, 70, 125, 126], where it is a central
property. In axiomatic approaches (as opposed to the semantic approach our
ultraproducts represent), it is generally included as one of the characteristic
axioms [15, 55, 122].



152 CHAPTER 5. STRUCTURE AND RANDOMNESS



Chapter 6

Regularity

6.1 Rectangles

L2(µ2) is a vector space, and the functions which have U2 norm 0 form a
subspace, so we expect to be able identify a dual space. That will let us
decompose functions, writing

f = f+ + f−

where ||f−||U2 = 0 and f+ is orthogonal to all functions with U2 norm 0.

Definition 6.1. We say f is dual to U2 if whenever ||r||U2 = 0,
∫
fr dµ2 = 0.

One of our goals this chapter is to characterize the functions which are
dual to U2. By Lemma 5.17, whenever X,Y ⊆ V , χX(x)χY (y) is dual to
U2. On the other hand, if f is dual to U2 and non-zero then, in particular,∫
ff dµ2 = ||f ||2L2(µ2) > 0, so we must have ||f ||U2 6= 0.
The following result then tells us that when f is dual to U2, at least f

correlates with a rectangle.

Theorem 6.2. When f ∈ L∞(µ2), ||f ||U2 > 0 if and only if there is a
rectangle X × Y such that

∣∣∣∫X×Y f dµ2
∣∣∣ > 0.

Proof. The right to left direction essentially follows from what we have
already done. Suppose there is a rectangle X×Y such that

∣∣∣∫X×Y f dµ2
∣∣∣ > 0.

Then using Lemma 5.15 and Theorem 5.16 we have

0 <
∣∣∣∣∫ f(x, y)χX(x)χY (y) dµ2

∣∣∣∣ ≤ ||f(x, y)χX(x)χY (y)||U2 ≤ ||f ||U2 .

153



154 CHAPTER 6. REGULARITY

Conversely, suppose ||f ||U2 > 0, so

0 < ||f ||4U2

=
∫
f(x, y)f(x′, y)f(x, y′)f(x′, y′) dµ4

=
∫ [∫

f(x, y)f(x′, y)f(x, y′)f(x′, y′) dµ2(x, y)
]
dµ2(x′, y′).

Let us assume that µ2({(x, y) | |f(x, y)| > 1}) = 0 (the case where this holds
with 1 replaced by some value d follows the same argument after scaling).

There must be some x′, y′ with |f(x′, y′)| ≤ 1 so that∣∣∣∣∫ f(x, y)f(x′, y)f(x, y′)f(x′, y′) dµ2

∣∣∣∣ ≥ ∣∣∣∣∫ f(x, y)f(x′, y)f(x, y′) dµ2

∣∣∣∣ = ε > 0.

(And also µ({x | |f(x, y′)| > 1}) = µ({y | |f(x′, y)| > 1}) = 0.)
For any interval [a, b], let Xa,b = {x | f(x, y′) ∈ [a, b]} and Y[a,b] = {y |

f(x′, y) ∈ [a, b]}. If we choose [a, b] and [c, d] so that |b− a| and |d− c| are
small, the value of this integral on X[a,b] × Y[c,d] does not depend much on
f(x′, y) or f(x, y′):∣∣∣∣∣
∫
X[a,b]×Y[c,d]

f(x, y)f(x′, y)f(x, y′) dµ2

∣∣∣∣∣ ≤
∣∣∣∣∣ac
∫
X[a,b]×Y[c,d]

f(x, y) dµ2

∣∣∣∣∣
+
∣∣∣∣∣
∫
X[a,b]

f(x, y′)− a dµ
∣∣∣∣∣ ·
∣∣∣∣∣
∫
Y[c,d]

f(x′, y)− c dµ
∣∣∣∣∣

≤
∣∣∣∣∣ac
∫
X[a,b]×Y[c,d]

f(x, y) dµ2

∣∣∣∣∣
+ |b− a| · |c− d|µ(X[a,b])µ(Y[c,d]).

In particular, if we take K ≥
√

2
ε ,

ε ≤
∣∣∣∣∫ f(x, y)f(x′, y)f(x, y′) dµ2

∣∣∣∣
≤
∣∣∣∣∣∣
∑
i≤K

∑
j≤K

∫
X[i
√
ε/2,(i+1)

√
ε/2]×Y[j

√
ε/2,(j+1)

√
ε/2]

f(x, y)f(x, y′)f(x′, y) dµ2

∣∣∣∣∣∣
≤
∑
i≤K

∑
j≤K

ij
ε

2

∣∣∣∣∣∣
∫
X[i
√
ε/2,(i+1)

√
ε/2]×Y[j

√
ε/2,(j+1)

√
ε/2]

f(x, y) dµ2

∣∣∣∣∣∣+ ε

2 .
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In particular, this means there must be some i, j so that∣∣∣∣∣∣
∫
X[i
√
ε/2,(i+1)

√
ε/2]×Y[j

√
ε/2,(j+1)

√
ε/2]

f(x, y) dµ2

∣∣∣∣∣∣ > 0.

This suggests that the rectangles will be the building blocks for the
functions which are dual to U2.

Definition 6.3. B0
2,1 ⊆ B2 consists of sets of the form ⋃

i≤kXi × Yi where
each Xi, Yi ∈ B1.

The 2 in the notation 2, 1 reminds us that B0
2,1 consists of sets of pairs,

while the 1 tells us that these are the sets generated by unary sets—that is,
by rectangles.

What we really need is for B0
2,1 to be an algebra—that is, to be closed

under complements, finite unions, and finite intersections. Normally this
requires more than just closure under finite unions, but since the complement
of a rectangle is a finite union of rectangles, our definition of B0

2,1 is sufficient.

Lemma 6.4. B0
2,1 is an algebra—that is:

• whenever B ∈ B2,1, also V \B ∈ B2,1,

• whenever B1, . . . , Bk ∈ B2,1, also
⋃
i≤k Bi ∈ B2,1,

• whenever B1, . . . , Bk ∈ B2,1, also
⋂
i≤k Bi ∈ B2,1.

Proof. It is helpful to note that when B = ⋃
i≤kXi×Yi, we can rewrite B as

a union ⋃i≤k′ X ′i×Y ′i so that for any i, j ≤ k′, either X ′i = X ′j or X ′i∩X ′j = ∅,
and either Y ′i = Y ′j or Y ′i ∩Y ′j = ∅. To see this, we identify all the intersections
of the Xi and the Yi—all sets of the form Xs = ⋂

i∈sXi ∩
⋂
i 6∈s(V \Xi) for

some s ⊆ [1, k], and all Ys = ⋂
i∈s Yi ∩

⋂
i 6∈s(V \ Yi) for some s ⊆ [1, k]. (The

sets Xs are precisely the atoms of the finite algebra of sets generated by the
sets {Xi}, and similarly for the Ys.)

Suppose s 6= s′. Then there is an i ∈ s4 s′; without loss of generality,
assume i ∈ s. Then Xs ⊆ Xi but Xs′ ∩Xi = ∅. Therefore Xs ∩Xs′ = ∅.

So we can take B to be the union of those Xs × Ys such that there is
some i with Xs ⊆ Xi and Ys ⊆ Yi.

Without loss of generality, let us write B = ⋃
i≤kXi × Yi with the

additional condition that for any i, j ≤ k, either Xi = Xj or Xi ∩Xj = ∅,
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and either Yi = Yj or Yi ∩ Yj = ∅. Then we can see that V 2 \ B is also a
union of rectangles: for each Xi, let Y ′i = ⋃

j≤k,Xj=Xi Yj , and set

V 2 \B =
⋃
i≤k

Xi × (V \ Y ′i ).

The second part holds since a union of unions is a union, and the third
part follows from the first two since

⋂
i≤k

Bi = V 2 \
⋃
i≤k

(V 2 \Bi)
 .

We really want to work with σ-algebras, so we have to extend B0
2,1 slightly,

to those sets which can be approximated using B0
2,1:

Definition 6.5. B2,1 ⊆ B2 consists of those sets B ∈ B2 such that, for every
ε > 0, there is a Bε ∈ B0

2,1 such that µ2(B 4Bε) < ε.

Theorem 6.6. B2,1 is a σ-algebra.

Proof. Clearly ∅ and V 2 ∈ B2,1. If B ∈ B2,1 then, for every ε > 0, µ2((V 2 \
B)4 (V 2 \Bε)) = µ2(B 4Bε) < ε.

We can show that B2,1 is closed under unions of two elements (and
therefore under finite unions and intersections): if B,B′ ∈ B2,1 then, for any
ε > 0, we may find Bε, B′ε with µ2(B 4 Bε) < ε/2 and µ2(B′ 4 B′ε) < ε/2.
Then

µ2((B ∪B′)4 (Bε ∪B′ε)) ≤ µ2(B 4Bε) + µ2(B′ 4B′ε) < ε.

Suppose we have a sequence with Bi ∈ B2,1 for all i ∈ N. By replacing
each Bi with Bi \

⋃
j<iBj , we may assume the Bi are pairwise disjoint. For

each i, choose B2−i ∈ B0
2,1 with µ2(Bi 4 B2−i) < ε2−i−1. Since the Bi are

pairwise disjoint, µ2(⋃i≥N Bi) = ∑
i≥N µ2(Bi) ≤ 1, so we may choose N

large enough that µ2(⋃i≥N Bi) < ε/2. Then

µ2(
⋃
i

Bi4
⋃
i<N

B2−i) ≤
∑
i<N

µ2(Bi4B2−i)+µ2(
⋃
i≥N

Bi) ≤ ε
∑
i<N

2−i−1+ε/2 < ε.
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6.2 Grids
We can now define a subspace of L∞(µ2) which, we will eventually show,
exactly captures the notion of being dual to U2.

Definition 6.7. L∞(B2,1) is the subspace of L∞(µ2) consisting of functions
which are measurable with respect to B2,1.

Suppose V = ⋃
i≤k Bi is a finite partition (so when i 6= j, Bi ∩ Bj =

∅). Then the corresponding rectangles form a partition of V 2. We will—
temporarily—define a “grid” on {Bi}i≤k to be a step function on these
rectangles—that is, a function of the form∑

i,j≤k
γi,jχBi(x)χBj (y)

for some choices of constants γi,j . (This definition is temporary because we
will give it its proper name in the next section.)

Lemma 6.8. For any function f and any finite partition V = ⋃
i≤k Bi, the

grid ∑
i,j≤k

αi,jχBi(x)χBj (y)

with αi,j =
∫
Bi×Bj

f(x,y) dµ2

µ2(Bi×Bj) is the grid minimizing the L2(µ2) distance from
f .

Proof. Consider an arbitrary grid ∑
i,j≤k γi,jχBi(x)χBj (y) and let ei,j =

γi,j−αi,j . We will show that choosing ei,j = 0 minimizes the L2(µ2) distance.
The main point is that αi,j is chosen so that

∫
Bi×Bj (f − αi,j) dµ2 = 0. Then

||f −
∑
i,j≤k

γi,jχBi(x)χBj (y)||2L2(µ2) =
∫

(f −
∑
i,j≤k

γi,jχBi(x)χBj (y))2 dµ2

=
∑
i,j≤k

∫
(f − γi,j)2χBi(x)χBj (y) dµ2

=
∑
i,j≤k

∫
(f − αi,j − ei,j)2χBi(x)χBj (y) dµ2

=
∑
i,j≤k

∫
((f − αi,j)2 − 2(f − αi,j)ei,j + e2

i,j)χBi(x)χBj (y) dµ2

=
∑
i,j≤k

∫
((f − αi,j)2 + e2

i,j)χBi(x)χBj (y) dµ2.
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In particular, choosing all values of ei,j to be equal to 0—so γi,j = αi,j—
minimizes the L2(µ2) distance.

Theorem 6.9. If f ∈ L∞(B2,1) then, for every ε > 0, there is a partition

V = ⋃
i≤k Bi such that, taking αi,j =

∫
Bi×Bj

f(x,y) dµ2

µ2(Bi×Bj) , we have

||f −
∑
i,j≤k

αi,jχBi(x)χBj (y)||L2(µ2) < ε.

Proof. Let f and ε > 0 be given. It is a standard result about measurable
functions that f is approximated by simple functions:

||f −
∑
i≤d

γiχDi(x, y)||L2(µ2) < ε/2

with Di ∈ B2,1. Each Di can be approximated by finite unions of rectangles:
for each Di, we have

µ(Di 4
⋃
j≤di

Xi,j × Yi,j) <
ε

2γi
,

so
||f −

∑
i≤d,j≤di

γiχXi,j (x)χYi,j (y)||L2(µ2) < ε.

We rearrange the Xi,j , Yi,j into a partition {Bi}i≤k as in the proof of
Lemma 6.4. Since ∑i≤d,j≤di γiχXi,j (x)χYi,j (y) is a grid, we have

||f −
∑
i,j

αi,jχBi(x)χBj (y)||L2(µ2) ≤ ||f − E(f | {Bi ×Bj}i,j≤k)||L2(µ2) < ε.

We actually want a small refinement of this result which is more compli-
cated to state, but more useful. In particular, we want to insist that the sets
Bi in the partition be internal. The property of the internal sets we need
is that they are a dense algebra in B1—that is, the internal sets are closed
under complement, finite union, and finite intersection, and every set in B1
can be approximated by internal sets. In practice, the case where are always
interested in is when B is the internal sets.
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Corollary 6.10. If f ∈ L∞(B2,1) and B ⊆ B1 is a dense algebra then,
for every ε > 0, there is a partition V = ⋃

i≤k Bi with each Bi ∈ B and

µ1(Bi) > 0 such that, taking αi,j =
∫
Bi×Bj

f(x,y) dµ2

µ2(Bi×Bj) , we have

||f −
∑
i,j≤k

αi,jχBi(x)χBj (y)||L2(µ2) < ε.

Proof. Follow the same proof, using the fact that each Di can be can be
approximated by rectangles from B, and taking sets of measure 0 and
combining them with a set of positive measure.

The simplest examples of such functions are things like the character-
istic function of a bipartite graph: we have V = B1 ∪ B2 and f(x, y) =
χB1(x)χB2(y) + χB2(x)χB1(y).

When 0 ≤ f ≤ 1, we can represent these functions by drawing grids. For

instance, the bipartite function can be drawn as

B1
B2

B2B1 where we think
of this grid as representing V 2, with one copy of V on each axis. The filled
in boxes are where the function is equal to 1 and the empty boxes are where

the function is equal to 0. On the other hand,

B1
B2

B2B1 is the characteristic
function of the complement—two complete graphs, one on B1 and one on
B2, with no edges between them.

In Section 1.4 we constructed the graphs Gp which interpolated between
these two examples. The graph Gp itself is not represented by a grid, but
there is a related grid indicating the densities of edges between various
regions. To define the graph Gp we partitioned V into four regions and

(when p < 1/2) gave them densities like where black regions are ones
where edges are always present, white regions are where no edges are present,
edges in the light grey region are present with probability p, and edges in
the dark gray regions are present with probability 1− p.

More generally, a grid can have different regions of varying sizes. In the

grid we have V = B1 ∪ B2 ∪ B3 ∪ B4 where µ1(B2) is smaller than
the measure of the other regions and the αi,j are various values in [0, 1] (for
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instance, we can see that α3,3 is a small but non-zero value, while α1,1 is a
dark grey corresponding to a value close to but not equal to 1).

Whenever f ∈ L∞(B2,1) and 0 ≤ f ≤ 1, Theorem 6.9 says that f can
always be approximated by grids like these. In particular, sets in B2,1 can
be approximated by grids which are mostly “black or white”—that is, we
can arrange for most of the measure to be on rectangles where the constant
is either close to 0 or close to 1.

Lemma 6.11. Suppose E ∈ B2,1, V = ⋃
i≤k Bi is a partition, and there is a

grid so that
||χE −

∑
i,j≤k

αi,jχBi(x)χBj (y)||L2(µ2) < ε3/2.

Then
µ2(

⋃
i,j≤k,αi,j∈(ε,1−ε)

Bi ×Bj) < ε.

Proof. Since χE(x, y) ∈ {0, 1} for all x, y, whenever x ∈ Bi and y ∈ Bj so
that αi,j ∈ (ε, 1− ε) we have

|χE(x, y)−
∑
i,j≤k

αi,jχBi(x)χBj (y)| = |χE(x, y)− αi,j | ≥ ε.

Therefore, letting U = ⋃
i,j≤k,αi,j∈(ε,1−ε)Bi ×Bj ,

ε3 > ||χE −
∑
i,j≤k

αi,jχBi(x)χBj (y)||2L2(µ2)

=
∫

(χE −
∑
i,j≤k

αi,jχBi(x)χBj (y))2 dµ2

≥
∫
U
ε2 dµ2

= µ2(U)ε2.

So µ2(U) < ε.

The existence of some rectangles where the constant αi,j is in the interval
(ε, 1 − ε) is sometimes unavoidable, as the following example shows. The

idea is to use the diagonal: No matter how many rectangles we use to

approximate this, the part along the diagonal will still be “fuzzy”: .
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Theorem 6.12. There is a Keisler graded probability space {(V,Bk, µk)}k∈N
and an E ∈ B2,1 so that whenever V = ⋃

i≤k Bi is a partition there are
i, j ≤ k so that 1/4096 ≤ µ2((Bi×Bj)∩E)

µ2(Bi×Bj) < 4095/4096.

Proof. Naturally, we will constructG as an ultraproduct. Let Vn = {1, 2, . . . , n}×
{0, 1} consisting of two copies of the interval {1, 2, . . . , n}. We let En consist
of those pairs ((x, 0), (y, 1)) with x < y.

Let V = [Vn]U and E = [En]U . First we must show that E ∈ B2,1—that
is, for every k, E can be approximated up to 1/k by unions of rectangles.
Given k > 0, whenever n is big enough we can partition {1, 2, . . . , n} into
intervals Ijk of size roughly 1/k by taking I1

n = {1, . . . , bn/kc}, I2
n = {bn/kc+

1, . . . , b2n/kc}, and so on. Then the sets Ij,bn = Ijn×{b} ⊆ Vn where b ∈ {0, 1}
form a partition of Vn. Take Ij,b = [Ij,bn ]U , so µ1(Ij,b) = 1/2k.

Observe that ⋃
j<j′≤k

Ij,0 × Ij′,1 ⊆ E ⊆
⋃

j≤j′≤k
Ij,0 × Ij,1.

Therefore

µ2(E 4
⋃

j<j′≤k
Ij,0 × Ij′,1) = µ2(E \

⋃
j<j′≤k

Ij,0 × Ij′,1)

≤ µ2((
⋃

j<j′≤k
Ij,0 × Ij′,1) \ (

⋃
j≤j′≤k

Ij,0 × Ij′,1))

= µ2(
⋃
j≤k

Ij,0 × Ij,1)

= 1/4k2.

Next we must show that any partition contains some “fuzzy” rectangles.
The idea is not so complicated, though the details involve some technical
computations. We need to distinguish between the two parts of V : for each n
and each b ∈ {0, 1}, let Vn,b = {1, 2, . . . , n} × {b} ⊆ Vn, and set Vb = [Vn,b]U .
(Technically we are writing V0 and V1 to mean both the first two elements
of the sequence Vn and the sets Vb ⊆ V , but from here on we always mean
the subsets of V .) Although these are separate sets, we know that they are
really two copies of the same set: there is an internal measure-preserving
bijection β : V0 → V1 defined by taking β = [βn]U where βn(x, 0) = (x, 1).

The simplest sort of partition would be to break the sets V0 and V1 into
intervals. If we could find two intervals which overlap, in the sense that
µ0(I1 ∩ β(I0)) > 0, then E would have intermediate density in I0 × I1.
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A more general partition might have sets Bi which contain parts of V0
and parts of V1; we can fix this by partitioning Bi into the sets Bi,0 = Bi∩V0
and Bi,1 ∩ V1. We will then look for i0, i1 so that E has intermediate density
in Bi0,0×Bi1,1. To lift this to intermediate density in Bi0 ×Bi1 , we will have
to discard the case where the set Bi,b is only a tiny part of Bi; fortunately,
there are few points belonging to Bi,b where Bi is almost entirely contained
in V1−b, so we can discard these points.

The sets Bi,b might not be intervals. However what we really need from
an interval is that it contains both many small points and many large points.
So we will look at an arbitrary set Bi,b and identify a “middle interval”—that
is, we partition Bi,b into three parts, the small elements (below some ci), the
large elements (above some di), and the middle elements (between ci and
di). If we can find sets Bi0,0 and Bi1,1 whose middle parts overlap—that is,
so that ci0 is below di1 and ci1 is below di0—then Bi0,0×Bi1,1 contains both
many pairs in E and many pairs not in E. To ensure that we can find a pair
with overlapping middle intervals, we require that the middle intervals be
large, so that most points belong to a middle interval.

To make all this precise, let us note that our example has a lot of extra
structure we will want to use.

We can make sense of the ordering < on the sets V0 and V1: for x, y ∈ V0,
we choose representatives x = [(xn, 0)]U and y = [(yn, 0)]U and set x < y
if and only if {n | xn < yn} ∈ U . As usual, we can check that this is well-
defined, in the sense that it does not depend on the choice of representatives.
Furthermore, by Łoś’s Theorem, < is a linear order on V0. We may similarly
define a linear ordering on V1, which we also call <.

We can also make sense of the ordering between the two parts—indeed,
this is precisely what E does, so if x ∈ V0 and y ∈ V1, we can say x < y
exactly when (x, y) ∈ E. Note that this is monotonic in the ways we would
expect; for instance, if (x, y) ∈ E and x′ < x then (x′, y) ∈ E as well.

So now suppose we are given an arbitrary partition V = ⋃
i≤k Bi. Let us

define a further partition Bi,b = Bi ∩ Vb.
For each i, b where µ1(Bi,b) > 0, we can divide each Bi,b into a “lowest

part”, a “highest part”, and a “middle”. More precisely, we choose elements
ci,b < di,b so that µ1({x ∈ Bi,b | x < ci,b}) = 1

8µ1(Bi,b) and µ1({x ∈ Bi,b |
x > di,b}) = 1

8µ1(Bi,b). To see that these exist, observe that we can divide Vb
into finitely many intervals Ijb with µ1(Ijb ) < µ1(Bi,b)/k very small and then
take the least j with µ1(Bi,b ∩

⋃
i≤j I

i
b) > r, and then by choosing ck ∈ Ijb ,

we have µ1({x ∈ Bi,b | x < ck}) ∈ [r − µ1(Bi,b)/k, r + µ1(Bi,b)/k]. Choosing
such a sequence with k →∞ and using sequential comprehensiveness gives
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us the desired c.
Suppose we find i0, i1 so that the middle intervals overlap—that is,

(ci0,0, di1,1), (ci1,1, di0,0) ∈ E. So

µ2((Bi0,0×Bi1,1)∩E) ≥ µ2({x ∈ Bi0,0 | x < ci0,0}×{y ∈ Bi1,1 | y > di1,1}) ≥
1
64µ1(Bi0,0)µ1(Bi1,1),

and also

µ2((Bi0,0×Bi1,1)\E) ≥ µ2({x ∈ Bi0,0 | x > di0,0×{y ∈ Bi1,1 | y < ci1,1}) ≥
1
64µ1(Bi0,0)µ1(Bi1,1).

So it remains to find elements i0, i1 so that the middle intervals overlap.
Observe that the middle intervals, collectively, contain 3/4 of the measure
of each Vi,b—that is, setting Mb = ⋃

i{x ∈ Bi,b | ci,b ≤ x ≤ di,b}, we have
µ1(Mb) ≥ 3µ1(Vb)/4. Since β is measure-preserving, M0 ∩ β−1(M1) has
measure at least 3µ(V0)/4, so we may choose an x ∈ M0 ∩ β−1(M1), and
then choose i0, i1 with ci0,0 < x < di0,0 and ci1,1 < β(x) < di1,1.

There is one remaining technical difficulty: we have arranged for E to
have positive density in Bi0,0×Bi1,1, but our original promise was to consider
Bi0×Bi1 . To deal with this, we refine the setsMb. For each b, let Sb consist of
those i such that µ1(Bi,b) < µ1(Bi)/8. Observe that µ1(⋃i∈Sb Bi,b) ≤ µ(Vb)/8
(any measure in ⋃i∈Sb Bi,b must be supported by twenty times as much
measure in V1−b). So let M ′b = ⋃

i 6∈Sb{x ∈ Bi,b | ci,b ≤ x ≤ di,b}, so
µ1(M ′b) ≥ 5µ(Vb)/8, so M ′0 ∩ β−1(M ′1) still has positive measure. Then we
select i0, i1 as before and we have

µ2((Bi0 ×Bi1) ∩ E)
µ1(Bi0)µ1(Bi1) ≥ µ2((Bi0,0 ×Bi1,1) ∩ E)

64µ1(Bi0,0)µ1(Bi1,1) ≥ 1
4096 ,

and, similarly, µ2((Bi0×Bi1 )\E)
µ1(Bi0 )µ1(Bi1 ) ≥ 1

4096 .

6.3 Conditional Expectation
The σ-algebra B2,1 is a sub-σ-algebra of B2. Whenever we have two σ-algebras
like this, we can talk about the conditional expectation of functions from the
larger σ-algebra with respect to the smaller one.

For the purposes of this section, we do not need to worry about the full
abstraction of a Keisler graded probability space. All we need is a probability
measure space (V,B, µ) and a sub-σ-algebra D ⊆ B.

We write L2(B) for the set of functions f which are measurable with
respect to B and such that

∫
f2 dµ is finite. We write L2(D) for the subset

of L2 consisting only of functions which are measurable with respect to D.
In the presence of a measure, we can define the conditional expectation.
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Theorem 6.13. For any f ∈ L2(B):

• There is a function g ∈ L2(D) such that, for all h ∈ L2(D),

||f − g||L2 ≤ ||f − h||L2 ,

and

• If g0, g1 ∈ L2(D) both have the property that for all h ∈ L2(B), ||f −
gi||L2 ≤ ||f − h||L2, then ||g0 − g1||L2.

Proof. The proofs of both parts follow from a “quantitative” version of the
second part. Let f be given and let α = infh∈L2(D) ||f − h||L2 .

What we will show is that if g0, g1 ∈ L2(D) are “almost as good as α” at
approximating f then g0 and g1 must be near each other. More precisely, if
||f − gi||L2 ≤ α+ ε for each i then ||g0 − g1||L2 ≤

√
8αε+ 4ε2.

For observe that

||f − g0 + g1
2 ||2L2 = 〈f − g0 + g1

2 , f − g0 + g1
2 〉L2

= 〈f, f〉L2(µ2) − 〈f, g0〉L2 − 〈f, g1〉L2 + 1
4〈g0, g0〉L2 + 1

4〈g1, g1〉L2 + 1
2〈g0, g1〉L2

= 1
2 ||f − g0||2L2 + 1

2 ||f − g1||2L2 − 1
4 ||g0 − g1||2L2

≤ (α+ ε)2 − 1
4 ||g0 − g1||2L2 .

Since we must have ||f − g0+g1
2 ||L2 ≥ α, it follows that ||g0 − g1||L2 ≤√

8αε+ 4ε2.
This immediately gives the second part: if we had such a g0, g1, we would

have ||g0 − g1||L2 < δ for all δ.
To prove the first part, for each n we may choose gn with ||f − gn||L2 <

α+ 1/n. This is a Cauchy sequence, since for each ε > 0, when n is small
enough, ||gn − gm||L2 < ε for all m ≥ n. Then by the completeness of L2, we
may choose g to be the limit of this sequence.

Definition 6.14. When f ∈ L2, we write

E(f | D)

for the function in L2(D) given by the preceding lemma.
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When B ∈ B, we write E(B | D) as an abbreviation of E(χD | D).
We refer to the conditional expectation interchangeably as the projection

onto D (or, more properly, onto L2(D)), since the conditional expectation
operation is indeed a projection of a vector space onto a subspace.

E(f | D) represents the “best approximation” to f using only the sets
from D.
Lemma 6.15. For any f ∈ L2(B) and g ∈ L2(D),

•
∫
fg dµ =

∫
E(f | D)g dµ,

•
∫

(f − E(f | D))g dµ = 0.
Proof. The two parts are equivalent (using the linearity of the integral and
moving an integral to the other side of the equality), so it suffices to prove
the second part.

Suppose not—suppose | ∫ (f − E(f | D))g dµ| = c > 0. Let h = E(f |
D)+ c

||g||L2
g. h is also in L2(D), and we will show it is a better approximation

of f :

||f − h||2L2 =
∫

(f − E(f | D)− c

||g||L2
g)2 dµ

= ||f − E(f | D)||2L2 − 2 c

||g||L2

∫
(f − E(f | D))g dµ+ c2

||g||2L2
||g||L2

= ||f − E(f | D)||2L2 − c2

||g||L2

< ||f − E(f | D)||2L2 ,

which contradicts the definition of E(f | D).

We can think of ||E(f | D)||L2 as a measurement of what portion of f
has been explained by D.
Lemma 6.16.

||f ||2L2 = ||E(f | D)||2L2 + ||f − E(f | D)||2L2 .

Proof.

||f ||2L2 =
∫

(f − E(f | D) + E(f | D))2 dµ

= ||f − E(f | D)||2L2 + 2
∫

(f − E(f | D))E(f | D) dµ+ ||E(f | D)||2L2

= ||E(f | D)||2L2 + ||f − E(f | D)||2L2 .
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The “grids” of the previous section were examples of conditional ex-
pectation: when V = ⋃

i≤k Bi is a partition of V then the finite collection
D = {Bi×Bj}i,j≤k is a sub-σ-algebra of B2,1 (because the collection is finite,
there are no countable unions or intersections to consider). Because this
collection is finite, L2(D) is exactly the functions we called grids, and Lemma

6.8 shows exactly that the choice of coefficients αi, =
∫
Bi×Bj

f(x,y) dµ2

µ2(Bi×Bj) gives
the function in L2(D) minimizes the L2(µ2) distance to f , and therefore in
this case

E(f | D) =
∑
i,j≤k

αi,jχBi(x)χBj (y).

It is sometimes convenient to note that when we have bounds on f , these
bounds pass over to E(f | D).

Lemma 6.17. If f ≤ a almost everywhere then E(f | D) ≤ a almost
everywhere.

Dually, if a ≤ f almost everywhere then a ≤ E(f | D) almost everywhere.

Proof. We prove the first part since the second is symmetric. Let g = E(f |
D). Suppose that for some ε > 0, µ({x | g(x) > a}) = δ > 0. Then let
g′(x) = max{g(x), a}. Since g is measurable with respect to D, the level set
{x | g(x) > a} is in D, so g′ is measurable with respect to D as well. But

||f − g′||L2 ≤ ||f − g||L2 − ε2δ < ||f − g||L2 ,

contradicting the minimality of ||f − g||L2 .

In particular, if f = χB then E(f | D) is bounded between 0 and 1.
Slightly more generally, if f ∈ L∞(B) then E(f | D) ∈ L∞(D).

Orthogonality to L2(D) is equivalent to having trivial projection.

Theorem 6.18. For any f ∈ L2, E(f | D) is the function which is equal to
0 almost everywhere exactly when, for any g ∈ L2(D), 〈f, g〉L2 = 0.

Proof. If E(f | D) = 0 then f − E(f | D) = f and, by the previous lemma,
〈f, g〉L2 = 0 for any g ∈ L2(D).

Conversely, if E(f | D) is not 0 almost everywhere then ||E(f | D)||L2 =
ε > 0. Then

||f ||2L2 = ||f − E(f | D) + E(f | D)||2L2

= ||f − E(f | D)||2L2 + 2〈f − E(f | D)〉L2 + ||E(f | D)||2L2

= ||f − E(f | D)||2L2 + ||E(f | D)||2L2 .
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In particular, ||f − E(f | D)||2L2 < ||f ||2L2 . Since

||f − E(f | D)||2L2 = ||f ||2L2 − 2〈f,E(f | D)〉L2 + ||E(f | D)||2L2 ,

we must have 〈f,E(f | D)〉L2 > 0.

Lemma 6.19. E is linear:

E(af + bg | D) = aE(f | D) + bE(g | D).

Proof. Consider any h ∈ L2(D). Let z = aE(f | D)+bE(g | D) and h′ = h−z.
Note that h− z ∈ L2(D), so 〈af + bg − z, h− z〉L2 = 0. Then

||af + bg − h||2L2 = ||(af + bg − z)− (h− z)||2L2

= ||af + bg − z||2L2 − 2〈af + bg − z, h− z〉L2 + ||h− z||2L2

= ||af + bg − z||2L2 + ||h− z||2L2

≥ ||af + bg − z||2L2 ,

so z = E(af + bg | D).

Lemma 6.20. ||E(f | D)||L2 ≤ ||f ||L2

Proof.

||f ||2L2 = 〈E(f | D) + (f − E(f | D)),E(f | D) + (f − E(f | D))〉2L2

= ||E(f | D)||2L2 + ||f − E(f | D)||2L2

since 〈E(f | D), f − E(f | D)〉L2 = 0.

6.4 Conditional Expectation on Rectangles

Naturally, we want to apply the work of the previous section with the
σ-algebras B2,1 ⊆ B2.

In addition to the other properties preserved by projections, in this setting
there is a notion of symmetry which is also preserved by projections.

Lemma 6.21. If f ∈ L∞(µ2) is symmetric, so is E(f | B2,1).

Proof. Let f+ = E(f | B2,1). Suppose not, so {(x, y) | f+(x, y) 6= f+(y, x)}
has positive measure. Then there is some δ > 0 so that B = {(x, y) |
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f+(x, y)− f+(y, x) > δ} has positive measure. This set belongs to B2,1, as
does Bop = {(y, x) | (x, y) ∈ B}, so∫

B
f+(x, y)− f+(y, x) dµ2 =

∫
B
f+(x, y) dµ2 −

∫
B
f+(y, x) dµ2

=
∫
B
f+(x, y) dµ2 −

∫
Bop

f+(x, y) dµ2

=
∫
B
f(x, y) dµ2 −

∫
Bop

f(x, y) dµ2

=
∫
B
f(x, y) dµ2 −

∫
B
f(x, y) dµ2

= 0.

But this is a contradiction, since
∫
B f

+(x, y)− f+(y, x) dµ2 > δµ(B).

We can compare this projection to the U2 norm.

Theorem 6.22. ||f ||U2 = 0 if and only if ||E(f | B2,1)||L2(µ2) = 0.

Note that ||E(f | B2,1)||L2(µ2) = 0 is the same as E(f | B2,1) = 0—that
is, except on a set of measure 0, E(f | B2,1)(x, y) = 0. Therefore the U2

norm is 0 exactly if the projection is the trivial function which is 0 almost
everywhere.

Proof. By Theorem 6.18, ||E(f | B2,1)||L2 = 0 exactly when, for every
g ∈ L2(B2,1), 〈f, g〉L2(µ2) = 0.

Every rectangle χX(x)χY (y) is in L2(B2,1), so if ||E(f | B2,1)||L2(µ2) = 0
then for every rectangle X × Y , 〈f, χX(x)χY (y)〉L2(µ2) = 0, so by Lemma
6.2, ||f ||U2 = 0.

Conversely, suppose ||E(f | B2,1)||L2(µ2) > 0, so there is a g ∈ L2(B2,1)
such that 〈f, g〉L2(µ2) > 0. We want to work with sets, not the function g,
so we have to stratify g into level sets: sets of the form Ba,b = {(x, y) | a <
g(x, y) ≤ b}. These all belong to B2,1 (because g is B2,1-measurable, which,
by definition, means all its level sets belong to B2,1). Also, for any partition
(−∞,∞) = ⋃

i<k(ai, ai+1]∫
fg dµ2 =

∑
i

∫
fgχBai,ai+1

dµ2 ≈
∑
i

ai + ai+1
2

∫
fχBai,ai+1

dµ2,

there must be some a, b so that
∣∣∣∫ fχBa,b dµ2

∣∣∣ = ε > 0.
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Since Ba,b ∈ B2,1, there must be some B ∈ B0
2,1 so that µ2(Ba,b 4B) <

ε/||f ||L2(µ2), and therefore ∣∣∣∣∫ fχB dµ2

∣∣∣∣ > 0

as well.
Since B is a finite union of rectangles, there must be some rectangle with

|∫ fχX×Y dµ2| > 0. Therefore, by Lemma 6.2, ||f ||U2 > 0.

It is worth noting that one half of this proof is much harder than the
other: when the U2 norm is non-zero, this quickly implies that the L2(µ2)
norm of the projection is non-zero. In the other direction, it requires a lot
more work to get from knowing that the L2(µ2) norm of the projection is
large to conclude that the U2 norm is large. Later we will see that this
reflects a quantitative fact: knowing that the U2 norm is larger than some
ε > 0 will tell us that the L2(µ2) norm of the projection must also be larger
than some δ > 0 which we can calculate from ε. But in the reverse direction,
we will see examples where even though the L2(µ2) norm of the projection is
as large as we want—say, 1—the U2 norm can be arbitrarily small.

Lemma 6.23. f belongs to L2(B2,1) if and only if f is dual to U2.

Proof. Suppose ||r||U2 = 0 and | ∫ fr dµ2| = ε > 0. We may choose g =∑
i≤k αiχXi(x)χYi(y) so that ||f − g||L2(µ2) <

ε
2||r||L2(µ2)

. Then

|
∫
gr dµ2 =

∫
(f + (g − f))r dµ2

=
∫
fr dµ2 +

∫
(g − f)r dµ2

> ε− ε

2||r||L2(µ2)
||r||L2(µ2)

> ε/2.

But ∫
gr dµ2 =

∑
i≤k

αi

∫
χXi(x)χYi(y)dµ2 = 0,

a contradiction.
Suppose f is dual to U2. Let f+ = E(f | B2,1) and f− = f − f+. Then

0 =
∫
ff− dµ2 =

∫
f+f− dµ2 +

∫
f−f− dµ2 = 0 + ||f−||2L2(µ2).

So ||f−||L2(µ2) = 0, so f = f+, so f is measurable with respect to B2,1.
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So, for our purposes, a function is “structured”—totally non-random—if
it belongs to L2(B2,1). These are exactly the functions approximated by
grids we discussed above.

The analogous statement for graphs has to take into account that E(χE |
B2,1) is never 0 (unless E is nearly empty) because µ2(E) =

∫
χE dµ2 =∫

E(χE | B2,1) dµ2. Instead, the analogous notion of E(χE | B2,1) being
trivial is for it to be a constant function (up to measure 0).
Theorem 6.24. ||χE ||U2 = µ2(E) if and only if E(χE | B2,1) is the function
constantly equal to µ2(E).
Proof. Let p = µ2(E) and let f be the “balanced” version of E, f = χE − p,
so
∫
f dµ2 = 0.
By Theorem 5.22, ||χE ||U2 = µ2(E) if and only if ||f ||U2 = 0 which, by

the previous theorem, holds if and only if ||E(f | B2,1)||L2(µ2) = 0. We finish
by noting that E(f | B2,1) = E(χE − p | B2,1) = E(χE | B2,1) − p (since
conditional expectation distributions over sums and p is B2,1-measurable),
so ||E(f | B2,1)||L2(µ2) = 0 if and only if E(χE | B2,1) = p.

The U2 norm ||f ||U2 is positive exactly when f has some correlation with
B2,1. However it is not accurate to say that the U2 norm measures how much
f correlates with B2,1; in fact, even if f ∈ L2(B2,1), so f is entirely described
by B2,1, the U2 norm can take on any value between | ∫ f dµ2| and ||f ||L2(µ2).

Instead, the U2 norm reflects something about the “complexity” of
f . For example, consider graphs E with µ2(E) = 1/2. We always have
||χE ||U2 ≥ 1/2 in this case, so it makes sense to focus on the U2 norm of
f(x, y) = χE(x, y) − 1/2, which counts how many “extra” rectangles the
graph E has, beyond the ones it must have. When E ∈ B2,1, f ∈ L2(B), so
we will have ||f ||U2 > 0.

When E can be described using a small number of rectangles, ||f ||U2 will
be larger. For example, consider the case where E is the bipartite graph
B1 ×B2 ∪B2 ×B1 with µ(B1) = µ(B2) = 1/2. This can be represented by
the grid

which only has four “boxes”. The U2 norm of f is 1/2.
On the other hand, suppose E comes from a grid like
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where the boxes are filled in randomly. Again, let f(x, y) = χE(x, y)−1/2.
Then ||f ||U2 is smaller—roughly 0.279 (depending on the exact distribution
of squares). And, as the number of squares increases, the U2 norm continues
to decrease. (If we fill in a k × k grid randomly with black and white boxes
to get the graph E, the U2 norm of χE − 1/2 will be roughly 1

23/4k1/4 .)
Note that ||f ||L2(µ2) = ||χE − 1/2||L2(µ2) = 1/2, so χE is always “far”

from the constantly 1/2 function in the L2(µ2) norm. However, when E is
built out of many rectangles—when E is “complicated”—χE is close to 1/2
in the U2 norm.

To see this, consider the 100× 100 grid:

.
Visually, parts of the grid are beginning to look like a grey blur. A finer

grid, say 10000×10000, would be indistinguishable to the eye from a constant
grey. There is some sense that a graph built from a very large number of
small, randomly chosen squares is close to the function which is constantly
1/2. The norm which reflects that these are close is the U2 norm.

More generally, suppose we begin with a graph E which may or may
not belong to B2,1, but where ||χE ||U2 is just a bit larger than µ2(E). Since
||χE ||U2 > µ2(E), this means that E is not quasirandom. We can decompose
χE = E(χE | B2,1) + (χE − E(χE | B2,1)). It could be that ||χE ||U2 is “not
too big” because the structured part ||E(χE | B2,1)||L2(µ2) is itself not too
big. It could also be that E is entirely, or almost entirely, structured—
that ||E(χE | B2,1)||L2(µ2) is close to µ2(E)—but that E(χE | B2,1) is very
complicated.

6.5 Graph Removal

We can now prove the main technical step in our proof of Roth’s Theorem
(that is, Szemedédi’s Theorem for arithmetic progressions of length 3), which
is an interesting theorem in its own right.

The triangle removal lemma says that if we have a graph with tK3(E) = 0
then there is a set Z whose measure can be a small as we want such that
TK3(E \ Z) = ∅. That is, if a graph has very few triangles, we can remove
all of them by removing a small set of edges.

First, we note that subgraph density depends only on B2,1—that is, if
we want to examine how dense a subgraph is, we can focus only on the
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projection to B2,1.

Lemma 6.25. For any symmetric f ∈ L∞(µ2), tH(f) = tH(E(f | B2,1)).

While the proof involves some fiddling around with Fubini’s Theo-
rem, the idea is simple. For simplicity, let us assume f = χE . Suppose
H = (W,F ) and I pick a potential copy π : W → V and want to know
what the probabiltiy is that it’s an actual copy. That is, I want to evaluate∫ ∏

{vi,vj}∈F χE(xi, xj) dµ|W |. The key observation is that if pick some par-
ticular term in this product, all the other terms can only interact with at
most one coordinate—that is, I can write this in the form∫ ∏
{vi,vj}∈F

χE(xi, xj) dµ|W | =
∫
χE(x1, x2)f(x1, x3, . . .)g(x2, x3, . . .) dµ|W |

where f does not depend on x2 and g does not depend on x1. This is precisely
a function which depends only on one coordinate at a time (this is what
we need to use Fubini’s Theorem to show)—that is, the function (x1, x2) 7→∫
f(x1, x3, . . .)g(x2, x3, . . .) dµ|W |−2 is B2,1-measurable, which means∫
χE(x1, x2)f(x1, x3, . . .)g(x2, x3, . . .) dµ|W | =

∫
E(χE | B2,1)(x1, x2)f(x1, x3, . . .)g(x2, x3, . . .) dµ|W |.

Proof. Let H = (W,F ). Let f+ = E(f | B2,1) and f− = f − f+. Then

tH(f) =
∫ ∏
{vi,vj}∈F

f(xi, xj) dµ|W |.

We successively replace each f in this product with f+: for S ⊆ F , we show
by induction on |S| that

tH(f) =
∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S
f(xi, xj) dµ|W |.

When S = ∅, this is the definition of tH(f). Suppose S = S′∪{(v, v′)}. Then

tH(f) =
∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f(v, v′) dµ|W |

=
∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f+(v, v′) dµ|W |

+
∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f−(v, v′) dµ|W |,
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so it suffices to show that∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f−(v, v′) dµ|W | = 0.

Here we use Fubini’s Theorem:∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f−(v, v′) dµ|W |

=
∫ ∫ ∏

{vi,vj}∈S
f+(xi, xj)

∏
{vi,vj}∈F\S′

f(xi, xj)f−(v, v′) dµ(xi, xj)dµ|W |−2.

For any fixed |W | − 2 tuple (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , x|W |),∏
{vi,vj}∈S f

+(xi, xj)
∏
{vi,vj}∈F\S′ f(xi, xj) belongs to B2,1—in fact, we can

decompose this function into the form

cg0(x)g1(x′).

Therefore∫ ∏
{vi,vj}∈S

f+(xi, xj)
∏

{vi,vj}∈F\S′
f(xi, xj)f−(v, v′) dµ(xi, xj) = 0.

The same argument would apply to induced subgraph density.

Definition 6.26. When f ∈ L∞(µ2) is symmetric and H = (W,F ) with
W = {w1, . . . , wk},

tindH (f) =
∫ ∏
{wi,wj}∈F

f(xi, xj)
∏

{wi,wj}∈(W2 )\F
(1− f(xi, xj)) dµk.

Lemma 6.27. For any symmetric f ∈ L∞(µ2), tindH (f) = tindH (E(f | B2,1)).

Theorem 6.28 (Triangle Removal). Suppose tC3(E) = 0. Let B ⊆ B2 be a
dense algebra. Then for every ε > 0 there is a B ∈ B so that µ2(E ∩B) < ε
and

TC3(E \B) = ∅.

That is, if there are very few triangles, we can remove a set that is as
small as we like and thereby remove all triangles. Moreover, we don’t want
to remove just any set—we want to be able to pick a big enough sub-algebra
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of sets B and promise that the set E belongs to B. The only case we really
care about is when B is the internal sets.

Specifically, following the ideas of the previous sections, we can take a
sufficiently fine grid, χE ≈

∑
i≤n αi,jχBiχBj and remove all the sets E ∩

(Bi ×Bj) where αi,j is small. Since we only remove edges where the density
is small, we remove few edges this way. On the other hand, if the grid
is a good enough approximation of E, any time we have (x, y, z) ∈ Bi ×
Bj ×Bk where αi,j , αi,k, and αj,k are all not too small, we should get about
αi,jαi,kαj,kµ(Bi)µ(Bj)µ(Bk) triangles inside Bi ×Bj ×Bk.

Proof. Let f+ = E(E | B2,1). We have tC3(f+) = tC3(E) = 0 by the
previous lemma. Let E+ = {(x, y) | f+(x, y) > 0}; then we must also have
tC3(E+) = 0. Also

µ2(E \ E+) =
∫
χE(x, y)(1− χE+(x, y)) dµ2

= µ2(E)−
∫

E(χE | B2,1)χE+ dµ2

= µ2(E)−
∫

E(χE | B2,1) dµ2

= µ2(E)−
∫
χE dµ2

= 0.

By Corollary 6.10, we may choose positive measure sets {Bi}i≤d in B so
that V = ⋃

i≤dBi and, for suitable constants,

||χE+ −
∑
i,j≤d

αi,jχBi(x)χBj (y)||L2(µ2) <

√
ε

4 .

Indeed, we may assume that αi,j = µ2((Bi×Bj)∩E+)
µ2(Bi×Bj) . Let E′ = ⋃

i,j≤d,αi,j>3/4Bi×
Bj .

If (x, y) ∈ E+ \ E′ then χE+(x, y) = 1 while αi,j ≤ 3/4, and therefore
χE+ −∑i,j≤d αi,jχBi(x)χBj (y) ≥ 1/4. Therefore

µ2(E+ \ E′) ≤ 16
∫

(χE+ −
∑
i,j≤d

αi,jχBi(x)χBj (y))2 dµ2

= 16||χE+ −
∑
i,j≤d

αi,jχBi(x)χBj (y)||2L2(µ2)

< ε,
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so µ2(E+ \ E′) < ε, so µ2(E \ E′) < ε as well.
We will let B be the complement of E′, so E∩B = E \E′ and E \B ⊆ E′.

Towards a contradiction, suppose TC3(E′) 6= ∅. E′ is a union of rectangles
from the grid {Bi}i≤d, so there must be some triangle (i, j), (j, k), (i, k) so
that Bi×Bj×Bk ⊆ TC3(E′), and therefore tC3(E′) ≥ µ(Bi)µ(Bj)µ(Bk) > 0.

Since µ2(E+ ∩ (Bi × Bj)) > 3/4, at most 1
4µ(Bi)µ(Bj)µ(Bk) of the

triangles in Bi × Bj × Bk do not have (x, y) ∈ E+. Similarly, at most
1
4µ(Bi)µ(Bj)µ(Bk) fail to have (x, z) ∈ E+ and at most 1

4µ(Bi)µ(Bj)µ(Bk)
fail to have (y, z) ∈ E+.

So tC3(E+) ≥ 1
4µ(Bi)µ(Bj)µ(Bk) > 0, which contradicts the assumption.

So TC3(E′) = ∅, and therefore B = E \ E′ is the promised set.

Theorem 6.28 generalizes to arbitrary graphs with only notational changes.

Theorem 6.29. Let H = (W,F ) be a finite graph and suppose tH(E) = 0.
Let B ⊆ B2 be a dense algebra. Then for every ε > 0 there is a B ∈ B so
that µ2(B) < ε and

TH(E \B) = ∅.

Proof. Let f+ = E(E | B2,1). By Lemma 6.25, tH(f+) = tH(E) = 0, so
letting E+ = {(x, y) | f+(x, y) > 0}, also tH(E+) = 0 and µ2(E \ E+) = 0.

By Corollary 6.10 we may choose a partition V = ⋃
i≤dBi so that each

Bi ∈ B, µ1(Bi) > 0, and, taking αi,j = µ2((Bi×Bj)∩E+)
µ2(Bi×Bj) ,

||χE+ −
∑
i,j≤d

αi,jχBi(x)χBj (y)||L2(µ2) <

√
ε√

|F |+ 1
.

Set E′ = ⋃
i,j≤d,αi,j>1− 1

|F |+1
Bi × Bj . If (x, y) ∈ E+ \ E′ then χE+ −∑

i,j≤d αi,jχBi(x)χBj (y) > 1
|F |+1 , so

µ2(E+ \ E′) ≤ (|F |+ 1)
∫
χE+ −

∑
i,j≤d

αi,jχBi(x)χBj (y) dµ2

= (|F |+ 1)||χE+ −
∑
i,j≤d

αi,jχBi(x)χBj (y)||2L2(µ2)

< ε.

So we take B = E \ E′, and therefore E \ B = E ∩ E′ ⊆ E′. Suppose
TH(E′) 6= ∅, so there is a copy π : W → V of H in (V,E′). For each w ∈W ,
there is an atom Bw ∈ B′ so that w ∈ Bw. Then for every π′ : W → V such
that π′(w) ∈ Bw, π′ must be a copy of H, so tH(E′) ≥ ∏w∈W µ1(Bw) > 0.
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We now show that tH(E+) ≥ 1
|F |+1 tH(E′), which gives the desired con-

tradiction. Fix an edge e = (w,w′) ∈ F and consider the copies π of H in
(V,E′) such that (π(w), π(w′)) 6∈ E+. This is∫

χE′(1− χE+)
∏

f∈F\{e}
χE′ dµ|W |.

Since all the copies of χE′ are measurable with respect to B′, this is equal to∫
χE′(1− E(χE+ | (B′)2))

∏
f∈F\{e}

χE′ dµ|W |.

By the definition of E′, this is

≤ 1
|F |+ 1 tH(E′).

If π is a copy of H in (V,E′) but not (V,E+) then there must be some
such edge, so the set of such π has measure

≤
∑
e∈F

1
|F |+ 1 tH(E′) = |F |

|F |+ 1 tH(E′).

That leaves at least 1
|F |+1 tH(E′) copies which must also be copies in (V,E+),

so tH(E+) ≥ 1
|F |+1 tH(E′) > 0. This gives the desired contradiction.

There is a finite analog of this theorem, known as the Graph Removal
Theorem.

Corollary 6.30 (Graph Removal). For every ε > 0 and every finite graph
H = (W,F ), there is a δ > 0 so that whenever G = (V,E) is a graph with
tH(G) < δ, there is a B ⊆ (V2) so that |B|

(|V |2 ) < ε and TH(E \B) = ∅.

Proof. Suppose not, so for some ε > 0 and some finite graph H = (W,F ), for
each n there is a Gn = (Vn, En) with tH(Gn) < 1/n but whenever B ⊆ (Vn2 )
with |B|

(|Vn|2 ) < ε, TH((Vn, En \B)) 6= ∅.
Note that tH(G) < 1/n and TH(G) 6= ∅ implies that |Vn||W | > n, so

limn→∞ |Vn| =∞.
Consider any ultraproduct [Gn]U = G = (V,E) and the corresponding

Keisler graded probability space, so tH(G) = 0. Let B ⊆ B2 be the internal
sets. Then there is a B ∈ B with µ2(B) < ε and TH(E \B) = ∅. Since B is
internal, B = [Bn]U . In particular, we may choose an n with |Bn||Vn| < ε and
such that TH(En \Bn) = ∅, contradicting the assumption.



6.6. ROTH’S THEOREM 177

6.6 Roth’s Theorem
We can now prove Roth’s Theorem—that is, Szemerédi’s Theorem for arith-
metic progressions of length 3, which we state as Theorem 6.31 below. The
idea is to construct a graph whose triangles represent arithmetic progressions
of length 3; the “trivial progressions”—progressions of the form a, a, a—will
be a collection of triangles which, despite having measure 0, cannot be re-
moved by removing a small number of edges, and then triangle removal will
imply that there must be many triangles, some of which are non-trivial.

Theorem 6.31 (Roth’s Theorem). For every ε > 0, there is an N so that
whenever n ≥ N and A ⊆ {1, 2, . . . , n} is a set with |A|n ≥ ε, there is an
a ∈ A and a d > 0 such that a, a+ d, a+ 2d ∈ A.
Proof. Suppose not. Then there is some ε > 0 which is a counterexample:
for every N there is an n ≥ N and an An ⊆ {1, 2, . . . , n} with |An|n ≥ ε but
A contains no arithmetic progression a, a+ d, a+ 2d.

We define graphs Gn = (Vn, En) as follows:

• Vn is the disjoint union of Xn, Yn, and Zn where Xn = Yn = Zn =
{1, 2, . . . , 3n},

• (x, y) ∈ Xn × Yn belongs to En if x+ 2y mod 3n ∈ An,

• (x, z) ∈ Xn × Zn belongs to En if 2z − x mod 3n ∈ An,

• (y, z) ∈ Yn × Zn belongs to En if z + y mod 3n ∈ An.
We go up to 3n rather than n to avoid some minor technical issues where
the modulus would cause fake progressions from overlowing past n.

Suppose (x, y, z) ∈ TC3(En). Let a = x+ 2y mod 3n and d = z− (x+ y)
mod 3n. Then a ∈ An; in particular, a ≤ n. Also a+d = x+2y+z−x−y =
y + z mod 3n ∈ An, so a + d mod 3n ≤ n as well. Similarly, a + 2d
mod 3n ∈ An. If d > 0 then d mod n gives an arithmetic progression.

However if d = 0 then z = x + y mod 3n. Let Tn = {(x, y, x + y
mod 3n) | x+ 2y ∈ An} (the “trivial” triangles).

For any fixed y ∈ Yn, |{x | x− 2y mod 3n ∈ An}| = |An| ≥ εn2, so

|En ∩ (Xn × Yn)|
9n2 ≥ ε

9 .

Similarly, |En∩(Yn×Zn)|
9n2 ≥ ε

9 and |En∩(Xn×Zn)|
9n2 ≥ ε

9 , so

|En|
9n2 ≥

ε

3 .
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Relatedly, we need one additional structure on the finite sets: consider
the functions ρxn : Xn×Yn → Xn×Zn and ρyn : Xn×Yn → Yn×Zn given by
ρxn(x, y) = (x, x+ y mod 3n) and ρyn(x, y) = (y, x+ y mod 3n). Note that
both these maps are one-to-one, and so in particular measure-preserving.

Pick any nonprincipal ultrafilter U and let G = [Gn]U and E = [En]U .
We also set X = [Xn]U , Y = [Yn]U , Z = [Zn]U , ρx = [ρxn]U , and ρy = [ρyn]U .

Suppose tC3(E) = 0. Then there is an internal set B = [Bn]U with
µ2(E \B) < ε/12 such that TC3(E \B) = ∅.

It will be more convenient to divide B into the three pieces corresponding
to the three pieces of E: set BXY = B ∩ (X × Y ), BXZ = B ∩ (X ×Z), and
BY Z = B ∩ (Y × Z). Consider those (x, y) ∈ X × Y such that

• (x, y) ∈ E,

• (x, y) 6∈ E ∩BXY ,

• (x, x+ y) 6∈ E ∩BXZ ,

• (y, x+ y) 6∈ E ∩BY Z .

More formally, this is the set

E− = (E ∩ (X × Y )) \ [BXY ∪ (ρx)−1(BXZ) ∪ (ρy)−1(BY Z)].

Note that when (x, y) ∈ E ∩ (X ×Y ), also ρx(x, y) ∈ E and ρy(x, y) ∈ E (by
the definition of E above), so if (x, y) is in E\E− then either (x, y) ∈ E\BXY ,
ρx(x, y) ∈ E \BXZ , or ρy(x, y) ∈ E \BY Z . Therefore

µ2(E−) ≥ µ2(E)− µ2(B) > ε/3− 3ε/4 > ε/12.

Therefore E− is non-empty, so there is an (x, y) ∈ E−, so (x, y, x + y) ∈
TC3(E \B), which is a contradiction.

So tC3(E) > 0. Since µ3(T ) = limn→∞
|Tn|
27n3 < limn→∞

n2

27n3 = 0, there
is an ([xn]U , [yn]U , [zn]U ) ∈ TC3(E) \ T . Therefore for some (indeed, almost
every) n, there is an (xn, yn, zn) ∈ En \ Tn, giving an arithmetic progression
in An, which is a contradiction.

6.7 Szemerédi Regularity
Frequently Corollary 6.10 is combined with the observation that most pairs
in the resulting approximation are “regular”. Recall the notion of ε-regularity,
as specialized to a bipartite graph:
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If E ⊆ X × Y , the triple (X,Y,E) is ε-regular if whenever
X ′ ⊆ X and Y ′ ⊆ Y with µ1(X ′) ≥ εµ1(X) and µ1(Y ′) ≥ εµ1(Y ),
|dE(X ′, Y ′)− dE(X,Y )| < ε.

Lemma 6.32. If f ∈ L∞(B2,1) and B ⊆ B1 is a dense algebra then, for
every ε > 0, there is a partition V = ⋃

i≤k Bi with each Bi ∈ B, µ1(Bi) > 0,
and such that µ2(⋃i,j≤k|(Bi,Bj ,E) is not ε-regularBi ×Bj) < ε.

What this lemma is telling us is that we have a finite partition of V 2 into
rectangles Bi ×Bj so that E is “well-behaved”—that is, ε-regular—in most
of the rectangles.

Proof. By Corollary 6.10, choose a a V = ⋃
i≤k Bi so that each Bi ∈ B,

µ1(Bi) > 0, and, taking αi,j = µ2((Bi×Bj)∩E)
µ2(Bi×Bj) ,

||E(χE | B2,1)−
∑
i,j≤k

αi,jχBi(x)χBj (y)||L2(µ2) < ε5.

Let S0 be the algebra of sets generated by {Bi}i,j≤k and let B0 be the algebra
of sets generated by rectangles from S0, so E(χE | B0) = ∑

i,j≤k αi,jχBi(x)χBj (y).
Consider some pair i, j so that (Bi, Bj , E) is not ε-regular, and choose

Xi,j ⊆ Bi and Yi,j ⊆ Bj so that |dE(Xi,j , Yi,j) − αi,j | ≥ ε. Let Si,j be the
algebra of sets generated by S0 together with {Xi,j , Yi,j} and let Bi,j be
the algebra of sets generated by rectangles from Si,j . In particular, the
atoms of Bi,j are the same as those of B0 except that Bi × Bj has been
split into four pieces—Xi,j × Yi,j , (Bi \Xi,j) × Yi,j , Xi,j × (Bj \ Yi,j), and
(Bi \Xi,j)× (Bj \ Yi,j). Therefore

||E(χE | Bi,j)− E(χE | B0)||2L2(µ2) ≥ (dE(Xi,j , Yi,j)− αi,j)2µ1(Xi,j)µ1(Yi,j)
≥ ε4µ(Bi)µ(Bj).

(In the first line, we are discarding the other three sub-rectangles since we
only care about the inequality.)

Let Z = {(i, j) | (Bi, Bj , E) is not ε-regular}. Let S1 be the algebra
generated by ⋃(i,j)∈Z Si,j and let B1 be the algebra of sets generated by
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rectangles from S1. Then, by our choice of {Bi}i≤k,
ε5 > ||E(χE | S1)− E(χE | S0)||2L2(µ2)

=
∑
i,j≤k

∫
Bi×Bj

(E(χE | S1)− E(χE | S0))2 dµ2

≥
∑

(i,j)∈Z

∫
Bi×Bj

(E(χE | Si,j)− E(χE | S0))2 dµ2

≥ ε4
∑

(i,j)∈Z
µ(Bi)µ(Bj).

Lemma 6.32 also has a finitary version. Before proving it, we should note
that the property of being an ε-regular bipartite graph is preserved by the
ultraproduct.
Lemma 6.33. If ([Bn]U , [Cn]U , [En]U ) is ε-regular then {n | (Bn, Cn, En) is ε−
regular} ∈ U .
Proof. The contrapositive is easier: suppose {n | (Bn, Cn, En) is not ε −
regular} ∈ U . Then for each such n, there is Xn ⊇ Bn and Yn ⊆ Cn with
|Xn|
|Bn| ≥ ε,

|Yn|
|Cn| ≥ ε, and |dEn(Xn, Yn)− dEn(Bn, Cn)| ≥ ε.

Therefore, taking X = [Xn]U and Y = [Yn]U , |dE(X,Y )− dE(B,C)| ≥ ε,
so (B,C,E) is not ε-regular.

Theorem 6.34 (Szemerédi’s Regularity Lemma). For every ε > 0 and every
k0, there is an N so that whenever G = (V,E) is a finite graph with |V | ≥ N ,
there is a partition V = ⋃

i≤k Bi such that:
• k ≤ N ,

• for each i, |Bi| ≤ |V |/k0,

• there is a set R ⊆ [1, k]× [1, k] of regular pairs so that:

– if (i, j) ∈ R then (Bi, Bj , E) is ε-regular,
– |⋃(i,j) 6∈RBi ×Bj | < ε|V |2.

The first condition says that the size of the partition is not too big—in
particular, V can be chosen to be much, much larger than N . It is common
to replace the second requirement with the requirement that there be at least
k0 parts and that the partition be an “equipartition”—that the pieces Bi
differ in size by at most 1. Such a version can be obtained from this one by
a certain amount of additional fiddling with the pieces.
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Proof. Suppose the thorem were false, so there is an ε > 0 and an n and, for
every N , a graph GN = (VN , EN ) with |VN | ≥ N so that there is no such
partition of size ≤ N .

Let G = [GN ]U , V = [VN ]U , and E = [EN ]U . By Corollary 6.10, choose
a partition V = ⋃

i≤k Bi so that each Bi is internal, each µ1(Bi) > 0, and

||E(χE | B2,1)− E(χE | {Bi ×Bj}i,j≤k)||L2(µ2) < ε5.

If any of the Bi have measure > 1/k0, we split them into into smaller pieces.
Then, as in the proof of Lemma 6.32, µ2(⋃0≤i,j≤k|(Bi,Bj ,E) is not ε−regularBi×
Bj) < ε.

Each Bi = [Bi,n]U . There are only finitely many i, so we may find an
n so that whenever (Bi, Bj , E) is ε-regular, (Bi,n, Bj,n, En) is ε-regular, and
µ1(Bi,n) is ≤ 1/k0.

This does not fully capture the strength of Corollary 6.10. In the ultra-
product, we get a partition which is within ε of being optimal among all
partitions. But if we examine the proof of Lemma 6.32, we only compared
the partition we got to one other partition. (Indeed, a partition whose size
can be calculated—it has size at most k2k.)

In the finite world, we can’t hope for a uniform (independent of |V |)
bound on an almost optimal partition. For suppose we had some bound N ;
then consider some number M much larger than N , and a graph |V | with
many more than M vertices where we partition V = ⋃

i≤M Ci where the Ci
all have the same size, and then for each rectangle Ci×Cj ∪Cj ∪Ci, we flip a
coin and either place the whole rectangle in E (if the coin is heads) or none of
it (if the coin is tails). (This is basically the example from the end of Section
6.4.) Then the partition into only N parts does not provide any meaningful
information—on each rectangle we will have µ2((Bi×Bj)∩E) ≈ 1

2µ2(Bi×Bj)
(because the rectangle is subdivided into many rectangles Ci × Cj which are
randomly assigned to be in or out of the graph). Yet there is some excellent
partition, namely V = ⋃

i≤M Ci.
So we can’t hope to find a bound on optimal partitions. But we can hope

to find a bound on partitions which are optimal among partitions which are
not too much bigger.

Theorem 6.35. For every ε > 0, every n, and every function F : N → N
there is an N so that whenever G = (V,E) is a finite graph with |V | ≥ N ,
there is a partition V = ⋃

i≤k Bi such that:

• k ≤ N ,
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• if k′ ≤ F (k) and V = ⋃
j≤k′ Dj is a partition so that each Dj ⊆ Bi for

some i ≤ k,

||E(χE | {Dj ×Dj′}j,j′≤k′)− E(χE | {Bi ×Bi′}i,i′≤k)||L2(µ2) < ε.

Proof. Suppose not. Let ε > 0 and F be a counterexample and, for each N ,
let GN = (Vn, En) with |VN | ≥ N be a graph with no such partition of size
≤ N .

Let G = [GN ]U , V = [VN ]U , and E = [EN ]U . By Corollary 6.10, choose
a partition V = ⋃

i≤k Bi so that each Bi is internal, each µ1(Bi) > 0, and

||E(χE | B2,1)− E(χE | {Bi ×Bj}i,j≤k)||L2(µ2) < ε.

Let each Bi = [Bi,N ]U . In almost every GN with N ≥ k, the Bi,N form
a partition, so by assumption there must be some k′N ≤ F (k) and some
partition VN = ⋃

j≤k′N
{Dj,N}j≤k′N so that each Dj,N ⊆ Bi,N for some i ≤ k

and

||E(χE | {Dj ×Dj′}j,j′≤k′N )− E(χE | {Bi ×Bi′}i,i′≤k)||L2(µ2) ≥ ε.

F (k) is finite, so there must be some k′ so that {N | k′N = k′} ∈ U . For
each j ≤ k′, let Dj = [Dj,N ]U . For each j and each N , there is an ij,N ≤ k
so that Dj,N ⊆ Bij,N ,N , so there is an ij so that {N | ij,N = ij} ∈ U , so
Dj ⊆ Bij . So the partition V = {Dj}j≤k′ refines {Bi}i≤k, and therefore

||E(χE | {Bi×Bi′}i,i′≤k)||L2(µ2)+ε ≤ ||E(χE | {Dj×Dj′}j,j′≤k′N )||L2(µ2) ≤ ||E(χE | B2,1)||L2(µ2),

contradicting the choice of {Bi}i≤k.

This version was introduced by Alon, Fischer, Krivelevich, and Szegedy
in [8] and has gone by a variety of names, like “strong”, “robust”, and
“metastable”.

6.8 Which Rectangles are Needed
Given f ∈ L2(µ2), the question of whether ||E(f | B2,1)||L2(µ2) 6= 0 seems like
it ought to depend on the particular choice of σ-algebra B1. For instance,
if we replace B1 with some B′1 ( B1, fewer functions are measurable with
respect to B′2,1 = B′1 × B′1. We might think that a function f could be
measurable with respect to B2,1 but not B′2,1.

Yet our work above shows that this is not the case—||E(f | B2,1)||L2(µ2) 6=
0 if and only if ||f ||U2 6= 0, and the integral

∫
f(x, y)f(x′, y)f(x, y′)f(x′, y′) dµ4
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does not depend on the particular σ-algebra B1. The explanation is that the
definition of a Keisler graded probability space forces certain sets to belong
to B1, and therefore these must be sufficient to express the projection of
f onto B2,1. In particular, this tells us that when ||E(f | B2,1)||L2(µ2) 6= 0,
f not only correlates with some rectangle, but correlates with a rectangle
which can iteself be described using f . We can look more closely at the proof
to identify which sets are actually used to construct the rectangles we need.

Lemma 6.36. Let f ∈ L∞(µ2) with ||f ||U2 > 0 and let B ⊆ B1 be any
σ-algebra large enough that, for almost every a ∈ V , we have the property

for every interval I ⊆ R, {x | f(a, x) ∈ I} and {x | f(x, a) ∈ I}
are both in B.

Then ||E(f | B × B)||L2(µ2) > 0.

Proof. Without loss of generality, we assume that {(x, y) | |f(x, y)| ≤ 1} has
measure 1. (If not, there is some c > 0 so that f/c has this property, and we
can work with f/c instead.)

Since

0 < ||f ||4U2 =
∫
f(x, y)

[∫
f(x, y′)f(x′, y)f(x′, y′) dµ2(x′, y′)

]
dµ(x, y),

there must be a set of x′, y′ of positive measure so that∣∣∣∣∫ f(x, y)f(x, y′)f(x′, y) dµ2(x, y)
∣∣∣∣ = ε > 0.

We can choose some x′, y′ whose level sets are in B.
Choosing n > 1/ε, we may divide [−1, 1] into intervals, [−1, 1] ⊆⋃

i≤n[−1 + iε/2,−1 + (i + 1)ε/2). For each i ≤ n, let Ai = {x | f(x, y′) ∈
[−1+iε/2,−1+(i+1)ε/2) and Bi = {y | f(x′, y) ∈ [−1+iε/2,−1+(i+1)ε.2)}.
Then

ε =
∣∣∣∣∫ f(x, y)f(x, y′)f(x′, y) dµ2(x, y)

∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j≤n

∫
Ai×Bj

f(x, y)f(x, y′)f(x′, y) dµ2(x, y)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
∑
i,j≤n

∫
Ai×Bj

f(x, y)(−1 + iε/2)(−1 + jε/2) dµ2(x, y)

∣∣∣∣∣∣+ ε/2.

In particular, there must be some rectangle Ai × Bj ∈ B × B such that
| ∫Ai×Bj f(x, y) dµ2| > 0.
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Theorem 6.37. Let f ∈ L∞(µ2) be given and let B ⊆ B1 be any σ-algebra
containing such that, for almost every a ∈ V ,

for every interval I ⊆ R, the sets {x | f(a, x) ∈ I} and {x |
f(x, a) ∈ I}.

Then E(f | B × B) = E(f | B2,1).

Proof. Let f− = f − E(f | B × B).
Since E(f | B × B) is B × B-measurable, it must be the case (by Fubini’s

Theorem) that for every a ∈ V and every interval I, the sets {x | f(a, x) ∈ I}
and {x | f(x, a) ∈ I} are in B. So for almost every a, it is also the case
that {x | f−(a, x) ∈ I} = {x | f(a, x)− E(f | B × B)(a, x) ∈ I} is in B, and
similarly for {x | f−(x, a) ∈ I}.

If E(f | B × B) 6= E(f | B2,1) then ||E(f− | B2,1)||L2(µ2) 6= 0, so by the
previous lemma, ||E(f− | B × B)||L2(µ2) 6= 0, which is a contradiction.

6.9 Points of Density

There is another perspective on the proofs of Traingle and Graph Removal
(Theorems 6.28 and 6.29) which is perhaps more consistent with our focus
on infinitary and limit behavior. Instead of looking at a fixed finite partition,
we will take a limit of finer and finer partitions.

We can think of the sets in our partitions as behaving like neighborhoods
in a topological sense. (Indeed, we could think of the sets in our partition as
being a clopen basis for some topology.) Around any point, we have smaller
and smaller neighborhoods—that is, as we look at finer and finer partitions,
we look at the component from the partitions containing our point.

We can then ask which points are “typical”. As motivation, recall
Lebesgue’s density theorem: if A ⊆ Rn is a Lebesgue measurable set then for
almost every point x ∈ A, limε→0

µ(A∩Bε(x))
µ(Bε(x)) = 1. (Here Bε(x) is the ball of

radius ε around x.) The same applies to the complement of A, so for almost
every x ∈ Rn \A, limε→0

µ(A∩Bε(x))
µ(Bε(x)) = 0.

Our setting is slightly different—E ∈ B2 definitely need not be Lebesgue
measurable, and our neighborhoods are clopen partition components instead
of balls—but we can still find similar behavior saying that, for most points
in E, E is “locally dense” in a certain sense.

A countable sequence of finite partitions will only involve countably
many sets. Our space B1 is not necessarily separable, so we cannot expect
to generate all of it using a countable sequence of partitions. We need to
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establish a sub-σ-algebra which is big enough. For our uses here, we only
need to be big enough to make sense of E, but it will be useful later to
consider the more general case where we might have countably sets.

Lemma 6.38. If {E1, . . . , Ei, . . .} is a countable subset of B2 then there is
a separable B−1 ⊆ B1 such that, for all i, E(χEi | B2,1) is (B−1 )2-measurable.

Proof. For each i, take the countably many level sets of the form {(x, y) |
E(χEi | B2,1)(x, y) > q}. For each of these level sets and each k, there
is a finite set Si,q,k ⊆ B1 such that {(x, y) | E(χEi | B2,1)(x, y) > q} is
approximated to within 1/k by rectangles from Si,q,k. Let B−1 be the σ-
algebra generated by the union of the countably many finite sets Si,q,k.

Let us fix, for this section, a sequence of neighborhoods. Fix B−1 given
by the lemma so that E(χE | B2,1) is (B−1 )2-measurable. For each j ∈ N, let
N j = {N j

1 , . . . , N
j
kj
} be a partition of V such that:

• when i < j, N j refines N i (that is, for each u < kj there is a v < ki
with N j

u ⊆ N i
v),

• limj→∞maxu≤kj µ(N j
u) = 0,

• every N j
u has positive measure,

• ⋃
j N j generates B−1 .

Each N j gives us an approximation E(χE | N j) to E(χE | B2,1). Taking
the pointwise limit, define

Ẽ(x, y) = lim
j→∞

E(χE | N j)(x, y)

wherever this limit exists. This is the same as setting

Ẽ(x, y) = lim
j→∞

µ(E ∩ (N j
u ×N j

v ))
µ(N j

u ×N j
v )

where u, v are chosen so that (x, y) ∈ N j
u ×N j

v .
Usually we only think of E(χE | B2,1) as being defined up to the L2-norm.

But, as we will see, Ẽ gives a particular pointwise representation of this
function (albeit one that depends on the particular choice of partitions).

Note that, even though E is a set, Ẽ is a function. (We write Ẽ to
indicate that E has been “smoothed out”—instead of worrying about the
precise value of χE at (x, y), Ẽ is concerned with the average value of χE
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near (x, y).) Unlike in the Lebesgue measurable case, we cannot expect that
Ẽ will almost everywhere be 0 or 1—for instance, if E is quasirandom then
Ẽ will be the function constantly equal to 1/2.

However this is the only additional complication, so we can define a point
of density to be one where all the points “near” (x, y) (in the sense of our
neighborhoods) behave similarly to (x, y).

Definition 6.39. For any (x, y) ∈ V 2, write N j(x, y) for the unique set
N j
u ×N j

v such that x ∈ N j
u and y ∈ N j

v .
(x, y) is a point of density for E if Ẽ(x, y) exists and

lim
j→∞

1
µ(N j(x, y))

∫
N j(x,y)

|Ẽ(u, v)− Ẽ(x, y)| dµ(u, v) = 0.

Lemma 6.40. Ẽ is defined almost everywhere and is a representation of
E(χE | B2,1). Additionally, almost every (x, y) is a point of density for E,
for almost every (x, y) ∈ E, Ẽ(x, y) > 0, and for almost every (x, y) 6∈ E,
Ẽ(x, y) < 1.

Proof. First, note that the approximations E(χE | N j) converge to E(χE |
B2,1) in the L2 norm: for any ε > 0, we may choose j0 large enough that
||E(χE | N j0) − E(χE |

⋃
j N j)|| < ε, and since the N j with j ≥ j0 refine

N j0 , the same holds with any j ≥ j0. But E(χE |
⋃
j N j) = E(χE | B2,1).

To see that the pointwise limit is defined almost everywhere and that
almost every point is a point of density, consider any ε > 0 and α < β. Let
g = E(χE | B2,1) be any representative. Choose j0 large enough that there is a
union of rectangles from N j0 , S, so that µ(S4{(x, y) | g(x, y) ≤ α}) < β−α

1−α ε.
We will argue that on most of S, the average of g remains < β for all

j ≥ j0. Consider the exceptions: for each j ≥ j0, we can list those rectangles
in N j so that R ⊆ S and 1

µ(R)
∫
R χE dµ ≥ β; call this Dj . Let D ⊆ ⋃j Dj

consist of those R ∈ Dj such that, for all j′ ∈ [j0, j), no element of Dj′
contains R. That is, for each j we identify the new rectangles where our
average is too high and throw them into D, and once we have done so
we never throw a subset of that rectangle into D. Then the union of the
rectangles in D is the same as the union of the rectangles in ⋃j Dj , but the
elements of D are pairwise disjoint.

Let D = ⋃D. Because D is a disjoint union of rectangles where the
average is above β, we also have 1

µ(D)
∫
D χE dµ ≥ β. Since χE ≤ 1, we

must have {(x, y) ∈ D | χE(x, y) > α} ≥ β−α
1−αµ(D), and therefore µ(D) < ε.

Therefore, once j ≥ j0, except for a subset of S of measure ε + β−α
1−α ε, if
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g(x, y) ≤ α then for all j ≥ j0, E(χE | N j)(x, y) ≤ β as well. So the set
of points with g(x, y) ≤ α but lim supE(χE | N j)(x, y) > β has measure
< ε+ β−α

1−α ε. Dually, we can show that the set of points with g(x, y) ≥ β but
lim inf E(χE | N j)(x, y) < α has measure < ε. Since this holds for all ε and
all α < β, for almost all (x, y) we have Ẽ(x, y) = limj→∞ E(χE | N j)(x, y) =
g(x, y).

Choose j0 large enough that, except on a set S of measure ε2, for all
j ≥ j0 we have |E(χE | N j)(x, y) − Ẽ(x, y)| < ε. Consider any j ≥ j0 and
any R ∈ N j so that µ(R∩S) < εµ(R). Then for any (x, y) ∈ R \S, we have

1
µ(R)

∫
R
|Ẽ(u, v)− Ẽ(x, y)| dµ(u, v) ≤ 1

µ(R)

[∫
R\S
|Ẽ(u, v)− E(χE | N j)(u, v)|

+ |E(χE | N j)(x, y)− Ẽ(x, y)|
+ |E(χE | N j)(u, v)− E(χE | N j)(x, y)| dµ(u, v)

+
∫
S
|Ẽ(u, v)− Ẽ(x, y)| dµ(u, v)

]
≤ 1
µ(R)

[∫
R\S

ε+ ε+ 0 dµ+ µ(S)
]

= 3ε.

Since this holds for every ε, almost every (x, y) is a point of density.
Let Z be the set of points with Ẽ(x, y) = 0, so Z is B−2,1-measurable.

Therefore 0 =
∫
Z Ẽ(x, y) dµ = µ(E ∩ Z). Similarly, letting P be the set of

points with Ẽ(x, y) = 1, P is B−2,1-measurable, so 0 =
∫
P 1 − Ẽ(x, y) dµ =

µ(P \ E).

The main result we need is an argument that says that when we can
“blow up” graphs on points of density to get positive measure copies.

Theorem 6.41. Let (W,F ) be a finite graph and π : W → V be such that,
for each {x, y} ∈ F , Ẽ(π(x), π(y)) > 0 and (π(x), π(y)) is a point of density
of E. Then t(W,F )(E) > 0.

Proof. The idea is that we can replace each of the points π(x) with a
neighborhood N j(π(x)) and then use the fact that each E appears with
positive density in the necessary neighborhoods to find many copies.

Let ε ≤ min{x,y}∈F Ẽ(π(x), π(y)). Since each {π(x), π(y)} is a point of
density, we may choose j large enough that, for each {x, y} ∈ F ,

1
µ(N j(π(x), π(y)))µ({(u, v) ∈ N j(π(x), π(y)) | Ẽ(u, v) ≥ ε/2}) > 1− 1

|F | .



188 CHAPTER 6. REGULARITY

Consider the set N = ∏
w∈W N j(π(w)). Taking the product, we also have

1
µ(N)µ({{xw}w∈W ∈ N | Ẽ(xu, xv) ≥ ε/2}) > 1− 1

|F |

for each {u, v} ∈ F . Therefore

t(W,F )(Ẽ) ≥
(
ε

2

)|F |
µ({xw}w∈W ∈ N | for every {u, v} ∈ F, Ẽ(xu, xv) ≥ ε/2)

>

(
ε

2

)|F |
(1− |F | 1

|F |)µ(N)

= 0.

Then by Lemma 6.25, we have t(W,F )(E) = t(W,F )(Ẽ) > 0.

The proof of graph removal, Theorem 6.29, is then quite short. Indeed,
it makes clear that we can prove a slightly stronger statement.

Theorem 6.42. There is a Z ∈ B2 so that µ2(Z) = 0 and for every finite
graph H, either TH(E \ Z) = ∅ or tH(E) > 0.

Proof. Let Z consist of those points in E which are either not points of density
of E, or such that Ẽ(x, y) = 0. Then µ(Z) = 0. If TH(Z) 6= ∅ for some
H = (W,F ) then any π ∈ TH(Z) has the property that Ẽ(π(x), π(y)) > 0
and (π(x), π(y)) is a point of density of E. Therefore, by the previous lemma,
tH(E) > 0.

6.10 Separable Realizations and Graphons
The measurable graph (V,E, µ1) we get out of an ultraproduct is a useful
representation, but as a formal object, it is not as simple as it could be: the
accompanying Keisler graded probability space {(V k,Bk, µk)}k∈N takes some
work to define, and is less familiar than a conventional probability space.

We can take some steps to rearrange this object in terms of more familiar
probability spaces—specifically, we can instead think of E as coming from a
product of separable measure spaces.

The idea is this: we will obtain two sub-σ-algebras of B2. One will be
B2,1 (more precisely, a separable sub-σ-algebra of B2,1), and the other, R
(a “random complement”), will consist entirely of elements of B2 which are
orthogonal to B2,1. A typical element of B2 will a union of sets of the form
B ∩R where B ∈ B2,1 and R ∈ R. Since the elements of R are random, we
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always have µ(B ∩ R) = µ(B)µ(R), so instead of thinking of B and R as
being subsets of the same copy of V 2, we will think of them as subsets of
distinct copies of V 2.

That is, we will replace (V 2,B2) with (V × V × V 2,B1 ×B1 ×R), where
the latter is a traditional product measure.

Formally, what relationship can we have between these two spaces so that
E can be “the same” as some as some set from this product measure space?
We can’t mean a isomorphism of measure spaces, because an isomorphism
would preserve being a product measure. We need a weaker notion: that the
σ-algebras are equivalent as algebras with a measure.

Definition 6.43. When (X,B, µ) and (Y, C, ν) are probability measure
spaces, a measurable equivalence of measure algebras from X to Y is a
function ρ : X → Y such that:

• ρ is measurable and measure-preserving (that is, for every C ∈ C,
ρ−1(C) ∈ B and µ(ρ−1(C)) = ν(C)), and

• for every B ∈ B, there is a C ∈ C with µ(B 4 ρ−1(C)) = 0.

This does not obviously give an equivalence relation on probability mea-
sure spaces (for instance, a measurable equivalence need not have an inverse).
However it does give us a natural way to see elements of C as giving an
alternate representation of the elements of B.

Constructing the measurable equvialence requires a certain amount of
measure-theoretic formality.

The main theorem we need is to show that we can actually obtain the
sub-σ-algebra R. (This is essentially Maharam’s Theorem [112]. We are
following the proof in [48].)

Theorem 6.44. Let B be a separable σ-algebra and let C ⊆ B be a sub-σ-
algebra. Suppose that for every k there is a partition {S1,k, . . . , Sk,k} in C so
that, for each i, E(Si,k | C) is the function constantly equal to 1/k.

Then there is a D ⊆ B such that every element of D is orthogonal to C
and every element of B is generated by C together with D.

Proof. Fix a countable sequence {E1, E2, . . .} generating B. Let Pk be the
finite algebra generated by {E1, . . . , Ek} ∪ {Si,j | i ≤ j ≤ k}. Let P∗k be the
atoms of Pk.

Fix an ordering on each P∗k so that the orderings are compatible—if
A1, A2 ∈ P∗k with A1 < A2 and A′1, A′2 ∈ P∗k+1 with A′1 ⊆ A1 and A′2 ⊆ A2
then A′1 < A′2.
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For each atom in P∗k , we can fix a version of the projection onto C, and
we may assume that for all x, ∑A∈P∗

k
E(χA | C)(x) = 1.

We should imagine the atoms, as ordered in P∗k , as being an order in which
points are listed—the points in the first atom appear before the points in the
second atom, and so on. We also consider the C-measurable approximation
to this ordering, in which we look at the partial sums ∑A′≤A E(χA′ | C)(x).
This partial sum tells us “how likely is it that x has been list by the time we
reach A”.

Then for each x and λ ∈ [0, 1), we can ask when the sum crosses λ: we
define A(x, λ, k) to be the least A ∈ P∗k such that ∑A′≤A E(χA′ | C)(x) > λ.
That is, A(x, λ, k) is “the position at which the probability that x has been
listed exceeds λ”. For each A ∈ P∗k , we may set T (A, λ, k) to be the set
of x such that A(x, λ, k) = A. Note that T (A, λ, k) is C-measurable (it is
determined by the C-measurable functions E(χA | C)).

Then we define two sets

S(λ, k) =
⋃

A∈P∗
k

(T (A, λ, k) ∩
⋃
A′<A

A′)

and
S′(λ, k) =

⋃
A∈P∗

k

(T (A, λ, k) ∩
⋃
A′≤A

A′).

That is, S(λ, k) consists of those points which C thinks have probability more
than λ of appearing by A, and which actually appear before A. S′(λ, k) is
those points which C thinks have probability more than λ of appearing by A,
and which actually appear by A (either before A, or in A).

The idea is that if C thinks some points have probability λ of appearing
by A, the chance that a point has actually appeared should be just about λ.
So S(λ, k) is going to be an approximation of a set whose projection onto C
is pretty close to constantly equal to λ.

Note that S(λ, k) ⊆ S(λ, k′), since we arranged the orders on the atoms
to be compatable. So we will take S(λ) = ⋃

k S(λ, k). The sets S(λ) are
increasing: if λ < λ′ then S(λ) ⊆ S(λ′).

When A ∈ P∗k , E(χA | C) ≤ 1/k, since, as an atom, each A is contained in
one of the sets Si,k. This means that ∑A<A(x,λ,k) E(χA | C)(x) ∈ (λ− 1/k, λ]
(because we know E(χA(x,λ,k) | C)(x) ≤ 1/k, and that adding this extra term
will bring us over λ).

Then since

E(S(λ, k) | C) =
∑

A,A′∈P∗
k
,A<A′

E(χA | C)χT (A′,λ,k) =
∑

A′<A(x,λ,k)
E(χA′ | C)(x),
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we also have E(S(λ, k) | C) ∈ (λ− 1/k, λ].
Therefore E(S(λ) | C) = λ, so we can take D to be generated by the sets

S(λ).
It remains to show that every element of B is generated by C and D.

It suffices to show that initial segments of P∗k—that is, sets of the form⋃
A′≤AA

′—are generated by C and D, since this suffices to generate every
atom, and therefore every element of Pk, and the Pk generate all of B.

So consider some initial segment I = ⋃
A≤A0 A in Pk. I is also an initial

segment in each Pt with t > k. For each d < t, we can let Fd = {x | E(I |
C)(x) ∈ [d/t, (d+ t)/t)}. Then we will take It = ⋃

d<t(Fd ∩ S(d/t)). The set
It is generated by C and D, so it suffices to show that the It approximate I.

First, observe that

E(χIt | C)(x) =
∑
d<t

χFd(x)E(χS(d/t) | C)(x).

Consider some x. There is a d < t so that x ∈ Fd. Then E(χIt | C)(x) is within
1/t of ∑A<A(x,d/t,t) E(χA | C)(x). Since E(χI | C)(x) = ∑

A≤A0 E(χA | C)(x)
is between d/t and (d+ 1)/t, we have

|E(χI | C)(x)− E(χIt | C)(x)| ≤ 3/t.

So, for all x, |E(χI | C)(x) − E(χIt | C)(x)| ≤ 3/t. But µ(I 4 It) =∫ |χI − χIt | dµ ≤ ∫ E(|χI − χIt | | C) dµ, so the It approximate I.

Corollary 6.45. There is a σ-algebra B−2 ⊆ B2 containing E, σ-algebra B−1
and R, and a measurable equivalence ρ : V 2 → V ×V ×V 2 from (V 2,B−2 , µ2)
to (V × V × V 2,B−1 × B−1 ×R, µ).

Proof. Applying Lemma 6.38, we obtain B−1 ⊆ B1 so that E(χE | B2,1) is
(B−1 )2-measurable. Let B−2 be the separable sub-σ-algebra of B2 generated
by (B−1 )2 and E.

By Theorem 6.44, we find R ⊆ B−2,1 so that every element of R is
orthogonal to (B−1 )2, and together (B−1 )2 and R generate B−2,1. Then the
function ρ : V 2 → V ×V ×V 2 given by ρ(w, v) = (w, v, (w, v)) is a measurable
equivalence: when we have C ∈ B−2,1 and R ∈ R, C ∩ R = ρ−1(C × R),
and more generally, given B ∈ B−2 , it is approximated by sets of the form⋃
i≤nCi∩Ri, so B is approximated by sets of the form ρ−1(⋃i≤nCi×Ri).)
So instead of working with measurable graphs on a Keisler graded proba-

bility space, we could work with subsets of a product space. One disadvantage
of this is that it becomes less clear what the elements mean: it is somewhat
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harder to view an element (v, w, (v′, w′)) as a pair of points in a graph in a
direct way.

With graphs, one solution is to simply integrate away the random part.

Definition 6.46. A graphon is a symmetric measurable function W : V 2 →
[0, 1] on an atomless probability measure space (V,B, µ).

Note that this definition requires W to be measurable in the usual sense
of the product measure on V 2, not a more general Keisler graded probability
space.

Given a measurable graph E, we can obtain a graphon by setting W =
E(χE | B2,1). Equivalently, if E ∈ B−1 × B−1 ×R then

W (v, w) =
∫
χE(v, w, (v′, w′)) dµ2(v′, w′).

When W : V 2 → [0, 1] is a graphon, the elements of V represent vertices
of a graph-like object and the value W (x, y) represents a probability that
there is an edge between x and y. Like with a measurable graph, we can make
sense of notions like subgraph densities by taking integrals—for instance, the
triangle density of W is

∫∫∫
W (x, y)W (x, z)W (y, z) dx dy dz.

We can sample a finite graph from W in two steps: first we select n
vertices vn randomly from V , and then for each pair (vi,vj), we independently
determine if there is an edge with probability W (vi,vj).

We have already seen how to get a graphon from a sequence of finite
graphs: if Gn is a sequence of finite graphs, we may take (V,E) = [Gn]U and
then let the corresponding graphon be W = E(χE | B2,1).

This suggests why considering only {0, 1}-valued graphons is not enough
if we want graphons to be product measurable. We want every sequence of
finite graphs to have a subsequence which converges to a graphon (in the
sense that limn→∞ tH(Gn) = tH(W ) for each finite graph H). If we take
Gn = R1/2, the random graph on n vertices, we need tK2(W ) = 1/2 and
tC4(W ) = 1/16. As we have seen in Theorem 6.24, this can only happen if
W is the function constantly equal to 1/2.

It is common to add an additional requirement to the definition of a
graphon, that Ω be the interval [0, 1] with the usual Lebesgue measure.
However this is only a notational change: all separable atomless measure
spaces are equivalent to Lebesgue measure on the interval (see, for instance,
[61, 331P]).
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6.11 Higher Order Transfer
The relationship between Corollary 6.10 and Theorem 6.35 is an example of
a more general equivalence.

Note that Corollary 6.10 has the wrong form to apply the transfer theorem
(Theorem 5.24): transfer applies to statements of the form “for every natural
number y there is a natural number z so that σy,z is true”, while Corollary
6.10 can be interpreted as saying

for every ε > 0 there is a k so that for every d

there is a partition V = ⋃
i≤k Bi so that whenever

V = ⋃
i≤dCi, ||f − E(f | {Bi × Bj})|| < ||f − E(f |

{Ci × Cj})||+ ε.

The inner part (“there is a partition...”) is internal, but the outer quantifier
structure involves three quantifers: “for every ε there is a k so that for every
d”. A generalization of the transfer theorem holds for such statements, and
resembles the strong regularity lemma.

Theorem 6.47. Suppose that, for every triple of natural numbers y, z, w,
φy,z,w(x1, . . . , xm) is a first-order formula. Chose parameters [b1n]U , . . . , [bm−k]U ,
and let

X = {([a1
n]U , . . . , [akn]U ) | ∀y∃z∀wφy,z,w([a1

n]U , . . . , [akn]U , [b1n]U , . . . , [bm−kn ]U )}.

Then ([a1
n]U , . . . , [akn]U ) ∈ X if and only if for every y and every W : N→ N,

there is a z so that

{n | φy,z,W (z)(a1
n, . . . , a

k
n, b

1
n, . . . , b

m−k
n )} ∈ U .

Proof. Consider some ([a1
n]U , . . . , [akn]U ) ∈ [V k

n ]U . Suppose ([a1
n]U , . . . , [akn]U ) 6∈

X, so there is some y so that, for every z there is a wz with φy,z,wz([a1
n]U , . . . , [akn]U , [b1n]U , . . . , [bm−kn ]U )

false. Let W be the function with W (z) = wz. Suppose that, for this y and
W , we had some z so that

{n | φy,z,W (z)(a1
n, . . . , a

k
n, b

1
n, . . . , b

m−k
n )} ∈ U .

But this would mean that φy,z,wz([a1
n]U , . . . , [akn]U , [b1n]U , . . . , [bm−kn ]U ), which

contradicts our choice of wz.
Conversely, suppose that ([a1

n]U , . . . , [akn]U ) ∈ X. Then for any y and W ,
we can ignoreW—there is some z so that, for every w, φy,z,w([a1

n]U , . . . , [akn]U , [b1n]U , . . . , [bm−kn ]U )
holds. Then, for every w,

{n | φy,z,w(a1
n, . . . , a

k
n, b

1
n, . . . , b

m−k
n )} ∈ U .
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So, in particular,

{n | φy,z,W (z)(a1
n, . . . , a

k
n, b

1
n, . . . , b

m−k
n )} ∈ U .

Corollary 6.48 (Metastable Transfer). Suppose that, for every triple of
natural numbers y, z, w, σy,z,w(x1, . . . , xm) is a first-order sentence. Then
the following are equivalent:

• in [Gn]U , for every y there is a z so that for every w σy,z,w is true,

• for every y and everyW , there is a z so that {n | σy,z,W (z) is true in Gn} ∈
U .

Corollary 6.49. Suppose that, for every triple of natural numbers y, z, w,
σy,z,w(x1, . . . , xm) is a first-order sentence. Then the following are equivalent:

• in every infinite ultraproduct [Gn]U , for every y there is a z so that for
every w, σy,z,w is true,

• for every y and W there is a Z and an n so that whenever Gn is a
graph with ≥ n vertices, there is a z ≤ Z so that σy,z,W (z) is true in
Gn.

6.12 Remarks
Szemerédi’s regularity lemma first appeared as a step in his proof of Sze-
merédi’s Theorem, and was isolated in [146]. It immediately became a central
tool in extremal graph theory, and there are a number of excellent surveys
on the uses of the theorem [102, 103, 133].

The σ-algebra perspective on the regularity lemma developed over a
period of time, especially in [150, 153], and was developed into the form we
use here in [158, 160].

The regularity lemma has notoriously poor bounds: the bound on the
number of pieces is known to be bounded by a function on the order of a
tower of exponents of size 1/ε, and this cannot be improved [57, 77, 119]. As
a result, alternative proofs have been sought for many of its consequences.

Graph removal in particular has been extensively studied. Graph removal
and its variants turn out to have applications in computer science, where
they are related to questions of “property testing” [73]—roughly speaking,
the question of whether a property of a graph can be tested by a computer



6.12. REMARKS 195

program in a reasonable way. Many variants of graph removal have been
proven—for instance, where one modifies a graph with few induced copies
of a graph to contain no copies [8], where one deals with infinite families of
graphs [5], and directed graphs [6]. Proofs of some of these results have been
given which do not use the regularity lemma [56] and give somewhat better
bounds. Some of these and other results are surveyed in [36].

The Lebesgue density theorem is used to prove graph (and hypergraph)
removal in [48]. The canonical book on graphons in general is [110].

The generalization of Szemerédi regularity, Theorem 6.35, was introduced
in [8] in order to prove graph removal with induced subgraphs. (Another
variant, which corresponds to choosing the function F (k) = k, is sometimes
called the “weak” regularity lemma [62].) The approach here was identified
by Tao [153], who introduced the term “metastable” for such results in a
slightly different context [152]. The more general notion of higher order
transfer between “metastable” formulations—that is, formulations of the
form “for every ε and every function F ”—and Π3 statements was first noticed
by Kohlenbach [100] and has subsequently been extensively studied [11, 12,
46, 99, 101].
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Chapter 7

Combinatorial Structure

In this chapter we will consider graphs which are “combinatorially simple”.
We’ll see that these combinatorial properties imply that the graphs have nice
measurable structures—for instance, that they are B2,1-measurable.

7.1 VC Dimension

If we have a graph G = (V,E) (finite or infinite) and a finite set of vertices
{x1, . . . , xn} ⊆ V , each vertex y ∈ V picks out a subset, namely {xi |
{xi, y} ∈ E} = {x1, . . . , xn} ∩NG(y). As we consider different vertices in V ,
we identify different subsets of {x1, . . . , xn} in this way. In a random graph
(for example, R1/2(V ) where |V | is much larger than n), we expect to obtain
all 2n subsets of {x1, . . . , xn} as we vary y across different values.

Let us consider graphs which are very non-random: graphs where we do
not find all the subsets in this way.

Recall that when (V,E) is a graph, we write Ex for the neighborhood of
x, {y | {x, y} ∈ E}.

Definition 7.1. If X ⊆ V (typically X is finite), we say E shatters X if,
for every S ⊆ X, there is a y ∈ V so that X ∩ Ey = S.

The VC dimension of G is the largest n such that there exists some
{x1, . . . , xn} ⊆ V which is shattered by E, or ∞ if there is no such n.

VC stands for Vapnik-Chervonenkis, the names of the two computational
learning theorists who introduced the notion.

Haing having high VC dimension, particularly infinite VC dimension,
is a notion of complexity. Note that VC dimension is defined by a worst
case scenario: we have high VC dimension if we find a single choice of set

197
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{x1, . . . , xn} which is shattered. This reflects the idea that if we combine a
simple graph and a complex one (say, by taking the disjoint union of their
vertices), we ought to get a complex graph.

Very structured graphs tend to have low VC dimension. For instance,
the complete bipartite graph Kn,n (with n ≥ 3) has VC dimension 1: if we
take a set {x1, x2}, if these vertices are from different parts then no y has
{x1, x2} ∩ Ey = {x1, x2}, and if they are from the same part then no y has
{x1, x2} ∩ Ey = {x1}.

Similarly, consider the bipartite graph where V0 = V1 = {1, 2, . . . , n} and
V is the disjoint union of V0 and V1, and E is the set of pairs {x, y} with
x ∈ V0, y ∈ V1, and x < y. This has VC dimension 1: suppose we take
two vertices {x1, x2}. If they are in different parts, we cannot shatter the
set because there would be no y with {x1, x2} ∩ Ey = {x1, x2}, and if they
are in the same part—without loss of generality, assume V0—they have an
order—say, x1 < x2—and then we cannot have {x1, x2} ∩ Ey = {x2}.

At the other extreme, R1/2(V ) tends to have large VC dimension; in par-
ticular, with probability 1, [R1/2(Vn)]U will have VC dimension∞ (assuming
|Vn| → ∞).

The notion of VC dimension has been invented several separate times
in the literature. In particular, Shelah introduced it in model theory [139],
where it goes by the name NIP (“not the independence property”). More
precisely, a theory is NIP if every definable graph has finite VC dimension.
Although beyond our scope here, the point is that a wide variety of theories
have the NIP property, and therefore any graph defined in a model of one of
those theories will have finite VC dimension.

An equivalent property is that a graph has finite VC dimension exactly
if it omits some bipartite graph.

Theorem 7.2. (V,E) has infinite VC dimension if and only if whenever
(W0 ∪W1, F ) is a finite bipartite graph, there is a copy π : W0 ∪W1 → V of
(W0∪W1, F ) such that whenever w0 ∈W0 and w1 ∈W1, {π(w0), π(w1)} ∈ E
if and only if {w0, w1} ∈ F .

Note that the requirement on π is somewhere between our definition of a
copy and our definition of an induced copy: what we are asking for is that
π embeds the two parts W0 and W1 so that the edges between π(W0) and
π(W1) exactly correspond to F , but we don’t care what happens inside W0
and W1.

Proof. Suppose (V,E) has infinite VC dimension and let (W0 ∪W1, F ) be a
finite bipartite graph. Since the VC dimension of (V,E) is infinite, choose
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X ⊆ V with |X| = |W0| so that X is shattered by E. Choose any bijection
π : W0 → X.

For each w1 ∈W1, consider Sw1 = {π(w0) | {w0, w1} ∈ F} ⊆ X. Since E
shatters X, we may find some v1 with Ev1 ∩X = Sw1 and define π(w1) = v1.
Then π is a induced copy of (W0 ∪W1, F ) as a bipartite graph as in the
sense of the statement of the theorem.

Conversely, suppose (V,E) contains every bipartite graph. In particular,
for any n, consider the bipartite graph with W0 = {1, 2, . . . , n} and W1 =
P({1, 2, . . . , n}) with {w0, w1} ∈ F if and only if w0 ∈ w1. If π is a copy
of (W0 ∪W1, F ) then π(W0) is a set of size n and π(W1) witnesses that E
shatters π(W0).

VC dimension is usually considered in a slightly more abstract setting.

Definition 7.3. A set system is a set V and a collection F of subsets of V .
When X ⊆ V , we say F shatters X if, for every S ⊆ X, there is an F ∈ F
with X ∩ F = S.

The VC dimension of (V,F) is the largest n such that there exists some
X ⊆ V with |X| = n so that X is shattered by F .

A graph (V,E) corresponds to the set system on V with F = {Ey | y ∈ V }.
(Conversely, given a set system (V,F), we can obtain a bipartite graph whose
vertices are V ∪ F with an edge between x and F exactly when x ∈ F .)

Unlike the definition in a graph, this definition looks asymmetric. If
we are only concerned with whether a set system has finite or infinite VC
dimension, however, there is a symmetry.

Lemma 7.4. Suppose (V,F) has infinite VC dimension. Then for every d,
there exist F0, . . . , Fd−1 ∈ F so that, for every S ⊆ {F0, . . . , Fd−1}, there is
an x ∈ V so that {F ∈ {F0, . . . , Fd−1} | x ∈ F} = S.

Proof. Since (V,F) has infinite VC dimension, we may choose a set {x1, . . . , x2d}
which is shattered by F . For each j < d, we choose Fj containing exactly
those xi such that, when we write i in base 2, the j-th digit is a 1. Then for
any {Fj1 , . . . , Fjs} ⊆ {F0, . . . , Fd−1}, we may let i = ∑

k≤s 2jk , and we have
{Fj1 , . . . , Fjs} = {F ∈ {F0, . . . , Fd−1} | xi ∈ F}.

VC dimension gives a striking dividing line. For any finite X ⊆ V , we
can define ΠF (X) = {S | ∃F ∈ F X ∩ F = S} and πF (n) = max{|ΠF (X)| |
X ⊆ V, |X| = n}. That is, ΠF(X) is the collection of subsets of X we
can obtain by looking at neighborhoods and πF(n) is the largest possible
size of ΠF(X) among sets of size n. Since ΠF(X) is a set of subsets of X,
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|ΠF (X)| ≤ 2|X|, so πF (n) ≤ 2n. The VC dimension of (V,F) is the smallest
n with πF (n+ 1) < 2n+1, so when the VC dimension is infinite, πF (n) = 2n
for all n.

It turns out that there are only two possible behaviors for the function πF :
either the function is the exponential 2n or it is bounded by a polynomial.

Theorem 7.5 (Sauer–Shelah). If the VC dimension of (V,F) is d then, for
all n, πF (n) ≤∑d

i=0
(n
i

)
.

There are a very large number of proofs of this theorem, of which we
only give one, which uses the following crucial lemma.

Lemma 7.6. Whenever (V,F) is a set system and X ⊆ V is finite, there
are at least |ΠF (X)| subsets of X which are shattered by F .

Proof. By induction on |X|. If X = ∅ then either F = ∅, in which case
|ΠF(X)| = 0, which suffices because at least 0 subsets of X are certainly
shattered, or F 6= ∅, in which case |ΠF(X)| = 1 and ∅ is shattered (by
definition, as long as F is non-empty), so the 1 needed subset of X is
shattered.

Suppose that |X| = m+ 1 and choose some x ∈ X. Let Fx = {v \ {x} ∈
F | x ∈ v} and let F− = F \ Fx. Then, by the inductive hypothesis, Fx
shatters at least |ΠFx(X \ {x})| subsets of X \ {x} while F− shatters at least
|ΠF−(X \ {x})| subsets of X \ {x}.

We now count subsets of X shattered by F . First, if S ⊆ X is shattered
by F−, X is shattered by F . Suppose S ⊆ X is shattered by Fx. If S is
also shattered by F− then S ∪ {x} is shattered by F . Otherwise S is not
shattered by F− but is shattered by F . In particular, for each set shattered
by Fx, we obtain an additional set shattered by F , so the number of sets
shattered by F is at least |ΠF−(X)|+ |ΠFx(X)|.

Finally, observe that

|ΠF (X)| = |{S | ∃F ∈ F X ∩ F = S}|
= |{S | ∃F ∈ F X ∩ F = S and x ∈ S}|+ |{S | ∃F ∈ F X ∩ F = S and x 6∈ S}|
= |ΠFx(X \ {x})|+ |ΠF−(X \ {x})|,

so we have shown that F shatters enough subsets of X.

Proof of Sauer-Shelah. Suppose not: then there is an X ⊆ V with |X| = n
and |ΠF (X)| >∑d

i=0
(n
i

)
. There are only ∑d

i=0
(n
i

)
subsets of X of size ≤ d,

so there must be a subset of X of size > d shattered by F , so the VC
dimension of (V,F) is > d.
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7.2 Closure of VC Dimension
It is convenient to note that having finite VC dimension is preserved under
various ways of combining set systems.
Lemma 7.7. If (V,F) is a set system with finite VC dimension, the set
system consisting of complements, (V, {V \ F | F ∈ F}), also has finite VC
dimension.

Proof. Let X ⊆ V be a finite set not shattered by F . Then there is an S ⊆ X
so that X ∩ F 6= S for any F ∈ F . Let T = X \ S; then X ∩ (V \ F ) 6= T
for any F ∈ F .

Lemma 7.8. Let (V,F) and (V,G) be two set systems on the same sets of
points, both having finite VC dimension. Then the intersection set system,
(V, {F ∩G | F ∈ F and G ∈ G}) also has finite VC dimension.

Proof. A slick proof is to make use of the Sauer-Shelah theorem. Let d bound
the VC dimension of both set systems, and choose n much larger than d.
Consider a subset X ⊆ V of size n and consider how many subsets of X have
the form X ∩ (F ∩G) with F ∈ F and G ∈ G.

First, consider the subsets of X of the form X ∩ F with F ∈ F : by
Sauer-Shelah, there are at most ∑i≤d

(n
i

)
of these. For each set X ∩ F ,

consider the number of subsets of the form X ∩ F ∩ G with G ∈ G: there
are, again, at most ∑i≤d

(|X∩F |
i

) ≤∑i≤d
(n
i

)
of these.

So, in total, there can be at most (∑i≤d
(n
i

)
)2 subsets of X of the form

X ∩ (F ∩G). When n is large enough, this is less than 2n, so in particular
X cannot be shattered.

Lemma 7.9. Let (V,F) and (V,G) be two set systems on the same sets
of points, both having finite VC dimension. Then the union set system,
(V, {F ∪G | F ∈ F and G ∈ G}) also has finite VC dimension.

Proof. We could give an argument similar to the previous lemma, but we
can also note that the union is the complement of the intersection of the
complements, so this follows from the previous two lemmata.

The main application we will need is actually the symmetric difference.
Corollary 7.10. Let (V,F) and (V,G) be two set systems on the same sets
of points, both having finite VC dimension. Then the symmetric difference
set system, (V, {F 4G | F ∈ F and G ∈ G}) also has finite VC dimension.

This again follows from the lemmata above because the symmetric differ-
ence can be formed using union, intersection, and complement.
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7.3 ε-Nets
Suppose G is a measurable graph and y is a vertex with µ(Ey) ≥ ε > 0. If we
select a large number of points x1, . . . , xn at random (with n large relative to
1/ε), we expect that at least one of these points will probably belong to Ey.
If we have several vertices, y1, . . . , ym with each µ(Eyi) ≥ ε, we would expect
to need to make n larger if we want to find a point in every set Eyi—even
though we’re likely to get a point in Ey1 , and a point in Ey2 , and so on, the
likelihood that we miss at least one of the sets Eyi increases with m. In
particular, when there are uncountably many values of y, it could become
very likely that we miss at least one of them. For instance, in [R1/2]U , almost
every y has µ(Ey) = 1/2, but we cannot pick an x belonging to all these Ey
simultaneously.

If the graph has finite VC dimension, however, we can hope to select a
reasonable number of x’s so that we have found at least one member of every
single Eyi . We call such a set of x’s an ε-net—like a net, it “catches” every
set Ey which is not too small.

Definition 7.11. A set X ⊆ V is an ε-net for G = (V,E, µ) if, for every
y ∈ V with µ(Ey) ≥ ε, X ∩ Ey 6= ∅.
Theorem 7.12. If G = (V,E, µ) has finite VC dimension then there is an
ε-net.

The proof here is based on the one given in [116].

Proof. Let d be the VC dimension of G. We will show that there is a large
enough size r (depending on d and ε) so that if X is a set of size r chosen
randomly according to µ, there is positive probability that X is an ε-net.

Suppose we choose a set X0 of size r, and let p be the probability that X0
is not an ε-net. We ultimately wish to show that p is small, so consider what
happens when X0 is not an ε-net: there must be some y so that µ(Ey) ≥ ε
but X0 ∩ Ey = ∅. That means that if we choose r additional elements—an
additional set X1—then (by the Hoeffding inequality), when r is large enough,
the probability that we choose X1 so that |X1 ∩ Ey| ≥ εr/2 is at least 3/4.

So, when we choose two sets of size r, X0 and X1, the probability is at
least 3p/4 that there is some y with X0 ∩ Ey = ∅ but |X1 ∩ Ey| ≥ εr/2. It
looks a bit unlikely that we should be able to totally avoid Ey with the first
set, but then find lots of elements in it with the second set, and will indeed
show that this situation is unlikely, and therefore that p must be small.

We can find the probability of this situation a different way. Suppose
that we first pick a set Z with 2r elements, and then choose the r elements
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X0 ⊆ Z randomly from Z. Once we picked the set Z, for any given y with
|Ey ∩Z| ≥ εr/2, we can ask for the possibility that, when we choose X0 ⊆ Z
so that Ey ∩X0 = ∅.

For any fixed y with |Ey ∩ Z| ≥ εr/2, the probability that we choose
r elements from z while avoiding all εr/2 elements of Ey ∩ Z is at most
(1− ε/4)r.

Of course, there are many values of y. However—after we’ve chosen Z—
this outcome depends only on the set Ey ∩ Z. The Sauer-Shelah Theorem
tells us that there are only ΠG(2r) ≤ C(2r)d possibilities (for some C) for
the set Ey ∩ Z. Therefore the probability that we have Ey ∩ X0 = ∅ for
at least one value of y is bounded by C(2r)d(1− ε/4)r. In particular, this
decreases exponentially in r, so when r is large enough we can ensure that
this probability is at most 1/2.

Therefore 3p/4 ≤ 1/2, so p ≤ 2/3 < 1, so in particular there is a positive
probability that X0 is an ε-net.

7.4 VC Dimension and Rectangles
The existence of ε-nets gives us a quick tool for constructing approximations
using rectangles.

Theorem 7.13. If G = (V,E, µ) is a measurable graph with finite VC
dimension then E ∈ B2,1.

Proof. It suffices to show that, for every ε > 0, there is an approximation of
E to within ε using rectangles.

Consider the set system for symmetric differences, (V, {Ex 4 Ey | x, y ∈
V }). This set system also has finite VC dimension, and therefore we may
choose an ε-net Z = {z1, . . . , zm}. Since this is an ε-net, whenever µ1(Ex 4
Ey) ≥ ε, there is an i with zi ∈ Ex 4 Ey.

For each s ⊆ Z, let Vs = {x ∈ V | Ex ∩ Z = s}. For each s ⊆ Z with
Vs 6= ∅, choose some ys ∈ Vs. Observe that if x ∈ Vs then µ1(Ex 4 Eys) < ε.

Then let E′ = ⋃
s⊆Z,Vs 6=∅ Vs × Eys . We claim that µ2(E 4 E′) < ε:

µ2(E 4 E′) =
∑
s⊆Z

∫
Vs
µ1(Ex 4 Eys) dµ1

<
∑
s⊆Z

µ1(Vs)ε

= ε.
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This gives us a corresponding improvement of Szemerédi’s Regularity
Lemma (Theorem 6.34) under the assumption of VC dimension. Recall that
the regularity lemma promises a uniform bound N so that every finite graph
(V,E) has a partition into pieces V = ⋃

i≤k Bi with k ≤ N so that most pairs
(Bi, Bj , E) are ε-regular.

In applications of the regularity lemma, there are a number of ways in
which one could hope it might be improved. First, one would like to improve
the bounds—the bound on N is a tower of exponents in 1/ε. Second, one
could hope that most of the pairs are not only ε-regular, but have density
dE(Bi, Bj) close to either 0 or 1. Third, one would like to eliminate the
“irregular pairs”—one would like to have every pair (Bi, Bj , E) be ε-regular,
instead of most. And finally, one could hope to strengthen regularity to
homogeneity: we could hope to have either Bi×Bj ⊆ E or (Bi×Bj)∩E = ∅.

VC dimension gives us the first two of these improvements. In keeping
with our focus on what happens in the limit, we do not worry about the
bounds, and only prove that graphs with bounded VC dimension satisfy a
version of the strong regularity lemma (Theorem 6.35).
Theorem 7.14. For every d and ε > 0 there is an N so that whenever
(V,E) is a graph with |V | ≥ N , there is a partition V = ⋃

i≤k Bi such that:

• k ≤ N ,

• ||χE − E(χE | {Bi ×Bj}i,j≤k)||L2(µ2) < ε.

Note that this means that, except on rectangles with combined measure at
most

√
ε, the average E(χE | {Bi×Bj}i,j≤k) must be in [0,

√
ε)∪ (1−√ε, 1]—

that is, on most rectangles, the density of χE is either close to 0 or close to
1.

Proof. Suppose not. Let d and ε > 0 be given so that this fails, so for each N
we have a counterexample GN = (VN , EN ) with |VN | ≥ N . By the previous
theorem, [En]U belongs to B2,1, so there is a partition [VN ]U = ⋃

i≤k Bi with
each Bi internal so that

||χE − E(χE | {Bi ×Bi′}i,i′≤k)||L2(µ2) < ε/2.

Then we may pick representatives Bi = [Bi,N ]U and find an N so that

||χEN − E(χEN | {Bi,N ×Bi′,N}i,i′≤k)||L2(µ2) < ε,

giving a contradiction.

Note that (as in Lemma 6.32), this implies that most of the (Bi, Bj , E)
are ε-regular.
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7.5 A Converse of Sorts
Neither the existence of ε-nets nor belonging to B2,1 can plausibly be equiva-
lent to having finite VC dimension. These consequences are measure-theoretic,
while VC dimension is determined by finite sets, so we can always take a
graph with finite VC dimension and add an additional graph with infinite
VC dimension, but put no measure on the additional part.

To obtain an equivalence, we have to ask about what happens under
uniformly under arbitrary measures.

Theorem 7.15. G = (V,E) has finite VC dimension if and only if, for
every ε > 0, there is an n so that, for any µ making (V,E, µ) a measurable
graph, the probability that an element of V n is an ε-net is at least 1− ε.

Proof. We have already shown that graphs with finite VC dimension have
this property.

For the converse, suppose G = (V,E) has infinite VC dimension; we will
show that, for ε = 1/2, for each n there is a measure µ where (V,E, µ) is
a measurable graph and the probability that a subset of V n is an ε-net is
0. Let d ≥ 2n and take a subset S of V of size d which is shattered, and
let µ be the uniform distribution on S (with measure 0 on V \ S). Then
whenever X ⊆ S with |X| = n, we may choose, for instance, a y ∈ V with
Ey ∩ S = S \X, so µ(Ey) = |Ey∩S|

|S| ≥ 1/2, but Ey ∩X = ∅, so X is not a
1/2-net.

That is, VC dimension is equivalent to the existence of ε-nets in a uniform
way under all possible measures. Analogously, it is equivalent to E being
uniformly B2,1-measurable.

Theorem 7.16. G = (V,E) has finite VC dimension if and only if, for
every ε > 0, there is an N so that, for any µ making (V,E, µ) a measurable
graph, there is a partition of V into n ≤ N parts, V = ⋃

i≤nBi so that

||χE − E(χE | {Bi ×Bi′}i,i′≤n)||L2(µ2) < ε.

Proof. We have already shown that graphs with finite VC dimension have
this property.

For the converse, suppose G = (V,E) has infinite VC dimension. We
must pick an ε > 0 and, for each N , a measure on (V,E) so that there is no
partition of V into n ≤ N parts with the desired property.

We let ε = 1/2. For each m, choose a random bipartite graph on m×m
vertices—that is, fix sets Um, Vm with |Um| = |Vm| = m and, for each
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(u, v) ∈ Um × Vm, flip an independent fair coin, and let Em ⊆ Um × Vm be
the set of pairs for which this coin came up heads. Let Gm be the graph
(Um × Vm, Em).

Note that, with probability 1, the sequence of graphs 〈Gm〉 is quasirandom
as a bipartite graph; in particular, we have limm→∞

|Em|
|Um×Vm| = 1/2 and

limm→∞ tC4(Gm) = 1/16.
Since G is bipartite, G contains a copy of each Gm, so for each m, we

may consider the measure µm on G which places its measure uniformly on
some copy of Gm. That is, we fix some πm : Gm → G and define

µm({x}) =
{

1
2m if x ∈ rng(πm)
0 otherwise

The ultraproduct of these structures is going to be a quasirandom mea-
surable graph, so we need to notice that if we had a uniform partition of
G, we could lift it to the ultraproduct. So consider some ultrafilter U and
the graph G∗ = (V ∗, E∗, µ∗) = [(V,E, µm)]U . Note that, up to measure
0, (V,E, µm) is isomorphic to Gm with the uniform measure; in particular,
tK2(G∗) = 1/2 and tC4(G∗) = 1/16, so G∗ is quasirandom.

Towards a contradiction, suppose there were an N satisfying the second
half of the statement of the theorem: for each m, we have nM ≤ N and a
partition V = ⋃

i≤nB
m
i . Let n = limn→U nM , and for each i ≤ n, let Bi =

[Bm
i ]U . For each i, i′ ≤ n, we have E(χE∗ | Bi × Bi′) = limm→U Eµm(χE |

Bm
i ×Bm

i′ ), so we also have

||chiE∗−E(χE∗ | {Bi×Bi′}i,i′≤n)||L2(µ∗) = lim
m→U

||χE−Eµm(χE | {Bi×Bi′}i,i′≤nm)||L2(µm) < 1/2.

But E∗ is quasirandom, so

||χE∗−E(χE∗ | {Bi×Bi′}i,i′≤n)||L2(µ∗)|| ≥ ||χE∗−E(χE∗ | B2,1)||L2(µ∗) = 1/2,

which gives the desired contradiction.

7.6 Stability

We showed in Theorem 6.12 that there are graphs E so that every finite
partition includes some rectangles where E has intermediate density. The
example we used was the half graph—a graph roughly of the form {(x, y) |
x < y}.

We will now show that this is, in a precise sense, the only obstacle.
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Definition 7.17. If G = (V,E) is a graph, a strict ladder of length d in G
is a pair of sequences x1, . . . , xd, y1, . . . , yd ∈ V so that {xi, yj} ∈ E if and
only if i < j.

We say G is stable if there is a d so that there does not exist a ladder of
length d.

The word “strict” refers to the fact that we have a requirement when i = j
as well; a simple “ladder” would allow either {xi, yi} ∈ E or {xi, yi} 6∈ E.

Stability is a strengthening of having finite VC dimension: finite VC
dimension says that, given {x1, . . . , xd} with d sufficiently large, there is some
subset we cannot obtain by looking at the intersection with Ey. Stability
prohibits specific combinations of subsets from appearing.

As the example of the half graph shows, stability is strictly stronger—the
half graph has finite VC dimension but is unstable.

Like VC dimension, stability gives a bound of sorts on the number of
subsets of a set we can hope to obtain, though it has a different character:
stability implies that there are only countably many subsets of any countable
set.

Theorem 7.18. Suppose (V,E) is stable. Then whenever B ⊆ V is countable,
there are only countably many subsets of B of the form Ey ∩B.

Stated in this form, this follows directly from the Erdős–Makkai Theorem:

Theorem 7.19. Let (B,F) be a set system with |F| > |B| and B infinite.
Then there exist x1, . . . , xd ∈ B and F0, . . . , Fd ∈ F so that xi ∈ Fj iff i ≤ j.

Proof. By induction on d. For d = 0 this is immediate: take any F0 ∈ F .
Suppose the claim holds for d. Choose any Fd+1 ∈ F with Fd+1 6= B.

Consider the set system F ′ = {F ∩ Fd+1 | F ∈ F}.
First, suppose |F ′| > |B|. For each b ∈ Fd+1, consider Fb = {F ∈ F ′ |

b 6∈ F}. Observe that, other than Fd+1 itself, every F ∈ F ′ belongs to at
least one Fb, so F ′ = {Fd+1} ∪

⋃
b∈B Fb. Since |F ′| > |B|, this means there

is some b with |Fb| > |B|. We apply the inductive hypothesis to (Fd+1,Fb),
obtaining x1, . . . , xd, F0, . . . , Fd with each x1, . . . , xd ∈ Fd+1 and xi ∈ Fj if
and only i ≤ j. Taking xd+1 = b completes the construction.

Otherwise, |F ′| = |B|. Then consider instead the family Fc = {B \ F |
F ∈ F}. Then |Fc| > |B| as well, and we may apply the same argument as
the first case with B \ Fd+1 to obtain x1, . . . , xd+1 and B \ F1, . . . , B \
Fd+1 so that xi ∈ B \ Fj+1 if and only if i ≤ j. Then the sequence
xd+1, . . . , x1, Fd+1, . . . , F0 witnesses the claim.
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In an ultraproduct (and, more generally, structures which satisfy the
right saturation properties) this is equivalent to stability.

Theorem 7.20. Suppose ([Vn]U , [En]U ) is unstable. Then there is a countable
B ⊆ [Vn]U so that there are uncountably many subsets of B of the form
([En]U )y.

Proof. The idea is that instability together with the compactness of ultra-
products allows us to construct a copy of the half graph. For each d we have
sequences xd,1, . . . , xd,d, yd,1, . . . , yd,d so that {xd,i, yd,j} ∈ E if and only if
i < j.

Choosing representatives, take xd,i = [xd,in ]U and yd,i = [yd,in ]U . Choose a
sequence of sets I0 ⊇ I1 ⊇ · · · in U such that if n ∈ Id then {xd,in , yd,jn } ∈ En
if and only if i < j. For each real number r ∈ [0, 1], define xrn, yrn for
n ∈ Id+1 \ Id by taking xrn = x

d,ddre
n and yrn = y

d,ddre
n . For any r < s, observe

that {n | {xrn, ysn} ∈ En} ∈ Id1/(r−s)e ∈ U , so [xrn]U < [ysn]U .
Let B = {[xqn]U | q ∈ Q∩[0, 1]}. Then for each real number r, E[yrn]U∩B =

{[xqn]U | q < r}. This gives uncountably many distinct subsets of B.

It would be tempting, by analogy to VC dimension, to define d-stability
to mean that d is the largest size for which a strict ladder exists. In fact,
this term is reserved for a slightly different configuration.

Definition 7.21. We write {0, 1}d for the set of binary sequences of length
d—that is, functions σ : [0, d − 1] → {0, 1} and {0, 1}<d = ⋃

k<d{0, 1}k.
When σ ∈ {0, 1}d, we set |σ| = d and call |σ| the length of d. We write σ v τ
if σ is an initial segment of τ—that is, if τ � [0, |σ| − 1].

We say G = (V,E) is d-stable if there do not exist collections of points
{xσ}σ∈{0,1}d and {yη}η∈{0,1}<d such that whenever η @ σ, xσ ∈ Eyη if and
only if η_〈1〉 v σ.

We can think of the yη as labeling the nodes of a binary tree, indicating
that elements in Eyη should go to the left and elements not in Eyη should
go to the right. Starting at the root, every element x follows a path: left
or right depending on whether it belongs to Ey〈〉 , then left or right again
depending on Ey〈0〉 or Ey〈1〉 , and so on. d-stability means that, however we
label the internal nodes of the tree of height d, there is a path which no
element b will follow.

The d in stability and the d in d-stability don’t necessarily match, but
up to that numeric difference, the notions are equivalent.

Lemma 7.22. If G is d-stable then G is stable.
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Proof. Suppose G is not stable. For any d, we will show that G is not
d-stable. The idea is that if we have a ladder of length 2d, we can use the
x’s to label the leaves of a tree of height d, and the y’s to label the internal
nodes; for instance, when d = 2:

x0 x1 x2 x3

y1 y3

y2

Making this precise for a general d is just a matter of working through
the indexing. Start with a ladder x0, . . . , x2d−1, y0, . . . , y2d−1 ∈ V so that
{xi, yj} ∈ E if and only if j ≤ i. (We have shifted the indexing by one and
swapped the names of the x’s and y’s in order to match the definition of
the tree better.) We can associate each i < 2d with a sequence of legth d by
writing it in binary with σ(0) being the most significant bit—that is, let σi
be the sequence such that i = ∑

j<d 2d−1−jσi(j), and take xσi = xi.
Then for each η, we take yη = y∑

j<|η| 2
d−1−jη(j)+2d−1−|η| . Observe that if

η_〈0〉 v σ then xσ = xi for some i ≤∑j<|η| 2d−1−jη(j) +∑|η|<j<d 2d−1−j <∑
j<|η| 2d−1−jη(j) + 2d−1−|η|, and therefore {xσ, yη} ∈ E, while if η_〈1〉 v σ

then xσ = xi for some i ≥ ∑
j<|η| 2d−1−jη(j) + 2d−1−|η|, and therefore

{xσ, yη} 6∈ E.

The converse also holds, but is more difficult to prove. We follow the
proof in [85], which needs a Ramsey-like theorem for trees.

Definition 7.23. The binary tree of height n, written {0, 1}<n, is the
collection of all sequences of 0’s and 1’s of length less than n—that is,
{0, 1}<n = ⋃

0≤m<n{0, 1}[1,...,m].
We write σ v τ if τ � dom(σ) = σ.

When m = 0, the notation “{0, 1}[1,...,0]” means the function from the
empty set to {0, 1}—that is, the empty function, which we write 〈〉; we call
this the root of the tree. σ v τ means that τ extends σ.

Definition 7.24. A subtree of {0, 1}<n of height m is a function f :
{0, 1}<m → {0, 1}<n such that f(σ) v f(τ) if and only if σ v τ .

For instance, f(σ) must extend f(〈〉) for all σ ∈ {0, 1}<m, and the two
nodes f(σ_〈0〉) and f(σ_〈1〉) must be two distinct, incomparable extensions
of f(σ).



210 CHAPTER 7. COMBINATORIAL STRUCTURE

Lemma 7.25. Suppose that c : {0, 1}<n0+n1 → {0, 1}. Then for some i ∈
{0, 1}, there is a subtree f : {0, 1}<ni → {0, 1}<n0+n1 such that c(f(σ)) = i
for all σ ∈ {0, 1}<ni.

That is, we can find a “monochromatic subtree”.

Proof. We proceed by induction on n0 + n1. When n0 + n1 = 0 all these
trees are empty, so this is trivial.

Suppose c(〈〉) = 0. (The case where c(〈〉) = 1 is symmetric.) There are
two natural subtrees of height n0 + n1 − 1—the nodes extending 〈0〉 and the
nodes extending 〈1〉.

Formally, consider two colorings cj : {0, 1}<n0+n1−1 → {0, 1} given by
cj(σ) = c(〈j〉_σ). We may apply the inductive hypothesis to each of c0 and c1
with n0 − 1, n1; if, for either j, we obtain fj : {0, 1}<n1 → {0, 1}<n0+n1−1 so
that cj(fj(σ)) = 1 for all σ ∈ {0, 1}<n1 then we may take f(σ) = 〈j〉_fj(σ).

Suppose not. Then we obtain two functions fj : {0, 1}<n0−1 → {0, 1}<n0+n1−1

so that cj(fj(σ)) = 0 for all σ ∈ {0, 1}<n0−1. Then we define f : {0, 1}<n0 →
{0, 1}<n0+n1 by f(〈〉) = 〈〉 and f(〈j〉_σ) = 〈j〉_fj(σ).

Theorem 7.26. If G is stable then there is a d so that G is d-stable.

Proof. We will show that if G fails to be 3 · 2d−1 − 2-stable then we can
find a strict ladder of length d. Specifically, we will show the following by
induction on d:

Let h = 3·2d−1−2. Suppose we have a tree of vertices {xσ}σ∈{0,1}h
and {yη}η∈{0,1}<h such that when η @ σ, {xσ, yη} ∈ E if and
only if η_〈1〉 v σ. Then there exist x1, . . . , xd, y1, . . . , yd so that
{xi, yj} ∈ E if and only if i < j, for each i there is a σ so that
xi = xσ, and for each j there is an η so that yj = yη.

Let such a tree be given. When d = 1, h = 1, so we may take y1 = y〈〉
and x1 = x〈0〉.

Suppose d > 1. Let h′ = 3 · 2d−2 − 2, so that 1 + h′ + (h′ + 1) = h.
Choose some σ w 〈0〉 and define c : {0, 1}<h−1 → {0, 1} by setting c(η) = 1
if {xσ, y〈0〉_η} ∈ E and 0 otherwise.

Suppose that there is a function f : {0, 1}<h′ → {0, 1}<h−1 such that,
for each η ∈ {0, 1}<h′ , c(f(η)) = 1. Then for each η ∈ {0, 1}<h′ , set
y′η = y〈0〉_f(η). For each τ ∈ {0, 1}h′ , we have τ = η_〈j〉 for some
j ∈ {0, 1}; choose any leaf τ ′ w 〈0〉_f(η)_〈j〉 and set x′τ = xτ ′ . Ap-
plying the inductive hypothesis to {x′τ}τ∈{0,1}h′ , {y′η}η∈{0,1}<h′ , we obtain
x1, . . . , xd−1, y1, . . . , yd−1 with {xi, yj} ∈ E if and only if i < j. We may
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set x0 = xσ and y0 = y〈〉; then we also have {xi, y0} 6∈ E for all i, and
{x0, yi} ∈ E for all i > 0.

Suppose there is no such f . Then the previous lemma gives us a function
f : {0, 1}<h′+1 → {0, 1}<h+1 such that, for each η ∈ {0, 1}<h′+1, c(f(η)) = 0.
For each η ∈ {0, 1}<h′ , set y′η = y〈0〉_f(〈1〉_η). For each τ ∈ {0, 1}h′ , we
have τ = η_〈j〉 for some j ∈ {0, 1}; choose any leaf τ ′ w 〈0〉_f(〈1〉_η)_〈j〉.
Then, by the inductive hypothesis again, we find x1, . . . , xd−1, y1, . . . , yd−1
with {xi, yj} ∈ E if and only if i < j. We may set xd = xσ and yd = yf(〈〉).
Then we have {xd, yi} 6∈ E for all i and {xi, yd} ∈ E for all i < d.

7.7 Stable Regularity
Since stable graphs have finite VC dimension, we know they belong to B2,1.
However stable graphs belong to B2,1 in an especially clean way: we can
partition V 2 into rectangles so that, in every rectangle, E is either almost
the whole rectangle or almost none of it.

Definition 7.27. We say A is 0-good for E if, for every b ∈ V , either
µ(A∩Eb)
µ(A) ∈ {0, 1}.

Lemma 7.28. If E is stable and µ(A) > 0 then there is a 0-good A′ ⊆ A
with µ(A′) > 0.

Proof. We construct a tree of subsets of A inductively so that when η is
a sequence of length n, µ(Aη) > 0. Let A〈〉 = A. Given Aη, if Aη is not
0-good then there is some yη so that 0 < µ(Aη∩Eyη )

µ(Aη) < 1. Then we may take
Aη_〈0〉 = Aη ∩ Eyη and Aη_〈1〉 = Aη \ Eyη .

Then there must be some η of length < d so that Aη is 0-good. For
suppose not: then for each σ ∈ {0, 1}d we can pick an xσ ∈ Aσ since Aσ
has positive measure. Then when η @ σ, we have xσ ∈ Eyη if and only if
η_〈1〉 v σ, contradicting d-stability.

Lemma 7.29. If A and B are both 0-good then µ((A×B)∩E)
µ(A×B) ∈ {0, 1}.

Proof. Since B is 0-good, for everty a ∈ A we have µ(B∩Ea)
µ(B) ∈ {0, 1}. Par-

tition A = A0 ∪ A1 where A0 = {a ∈ A | µ(B∩Ea)
µ(B) = 0} and A1 = {a ∈ A |

µ(B∩Ea)
µ(B) = 1}.
Analogously, we can define B0 = {b ∈ B | µ(A∩Eb)

µ(A) = 0} and B1 = {b ∈
B | µ(A∩Eb)

µ(A) = 1}, and since A is 0-good, B = B0 ∪B1.
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Suppose µ(A0) > 0; then we have µ((A0×B)∩E)
µ(A0×B) = 0. In particular, this

implies µ(B1) = 0, so µ((A×B)∩E)
µ(A×B) = µ((A×B0)∩E)

µ(A×B0) = 0.

On the other hand, if µ(A0) = 0 then µ((A×B)∩E)
µ(A×B) = µ((A1×B)∩E)

µ(A1×B) = 1.

Theorem 7.30. If E is stable then there is a countable partition V = ⋃
iAi

so that for for every pair Ai, Aj, µ((Ai×Aj)∩E)
µ(Ai×Aj) ∈ {0, 1}.

Proof. By the previous lemma, it suffices to choose the Ai so that each Ai is
0-good.

We choose the Ai inductively. Suppose that, for j < i, we have chosen
Ai. If µ(V \⋃j<iAj) = 0 then we are done. (Technically, ⋃j<iAj might not
be a partition, because there is an extra bit of measure 0; but we may add
the extra bit onto A1 and, since the extra bit has measure 0, A1 continues
to be 0-good.)

Otherwise, by Lemma 7.28, there exists a subset of V \⋃j<iAj which is
0-good. Let

ε = sup
B⊆V \

⋃
j<i

Aj , B is 0-good
µ(B).

There may be no subset of V \ ⋃j<iAj achieving this supremum, so we
choose a 0-good Ai ⊆ V \

⋃
j<iAj with µ(Ai) > ε/2.

We continue this until we have Ai for all i ∈ N (unless the process finishes
at a finite step). We claim that µ(V \⋃i∈NAi) = 0. Suppose not. Note that
since the Ai are disjoint subsets of V , limi→∞ µ(Ai) = 0. By Lemma 7.28,
there is a 0-good B ⊆ V \⋃i∈NAi. But there must be some i large enough
that µ(B) ≥ 2µ(Ai), contradicting the choice of Ai.

So µ(V \⋃i∈NAi) = 0. We replace A1 with A′1 = A1∪(V \⋃i∈NAi); since
A′1 differs from A1 on a set of measure 0, A′1 is also 0-good, so A′1, A2, A3, . . .
is the desired partition.

Corollary 7.31. If E is stable then for any ε > 0 there is a partition
V = ⋃

i≤k Bi so that for every pair Bi, Bj, µ((Bi×Bj)∩E)
µ(Bi×Bj) ∈ [0, ε) ∪ (1− ε, 1].

Proof. Let V = ⋃
iAi be the countable partition into 0-good sets given by

the theorem.
Choose k large enough that µ(⋃i>k Ai) = δ < εµ(A1)/3. We define

B1 = A1 ∪
⋃
i>k Ai and, for 1 < i ≤ k, Bi = Ai. Then for any pair i, j, if

1 < min{i, j} we have µ((Bi×Bj)∩E)
µ(Bi×Bj) ∈ {0, 1}. When one (or both) of i, j is 1,

the extra part B1 \A1 contributes an error of at most (2δ+δ2)µ(A1) < ε.
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7.8 Internal Cardinality and Pseudofinite Dimen-
sion

So far we have focused on the density structure of finite graphs and their
ultraproducts—that is, on sets with positive measure. However when we
have a large finite set, we can also consider behavior at different orders of
magnitudes.

Definition 7.32. When U is an ultrafilter, the nonstandard real numbers
are the ultraproduct [R]U .

That is, a nonstandard natural number is a sequence 〈rn〉n∈N where we
say 〈rn〉n∈N represents the same sequence as 〈sn〉n∈N if {n | rn = sn} ∈ U .
As always, we write [rn]U for the equivalence class of 〈rn〉n∈N.

It is common to abbreivate the nonstandard reals as ∗R; this notation
can be misleading, because it implies that there is a single clearly defined
object called ∗R.

Just like finite sets have sizes which are a natural number, internal sets
have “internal cardinality”, which is a nonstandard natural number:

Definition 7.33. The nonstandard natural numbers are the ultraproduct
[N]U—that is, those [rn]U such that {n | rn ∈ N} ∈ U .

If S ⊆ [Vn]k is internal, so S = [Sn]U , the internal cardinality is |S| =
[|Sn|]U .

Internal cardinality interacts with internal functions in the way we expect:

Lemma 7.34. If A and B are internal sets,

• there is an internal injection f : A→ B if and only if |A| ≤ |B|,

• there is an internal surjection f : A→ B if and only if |B| ≤ |A|,

• there is an internal bijection f : A→ B if and only if |A| = |B|.

The nonstandard real numbers have many of the properties we expect;
we can add, multiply, and divide them, for instance. We can also compare
them: we say [rn]U < [sn]U if {n | rn < sn} ∈ U .

Definition 7.35. [rn]U is bounded if there is a standard real number so that
{n | |rn| < r} ∈ U .

If [rn]U is bounded then st([rn]U ), the standard part of [rn]U is limn→U rn.
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For instance, we have µk(S) = st( |S|
|[Vn]kU |

): from this perspective, the
measure µk is the counting measure, suitably interpreted.

The nonstandard natural numbers satisfy a sort of induction principle
for internal sets.

Theorem 7.36. Let S be a set of nonstandard natural numbers such that
[0]n∈U ∈ S and, whenever [kn]U ∈ S, [kn + 1]U ∈ S. If S is internal then
S = [N]U .

We certainly need to demand that S be internal; for instance, if S
consisted of the constant sequences [k]U for k ∈ N, S would contain 0 and
be closed under successor, but would not contain [n]U .

Proof. Since S is internal, S = [Sn]U . Suppose {n | 0 ∈ Sn and Sn 6= N} ∈ U .
Then, for each such n, there is a least kn ∈ N \ Sn. Since [0]n∈U ∈ S,
{n | kn > 0} ∈ U , so we may consider [kn − 1]U and we have [kn − 1]U ∈ S.
But [kn]U 6∈ S.

The following variant is often more useful:

Corollary 7.37. If S ⊆ [N]U is internal and non-empty then S has a least
element.

Rather than focusing on sets of positive density, we can use the internal
cardinality to characterize the “dimension” of a set, relative to [Vn]U . For
instance, if each Vn is a set with |Vn| = n, we could consider subsets Xn ⊆ Vn
with |Xn| ≈

√
n. We can say that Xn has “dimension 1/2”. This makes

sense when we consider that a subset of Vn with size ≈ n is a 1 dimensional
set, a subset of V 2

n with size ≈ n2 is a 2 dimensional set, and analogously,
a subset of V k

n with size roughly nr should be an r dimensional set—even
when r is a real number.

More precisely, to calculate the dimension we look at the logarithm: if
|Xn| ≈ nr then log |Xn| ≈ r logn, so r ≈ log |Xn|

log |Vn| .

Definition 7.38. Let X = [Xn]U be an internal subset of V k = [V k
n ]U . The

(coarse) pseudofinite dimension of X is defined to be

st( log |X|
log |V | ) = lim

n→U

log |Xn|
log |Vn|

.

We write δ(X) for the coarse pseudofinite dimension of X.
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This is the only pseudofinite dimension we will consider, but we note
that there is a broader family of pseudofinite dimensions; within that family,
this is known as the “coarse” pseudofinite dimension.

Lemma 7.39. When V = [Vn]U ,

(1) δ(V k) = k,

(2) if A,B ⊆ V are internal then δ(A ∪B) = max{δ(A), δ(B)},

(3) if Y ⊆ V k+m and Z ⊆ V k are internal, δ(Z) = r, and for all ~v ∈ Z,
δ(Y~v) ≤ s then δ(⋃~v∈Z Y~v) ≤ r + s,

(4) if Y ⊆ V k+m and Z ⊆ V k are internal, δ(Z) = r, and for all ~v ∈ Z,
δ(Y~v) ≥ s then δ(⋃~v∈Z Y~v) ≥ r + s,

The last property is sometimes called the “fiber property”: it says that
if we have a collection of sets {Y~v}~v∈Z , the size of the union is bounded by
adding the number of sets in the collection and the size of each set. (Consider
that the cardinality of the union should be bounded by the product of the
cardinalities, and the logarithmic nature of dimension converts that to a
sum.)

Proof. The first part follows directly from the definition. For the second
part, if A = [An]U and B = [Bn]U , note that δ(A ∪B) = limn→U

log |An∪Bn|
log |Vn| .

We certainly have δ(A ∪ B) ≥ max{δ(A), δ(B)} since log |An∪Bn|
log |Vn| ≥ log |An|

log |Vn|
and similarly for Bn. We also have log |An ∪Bn| ≤ log 2 max{|An|, |Bn|} =
(log max{|An|, |Bn|}) + log 2, and since log 2

log |Vn| → 0, we have δ(A ∪ B) ≤
max{δ(A), δ(B)} as well.

For the third part, we have

δ(
⋃
~v∈Z

Y~v) = lim
n→U

log |⋃~v∈Zn(Yn)~v|
log |Vn|

≤ lim
n→U

log |Zn| ·max~v∈Zn |(Yn)~v|
log |Vn|

≤ r + s.

The fourth part is analogous.
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7.9 Stable Erdős-Hajnal
Coarse pseudofinite dimension is the right setting for considering the Erdős-
Hajnal conjecture, which says that, for every finite graph H, any graph with
no induced copies of H either has a large clique or an anti-clique.

Definition 7.40. If G = (V,E) is a graph, we say S ⊆ V is E-homogeneous
if either

(S
2
) ⊆ E or

(S
2
) ∩ E = ∅.

That is, S is either a clique in E (every pair is an edge) or an anti-clique
(no pair is an edge).

Conjecture 7.41 (Erdő–Hajnal Conjecture). For every finite graph H there
is a constant d(H) > 0 so that whenever G = (V,E) is a finite graph with
T indH (G) = ∅, there is an E-homogeneous set S ⊆ V with δ(S) ≥ d(H).

While this is open, it is known that stable graphs—that is, graphs omitting
the ladder of size d for all d—do have large homogeneous sets. Before proving
this, we need the following lemma, which says that if we have a set in a
graph where every vertex has very few neighbors, we can color the vertices in
the set with a small number of colors so that neighbors get different colors.

Lemma 7.42. Let B ⊆ [Vn]U and E ⊆ [Vn]2U be internal sets with E
symmetric, and suppose that for each x ∈ B, δ({y ∈ B | (x, y) ∈ E}) = 0.
Then there is an internal set I and internal function c : B → I such that:

• δ(I) = 0,

• if b, b′ ∈ B and c(b) = c(b′) then (b, b′) 6∈ E.

The finite version of this is not surprising: suppose that B is finite and for
each x ∈ B we have |{y ∈ B | (x, y) ∈ E}| ≤ m. Then we expect to be able
to partition B into sets B1, . . . , Bm+1 so that if x, x′ ∈ Bi then (x, x′) 6∈ E.
Indeed, we could construct such a partition greedily: place B in an order
and when we decide which partition component to put the j-th element of
B in, there are at most m of them which have been ruled out, so we place
this element in whichever one remains. The infinite version follows by doing
this in the ultraproduct.

Proof. There are really two parts to this. The first is noting that, since B is
internal and δ(Ex) = 0 for every x ∈ B, there is actually a supremum on the
sizes of the Ex which itself has dimension 0.

Indeed, let S ⊆ [N]U be the set of nonstandard natural numbers k such
that, for all x ∈ B, |Ex| ≤ k. This is an internal set (for instance, it can be
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expressed by a first-order formula using the predicate which holds of x, k
when |Ex| ≤ k) and contains every k with δ(k) > 0, so has a least element k.
If δ(k) > 0 then δ(k − 1) > 0, so k ∈ S as well; so for the least k ∈ S, we
must have δ(k) = 0.

Choose an internal set I with |I| = k+ 1. Now consider the set T ⊆ [N]U
of natural numbers m such that there is an internal U ⊆ B and c : U → I
with |U | = m so that if b, b′ ∈ U and c(b) = c(b′) then (b, b′) 6∈ E. Clearly
[0] ∈ S since |∅| = [0] the existence of such a function for the empty set is
trivial.

Consider the leastm 6∈ T . Ifm = |B| then we are done. Supposem < |B|.
Then m− 1 ∈ T , so we may choose U ⊆ B with |U | = m− 1 and c : U → I.
Choose any b ∈ B \ U . Since |Eb| < |I|, there must be some i ∈ I so that
there is no b′ ∈ U with (b, b′) ∈ E and c(b′) = i, so we may extend U to
U ∪{b} by adding c(b) = i. This contradicts the assumption that m 6∈ T .

The ultraproduct version of stable Erdős-Hajnal is the following.

Theorem 7.43. If [Gn]U = (V,E) is stable then there is an internal set S
with δ(S) > 0 so that S is E-homogeneous.

Proof. Let G = [Gn]U = (V,E) be d-stable. We will first show that there is
a set B with δ(B) > 0 such that either for every y ∈ B, δ({x ∈ B | (x, y) ∈
E}) = 0 or for every y ∈ B, δ({x ∈ B | (x, y) 6∈ E}) = 0.

We construct a tree of sets: let A〈〉 = V . Suppose we have constructed
Aη with δ(Aη) > 0. If there is a y ∈ Aη such that both δ({x ∈ Aη |
(x, y) ∈ E}) > 0 and δ({x ∈ Aη | (x, y) 6∈ E}) > 0 then let yη = y,
Aη_〈0〉 = {x ∈ Aη | (x, y) ∈ E} and Aη_〈1〉 = {x ∈ Aη | (x, y) 6∈ E}.

If we can construct such a tree of size d, for each leaf σ we have δ(Aσ) > 0,
so we may choose any xσ ∈ Aσ and we have a tree contradicting d-stability.

So we eventually obtain an Aη so that, for every y ∈ Aη, either δ({x ∈
Aη | (x, y) 6∈ E}) = 0 or δ({x ∈ Aη | (x, y) ∈ E}) = 0. Let A−η be those
y such that δ({x ∈ Aη | (x, y) ∈ E}) = 0 and A+

η be those y such that
δ({x ∈ Aη | (x, y) 6∈ E}) = 0, so Aη = A+

η ∪A−η .
If δ(A−η ) = 0, we may take B = Aη \ A−η . Otherwise, for each y ∈ A+

η ,
since δ({x ∈ A−η | (x, y) ∈ E}) = 0, δ({x ∈ A−η | (x, y) ∈ E}) = δ(A−η ).
Therefore δ({(x, y) ∈ E | x ∈ A−η and y ∈ A+

η }) = δ(A−η ) + δ(A+
η ) > 0.

But for each x ∈ A−η , δ({y ∈ A+
η | (x, y) ∈ E}) = 0, so δ({(x, y) ∈ E |

x ∈ A−η and y ∈ A+
η }) ≤ δ(A−η ) + 0 = δ(A−η ). Therefore δ(A+

η ) = 0, so we
may take B = Aη \A+

η .
Without loss of generality, let us assume we have a B with δ(B) > 0 such

that for every y ∈ B, δ({x ∈ B | (x, y) ∈ E}) = 0. Then by Lemma 7.42, we
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have an I with δ(I) = 0 and a c : B → I so that if c(b) = c(b′) then (b, b′) 6∈ E.
Consider Y = {(i, b) | c(b) = i}. Since δ(B) = δ(⋃i∈I Yi) ≤ 0 + supi∈I δ(Yi),
there must be some i ∈ I so that δ(Yi) = δ(B). Then Yi is the desired
anti-clique.

As always, we can extract a finitary conclusion:

Theorem 7.44. For every d there is a δ > 0 so that whenever G = (V,E)
is d-stable and sufficiently large, there is an S ⊆ V with |S| ≥ |V |δ so that S
is E-homogeneous.

Proof. Suppose not. Then there is a d so that for every n there is a Gn =
(Vn, En) with ≥ n vertices which is d-stable but every clique or anti-clique
has size < |V |1/n.

Let G = [Gn]U . Since being d-stable is a first-order property and all
the Gn are d-stable, G is d-stable. Then there is an internal homogeneous
set S = [Sn]U with δ(S) > 0. Therefore we may choose an n so that Sn is
homogeneous and |Sn| ≥ |V |1/n, contradicting our assumption.

7.10 Distal Cell Decompositions

We can think of stability as one way for graphs with finite VC dimension to
be particularly nice. We now consider a different way that a graph of finite
VC dimension might be particularly nice.

Definition 7.45. Let E ⊆ V × W be a graph. We say E has a distal
cell decomposition if there is a k and a C ⊆ V ×W k such that whenever
B ⊆W is finite with |B| ≥ 2 and a ∈ V , there are (b1, . . . , bk) ∈ Bk so that
(a, b1, . . . , bk) ∈ C and for every b ∈ B, either

• Cb1,...,bk ⊆ Eb, or

• Cb1,...,bk ∩ Eb = ∅.

The sets Cb1,...,bk are the “cells” in the name. (This notion comes from
[22], where the authors require some additional definable conditions on a
distal cell decomposition.)

The idea is that (b1, . . . , bk) is a bounded amount of information which
encodes the set Ea ∩B. To see that this happens, observe that if we have
chosen b1, . . . , bk so that (a, b1, . . . , bk) ∈ C, the second condition requires
that, for all b ∈ B, Cb1,...,bk ⊆ Eb if and only if b ∈ Ea. (If Cb1,...,bk ⊆ Eb
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then, since a ∈ Cb1,...,bk , we must have a ∈ Eb, so b ∈ Ea. If Cb1,...,bk ∩Eb = ∅
then, since a ∈ Cb1,...,bk , we have a 6∈ Eb, so b 6∈ Ea.)

For instance, suppose V = W = [0, 1] and E = {(x, y) | x < y}. The idea
is that when B is a finite set, if we want to know about Ea ∩B, all we really
need to know is which interval inside B contains a (or if a is either strictly
above or strictly below all of b). Then we can take k = 2 and

C = {(a, b1, b2) | b1 ≤ a < b2}∪{(a, b1, b2) | b2 < b1 ≤ a}∪{(a, b1, b1) | a < b1}.

The first set is the main case; the second two are encoding that a is either
larger than or smaller than everything in B. (This is why we need the
requirement |B| ≥ 2—it makes sure we can do things like selectively repeat
elements to encode different cases.)

Whenever B ⊆ W is a finite set and a ∈ V , if a ≤ minB then we take
b1 = minB and have (a, b1, b1) ∈ C, so Cb1,b1 = [0, b1) ⊆ [0, b) for all b ∈ B.
If a ≥ maxB then we take b1 = maxB and b2 ∈ B to be any other element;
then (a, b2, b1) ∈ C and Cb2,b1 = [b1, 1], which is disjoint from Eb for all
b ∈ B. Otherwise, we choose b1 = maxB ∩ [0, a] and b2 = minB ∩ (a, 1], so
(a, b1, b2) ∈ C and Cb1,b2 = [b1, b2), which is contained in Eb for every b ∈ B
with b2 ≤ b and disjoint from Eb for every b ∈ B with b ≤ b1.

On the other hand, any graph with infinite VC dimension fails to have a
distal cell decomposition.

Lemma 7.46. If E ⊆ V ×W has a distal cell decomposition then E has
finite VC dimension.

Proof. Suppose C ⊆ V ×W k is a distal cell decomposition for E. Let B ⊆W
with 2|B| > |B|k.

Observe that each choice of b1, . . . , bk ∈ B defines a subset of B, namely
Sb1,...,bk = {b | Eb ⊇ Cb1,...,bk}. We will show that, for every a, Ea ∩B is one
of these sets; since there are not enough such sets to shatter B, it follows
that E has finite VC dimension.

Take any a ∈ V . Since C is a distal cell decomposition, there must be
b1, . . . , bk with (a, b1, . . . , bk) ∈ C. If b ∈ Ea∩B then we have a ∈ Eb∩Cb1,...,bk ,
so Eb ∩ Cb1,...,bk , so we must have Eb ⊇ Cb1,...,bk , so b ∈ Sb1,...,bk . Conversely,
if b ∈ Sb1,...,bk then a ∈ Cb1,...,bk ⊆ Eb. Therefore Ea ∩B = Sb1,...,bk .

Most sets with finite VC dimension have distal cell decompositions. For
a while, only one essential example was known.

Theorem 7.47 ([27]). Let p be a prime and let F be the algebraic closure of
Fp. Let P ⊆ F2 be the set of points and let L be the set of lines in F2. Then
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the incidence relation I ⊆ P × L consisting of pairs (p, `) where the point p
is on line ` is not distally compressible.

This example is known to be stable. Two more examples have been
constructed using more [20, 94] using graph theoretic methods.

The motivation for distal cell decompositions come from from the model
theoretic notion of distality [141]. A characterization of distality given in
[24] says that a theory is distal if every graph defined in the theory has a
distal cell decomposition which is itself definable in the theory. The original
purpose of distality was to capture the notion of NIP theories (that is,
theories where every definable set has finite VC dimension) which are “purely
unstable”; indeed, non-trivial theories cannot be both distal and stable.
However distality is fundamentally different in character from stablity; in
particular, it is not monotone in the theory—we could have a theory which is
not distal because the compression schemes are not definable, but by adding
additional formulas, the theory becomes distal. (And in the process, we
might expand a stable theory to an unstable one because the new formulas
are unstable.)

Graphs with distal cell decompositions satisfy a strong form of the
Erdős–Hajnal conjecture in which we find a homogeneous set of positive
measure—not just dimension—in a bipartite graph. We will prove this under
an extra assumption, that a related set system has finite VC dimension.

Definition 7.48. When C ⊆ V ×W k is a distal cell decomposition for
E ⊆ V ×W , we say d ∈W crosses ~b if both C~b ∩ Ed 6= ∅ and C~b \ Ed 6= ∅.

For each ~b ∈W k, we define Cr(C,~b) to be the set of d ∈W which cross
~b.

The next lemma is strong version of Erdős-Hajnal for graphs with a nice
enough distal cell decomposion.

Theorem 7.49. If G = (V,E) is a measurable graph with a distal cell
decomposition such that the set system (V, {Cr(C,~b)}~b∈Wk) has finite VC
dimension then there is a ε > 0 and sets X,Y with µ1(X) ≥ ε and µ1(Y ) ≥
1/4 which are E-homogeneous—that is, either X×Y ⊆ E or (X×Y )∩E = ∅.

Indeed, the proof will show that we can even ensure that Y has measure
close to 1/2.

Proof. Fix a chambered compression scheme C ⊆ V×V k so that (V, {Cr(C,~b)}~b∈V k)
has finite VC dimension. Let ε be 1/ck where c is large enough that there is
an 1/2-net of size ≤ c.
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Let B ⊆ V be a 1/2-net with |B| ≤ c, so for every ~b ∈ V k (note that ~b
need not be from Bk), if µ1(Cr(C,~b)) ≥ 1/2 then B ∩ Cr(C,~b) 6= ∅.

For every a ∈ V , there must be some ~b ∈ Bk so that a ∈ C~b and
Cr(C,~b) ∩ B = ∅. So V = ⋃

~b∈Bk|Cr(C,~b)∩B=∅C~b, so there must be some
~b ∈ Bk so that Cr(C,~b) ∩B = ∅ and µ1(C~b) ≥ 1/|B|k ≥ ε.

Fixing this ~b, let D0 = {d | C~b ⊆ Ed} and D1 = {d | C~b ∩ Ed = ∅}. We
have V = D0 ∪D1 ∪ Cr(C,~b). Since we chose B to be an 1/2-net, we must
have µ1(Cr(C,~b)) < 1/2, so there is an i ∈ {0, 1} with µ1(Di) > 1

2(1 − ε).
Since C~b ×Di is homogeneous regardless of the value of i, are homogeneous,
we have found a homogeneous rectangle.

As the proof suggests, by replacing the 1/2-net with a δ-net for some
small δ, we could make µ1(Y ) as close to 1/2 as we like, at the cost of making
ε smaller.

Finally we give a strengthening of regularity for distal graphs. When a
graph is stable, we can arrange that E has density close to 0 or 1 on every
rectangle. On the other hand, for distal graphs we still have to allow a small
number of rectangles to have intermediate density, but we can guarantee
that the good rectangles don’t merely have density close to 0 or 1, but are
actually homogeneous.

Theorem 7.50 (Regularity for Distal Graphs). For each ε > 0 there is an
n so that whenever G = (V,E) is a graph with a distal cell decomposition
so that (V, {Cr(C,~b)}~b∈Wk) has finite VC dimension, there is a partition
V = ⋃

i≤k Ai so that either Ai ×Aj ⊆ E or Ai ×Aj ∩E = ∅ except for a set
R of (i, j) so that µ2(⋃(i,j)∈RAi ×Aj) < ε.

Proof. We begin with the trivial partition V = V . Given a partition V =⋃
i≤k Ai, let R({Ai}) be the set of (i, j) so that Ai, Aj is not E-homogeneous

and let m({Ai}) = µ2(⋃(i,j)∈R({Ai})Ai ×Aj).
Consider some partition V = ⋃

i≤k Ai. Take any pair Ai × Aj which
is not E-homogeneous. The previous theorem gives us subsets Bi ⊆ Ai
and Bj ⊆ Aj with µ1(Bi) ≥ δµi(Ai) and µ1(Bj) ≥ 1

4µ1(Aj). Consider the
partition V = ⋃

i≤k+2A
′
i where we replace Ai with Bi, Ai\Bi and Aj , Aj \Bj .

Then
m({A′i}) ≤ m({Ai})−

δ

4µ1(Ai)µ1(Aj).

Applying this repeatedly, we eventually obtain a partition with m({Ai}) <
ε.
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7.11 Remarks
VC dimension is a notion which has been reinvented a very large number
of times in a variety of contexts, including computational learning theory
[161], model theory [139], and combinatorics [135]. In model theory, the
notion of “finite VC dimension” is often called “NIP” (standing for “not the
independence property”). (More precisely, one typically calls a theory NIP if
all its formulas define sets of finite VC dimension; the development of NIP
theories and VC dimension were completely separate for almost twenty years
before Laskowski identified the connection [106].)

One might ask whether the VC dimension characterizes the rate of growth
of the function of πG(n). In fact, it does not: there are examples where G
has VC dimension d but the function πG(n) grows at a much slower than nd.
The infimum of those r such that πG(n) ∈ O(nr) is called the VC density of
G [44, 64, 117], and can be much lower than the VC dimension (and need
not be an integer).

The proof we give of the existence of an ε-net is essentially taken from
[116], which is an excellent reference for the geometric consequences of finite
VC dimension. The existence of ε-approximations is known as the Glivenko-
Cantelli property; the relationship between various forms and strengthenings
of the Glivenko-Cantelli property and combinatorial characterizations has
been extensively studied [9, 45, 147, 148].

The stronger form of regularity for graphs with finite VC dimension was
first noted in [111]. Special cases of regularity for graphs defined in (usually
algebraic) structures known to have finite VC dimension were further studied
in [58, 59] and a more general investigation was begun in [26].

Stability was the first model theoretic property of its type to be discovered,
and has been a central topic in model theory for several decades [128,
129]. The stronger regularity for stable graphs was shown in [114], and the
connection between properties like stability, bounded VC dimension, and
distality on the one hand, and regularity on the other, has been extensively
investigated in the setting of particular (usually algebraic) structures having
these properties [58, 59, 151] as well as from the analytic and model theoretic
perspective [2, 25, 26, 27, 35, 114, 115]. The specific form of the result here
is essentially from [39]. Many of these results include quantitative bounds of
the sort we have omitted here.

The notion of pseudofinite dimension was introduced in [90] and developed
in [67, 68, 72, 89].



Chapter 8

Hypergraphs

8.1 k-Graphs

We would like to generalize the results of the previous chapters to hypergraphs
in which an “edge” is a k-tuple instead of a pair.

Definition 8.1. A k-graph on V is a set E ⊆ (Vk).
So a 2-graph is exactly a graph. As with graphs, our definition of k-graph

implies irreflexivity and symmetry—a k-graph is a collection of subsets of V ,
each of size exactly k. Naturally, we call a set e ∈ E a “k-edge”.

The definition of an ultraproduct is essentially unchanged: if, for each n,
(Vn, En) is a k-graph then ([Vn]U , [En]U ) is a k-graph as well.

Definition 8.2. A measurable k-graph is a Keisler graded probability space
{(V k,Bk, µk)}k∈N together with a symmetric set E ∈ Bk. A measurable
k-graph is atomless if, for every v ∈ V , µ1({v}) = 0.

Again our main examples are when V is finite and when V is an ultra-
product. As before, we will often simply say “(V,E, µ1) is a measurable
k-graph”.

We can define sub-k-graphs and induced sub-k-graphs analogously to
graphs.

Definition 8.3. If (V,E, µ1) is a measurable k-graph andH = ({w1, . . . , wd}, F )
is a finite k-graph, we define:

• TH(E) is the set of d-tuples (v1, . . . , vd) ∈ V d such that whenever
{wi1 , . . . , wik} ∈ F , {vi1 , . . . , vik} ∈ E,

223
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• T indH (E) is the set of d-tuples (v1, . . . , vd) ∈ V d such that {wi1 , . . . , wik} ∈
F if and only if {vi1 , . . . , vik} ∈ E,

• tH(E) = µd(TH(E)),

• tindH (E) = µd(T indH (E)).

We mostly focus on 3-graphs as the natural next step after graphs, though
the ideas immediately generalize to k > 3.

We can consider an assortment of examples. Analogous to the complete
bipartite graph, there is a complete tripartite 3-graph.

Example 8.4. A complete tripartite 3-graph is a 3-graph (V,E) where
V = V0 ∪ V1 ∪ V2, the three parts are pairwise disjoint, and E contains those
triples with one vertex in each Vi.

There are several ways to define bipartite 3-graphs.

Example 8.5. A symmetric bipartite 3-graph is a 3-graph (V,E) where
V = V0 ∪ V1 and E consists of those triples with at least one vertex in each
Vi.

An asymmetric bipartite 3-graph is a 3-graph (V,E) where V = V0 ∪ V1
and E consists of those triples with at exactly one vertex in V1.

We can also define a random 3-graph analogous to our definition of
Rp(V ).

Example 8.6. Define R3
p(V ) to be the 3-graph where, for each triple

{x, y, z} ∈ (V3) we flip a coin which is heads with probability p and place
{x, y, z} ∈ E if the coin comes up heads.

We can verify results analogous to those we found for the random graph:
in particular, for every finite H = (W,F ), tH(R3

p(V )) ≈ p|F |.
One of the new features of 3-graphs that we did not see with ordinary

graphs is that there are other “random-like” 3-graphs.

Definition 8.7. If E is a graph on V , define Kodd(E) to be the 3-graph
consisting of those triples {x, y, z} so that either one or three of the pairs
{x, y}, {x, z}, {y, z} belong to E.

In particular, consider Kodd(R1/2). We can verify that, with high proba-
bility, this 3-graph has density 1/2, but it cannot be fully random. Indeed,
Kodd(R1/2) omits some induced sub-3-graphs entirely.
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Definition 8.8. Let K−3,4 be the 3-graph on 4-vertices omitting exactly one
of the 4 possible 3-edges.

Observe that, for any E, T ind
K−3,4

(Kodd(E)) = ∅. To see this, consider any

four vertices x, y, z, w, and observe that {x, y, z} ∈ Kodd(E) exactly when
χE(x, y) +χE(x, z) +χE(y, z) is odd. For any four vertices {x, y, z, w}, if the
three edges {x, y, z}, {x, y, w}, and {x, z, w} are all are present in Kodd(E)
then can add up these three triples and we see that

2χE(x, y) + 2χE(x, z) + 2χE(x,w) + χE(y, z) + χE(y, w) + χE(z, w),

as the sum of three odd numbers, is also odd. But this means χE(y, z) +
χE(y, w)+χE(z, w) is odd, and therefore, the fourth edge {y, z, w} is present
as well.

On the other hand, we will see that there is a class of 3-graphs that
Kodd(R1/2) does have the “correct” number of copies of, as if it were random:
indeed, we will identifyKodd(R1/2) as having a “partial randomness” property
(analogous, in some sense, to the way that equidistribution is a weak notion
of randomness for graphs).

Example 8.9. Let → be a tournament on V—that is, →⊆ V 2 is a relation
such that for every pair {x, y} ∈ (V2), exactly one of x→ y or y → x holds.
Then we can define a 3-graph C(→) to consist of those triples {x, y, z}
such that {x, y, z} forms a cycle in → (in either direction—that is, either
x→ y, y → z, z → x, or x→ z, z → y, y → x).

In particular, consider the case where → is the random tournament on
V—that is, for each pair {x, y}, we flip a coin to determine whether x→ y
or y → x. Then C(→) has density roughly 1/4; one way to see this is to
observe that if we fix the order x → y, the other two components y → z and
z → y each independently have a 1/2 chance to point the right direction to
make a cycle, so the probability is 1/4 that both do.

Again, this 3-graph will turn out to satisfy a weak notion of randomness,
but cannot be fully random since, for any tournament →, TK−3,4(C(→)) = ∅.
To see this, suppose {x, y, z, w} are vertices and both {x, y, z} ∈ H and
{x, y, w} ∈ C(→). Without loss of generality, assume x→ y, so also y → z
and y → w. Therefore {y, z, w} 6∈ C(→). Similarly, z → x and w → x, so
{x, z, w} 6∈ C(→).

Example 8.10. Let V be linearly ordered by < and take a random 3-coloring
of
(V

2
)
into red, blue, and yellow, and if x < y < z then put {x, y, z} ∈ E if

{x, y} is red, {x, z} is blue, and {y, z} is yellow.
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This 3-graph has density roughly 1/27—given x < y < z, this is the
probability that all three pairs get the right colors. Once again, we will see
that this has a weak randomness property. In an important sense, this will
turn out to be a “minimal” 3-graph—roughly speaking, every large 3-graph
contains (not necessarily induced) sub-3-graphs which look like this.

8.2 Notation for Integrals Indexed by Graphs

In order to consider notions like tH(f) when H is a k-graph and f is a
symmetric function on V k, it will be helpful to introduce some notation for
indexing integrals by tuples.

Definition 8.11. Suppose (W,F ) is a finite k-graph. We write V W for the
set of functions from W to V . When ~x ∈ V W , we call ~x a W -tuple. For any
w ∈ W , we write xw = ~x(w). If e ∈ F is a k-edge, we write ~xe for the set
{xw | w ∈ e}.

This notation naturally extends the usual notation for tuples: we are
identifying (x1, . . . , xd) ∈ V d with the function ~x(i) = xi. Note that V W is
isomorphic to V |W |—the only difference is the labeling: we think of V |W |
containing ordered sequences (x1, . . . , xd), while we think of the elements of
V W as sequences whose elements are named by the vertices of W .

When V is atomless and f : V k → R is symmetric, ~x ∈ V W , and e ∈ (Wk ),
the notation f(~xe) makes sense everywhere except for the set of measure
0 where xw = xw′ for two distinct w,w′ ∈ e—taking e = {w1, . . . , wk}, we
identify f(xe) with f(xw1 , . . . , xwk), and since f is symmetric, the value of
f(xe) is independent of the choice of ordering of the vertices in e.

This notation will give us a useful, compact way to express various
integrals; for instance, we can write

tH(f) =
∫ ∏

e∈F
f(xe) dµ|W |.

8.3 Weak Quasirandomness

For graphs, we ended up with three equivalent formulations of quasirandom-
ness for atomless measurable graphs—G = (V,E) being quasirandom was
equivalent to each of the following:

• for every H = (W,F ), tH(G) = (tK2(G))|F |,
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• tC4(G) = (tK2(G))4,

• E(χE | B2,1) is the function constantly equal to tK2(G).

We would like to find three analogous characterizations for quasirandom
k-graphs.

There is a sub-σ-algebra analogous to B2,1:

Definition 8.12. Let B0
k,1 consist of sets of the form ⋃

i≤r
∏
j≤kXi,j where

each Xi,j ∈ B1

That is, B0
k,1 consists of “boxes”—subsets of V k which are formed by

products of a set on each side—and their unions. As before, B0
k,1 is an

algebra.

Definition 8.13. Bk,1 ⊆ Bk consists of those sets B ∈ Bk such that, for
every ε > 0, there is a Bε ∈ B0

k,1 such that µk(B 4Bε) < ε.

As in Theorem 6.6, we get:

Theorem 8.14. Bk,1 is a σ-algebra.

Definition 8.15. We say E is
(k

1
)
-quasirandom if E(χE | Bk,1) is a constant

function.

Theorem 8.16. The following 3-graphs are
(3
1
)
-quasirandom:

• Kodd(R1/2),

• C(→) where → is the random tournament.

Proof. Consider a box A×B × C.
ForKodd(R1/2), let E = R1/2 and observe that µ3(Kodd(E)∩(A×B×C))

is a sum of four terms like∫
χE(x, y)(1− χE(x, z))(1− χE(y, z))χA(x)χB(y)χC(z) dµ3

over the various ways to have either one or three edges present. For each of
these terms, we can successively consider integrals over two variables at a
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time, as in the proof of Theorem 5.4. For instance∫
χE(x, y)(1− χE(x, z))(1− χE(y, z))χA(x)χB(y)χC(z) dµ3

=
∫
χC(z)

[∫
χE(x, y)(1− χE(x, z))(1− χE(y, z))χA(x)χB(y) dµ2(x, y)

]
dµ1(z)

=
∫
χC(z)

[1
2

∫
(1− χE(x, z))(1− χE(y, z))χA(x)χB(y) dµ2(x, y)

]
dµ1(z)

=
∫
χB(y)

[1
2

∫
(1− χE(x, z))(1− χE(y, z))χA(x)χC(z) dµ2(x, z)

]
dµ1(y)

=
∫
χB(y)

[1
4

∫
(1− χE(y, z))χA(x)χC(z) dµ2(x, z)

]
dµ1(y)

=
∫
χA(x)

[1
4

∫
(1− χE(y, z))χB(y)χC(z) dµ2(y, z)

]
dµ1(x)

=
∫
χA(x)

[1
8

∫
χB(y)χC(z) dµ2(y, z)

]
dµ1(x)

=1
8µ3(A×B × C).

Since this holds for each term, µ3(Kodd(E)∩ (A×B×C)) = 1
2µ3(A×B×C).

Since this holds for every rectangle, E(Kodd(E) | B3,1) = 1/2.
The argument for C(→) is similar: µ3(C(→) ∩ (A×B × C)) is∫

χ→(x, y)χ→(y, z)χ→(z, y)χA(x)χB(y)χC(z) dµ3

+
∫
χ→(y, x)χ→(x, z)χ→(z, x)χA(x)χB(y)χC(z) dµ3

and the symmetric term, and the same argument, using the fact that E(χ→ |
B2,1) is constantly 1/2, shows that∫

χ→(x, y)χ→(y, z)χ→(z, y)χA(x)χB(y)χC(z) dµ3 = 1
8µ3(A×B × C)

and∫
χ→(y, x)χ→(x, z)χ→(z, x)χA(x)χB(y)χC(z) dµ3 = 1

8µ3(A×B × C),

so

µ3(C(→) ∩ (A×B × C)) = 1
4µ3(A×B × C) = µ3(C(→))µ3(A×B × C).
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Since these 3-graphs omit some small 3-graphs entirely, they certainly do
not have the correct density for all 3-graphs. However

(k
1
)
-quasirandomness

does imply the correct density for linear k-graphs.

Definition 8.17. A k-graph (W,F ) is linear if whenever e, e′ ∈ F with
e 6= e′, |e ∩ e′| ≤ 1.

That is, a k-graph is linear if two k-edges never share more than a single
vertex in common.

Theorem 8.18. If G = (V,E) is
(k

1
)
-quasirandom and H = (W,F ) is linear

then tH(G) = (µk(E))|F |.

Proof. By induction on |F |. When |F | = 0, H is the empty graph on |W |
vertices, so tH(G) = 1 by definition.

Suppose |F | > 0. Choose some edge e0 ∈ F and let H− = (W,F \ {e0}).
Numbering vertices in W appropriately, we may assume e0 = {w1, . . . , wk}.
For each i ≤ k, let Fi ⊆ F consist of those edges e ∈ F with wi ∈ e. Since H
is linear, the Fi are pairwise disjoint. Let F− = F \⋃i≤k Fi, so F− consists
of those e with e ∩ e0 = ∅. Then

tH(G) =
∫ ∏

e∈F
χE(xe) dµ|W |

=
∫ ∏

e∈F−
χE(xe)

∫ χE(xe0)
∏
i≤k

∏
e∈Fi

χE(xe) dµk(xe0)

 dµ|W |−k.
Observe that the inner integral looks at the product of χE(xe0) with the
function fxW\e(xe) = ∏

i≤k
∏
e∈Fi χE(xe) (for some fixed value of the coordi-

nates xW\e). The function f is measurable with respect to Bk,1, since it is a
product of terms each of which depends on only one of the coordinates xi.
Therefore∫

χE(xe0)
∏
i≤k

∏
e∈Fi

χE(xe) dµk(xe) = µk(E)
∫ ∏

i≤k

∏
e∈Fi

χE(xe) dµk(xe),

and therefore

tH(G) = µk(E)tH−(G) = µk(E)(µk(E))|F |−1 = (µk(E))|F |

by the inductive hypothesis.
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Note that we cannot simply extend this to induced sub-k-graphs. (If we
were to try, we would end up looking at edges not in the linear k-graph,
which would overlap in more than one vertex.)

As we might hope, there is a single linear k-graph analogous to C4. It
is easiest to understand this as a k-partite graph. The definition is chosen
exactly to make the right applications of Cauchy-Schwarz work. We can
obtain the relevant k-graph from a certain sequence.

Definition 8.19. Let (V,E) be a k-partite k-graph with V = V1∪V2∪· · ·∪Vk—
that is, E ⊆ ∏i≤k Vi, so each k-edge contains exactly one vertex from each
Vi.

We define the i-doubling of (V,E), written Di(V,E), to be the k-partite
k-graph where:

• Di(V,E) is k-partite with parts V ′j where:

– if j = i then V ′j = Vi,
– if j 6= i then V ′j = {0, 1} × Vi,

• if {v1, . . . , vk} ∈ E with each vj ∈ Vj and b ∈ {0, 1} then

{(b, v1), (b, v2), . . . , vi, . . . , (b, vk)}

is an edge in Di(V,E).

That is, the i-doubling makes two copies of each vertex not in the i-th
part.

For example, consider beginning with the simple 2-graph consisting of a
single edge, which we view as a bipartite graph with V1 = {x} and V2 = {y}.
The 1-doubling is the V graph: we double the vertex y, so V ′2 = {(0, y), (1, y)},
with both vertices adjacent to x. If we 2-double V, we get C4: we now make
two copies of x, so V ′′1 = {(0, x), (1, x)}, V ′′2 = {(0, y), (1, y)}, and all four
edges between the two parts are present.

Definition 8.20. Mk[
(k

1
)
] is the k-graph Dk(Dk−1(· · · (D1(G)))) where G is

the k-partite k-graph consisting of a single k-edge.

In particular, M2[
(2
1
)
] is exactly C4.

Similarly, we can consider M3[
(3
1
)
] being built in stages:

G D1(G) D2(D1(G)) D3(D2(D1(G)))
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Lemma 8.21. If G is a linear k-partite k-graph then Di(G) is linear.

Proof. Suppose e, e′ are distinct edges of Di(G). Then they have the
form {(b, v1), . . . , vi, . . . , (b, vk)} and {(b′, v′1), . . . , v′i, (b′, v′k)} for some edges
{v1, . . . , vk} and {v′1, . . . , v′k} of G. If e and e′ share more than one vertex
then we have v′i = vi and v′j = vj for two distinct indices i 6= j, contradicting
the linearity of G.

Corollary 8.22. Mk[
(k

1
)
] is linear.

An important consequence of the doubling construction is the following
Cauchy-Schwarz-like inequality.

Lemma 8.23. For any graph G, |tG(f)|2 ≤ tDi(G)(f).

Proof. Let G = (⋃i≤k Vi, E). We unfold the definitions and apply Cauchy-
Schwarz.

|tG(f)|2 =

∫ ∏
{v1,...,vk}∈E

f(xv1 , . . . , xvk) dµ⋃
j≤k Vi

2

=

∫∫ ∏
{v1,...,vk}∈E

f(xv1 , . . . , xvk) dµ⋃
j 6=i Vj

dµVi

2

=
∫ ∫ ∏

{v1,...,vk}∈E
f(xv1 , . . . , xvk) dµ⋃

j 6=i Vj

2

dµVi

=
∫ ∫ ∏

{v1,...,vk}∈E
f(xv1 , . . . , xvk) dµ⋃

j 6=i Vj×{0}

·
∫ ∏
{v1,...,vk}∈E

f(xv1 , . . . , xvk) dµ⋃
j 6=i Vj×{1}

dµVi

= tDi(G)(f).

Corollary 8.24. | ∫ f dµ|2k ≤ t
Mk[(k1)](f).

Proof. Recalling that when G is the k-partite k-graph consisting of a single
k-edge,

∫
f dµ = tG(f), this follows from the previous lemma applied to the

construction of Mk[
(k

1
)
].
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This suggests, correctly, that we could think of t
Mk[(k1)](f) as representing

a norm, similar to the way ||f ||U2 = (tCr(f))1/4 represents a norm. We
can even define a corresponding “inner product” with 2k positions so that
t
Mk[(k1)](f) = 〈{fσ}σ∈{0,1}{1,...,k}〉Mk[(k1)].

We can give a direct construction of Mk[
(k

1
)
] as well.

Lemma 8.25. Mk[
(k

1
)
] is isomorphic to the k-graph (V,E) where:

• V = V1 ∪ · · · ∪ Vk where each Vi contains 2k−1 vertices labeled by
functions υ : ({1, . . . , k} \ {i})→ {0, 1},

• E consists of 2k edges, one for each function σ : {1, . . . , k} → {0, 1},
where the edge eσ consists of exactly the vertex labeled σ � ({1, . . . , k} \
{i}) from each part.

Theorem 8.26. For a k-graph G = (V,E), the following are equivalent:

(1) G is
(k

1
)
-quasirandom,

(2) for every linear k-graph H = (W,F ), tH(G) = (µk(E))|F |,

(3) t
Mk[(k1)](E) = (µk(E))2k .

1⇒ 2 is Theorem 8.18 and 2⇒ 3 follows since Mk[
(k

1
)
] is linear, so all

that remains is 3 ⇒ 2. We will prove something slightly weaker, namely
that for functions f , E(f | Bk,1) = 0 is equivalent to t

Mk[(k1)](f) = 0. In
particular, if we apply this to the function f = χE − µ(E), this means
that showing t

Mk[(k1)](χE − µ(E)) = 0 suffices to show that G = (V,E) is(k
1
)
-quasirandom. (Going further would require a bit more development of

the seminorm perspective on t
Mk[(k1)] than we need.)

The key step is showing that for any function f , the number of weighted
copies of Mk[

(k
1
)
] is monotonic if we restrict one coordinate. This is a

generalization of Lemma 5.16, which showed the analogous statement for C4
(in terms of the U2 norm).

Lemma 8.27. For any f ∈ L∞(µk) and any B ⊆ V ,

t
Mk[(k1)](f(x1, . . . , xk)χB(xi)) ≤ tMk[(k1)](f).

This is trivial if f is non-negative (for instance, f = χE), but the main
case we will want to apply it to is f = χE − µ(E), which can have “negative”
copies of Mk[

(k
1
)
], so the monotonicity is meaningful.
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Proof. We will abbreviate f(x1, . . . , xk)χB(xi) by fχB, remembering that
χB is applied to the i-th coordinate. We have f = (fχB) + (fχB) (where B
is the complement of B, so fχB = f(x1, . . . , xk)(1− χB(xi))).

We view t
Mk[(k1)](f) is an integral of a big product indexed by the edges

of Mk[
(k

1
)
]. Given σ : {1, . . . , k} → {0, 1}, let us abbreviate σi = σ �

({1, . . . , k} \ {i}). Then the edges of Mk[
(k

1
)
] have the form (σ1, . . . , σk) for

a single σ, so we can write the integral as

t
Mk[(k1)](f) =

∫ ∏
σ∈{0,1}{1,...,k}

f(xσ1 , . . . , xσk) dµ

=
∫ ∏

σ∈{0,1}{1,...,k}
(f(xσ1 , . . . , xσk)χB(xσi) + f(xσ1 , . . . , xσk)χB(xσi)) dµ.

We can expand out the product so that this is equal to a sum of 22k

integrals indexed by functions τ : {0, 1}{1,...,k} → {B,B}: we have

t
Mk[(k1)](f) =

∑
τ∈{B,B}{0,1}{1,...,k}

∫ ∏
σ∈{0,1}{1,...,k}

f(xσ1 , . . . , xσk)χτ(σ)(xσi) dµ.

Note that the term where τ(σ) = B for all B is precisely t
Mk[(k1)](fχB), so it

suffices to prove that all other terms are non-negative.
Let us consider the term corresponding to some particular function τ .

For any σ ∈ {0, 1}{1,...,k}, let σ ∈ {0, 1}{1,...,k} be given by

σ(j) =
{
σ(j) if j 6= i
1− σ(i) if j = i

.

That is, σ flips the i-th coordinate and leaves the remaining coordinate alone.
Suppose there is a σ so that τ(σ) 6= τ(σ). Then the product is constantly 0,
because xσi = xσi , so for every xσi , either χτ(σ)(xσi) = 0 or χτ(σ)(xσi) = 0.

So consider the remaining terms, where τ has the property that τ(σ) =
τ(σ) for all σ. Then we may view the product as a square. Given σ :
({1, . . . , k} \ {i}) → {0, 1} and b ∈ {0, 1}, let us write σb for the element
of {0, 1}{1,...,k} with σb(j) = j for j 6= i and σb(i) = b. Note that our
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assumption is exactly that τ(σ0) = τ(σ1) for each σ. Then∫ ∏
σ∈{0,1}{1,...,k}

f(xσ1 , . . . , xσk)χτ(σ)(xσi) dµ

=
∫ ∏

σ∈{0,1}{1,...,k}\{i}
f(xσ01 , . . . , xσ0k)χτ(σ0)(xσ)f(xσ11 , . . . , xσ1k)χτ(σ1)(xσ) dµ

=
∫  ∏

σ∈{0,1}{1,...,k}\{i}
f(xσ01 , . . . , xσ1k)χτ(σ0)(xσ)

2

dµ.

In particular, this is an integral of a square, and therefore non-negative.
So we have t

Mk[(k1)](f) = t
Mk[(k1)](fχB) + · · · , and since all the terms in

· · · are non-negative, t
Mk[(k1)](f) ≥ t

Mk[(k1)](fχB).

Theorem 8.28. If t
Mk[(k1)](f) = 0 then E(f | Bk,1) = 0.

Proof. If E(f | Bk,1) 6= 0 then there must exist sets Ai ⊆ V so that
| ∫ f(x1, . . . , xl)

∏
i χAi(xi) dµk| > 0.

By Corollary 8.24, we have t
Mk[(k1)](f

∏
iAi) > 0, and then the previous

lemma applied k times gives t
Mk[(k1)](f) > 0.

This is actually an equivalence: the converse follows by the argument of
Theorem 8.18, applied to a general function instead of a graph, but we will
not spell out the details because we do not need it.

8.4 Cylinder Intersection Sets
In order to have the property that tH(E) = (µk(E))|F | for all k-graphs
H = (W,F ) we need a stronger notion of quasirandomness, which corresponds
to having E(χE | B) be constant for a larger σ-algebra than Bk,1.

The 3-graph Kodd(R1/2) provides some motivation: this 3-graph is
(3
1
)
-

quasirandom, because it is based on R1/2, which is itself quasirandom. But
the properties of Kodd(R1/2) are entirely determined by R1/2 itself—that
is, there is a set of pairs which entirely determines which triples belong to
Kodd(R1/2).

This suggests a stronger notion of randomness: that a quasirandom
3-graph should be orthogonal, not only to boxes, but to sets “formed from
sets of pairs”—that is, sets of the form

{(x, y, z) | (x, y) ∈ A and (x, z) ∈ B and (y, z) ∈ C}.
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We will call this a
(3
2
)
-cylinder intersection set: it is a set of triples

described as an intersection of sets defined by pairs:

{(x, y, z) | (x, y) ∈ A} ∩ {(x, y, z) | (x, z) ∈ B} ∩ {(x, y, z) | (y, z)}.

Definition 8.29. Let m < k and suppose that, for each s ∈ ( km), Bs ∈ Bm.
We define the

( k
m

)
-cylinder intersection set

K({Bs}s∈( km)) = {~x ∈ V [1,...,k] | ∀s ∈
(
k

m

)
xs ∈ Bs}.

Note that

K({Bs}s∈( km)) =
⋂

s∈( km)
{~x ∈ V [1,...,m] | xs ∈ Bs}.

The individual sets {~x ∈ V [1,...,k] | xs ∈ Bs} are cylinder sets (they have
the form Bs × V [1,...,k]\s), and a cylinder intersection set is precisely an
intersection of cylinder sets.

A
(k

1
)
-cylinder intersection set is exactly a box, but a

(3
2
)
-cylinder inter-

section set like

{(x, y, z) | (x, y) ∈ A and (x, z) ∈ B and (y, z) ∈ C}

cannot usually be represented as a product.
The cylinder intersection sets give us a natural family of sub-σ-algebras

of Bk generalizing Bk,1.

Definition 8.30. B0
k,m consists of all finite unions of

( k
m

)
-cylinder intersection

sets where each Bs ∈ Bs.
Bk,m ⊆ Bk consists of those B ∈ Bk such that, for every ε > 0, there is a

Bε ∈ B0
k,m such that µk(B 4Bε) < ε.

Once again we have

Theorem 8.31. Bk,m is a σ-algebra.

Definition 8.32. We say E is
( k
m

)
-quasirandom if E(χE | Bk,m) is a constant

function.

We notice that Kodd(R1/2) and C(→) are not
(3
2
)
-quasirandom—indeed,

quite the opposite, they belong to B3,2. Kodd(R1/2) is a union of cylinder
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intersection sets formed from R1,2 and V 2 \R1,2 and C(→) is a union of
cylinder intersection sets formed from → and V 2\ →.

On the other hand, R3
p(V ) is

(3
2
)
-quasirandom: by the same Hoeffding

inequality arguments we have used before, for any cylinder intersection set
C, µ3(R3

p(V ) ∩ C) = pµ3(C).
For each k, we now have a hierarchy of randomness notions:

(k
1
)
-quasirandomness

is weaker than
(k

2
)
-quasirandomness, which (when k > 3) is weaker than

(k
3
)
-

quasirandomness, and so on. Although we will not prove this, the hierarchy
is strict—for each m < k − 1, there are k-graphs which are

( k
m

)
-quasirandom

but not
( k
m+1

)
-quasirandom. The idea of the proof has been previewed by

Kodd(R1/2): choose a random set of m+ 1-tuples and construct a k-graph
from it.

The natural generalization of linear is to consider:

Definition 8.33. A k-graph H = (W,F ) has m-bounded intersections if
whenever e, e′ ∈ F with e 6= e′, |e ∩ e′| ≤ m.

So 1-bounded intersections is the same as linear, while all k-graphs have
(k − 1)-bounded intersections.

Theorem 8.34. Let H = (W,F ) have m-bounded intersections, and suppose
that, for each e ∈ F , we have a measurable function fe : V e → [−1, 1]. Then∫ ∏

e∈F
fe(~xe) dµk(~x) =

∫ ∏
e∈F

E(fe | Bk,m)(~xe) dµk(~x).

We are mostly interested in this when fe = χE for all e, which gives the
following corollary.

Corollary 8.35. If G = (V,E) is
( k
m

)
-quasirandom and H = (W,F ) has

m-bounded intersections then tH(G) = (µk(E))|F |.

Proof. Take fe = χE for all e ∈ F . Since E is
( k
m

)
-quasirandom, E(fe | Bk,m)

is the function constantly equal to µk(E), so
∫ ∏

e∈F E(fe | Bk,m)(~xe) dµk(~x)
is exactly (µk(E))|F |.

This implies that
( k
k−1
)
-quasirandomness is the strongest notion of quasir-

andomness we should expect: a
( k
k−1
)
-quasirandom k-graph correctly counts

all possible k-subgraphs.
We can now prove Theorem 8.34.
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Proof. Let F0 be those e ∈ F such that fe is not Bk,m-measurable. We
proceed by induction on |F0|. If |F0| = 0 then the claim is trivial because
Be = E(χBe | Bk,m) for all e ∈ F .

Suppose |F0| > 0. Choose some edge e0 ∈ F0. Numbering vertices in
W appropriately, we may assume e0 = {w1, . . . , wk}. For each s ∈

( k
m

)
, let

F ′s ⊆ F consist of those edges e ∈ F with e0 ∩ e ⊆ s. Since |e0 ∩ e| could
be less than m, some e might belong to multiple F ′s. So choose Fs ⊆ F ′s
arbitrarily so that the Fs form a partition of F . Then∫ ∏

e∈F
fe(xe) dµ|W | =

∫ ∫
fe0(xe0)

∏
s∈( km)

∏
e∈Fs

fe(xe) dµk(xe0) dµ|W |−k.

Observe that the inner integral looks at the product of fe0(xe0) with the
function gxW\e0

(xe0) = ∏
s∈( km)

∏
e∈Fs fe(xe) (for some fixed value of the

coordinates xW\e0). Observe that f is measurable with respect to Bk,m, since
it is a product of terms each of which depends only on the coordinates xs.
Therefore ∫ ∫

fe0(xe0)
∏

s∈( km)

∏
e∈Fs

fe(xe) dµk(xe0) dµ|W |−k

=
∫

E(fe0 | Bk,m)
∏

s∈( km)

∏
e∈Fs

fe(xe) dµk(xe),

and then we may apply the inductive hypothesis to this to see that it is equal
to
∫ ∏

e∈F E(fe | Bk,m)(~xe) dµk(~x).

We could go on from here to develop a fuller characterization of
( k
m

)
-

quasirandomness, including identifying canonical k-graphs Mk[
( k
m

)
]. The

ideas are largely the same as for the linear case: in place of doubling operations
Di, which double all coordinates other than i, we need the doubling operation
DI , which double all coordinates in {1, . . . , k} \ I. The arguments are then
quite similar to those in Section 8.3.

8.5 Hypergraph Removal
To prove Szemerédi’s Theorem, we need to prove an extension of graph
removal called, naturally enough, hypergraph removal. (For Szemerédi’s
Theorem, we only really need to remove one specific hypergraph for each k,
the clique with all k-edges on k + 1 vertices, but it is no harder to prove the
general result.)
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We will build on the topological argument we gave before: we will identify
a notion of a “point of density”, show that almost all k-tuples are points
of density, and that if we have a single copy of H whose k-edges are points
of density then we actually have many copies. Then we can prove removal
simply by deleting all k-edges which are not points of density.

Our definition of a point of density, however, is more complicated. Instead
of thinking about a partition of V , we want to think about partitions of V m

for various choices of m.
Again, we want to pass to separable sub-algebras of the Bm which are

still big enough to make everything we care about measurable.

Lemma 8.36. If {E1, . . . , Ej , . . .} is a countable subset of Bk then there is
a sequence of separable B−i ⊆ Bi for each i ≤ k such that:

• each Ej ∈ B−k ,

• whenever 1 < i ≤ k and B ∈ B−i , E(χB | Bi,i−1) is (B−i−1)(
i
i−1)-

measurable.

Proof. By induction on k. When k = 1, we take B−1 to be the σ-algebra
generated by the Ej .

When k > 1, we use the argument of Lemma 6.38. For each j, take the
countably many level sets of the form {(x, y) | E(χEj | Bk,k−1)(x, y) > q}.
For each of these level sets and each n, there is a finite set Sj,q,n ⊆ Bk−1
such that {(x, y) | E(χEj | Bk,k−1)(x, y) > q} is approximated to within
1/n by cylinder intersection sets from Sj,q,n. Then we may take B−k to be
the σ-algebra generated by the Ej and, for i < k, we apply the inductive
hypothesis to ⋃Sj,q,n to obtain B−i for i < k.

Next, we need to choose our neighborhoods—that is, a collection of finer
and finer partitions. The new complication is that it is not enough to choose
neighborhoods around individual points; we also need neighborhoods around
pairs, and triples, and in general m-tuples for all m < k.

So, for everym < k, we fix a sequence of neighborhoodsN j
m = {N j

m,1, . . . , N
j
m,km,j

}
so that each N j

m is a partition of V m such that:

• when i < j, N j
m refines N i

m,

• limj→∞maxu≤km,j µ(N j
m,u) = 0,

• ⋃
j N j

m generates B−m.
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When ~x ∈ V m, we can talk about the j-th neighborhood of ~x: N j
m(~x) is

the unique N j
m,u such that ~x ∈ N j

m,u. The properties above say that these
neighborhoods have the properties we might expect: as j increases, the
neighborhood around ~x gets smaller and decreases to have measure 0. The
final property promises that our partitions are fine enough, because the sets
in our partitions collectively generate a big enough σ-algebra.

More generally, if ~x ∈ V d with m ≤ d, we could lift the notion of a
neighborhood by asking which cylinder intersection set contains all the
m-tuples from ~x.

Definition 8.37. For any ~x ∈ V d and m ≤ d, we write N j
m(~x) for the unique( d

m

)
-cylinder intersection set K({N j

m,us}s∈( dm)) containing ~x.

When m = 1, this cylinder intersection set is simply a box, and this
matches the notation we used for graphs. Note that it could be that some
of these cylinder intersection sets are non-empty but have measure 0. (This
doesn’t happen when m = 1, because a product of positive measure sets has
positive measure; but one of the new complications with cylinder intersection
sets is that positive measure cylinders could miss each other entirely, or
could intersect in a set of measure 0.) We could define our way around this,
but it will be easier to just remember that it might occur. This will not
matter much, because there are only countably many cylinder intersection
sets coming from our neighborhoods, so throwing away the points which
belong to any of these bad cylinder intersection sets still only loses a set of
measure 0.

Definition 8.38. ~x ∈ V d has proper neighborhoods if, lettingm = min{d, k−
1}, for any j1, . . . , jm,

⋂
i≤mN ji

i (~x) has positive measure.

Lemma 8.39. The set of points with proper neighborhoods has measure 1.

Proof. If ~x does not have a proper neighborhood, there are j1, . . . , jm so
that ~x ∈ ⋂i≤mN ji

i (~x) and µd(
⋂
i≤mN ji

i (~x)) = 0. Therefore the set of points
without proper neighborhoods are contained in a countable union of sets of
measure 0.

We again want to “smooth out” what happens at a point by taking the
limit of averages over its neighborhood. The main new complication is that
we have neighborhoods at different levels, and we need to take the limits in
the right order. For instance, when k = 3, so we have both the partitions N j

1
of V and the partitions N j

2 of V 2, the correct notion of a “small neighborhood
around ~x” is

N j2
2 (~x) ∩N j1

1 (~x)
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where j2 � j1. That is, we want to consider a small neighborhood of the
pair, and then a much smaller neighborhood made of the product of the
individual vertices.

That idea becomes the limit in the following definition.

Definition 8.40. When 1 ≤ d < r, B ∈ Br, and any ~x ∈ V r with proper
neighborhoods, we define

B̃jd,...,j1
d (~x) = E(χB |

⋃
m≤d
N jm
m )(~x)

and set
B̃d = lim

jd→∞
· · · lim

j1→∞
B̃jd,...,j1
d .

We could equivalently define B̃jd,...,j1
d (~x) by

B̃jd,...,j1
d (~x) =

µ(B ∩⋂m≤dN jm
m (~x))

µ(⋂m≤dN jm
m (~x))

.

Definition 8.41. ~x ∈ V r is a point of density of B ∈ Br if ~x has proper
neighborhoods and:

• B̃d(~x) exists,

• for each m ≤ d, each j ∈ N, and each s ∈ ( rm), letting N = N j
m(xs), xs

is a point of density of N with Ñm−1(xs) > 0,

•

lim
jd→∞

· · · lim
j1→∞

∫⋂
m≤dN

jm
m (~x)

∣∣∣B̃d(~x)− B̃d(~y)
∣∣∣ dµd(~y)

µd(
⋂
m≤dN jm

m (~x))
= 0.

The last condition is the main one, and the analog of what we needed for
graphs: it says that ~x is surrounded by points which behave similarly to ~x.
We also need the second clause, which promise that our point doesn’t lie at
a badly behaved boundary of one of the lower arity neighborhoods.

Theorem 8.42. B̃d is a representative of E(χB | Br,d), almost every ~x is a
point of density, and almost every ~x ∈ B has B̃d(~x) > 0.

Proof. The proof is much like the analogous argument for graphs, where we
only needed d = 1. We proceed by induction on d.

For each j, let us write B̃j
d = limjd−1→∞ · · · limj1→∞ B̃

j,jd−1,...,j1
d . We first

show that B̃j
d converges to E(χB | B−r,d) in the L2 norm. Let Kj be the
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σ-algebra generated by
( r
m

)
-cylinder intersection sets with m ≤ d where the

sets come from N j
d ∪

⋃
m<d B−m. Then, using the inductive hypothesis, B̃j

d is
exactly E(χB | Kj). Since

⋃
j Kj generates B−r,d, we immediately have that

Bjd converges to E(χB | B−r,d) in the L2 norm.
Next we show that B̃d is a representative of E(χB | B−r,d). Let g be any

representative of E(χB | B−r,d). For any ε > 0, choose j0 large enough that
there is a set S in Kj0 so that µ(S 4 {~x | g(~x) ≤ α}) < β−α

1−α ε.
For each j > j0, let Dj be the subset of S where B̃j

d is ≥ β. For j > j0, let
D′j = Dj\

⋃
j′∈(j0,j)Dj . Observe that 1

µ(D′j)
∫
D′j
χB dµ ≥ β for all j (since each

Dj′ with j′ < j is also Kj-measurable). Letting D = ⋃
j>j0 Dj = ⋃

j>j0 D
′
j ,

we have 1
µ(D)

∫
D χB dµ ≥ β. Since χB ≤ 1, this means µ(D) < ε.

Therefore the set of ~x with g(~x) ≤ α and lim supj→∞ B̃
j
d(~x) > β has

measure < ε+ β−α
1−α ε. Since this holds for all ε and all α < β, it follows that

B̃j
d converges to g = E(χB | B−r,d) pointwise almost everywhere.
This also shows that B̃d(~x) exists almost everywhere, and the inductive

hypothesis (and the fact that a countable union of sets of measure 0 has
measure 0) ensures that almost every point satisfies the second condition in
being a point of density.

We finish showing that almost every point is a point of density by showing
the third condition holds almost everywhere. Choose jd � jd−1 � · · · � j1
so that, except on a set S of measure < ε2, we have |B̃jd,...,j1

d (~x)− B̃d(~x)| < ε.
Consider some neighborhood N = ⋂

m≤dN jm
m (~x) with ~x 6∈ S. Except for

a set of neighborhoods of size at most ε, µ(N∩S)
µ(N) < ε. On such a neighborhood,

we have ∫⋂
m≤dN

jm
m (~x)

∣∣∣B̃d(~x)− B̃d(~y)
∣∣∣ dµd(~y)

µd(
⋂
m≤dN jm

m (~x))
≤ 3ε,

since for ~y 6∈ R we have

|B̃d(~x)−B̃d(~y)| ≤ |B̃d(~x)−B̃jd,...,j1
d (~x)|+|B̃jd,...,j1

d (~x)−B̃jd,...,j1
d (~y)|+|B̃d(~y)−B̃jd,...,j1

d (~y)| ≤ ε+0+ε,

and the points with ~y ∈ R contribute measure at most ε.
Since this holds for every ε, we have

lim
jd→∞

· · · lim
j1→∞

∫⋂
m≤dN

jm
m (~x)

∣∣∣B̃d(~x)− B̃d(~y)
∣∣∣ dµd(~y)

µd(
⋂
m≤dN jm

m (~x))
= 0

for almost every ~x.
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Let Z be the set of points with B̃d(~x) = 0. Since B̃d is B−r,d-measurable,
so is Z. Therefore

µ(B ∩ Z) =
∫
χZχB) dµr =

∫
χZE(χB | B−r,d) dµr =

∫
Z
B̃d(~x) dµr = 0.

Therefore for almost every ~x ∈ B, B̃d( ~X) > 0.

We are now ready to state a version of the counting lemma. In our case,
it says that if we can find a single copy of a k-graph which is at a “typical”
point then we have a positive measure collection of copies.

Slightly more generally, we allow the case that the edges of our graph get
mapped to distinct sets. We need this in the induction, where we need to
know that having each xe be a point of density implies that ~xW has proper
neighborhoods.

Theorem 8.43. Let W be a finite set and, for each e ∈ (Wk ), let Be ⊆ V k

be a measurable set. Let ~xW be a point such that, for every e ∈ (Wk ), xe is a
point of density of Be with (B̃e)k−1(xe) > 0.

Then µ( ˜K({Be})k−1) > 0, and so in particular µ(K({Be})) > 0.

An element of K({Be}) is a “copy” of W in the sense that when ~yW ∈
K({Be}), for each e we have ~ye ∈ Be. For instance, if we want to show
tH(E) > 0 with H = (W,F ), we can take Be = E whenever e ∈ F and
Be = V k for e 6∈ F . We can also apply this to show tindH (E) > 0, taking
Be = E when e ∈ F and Be = V k \ E when e 6∈ F .

Proof. We proceed by induction on k. By 8.34, µ(K({Be})) =
∫ ∏

e B̃ek−1(~xe) dµk(~x),
so it suffices to show that

∫ ∏
e B̃ek−1(~xe) dµk(~x) > 0.

Since each xe is a point of density of N e = N j
m(xe), we have Ñ e

m−1(xe) >
0, and therefore by the inductive hypothesis, for all jk−1, . . . , j1, we have
µ(⋂m<kN jm

m (~xW )) has positive measure, so ~xW has proper neighborhoods.
Choose ε = mine χ(B̃e)k−1

(xe) > 0. Choose jk−1 � jk−2 � · · · j1 suffi-
ciently large. Since ~xW has proper neighborhoods, the setN = ⋂

m<kN jm
m (~xW )

has positive measure.
For each e ∈ (Wk ), the set of points in N with (B̃e)k−1(xe) < ε/2 is a

small fraction of ⋂m<kN jm
m (~xW ), so after removing all of these, we have

most of N left, so
∫
N

∏
e B̃ek−1(~xe) dµk(~x) ≥ 1

2µ(N) > 0.
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Corollary 8.44. Let W be a finite set and suppose that for each s ∈ (Wk )
we have a set Bs ⊆ V k. If µ(K({Bs})) = 0 then for each s there is a Zs so
that:

• µ(Zs) = 0,

• ⋂
j∈[r,k]K({Bs \ Zs}s∈(Wk )) = ∅.

Proof. Let Zs contain those xs which are not points of density for Bs.

8.6 Szemerédi’s Theorem

We can, at last, prove Szemerédi’s Theorem.

Theorem 8.45 (Szemerédi’s Theorem). For every ε > 0 and every k, there
is an N so that whenever n ≥ N and A ⊆ {1, 2, . . . , n} is a set with |A|n ≥ ε,
there is an a ∈ A and a d > 0 such that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d ∈ A.

The proof has the same basic structure as the proof of Roth’s Theorem.
Fix k and let Kk,k−1 be the complete k − 1-graph on k-vertices—that is, the
k − 1-graph ([1, . . . , k],

([1,...,k]
k−1

)
). (So K3,2 = C3.) Given a set A with density

≥ ε, we will identify a k − 1-graph E of positive density with the property
that we cannot “remove” Kk,k−1—that is, so that whenever µk−1(Z) = 0,
TKk,k−1(E \ Z) 6= ∅.

Proof. Towards a contradiction, suppose this fails: there is an ε > 0 and a k
and, for every N , an n ≥ N and an SN ⊆ {1, 2, . . . , n} with |SN ||n| ≥ ε so that
SN does not contain an arithmetic progression of length k.

We construct a corresponding k − 1-graph. It will be convenient to make
the graph partite. We will have a set of vertices VN = ⋃

i≤kXi,N where each
part Xi,N = {1, 2, . . . , kn}.

For each I ∈ ({1,2,...,k}k−1
)
we define a set AI,N ⊆

∏
i∈I Xi,N . When I =

{1, 2, . . . , k−1}, we set AI,N to consist of those (x1, . . . , xk−1) where ∑i<k i ·
xi ∈ SN . When I = {1, 2, . . . , k} \ {i} with i < k, we take AI,N to consist of
those (x1, . . . , xi−1, xi+1, . . . , xk) where∑j<k,j 6=i j ·xj+i(xk−

∑
j<k,j 6=i xj) ∈

SN .
Suppose we have values (x1, . . . , xk) and take a = ∑

i<k i ·xi and d = xk−∑
i<k xi. Observe that a ∈ SN exactly when (x1, . . . , xk−1) ∈ A{1,2,...,k−1},N
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and

a+ id =
∑
j<k

j · xj + ixk − i
∑
j<k

xj =
∑

j<k,j 6=i
j · xj + i(xk −

∑
j<k,j 6=i

xj) ∈ SN

exactly when (x1, . . . , xi−1, xi+1, . . . , xk) ∈ A{1,2,...,i−1,i+1,...,k},N . In par-
ticular, if (x1, . . . , xk) ∈ K({AI,N}I∈( k

k−1)) then we have an a, d so that
a, a+ d, . . . , a+ (k − 1)d ∈ SN . (However this includes the possibility that
d = 0.) On the other hand, whenever a ∈ SN , we can take any sum
a = ∑

i<k i · xi and the sequence (x1, . . . , xk−1,
∑
i xi) ∈ K({AI,N}I∈( k

k−1)).
Let TN be the set of these trivial k-tuples—that is,

TN = {(x1, . . . , xk−1,
∑
i<k

xi) | (x1, . . . , xk−1,
∑
i<k

xi) ∈ K({AI,N}I∈( k
k−1)).

Note that, for each (x1, . . . , xk−1), there is at most one b so that (x1, . . . , xk−1, b) ∈
TN , so |TN | ≤ |VN |k−1, so µk(TN ) is small when N is large.

Let ρN : ∏j<kXj,N → Xk,N be given by

ρN (x1, . . . , xk−1) =
∑
i<k

xi,

so the function ρi,N (x1, . . . , xk−1) 7→ (x1, . . . , xi−1, xi+1, . . . , xk, ρN (x1, . . . , xk−1))
is one-to-one for each i < k.

Let V = [Vn]U and, for each I ∈ ( k
k−1
)
, AI = [AI,N ]U . Let T = [TN ]U .

Let ρ = [ρN ]U and ρi = [ρi,N ]U .
Let G = [GN ]U . If tKk,k−1(G) > 0 then we may find a complete

(x1, . . . , xk) ∈ K({AI}I∈( k
k−1)) \ T . But this would mean that, for many

N , we can find (x1, . . . , xk) ∈ K({AI,N}I∈( k
k−1)) \ TN , and therefore an

arithmetic progression in AN with d 6= 0.
So suppose, towards a contradiction, that tKk,k−1(G) = 0. Then by

Theorem 8.44 (with r = k), we find sets ZI with µk−1(ZI) = 0. Let
Z ⊆ ∏i<kXi be given by Z = Z{1,2,...,k−1}∪

⋃
i ρ
−1
i (Z[k]\{i}). Since the ρi are

internal one-to-one functions, and therefore measure-preserving, µk−1(Z) = 0.
In particular, µ(A{1,2,...,k−1}\Z) > 0. For any (x1, . . . , xk−1) ∈ A{1,2,...,k−1}\

Z, for each i we have ρi(x1, . . . , xk−1) ∈ A[k]\{i} \ Z[k]\{i}, and therefore
(x1, . . . , xk−1, ρ(x1, . . . , xk−1)) ∈ K({AI \ZI}I∈( k

k−1)). This gives the desired
contradiction.
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8.7 Hypergraphons
We can represent measurable k-graphs as measurable sets in a product
measure space rather than a Keisler graded probability space, just like we
did for graphs. Again, the catch is that the product will need to be over
more than k sets.

We need to separate out all the σ-algebras Bk,1, Bk,2, and so on. We need
k coordinates in our new representation just to capture the information in
Bk,1. We also need the information in Bk,2; there are

(k
2
)
pairs of coordinates,

each of which will need its own coordinate containing the binary information
between that pair. In total, the new representation will be a product over
2k − 1 sets, one for each non-empty subset of {1, 2, . . . , k}.

We will need to keep track of this correspondance between non-empty
subsets of our k old coordinates and our 2k − 1 new coordinates. So we
will proceed as follows. For each arity i ≤ k, we will have a measure space
(Ωi,Di, µ) representing i-ary information. We will then work in the space
Ω(≤k) = ∏

s⊆{1,2,...,k},s 6=∅Ω|s| where the measurable sets are the corresponding
products of the Di. In particular, we will be able to identify a measurable k-
graph E with a corresponding E∗ ⊆ Ω(≤k)—that is, we will have a measurable
equivalence of measure algebras ρ : V k → Ω(≤k) = ∏

s⊆{1,2,...,k},s 6=∅Ωi.
It is common to use the fact that all separable atomless measure spaces

are isomorphic to the Lebesgue measure to take all the Ωi to be equal to [0, 1].
Then we can simply consider measurable sets and functions on [0, 1]2k−1, at
the price of suggesting the existence of additional structure (like bijections
between coordinates representing different sizes, or the topology on [0, 1])
which is not meaningful.

One challenge with our new representation is that understanding what
the coordinates mean is a bit subtle. With a measurable k-graph, V is a set
of vertices, and E is a literal k-graph. When we instead consider E∗ ⊆ Ω(≤k),
we do not exactly have well-defined “vertices”. (That perspective has not
been lost—as we will see, we can recover a literal k-graph by sampling
randomly in the right way.) Instead, the information about the k coordinates
of V has been separated out among various coordinates (that is, it has been
separated into pieces with different randomness properties). In particular,
the meanings of the coordinates are not independent—the meaning of the
{1, 2} coordinate is related to the meanings of the {1} and {2} coordinates,
but not the {3} coordinate, and so on.

One way to see this relationship is to think about how the symmetry
of E ⊆ V k is reflected in E∗. The symmetry of E meant that for any
permutation π of {1, 2, . . . , k}, Eπ = {(xπ(1), . . . , xπ(k)) | (x1, . . . , xk) ∈ E}



246 CHAPTER 8. HYPERGRAPHS

is equal to E. We should only consider these same k! permutations of Ω(≤k):
whenever π is a permutation of {1, 2, . . . , k}, we have the corresponding
permutation (which, by abuse of notation, we also call π) of P({1, 2, . . . , k})\∅
taking a set s to π(s) = {π(i) | i ∈ s}.

Definition 8.46. When π is a permutation of {1, 2, . . . , k}, the induced
permutation π̃ : Ω(≤k) → Ω(≤k) is defined by

π̃({xs}s∈P({1,2,...,k})\∅) = {xπ(s)}s∈P({1,2,...,k})\∅.

We have allowed the spaces Ωi to be distinct for different sizes i; note that
we always map a coordinate xs ∈ Ω|s| to a coordinate xπ(s) ∈ Ω|π(s)| = Ω|s|;
we are never tempted to map, say Ω2 to Ω1 because these sets contain
different sorts of data (even if they both happen to be equal to [0, 1]).

Our arguments will build on the work we did in Section 6.10. Indeed, we
essentially carried out the k = 2 case of the construction of E∗. Recall that we
began with a measurable graph (V,E, µ1), and constructed a corresponding
E∗ ⊆ V ×V ×V 2 which was measurable with respect to the product measure
B−1 × B−1 ×R, where R was an orthogonal complement to B−1 . (We did not
verify at the time that tH(E∗) = tH(E), though we implied it would be true.)

There is a technical point about symmetry we did not need to consider
when dealing with graphs. There is one non-trivial permutation of the
coordinates of V 2, namely when we swap the two coordinates. The natural
analog for V ×V ×V 2 is π(v, w, (v′, w′)) = (w, v, (w′, v′))—that is, we would
want to swap, not only the first two coordinates, but we would want to carry
out a swap “inside” the V 2 coordinate.

This will not suffice. When we take Ω2 = V 2, we do not want to have
to keep track of internal structure for Ω2. We didn’t need to worry about
this in the k = 2 case because E was symmetric, which means E∗ was
actually measurable with respect to the smaller σ-algebra B−1 × B−1 ×Rsym,
where Rsym consists of the symmetric elements of R. Once we restrict our
measurable sets on Ω2 = V 2 to be only the symmetric sets, we can disregard
swapping points within Ω2 because (v′, w′) and (w′, v′) are indistinguishable
points.

We might hope that if all we want to consider is k-graphs, the same idea
would work in general. However it turns out that when E is a k-graph, we
can ignore the symmery concerns for Ωk in this way, but that even when E
is symmetric, when we start writing it in terms of lower arity information,
we may see asymmetric sets arise. For instance, recall our example C(→),
the set of {x, y, z} where a random tournament → forms a cycle. C(→) is a
symmetric 3-graph, but the binary data we use to describe it is asymmetric.
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(One might imagine that even if this description seems asymmetric, some
other way to describe it might not be, but it can be shown that there is no
way to represent this example using only symmetric binary data; see [40].)

Fortunately, there is another way around this issue, by pushing all the
asymmetry down to the unary level. Before giving the general argument, let
us consider what we do in the k = 2 case. First, observe that we can always
have a measurable ordering on V . This is true in general—we have mentioned
that we can always find a measurable equivalence from V to [0, 1]—but a
more direct way to see it in our ultraproduct setting is to observe that when
V = [Vn]U where the Vn are finite, we can take orderings ≺n on each Vn, and
then ≺= [≺n]U is an internal ordering on V , so automatically measurable.

The graph of ≺, G≺ = {(x, y) ∈ V 2 | x ≺ y} is always B2
1-measurable.

For any m, we may choose a finite sequence a1 ≺ a2 ≺ · · · ≺ am so that, the
interval Ii = {x | ai ≺ x � ai+1} has measure < 2/m. Then (G≺4

⋃
i<j(Ii×

Ij)) ⊆
⋃
i I

2
i and therefore has measure < 4/m. Since we can take m as small

as we want, we can approximate G≺ arbitrarily well by rectangles.
So now suppose we are given f : V 2 → R and wish to construct an

analogous function f∗ : V ×V ×V 2 → R which is measurable with respect to
B1 × B1 ×Rsym. (And so in particular, the σ-algebra on the V 2 component
is symmetric.)

We define two new functions based on f , but which ignore the given
order of the inputs. f≺(x, y) will always act like the inputs are ordered by ≺:

f≺(x, y) =
{
f(x, y) if x ≺ y
f(y, x) otherwise

while f� will always act like the inputs are in the reverse order from ≺:

f�(x, y) =
{
f(y, x) if x ≺ y
f(x, y) otherwise .

Note that f≺ and f� are both symmetric: they don’t depend on the order of
the inputs because they ignore the input order, replacing it with an order
derived from ≺.

Because f≺ and f� are symmetric, the corresponding functions f∗≺ and
f∗succ are both B1 × B1 ×Rsym-measurable. But then we can define

f∗(x, y) =
{
f∗≺(x, y) if x ≺ y
f∗�(x, y) otherwise

Since G≺ is B2
1-measurable, f∗ is B2

1 ×Rsym-measurable, which is exactly
what we want.
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Let us now prove our general result. First, we need to pass to a separable
sub-σ-algebra.

Definition 8.47. When B ⊆ Bk−1, B( k
k−1) is the σ-algebra of

( k
k−1
)
-cylinder

intersection sets whose elements belong to B.

Theorem 8.48. Let E be a measurable k-graph and suppose there is a
measurable order ≺ on V . There is a σ-algebra B−k ⊆ Bk containing E, prob-
ability measure spaces (Ωi,Di, µ), and a measurable equivalence of measure
algebras ρ : V k → Ω(≤k) = ∏

s⊆{1,2,...,k},s 6=∅Ωi such that whenever π is a
permutation of {1, 2, . . . , k}, ρ ◦ π = π̃ ◦ ρ.

Proof. Take the σ-algebras B−i given by applying Lemma 8.36 to {E}. For
each B−i , there are

( i
i−1
)
distinct natural sub-σ-algebras of cylinder sets

isomorphic to B−i−1, corresponding to the
( i
i−1
)
choices of i−1 coordinates, and

together these generate a σ-algebra B−i,i−1 generated by cylinder intersection
sets from B−i−1. By Lemma 6.44, we choose a σ-algebra Ri orthogonal to
B−i,i−1 so that Ri together with B−i,i−1 generates B−i .

For each i, we will let Ωi =
(V
i

)
, the set of unordered i-tuples from V .

We will take (Ωi,Rsymi , µi) to be our i-th probability measure space, where
Rsymi is the set of symmetric elements of Ri.

For any d ≤ k we have the product space Ω(≤d) = ∏
s∈P({1,2,...,d})\∅Ω|s|.

We define ρd : V d → Ω(≤d) in the natural way, setting ρd(x1, . . . , xd) to be
the element {ys}s∈P({1,2,...,d})\∅ with ys = {xi}i∈s. ρd is measure-preserving
because Rsymi is orthogonal to B−i,i−1.

It remains to show that for anyB ∈ B−d , there is aD ∈
∏
s∈P({1,2,...,d})\∅Rsym|s|

such that µ(B4 ρ−1
d (D)) = 0. We show this by induction on d. When d = 1,

ρ1 is the identity on V , so the claim is trivial. Suppose the claim holds for
d < k.

If B is symmetric, we B is approximated by a union of intersections of sets
from B−d+1,d andR

sym
d . We can choose sets so that µ(B4⋃j≤n⋂s∈(d+1

d )Bj,s∩
Rj) < ε, and then we have sets Dj,s ⊆

∏
t∈P(s)\{∅,s}Ω|t| and we already have

Rj ⊆ Ωd+1, so for each j we have µ(⋂
s∈(d+1

d )Bj,s∩Rj4ρ
−1
d+1(⋂

s∈(d+1
d )Dj,s∩

Rj)) = 0.
If B is not symmetric, we rewrite it as a combination of symmetric sets:

for each permutation π of {1, 2, . . . , d + 1}, define Bπ to consist of those
(x1, . . . , xd+1) such that, taking the unique ordering of {x1, . . . , xd+1} to be
≺-increasing and applying π to this ordering, this tuple is in B. Then Bπ is
symmetric, so in the inverse image of ρd.
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But then B is an intersection of ⋃π Bπ with a set ρ−1
d+1(U) where U is a

measurable subset of Ωd+1
1 .

We are only one step from defining a k-hypergraphon.

Definition 8.49. A k-hypergraphon is a measurable functionW : [0, 1]P({1,2,...,k})\{∅,{1,2,...,k}} →
[0, 1] which is symmetric under all the permutations π̃.

Given E, we obtain a k-hypergraphon by taking E∗ with ρ−1(E∗) = E
and letting W =

∫
χE∗ dµ(x{1,2,...,k}). The reason we integrate away the

k-ary component x{1,2,...,k} is that it is the “purely random” component:
instead of a set with a purely random component, we get a function W
telling us how likely x{1,2,...,k} was to put us into the set.

8.8 k-ary Combinatorics

We saw a combinatorial property which almost characterized which graphs
belonged to B2,1—E has finite VC dimension if it is B2,1-measurable under
any measure.

Analogously, we can ask when a graph be Bk,k−1-measurable.

Theorem 8.50. Suppose a k-graph (V,E) is not Bk,k−1-measurable. Then
for every k-partite k-graph H = (⋃i≤kWi, F ) there is a π : ⋃i≤kWi → V
such that for any w1, . . . , wk with each wi ∈Wi, {π(w1), . . . , π(wk)} ∈ E if
and only if {w1, . . . , wk} ∈ F .

What we are really describing is “containing an induced copy of H”. But
this is not quite an induced copy the way we defined it, because there could
be extraneous edges inside some π(Wi). All we are requiring is that the
partite k-edges of ⋃i≤k π(Wi) are exactly the k-edges in F , and we ignore
potential k-edges which contain more than one vertex in the same part. (This
complication is because (V,E) is not itself k-partite.)

Proof. Except for a set of points of measure 0, every point in E has Ẽk−1(~x) >
0. We also know that for almost every point of V k \ E, Ẽk−1(~x) < 1. So
suppose that almost every point of E has Ẽk−1(~x) = 1; then, up to measure
0, E is precisely {~x | Ẽk−1(~x) = 1}, which is Bk,k−1-measurable.

So if E is not Bk,k−1-measurable, there is a positive set of points with
0 < Ẽk−1(~x) < 1. Since almost every point is a point of density for E and for
V k \ E, there must be a point of density ~x for both with 0 < Ẽk−1(~x) < 1.
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Now let (∏i≤kWi, F ) be any k-partite k-graph (that is, each e ∈ F has
|e ∩Wi| = 1 for each i). We can appy Theorem 8.43: take ~a ∈ V

∏
i≤kWi to

be the point with aw = xi for each w ∈Wi, and take Bs = E for e ∈ F and
Be = V k \ E for each e ∈ ∏i≤kWi \ e. For all e which are not partite, take
Be = V k (so every point is trivially a point of density). Then, by Theorem
8.43, we have t∏

i≤kWi,F
(E) > 0.

In the case of ordinary graphs, this is an alternate proof of Theorem
7.13 using Theorem 7.2 which shows that containing all bipartite graphs is
equivalent to saying that E has infinite VC dimension.

We could define a higher-arity notion of VC dimension analogously.

Definition 8.51. A k-graph (V,E) has infinite VCk−1 dimension if for every
k-partite k-graph H = (⋃i≤kWi, F ) there is a π : ⋃i≤kWi → V such that
for any w1, . . . , wk with each wi ∈Wi, {π(w1), . . . , π(wk)} ∈ E if and only if
{w1, . . . , wk} ∈ F . Otherwise E has finite VCk−1 dimension.

This is indexed so that VC1 dimension is simply ordinary VC dimension.
VCk dimension is usually defined by an equivalent property which is

more closely analogous to the standard definition of VC dimension.

Theorem 8.52. E has infinite VCk dimension if and only if, for every d,
there exists a k-ary box A = {a1,1, . . . , a1,d}× · · · × {ak,1, . . . , ak,d} such that,
for every B ⊆ A, there is a b with Eb ∩A = B.

Proof. For the left to right direction, consider the k + 1-partite graph
(∏i≤k+1Wi, F ) where |Wi| = d for each i ≤ k, |Wk+1| = 2dk , and for each
B ⊆ ∏i≤kWi, there is a b ∈Wk such that {a ∈ ∏i≤kWi | (a, b) ∈ F} = B.

Conversely, let a k+1-paritite graph (⋃i≤k+1Wi, F ) be given. Choose d =
maxi≤k |Wi| and take the k-ary box A = {a1,1, . . . , a1,d}×· · ·×{ak,1, . . . , ak,d}.
Define π on ⋃i≤kWi so that, for each i ≤ k, π : Wi → {ai,1, . . . , ai,d} is an
injection.

For each w ∈Wk+1, there is a setBw = {{π(w1), . . . , π(wk)} | {w1, . . . , wk} ∈
Fw} ⊆ A. By assumption, there is a bw with Ebw ∩ A = Bw, so we define
π(w) = bw. Then π gives the desired copy of (⋃i≤k+1Wi, F ).

As with VC dimension, we can rephrase VCk dimension in terms of set
systems—sets V and collections F of subsets of V .

Definition 8.53. When (V,F) is a set system, the VCk dimension of (V,F)
is the largest n such that there are sets A1, . . . , Ak with ∏i≤k Ai ⊆ V so that
F shatters A.
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For VCk dimension, this makes the most sense when we think of V as
itself being a product, V = ∏

i≤k Vi, though this is no formal need to include
this in the definition.

When X ⊆ V , we can ask how many subsets of X get picked out by F :

πF ,k(n) = max{|ΠF (X)| | X ⊆ V,X =
∏
i≤k

Xi, |Xi| = n for all i}.

Recall that ΠF (X) to be {X ∩F | F ∈ F}, so πF ,k asks how many subsets F
can pick out of a box with sides of size n. (Again, the k = 1 case is precisely
πF as we defined it before.) Certainly πF ,k(n) ≤ 2nk , since the sets X we
consider in the definition have size nk. Moreover, if πF ,k(n) < 2nk then the
VCk dimension of F is ≤ n by definition.

We can prove a generalization of the Sauer–Shelah Theorem, Theorem
7.5, showing that when V has finite VCk dimension, πF ,k(n) is bounded
strictly away from 2nk .

In order to characterize this definition, we need the Zarankiewicz numbers.

Definition 8.54. The Zarankiewicz number zk(n, d) is the smallest z such
that if (∏i≤k Vi, E) is a k-partite k-graph with |Vi| = m for all m and |E| ≥ z
then there are Ai ⊆ Vi with |Ai| = d and ∏i≤k Ai ⊆ E.

That is, if we have a k-partite k-graph on m vertices then once it contains
z edges, there must be a box with sides of size d which is entirely contained
in E.

Theorem 8.55. For and k, d, for sufficiently large n, zk(n, d) ≤ 2k/dnk−
1

dk−1 .

Proof. By induction on k.

Suppose we have (∏i≤k Vi, E) with |Vi| = n for all i and |E| ≥ (kn)k−
1

dk−1 .
For each v ∈ Vk, let Ev = {~y ∈ ∏i<k Vi | ~y ∪ {v} ∈ E}. Then

∑
v∈Vk |Ev| ≥

2k/dnk−
1

dk−1 = nk−1n 2k/d
n1/dk−1 .

For each ~w ∈ ∏i<k Vi, let c~w = |{v | ~w ∈ Ev}|, so
∑

~w c~w = nk−1n 1
n1/dk−1
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as well. Observe that∑
v1,...,vd

|
⋂
j≤d

Evj | =
∑

v1,...,vd

∑
~w∈
∏
i<k

Vi

∏
j≤d

χEvj (~w)

=
∑

~w∈
∏
i<k

Vi

∑
v1,...,vd

∏
j≤d

χEvj (~w)

=
∑

~w∈
∏
i<k

Vi

(
∑
v∈Vk

χEv(~w))d

=
∑

~w∈
∏
i<k

Vi

cd~w

≥ 1
n(k−1)(d−1) (

∑
~w∈
∏
i<k

Vi

c~w)d

>
1

n(k−1)(d−1) (nk−1n
2k/d

n1/dk−1 )d

= nk−1(n 2k/d

n1/dk−1 )d.

There are fewer than d2nd−1 choices of vertices from Vk which are not
all distinct; each such choice contributes at most nk−1 to the sum. The
remaining

(n
d

) ≤ nd choices must contribute the remainder, so there must be
some choice of distinct v1, . . . , vd with

|
⋂
j≤d

Evj | ≥
nk−1(n 2k/d

n1/dk−1 )d − d2nd−1nk−1

nd
= nk−1−1/dk−22k − d2nk−2.

When n ≥ (d2/2k−1)
1

1−1/dk−2 , d2nk−2 ≤ nk−1−1/dk−22k−1, so there is some
v1, . . . , vd with |⋂j≤dEvj | ≥ nk−1−1/dk−22k−1.

So (∏i<k Vi,
⋂
j≤dEvj ) is a k − 1-partite k − 1-graph with |Vi| = m for

all m and |⋂j≤dEvj | ≥ 2k−1nk−1−1/dk−2 , so by the inductive hypothesis,
we can find Ai ⊆ Vi for i < k so that ∏i<k Ai ⊆

⋂
j≤dEvj . Therefore∏

i≤k Ai ⊆ E.

Theorem 8.56. If the VCk dimension of (V,F) is d then, for all n,
πF ,k(n) ≤∑zk(n,d+1)−1

i=0
(n
i

)
.

Proof. Suppose there is an X ⊆ V with X = ∏
i≤kXi and |Xi| = n for all i,

and |ΠF (X)| >∑zk(n,d+1)
i=0

(n
i

)
. Recall that, by Lemma 7.6, there are at least

|ΠF (X)| subsets of X which are shattered by F .
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In particular, there must be a B ⊆ X with |B| ≥ zk(n, d + 1) which
is shattered by F . Consider the k-partite k-graph (∏i≤kXi, B). Since
|B| ≥ zk(n, d+1), we can find Ai ⊆ Xi with |Ai| = d+1 so that ∏i≤k Ai ⊆ B.
But F shatters B, so in particular F shatters ∏i≤k Ai. Therefore the VCk
dimension of (V,F) is ≥ d+ 1.

Corollary 8.57. For each k, d there is an ε > 0 so that, for n sufficiently
large, if the VCk dimension of (V,F) is d then πF ,k(n) ≤ 2nk−ε.

Proof. We have πF ,k(n) ≤∑zk(n,d+1)−1
i=0

(n
i

) ≤∑2k/dn
k− 1

dk−1
i=0

(n
i

) ≤ n2k/dn
k− 1

dk−1 +

1 = 22k/dn
k− 1

dk−1 lnn + 1. The exponent here has the form cn
k− 1

dk−1 lnn for a
constant c (depending on k and d, but not n), so when n is large enough,
the exponent is at most nk−ε.

8.9 Remarks

Hypergraph quasirandomness is substantially more complicated than graph
quasirandomness, and the treatment here only touches on some of the compli-
cations. The study of hypergraph quasirandomness and hypergraph analogs
of regularity begins right after the modern theory of graph quasirandomness
[29, 31, 32], but finding the right notion of hypergraph regularity needed to
formulate the removal lemma took substantially longer [47, 76, 78, 98, 121,
134].

While it was clear from early on that there were multiple notions of
hypergraph quasirandomness [31], the structure became more complicated
as a variety of incomparable notions were introduced [60, 107]. The σ-
algebra based approach we used here was introduced in [158] and given a
quantitative version in [3]. Yet more notions of hypergraph quasirandomness
were introduced in [40].

The idea of viewing hypergraph regularity in terms of points of density
was introduced in [47] in the setting of what are now known as hypergraphons;
the version here is based on [159]. The hypergraphon approach to regularity
and limits of hypergraphs has been further studied and generalized [38, 164].
These sorts of representations can be seen as examples of the Aldous–Hoover
Theorem [4, 86] which we discuss later.

The study of k-ary combinatorics and its relationship with hypergraph
regularity is quite new. V Ck dimension is introduced in [138] and further
studied in [23]. The result that bounded VCk-dimension implies Bk,k−1-
measurability was shown in [28]; a quantitative proof in the k = 3 case was



254 CHAPTER 8. HYPERGRAPHS

given in [155] and the bounds on the number of k−1-ary cylinder sets needed
was shown to be polynomial in [154]. [155] also introduces two distinct
candidates for “2-stability”.



Chapter 9

Random Countable Graphs

There are other perspectives on the measurable k-graphs that have formed
the central topic in this book. In this final chapter, we give the basics of
two other perspectives. One, coming from probability theory, is to look at
exchangeable arrays of random variables; we prove the foundational theorem
of that perspective, the Aldous–Hoover Theorem, which is in some sense a
restatement, in quite different language, of the decomposition into σ-algebras
we have already seen. Another perspective, connected to both model theory
and descriptive set theory, is to look at automorphism invariant probability
measures; we finish the book with one of the key theorems from this approach,
the Ackerman–Freer–Patel Theorem.

We have already considered, in Section 3.6, what happens when we begin
with an atomless measurable graph (V,E, µ1) and sample finitely many
vertices v1, . . . ,vn.

The same idea extends to sampling countably many vertices: we choose
vertices v1,v2, . . . ∈ V , distributed according to µ1, and let Gω = ({vn}n∈N, E �
{vn}n∈N). We may as well state this for k-graphs, as well.

Definition 9.1. If (V,E, µ1) is an atomless measurable k-graph, a random
countable substructure is a k-graph of the form ({vn}n∈N, E � {vn}n∈N) where
the vn are chosen independently from V according to µ1.

Our use of the term “structure” here gestures at the fact that most of the
ideas in this chapter make sense, not only for graphs and k-graphs, but for a
much broader family of first-order structures, and most of the terminology
comes from that setting. Nonetheless, here we will focus on the case of
k-graphs.

As the bold font reminds us, we should really think of Gω as a random
structure, not as a single fixed structure. For instance, the question “is there

255
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an edge between v1 and v2?” is not especially interesting, since it will depend
on the specific random choices we made. More typically we are interested in
questions like “what is the probability that there’s an edge between v1 and
v2?”.

In this chapter, we will consider two frameworks for thinking about Gω

as a probabilistic structure.

9.1 Exchangeable Sequences

One perspective is to view Gω as a collection of related random variables:
for each {i1, . . . , ik} ∈

(N
k

)
, we have a random variable

X(V,E,µ1)
i1,...,ik

=
{

1 if (vi1 , . . . ,vik) ∈ E
0 otherwise

This makes sense even in the seemingly degenerate case where k = 1. In this
section we will state some basic definitions and (without proof) some results
about sampling random countable 1-graphs, since the same ideas appear in
a slightly more complicated form when k > 1.

A “1-graph” is just a pair (V, P ) where P ⊆ V—that is, a set with a
distinguished subset. Similarly, an atomless measurable 1-graph is a triple
(V, P, µ1) where P ⊆ V is a measurable set. If we sample a random countable
substructure, the corresponding random variables are just X(V,P,µ1)

i for i ∈ N,
which is 1 or 0 depending on whether vi ∈ P .

These random variables are very simple—they’re i.i.d. (independent and
identically distributed) with the propery that P(X(V,P,µ1)

i = 1) = µ1(P ) for
each i. Independence turns out to be an artifact of the k = 1 case. We will
see that in general the array of random variables {X(V,P,µ1)

i1,...,ik
}{i1,...,ik}∈(Nk) has

two properties we will define below—it is a dissociated exchangeable array,
and when k = 1 it happens that dissociated exchangeable sequences are
precisely the i.i.d. sequences.

Definition 9.2. A sequence of random variables {Xi}i∈N is exchangeable if
for all finite sequences i1, . . . , in and j1, . . . , jn, the sequences (Xi1 , . . . ,Xin)
and (Xj1 , . . . ,Xjn) have the same distribution.

That is, we require that P(Xi = 1) be the same for all i, but we also
require that whenever i 6= j, that P(Xi = 1 and Xj = 1) be the same
regardless of i and j, and so on.
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There is a good intuitive reason that the variables we get by sampling a
random countable substructure are exchangeable, which will generalize to
k > 1: when we sample the vertices vi, there’s nothing special about which
index we give to which vertex—whatever we chose for vertices v1 and v2, it
was just as likely that we would have chosen those to be v3 and v4 instead.
This is precisely what exchangeability says: that the choice of indices for our
random variables was arbitrary.

If the Xi are independent and identically distributed then they are
certainly exchangeable. So what makes this notion weaker?

Example 9.3. We define a sequence {Xi}i∈N as follows. We first flip a single
fair coin. If it comes up heads then each Xi will be an independent Bernoulli
random variable which is 1 with probability 2/3. If the original coin comes
up tails, each Xi will be an independent Bernoulli random variable which is
1 with probability 1/3.

This example is not independent. The probability that X4 is 1 is 1/2 ·
1/3 + 1/2 · 2/3 = 1/2. But if we know that X1 = X2 = X3 = 1, we
would strongly suspect that the original coin came up heads, and therefore
P(X4 = 1 | X1 = X2 = X3 = 1) would be close to 2/3.

But this distribution is still exchangeable; the probability

P(Xi1 = b1 and Xi2 = b2 and · · ·Xin = bn)

does not depend on the particular indices i1, . . . , in.
More generally, we could start with any distribution on values in [0, 1],

and then let the Xi be Bernoulli random variables with the given probability.

Example 9.4. Let ρ be a probability distribution on [0, 1]. Let {Xρ
i }i∈N be

the sequence of random variables given by selecting p ∈ [0, 1] according to ρ
and then letting the Xρ

i be independent Bernoulli random variables which
are 1 with probability p. Then {Xρ

i }i∈N is exchangeable.

It turns out that all exchangeable sequences of random variables have
this form.

Theorem 9.5 (di Finetti’s Theorem). If {Xi}i∈N is an exchangeable sequence
of random variables, there is a distribution ρ on [0, 1] such that {Xi}i∈N has
the same distribution as the sequence {Xρ

i }i∈N.

We will not prove this here since it will follow from our more general
proof of the Aldous–Hoover Theorem—the generalization to k ≥ 1—below.
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We can recover the independent identically distributed sequences as those
sequences where the distribution ρ chooses a single value with probability 1.
This turns out to be a useful notion later, so we will give it a name.

Definition 9.6. {Xi}i∈N is dissociated if, for all n, {Xi}i≤n is independent
of {Xi}i>n.

Together with exchangeability, being dissociated implies that for any
disjoint sets S, T , {Xi}i∈S is independent of {Xi}i∈T .

Di Finetti’s Theorem implies that every exchangeable sequence is a mix-
ture of dissociated exchangeable sequences, and that dissociated exchangeable
sequences are i.i.d.. (This is not really the natural way to prove either of
these facts, though—usually one would need to prove both of these directly
in order to then prove di Finetti’s Theorem.)

9.2 Exchangeable Arrays
Now let us consider the case of graphs, where k = 2. We now have an
array of random variables {X(V,E,µ1)

i,j }i,j∈N. This array will not typically be
independent—for instance, X1,2 and X1,3 both depend on our choice of v1.
For instance, if some vertices in V have higher degree, knowing that X1,2 = 1
makes it more likely that v1 had high degree, and therefore makes X1,3 more
likely.

The array is, however, still exchangeable and dissociated. Let us now
define these notions for arbitrary k.

Definition 9.7. Let {Xi1,...,ik}{i1,...,ik}∈(Nk) be an array of random variables.
We say the array is exchangeable if whenever S, T ⊆ N are finite sets
and π : S → T is a bijection, the collections {Xi1,...,ik}{i1,...,ik}∈(Sk) and
{Xi1,...,ik}{i1,...,ik}∈(π(S)

k ) have the same joint distributions.
We say the array is dissociated if whenever S, T ⊆ N are disjoint,

{Xi1,...,ik}{i1,...,ik}∈(Sk) and {Xi1,...,ik}{i1,...,ik}∈(Tk) are independent.

Exchangability seems technical, but it just states the natural property
that when we change indices, we don’t change probabilities; for instance,

P(X1,2 = 1 and X1,3 = 1 and X2,3 = 0) = P(X4,3 = 1 and X4,7 = 1 and X3,7 = 0).

We have to state it carefully in terms of a bijection because we do have to
change indices in the same way—we typically have P(X1,2 = 1 and X1,3 =
1) 6= P(X1,2 = 1 and X4,3 = 1), because exchangeability only tells us what
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happens if we change all the 1’s to 4’s in the indices, and makes no promises
if we change only some.

Theorem 9.8. The array {Xi1,...,ik}{i1,...,ik}∈(Nk) coming from a countable
random substructure is exchangeable and dissociated.

Proof. To see that {Xi1,...,ik}{i1,...,ik}∈(Nk) is dissociated, observe that if S
and T are disjoint sets, {Xi1,...,ik}{i1,...,ik}∈(Sk) is determined by the choice of
{vi}i∈S while {Xi1,...,ik}{i1,...,ik}∈(Tk) is determined by the choice of {vi}i∈T .
Since the vi are chosen independently, the sets {vi}i∈S and {vi}i∈T are inde-
pendent, so {Xi1,...,ik}{i1,...,ik}∈(Sk) and {Xi1,...,ik}{i1,...,ik}∈(Tk) are independent
as well.

To see that {Xi1,...,ik}{i1,...,ik}∈(Nk) is exchangeable, fix any finite sets S
and T with a bijection π : S → T . We need to show that whenever we have
an array {bi1,...,ik}{i1,...,ik}∈(Sk) of values in {0, 1}, we have

P(for each i1, . . . , ik ∈
(
S

k

)
, Xi1,...,ik = bi1,...,ik) = P(for each i1, . . . , ik ∈

(
S

k

)
, Xπ(i1),...,π(ik) = bi1,...,ik).

The probability that, for each i1, . . . , ik ∈
(S
k

)
, we have Xi1,...,ik = bi1,...,ik

is really a question about the vertices we chose: this probability is precisely

P(for each i1, . . . , ik ∈
(
S

k

)
, {vi1 , . . . ,vik} ∈ E if and only if bi1,...,ik = 1).

But we can say the same thing about the other probability we care about:
P(for each i1, . . . , ik ∈

(S
k

)
, Xπ(i1),...,π(ik) = bi1,...,ik) is, by definition,

P(for each i1, . . . , ik ∈
(
S

k

)
, {vπ(i1), . . . ,vπ(ik)} ∈ E if and only if bi1,...,ik = 1).

And since the vi are idependent and identically distributed, these proba-
bilities are equal.

Every dissociated exchangeable array can be obtained in this way.

Theorem 9.9. Suppose {Xi1,...,ik}{i1,...,ik}∈(Nk) is exchangeable and dissoci-

ated. Then there is a measurable k-graph (V,E, µ1) such that {X(V,E,µ1)
i1,...,ik

}{i1,...,ik}∈(Nk)
has the same joint distribution as {Xi1,...,ik}{i1,...,ik}∈(Nk).
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Proof. Let {Xi1,...,ik}{i1,...,ik}∈(Nk) be an exchangeable, dissociated array of
random variables. We can obtain finite structures by sampling from it: let
Vn = {1, 2, . . . , n} and let En ⊆

(Vn
k

)
be the set of (i1, . . . , ik) such that

Xi1,...,ik = 1. That is, (Vn,En) is a random k-graph chosen according to
{Xi1,...,ik}{i1,...,ik}∈({1,2,...,n}k ).

We will obtain (V,E, µ1) from an ultraproduct (of course), letting G =
(V,E) = [(Vn,En)]U . (Note that, formally, the choice of E we get depends
not only on U , but also on the specific random choices we make for each En.)
We then get the new exchangeable array {X(V,E,µ1)

i1,...,ik
}{i1,...,ik}∈(Nk)

To show that the joint distributions are the same, it suffices to show that
for every n and every F ⊆ ({1,2,...,m}k

)
, we have

P(for all ~i ∈
(
{1, 2, . . . ,m}

k

)
, X~i = χF (~i)) = P(for all ~i ∈

(
{1, 2, . . . ,m}

k

)
, X(V,E,µ1)

~i
= χF (~i)).

We have

P(for all ~i ∈
(
{1, 2, . . . , n}

k

)
, X(V,E,µ1)

~i
= χF (~i)) = tF (E) = lim

U
tF (En),

so it suffices to consider tF (En) for large n.
Let c = P(for all ~i ∈ ({1,2,...,m}

k

)
, X~i = χF (~i)). We follow a familiar

strategy: we first will show that E(tF (En)) has the correct value c, and then
use a concentration inequality to show that, with high probability, tF (En) is
close to c.

For each π : {1, 2, . . . ,m} → {1, 2, . . . , n}, we can consider the indicator
random variable 1π which is 1 if

for all ~i ∈ ({1,2,...,m}k

)
, Xπ(~i) = χF (~i)

and 0 otherwise. Whenever π is injective, exchangeability ensures that
E(1π) = c. When n is large, most of the π are injective, so E(tF (En)) is
close to c.

McDiarmid’s inequality will not quite suffice: the variables 1π are not
necessarily independent. Instead we have a slightly weaker property: when n
is much larger than m, for each π we have that for most π′, the variables 1π
and 1π′ are independent. Specifically, whenever the range of π and the range
of π′ are disjoint, 1π and 1π′ are independent because {X~i} is dissociated.

Although this is similar in spirit to the other concentration inequalities
we have seen, there does not seem to be a standard named inequality that
covers precisely this case. One can derive what we need as an application of
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a very general concentration inequality, the Azuma-Hoeffding inequality, but
it would require some effort for us to even state this inequality (we would
have to define a martingale). Fortunately, the result we need is a special
case of the one given in [91].

Theorem. If X = 1
k

∑
i≤k Xi where the Xi are random variables such

such that 0 ≤ Xi ≤ 1 always holds and, for each i, there is a set Ui ⊆ k
with |Ui| > k − d such that Xi is independent of {Xj}j∈Ui. Then

P(|X− E(X)| ≥ ε) ≤ 2e−2kε2/d.

We are interested in tF (En) = 1
(nm)

∑
π 1π, so we apply this inequality

when k = nm. For a given π, there are at most mnm−1 choices of π′ so that
the range of π′ overlaps the range of π, so

P(|tF (En)− c| ≥ ε) ≤ 2e−2nε2/m.

When n is much larger than ε2/m, tF (En) is close to c with high probability,
so in particular, with probability 1, limn→∞ tF (En) = c.

This completes the proof: we have shown that {X(V,E,µ1)
i1,...,ik

}{i1,...,ik}∈(Nk) has
the same joint distribution as the original array {Xi1,...,ik}{i1,...,ik}∈(Nk).

We finish our discussion of exchangeable arrays with the result which is
really the beginning of the subject, the Aldous–Hoover Theorem, which shows
that every exchangeable array can be represented by a Borel measurable
function applied to independent random variables with a particular structures.

Let us first consider what Aldous–Hoover says when k = 2 and the array
is dissociated.

Given a measurable function f : [0, 1]3 → {0, 1}, we define an array as
follows. For each i ∈ N we choose ξi ∈ [0, 1], and for each {i, j} ∈ (N2) we
choose ξ{i,j} ∈ [0, 1], with all these choices uniform and independent. Then
we set

Yi,j = f(ξi, ξj , ξi,j).

This says that the random variable has a “unary component”—the variable
ξi which is shared across all variables {Yi,j}j∈N—and a “binary component”
unique to Yi,j .

It’s important here that f is measurable in the usual sense of the product
measure on [0, 1]3, not an arbitrary Keisler measure space. In a precise way,
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as we will see in the proof, the ξi, ξj part corresponds to the projection onto
B2,1 while the ξi,j part corresponds to the quasirandom part of f .

If we drop the requirement that {Xi,j}{i,j}∈(N2) be dissociated, we only
need to modify the representation slightly. We take a measurable function
f : [0, 1]4 → {0, 1} and, in addition to the ξi and the ξi,j , we take a ξ∅ which
is also chosen uniformly and independently from [0, 1], and we set

Yi,j = f(ξ∅, ξi, ξj , ξi,j).

That is, ξ∅ is a “global” random variable shared by all the Yi,j . A general
exchangeable array is a mixture of dissociated exchangeable arrays: we can
first choose ξ∅, which tells us which exchangeable array to use, and then we
choose ξi, ξi,j to generate the exchangeable array.

For a general k, the point is that the random variables range over the
subsets of [1, k].

Definition 9.10. When f : [0, 1]P([1,k]) → {0, 1} is measurable, define an
array of random variables {Yf

i1,...,ik
}{i1,...,ik}∈(Nk) by choosing random variables

{ξR}R∈⋃
i≤k (Ni) uniformly and independently from [0, 1], and then setting

Yf
i1,...,ik

= f({ξR}R⊆{i1,...,ik}).

Lemma 9.11. {Yf
i1,...,ik

}{i1,...,ik}∈(Nk) is exchangeable.

Proof. Essentially by definition: the finite array {Yf
i1,...,ik

}{i1,...,ik}∈(Sk) is de-
termined by {ξR}R∈⋃

i≤k (Si). Since the ξR are choosen independently, the vari-

ables {ξπ(R)}R∈⋃
i≤k (π(S)

i ) have the same distribution, so {Yf
i1,...,ik

}{i1,...,ik}∈(π(S)
k )

has the same distribution as well.

Theorem 9.12. If {Xi1,...,ik}{i1,...,ik}∈(Nk) is a dissociated exchangeable array
then there is a measurable function f : [0, 1]P([1,k])\{∅} → {0, 1} such that,
taking f ′ : [0, 1]P([1,k]) → {0, 1} to be f ′({ξS}S⊆[1,k]) = f({ξS}S⊆[1,k],S 6=∅), the
random variable Yf ′

i1,...,ik
has the same distribution as {Xi1,...,ik}{i1,...,ik}∈(Nk).

Proof. By Theorem 9.9, we have a measurable k-graph (V,E, µ1) so that
{X(V,E,µ1)

i1,...,Ik
}{i1,...,ik}∈(Nk) has the same distribution as {Xi1,...,ik}{i1,...,ik}∈(Nk).
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(V,E, µ1) was created using an ultraproduct, so there is a measurable
ordering on V . Applying Theorem 8.48 gives us separable probability measure
spaces (Ωi,Di, µ) and a measurable equivalence of measure algebras ρ : V k →∏
s⊆{1,2,...,k},s 6=∅Ωi. Since separable atomless probability measure spaces are

equivalent to a subspace of the Lebesgue measurable interval [0, 1] [61, 331P],
so we may take ρ : V k → [0, 1]2k−1.

Choose E∗ ⊆ [0, 1]2k−1 with µk(ρ−1(E∗) 4 E) = 0. Then we may
take f = χE∗ . For any finite H = (W,F ) with W ⊆ N, the probability
that {Yf ′

i1,...,ik
}{i1,...,ik}∈(Wk ) is a copy of H (that is, that Yf ′

i1,...,ik
= 1 if

and only if {i1, . . . , ik} ∈ W ) is tH(f) = tH(E), which is equal to the
probability that {X(V,E,µ1)

i1,...,ik
}{i1,...,ik}∈(Wk ) is a copy of H, which is equal to the

probability that {Xi1,...,ik}{i1,...,ik}∈(Wk ), so Yf ′

i1,...,ik
has the same distribution

as {Xi1,...,ik}{i1,...,ik}∈(Nk).

Corollary 9.13 (Aldous–Hoover Theorem). If {Xi1,...,ik}{i1,...,ik}∈(Nk) is an
exchangeable array then there is a measurable function g : [0, 1]P([1,k]) →
{0, 1} such that the random variable Yg

i1,...,ik
have the same distribution.

Proof. The idea is this: if we took lots of independent samples from {Xi1,...,ik}{i1,...,ik}∈(Nk),
we could take the ultraproduct of each, and each one would gives us a function
f as in the theorem. Because the array is not dissocated, these functions f
will typically be distinct, so we get a distribution over functions f . Indeed, we
could essentially take this to be our function g—let the ξ∅ variable represent
our choice of a sample from {Xi1,...,ik}{i1,...,ik}∈(Nk), and then use the function
f from the previous theorem. The problem is that it’s not obvious that f
depends in a nice enough way on ξ∅.

To capture this idea, we define a related array which captures the informa-
tion in our original way: define {X′j,i1,...,ik}j∈N,{i1,...,ik}∈(Nk) so that, for each
j, {X′j,i1,...,ik}{i1,...,ik}∈(Nk) is an independent copy of {Xi1,...,ik}{i1,...,ik}∈(Nk).
Note that we are not asking for this array to be exchangeable—we treat the
first coordinate as an index, distinct from the other coordinates.

We will think of this as a subset of V × V k—that is, we take a sample
of this array and let Vn = {1, 2, . . . , n} and En ⊆ Vn ×

(Vn
k

)
consist of those

(j, i1, . . . , ik) with X′j,i1,...,ik = 1. We take (V,E) = [(Vn,En)]U , so we may
view E as a subset of V × (Vk).

Since X′j,i1,...,ik and X′j′,i′1,...,i′k are independent whenever j 6= j′, it follows
that E is B1 × Bk-measurable. We can now proceed as in the preced-
ing theorem: take ρ : V k+1 → [0, 1]2k (where the first coordinate comes
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from B1 and the remaining 2k − 1 represent Bk), choose E∗ ⊆ [0, 1]2k with
µk+1(ρ−1(E∗)4 E) = 0, and let f = χE∗ .

9.3 Invariant Measures

Another perspective on the random array {Xi1,...,ik}{i1,...,ik}∈(Nk) is that we
can define a related random variable E by setting {i1, . . . , ik} ∈ E exactly
when Xi1,...,ik = 1. Then E is a random k-graph on N.

Formally, let us consider the space where Gk consisting of all k-graphs on
N. There is a natural choice of σ-algebra on Gk: we would like each of the
sets {E ∈ Gk | {i1, . . . , ik} ∈ E} to be measurable, so let us take Dk to be
the smallest σ-algebra containing all these sets. To define a measure on Dk,
it would be good enough to define it on each set which a finite intersection
of basic sets and complements of basic sets—that is, on sets of the form

{E ∈ Gk | F1 ⊆ E and F0 ∩ E = ∅}

for disjoint finite sets F0, F1 ⊆
(N
k

)
.

Definition 9.14. Let X = {Xi1,...,ik}{i1,...,ik}∈(Nk) be an array. There is a
probability measure µX on (Gk,Dk) defined by

µX({E ∈ Gk | F1 ⊆ E and F0 ∩ E = ∅)
=P(for every {i1, . . . , ik} ∈ F1, Xi1,...,ik = 1

and for every {i1, . . . , ik} ∈ F0, Xi1,...,ik = 0}).

When X is exchangeable, this is invariant under permutations.

Theorem 9.15. When X is exchangeable, µX is invariant under permuta-
tions of N.

Proof. We need to show that when π : N→ N is a permutation and B is a
measurable set, that µX(B) = µX(π(B)).

It suffices to show that this holds for an algebra which generates the
measurable sets, so we can restrict ourselves to finite Boolean combinations
of sets of the form {(N, E) | {i1, . . . , ik} ∈ E}, and to account for all these,
it suffices to account for sets of the form B = {(N, E) | (W,E � S) = K}
for some finite W ⊆ N and some K = (W,F ). The claim that µX(B) =
µX(π(B)) for sets of this form is a case of exchangeability.
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Note that the converse holds as well: if µ is a probability measure on
(Gk,Dk) then then we can define an array of random variables by choosing
E according to µ and setting Xi1,...,ik = 1 when {i1, . . . , ik} ∈ E, and when
µ is invariant under permutations, this array is exchangeable.

Although we did not describe them this way, we have seen examples of
these kinds of measures. For instance, the random graph Rp(N) describes a
measure µRp in which each of the sets {E | {i, j} ∈ E} has measure p and
they are all independent.

One distinctive feature of this particular measure it that it concentrates
on a single graph up to isomorphism: there is a specific graph on N such
that, with probability 1, a graph chosen according to µRp is isomorphic to it.

This graph R, called the Rado graph or, confusingly, the random graph,
is characterized (up to isomorphism) by the following extension property:
whenever H and H ′ are finite graphs and H is an induced sub-graph of H ′,
every copy of H in R can be extended to a copy of H ′. To make this precise,
suppose H = (W,F ) and H ′ = (W ′, F ′) are finite graphs, π : W → W ′ is
an induced copy of H in H ′, and π0 : W → N is an induced copy of H in
R; then the extension properties promises us an induced copy π1 : W ′ → N
of H ′ in R so that π1 ◦ π = π0. (This says not only that π1 is a copy of H ′
extending π0, but that the copy of H in the image of π0 lies inside the image
of π1 in the specific way specified by π.)

This means that the Rado graph is the Fraïssé limit of the set of finite
graphs: it is a countable structure which contains all finite graphs in a
universal, homogeneous way. Graphs generated by exchangeable arrays are
often (though not always) Fraïssé limits, and it will be useful to consider
some of the properties of these limits.

9.4 Fraïssé Limits

Given a collection of finite structures with some suitable properties, we can
ask whether it admits a limit analogous to the random graph.

Definition 9.16. Let K be a collection of finite k-graphs. Then K has the
hereditary property if whenever H ∈ K and H ′ is an induced sub-k-graph of
H then H ′ ∈ K.

K has the amalgamation property if whenever we have H,H0, H1 ∈ K
and induced copies π0, π1 of H in H0 and H1, respectively, then we have an
H ′ ∈ K and induced copies π′0, π′1 of H0 and H1 in H ′, respectively, so that
π′0 ◦ π0 = π′1 ◦ π1.
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If K has both the hereditary property and the amalgamation property
then K is a Fraïssé class.

The notation obscures the idea of amalgamation: we have two finite struc-
tures H0 and H1 which overlap on some set of elements H. Amalgamation
promises that we can find a single structure H ′ containing both H0 and H1.

The collection of all graphs, for instance, has this property: take the union
of H0 and H1. For another example, consider the collection of all matchings:
all graphs where each vertex has degree at most 1. This time we can’t just
take the union—it might be that a vertex in H has a unique neighbor in
H0 and also a unique neighbor in H1; in order to find the amalgam H ′, we
need to identify those vertices—that is, if h ∈ H, h0 ∈ H0, h1 ∈ H1, and h0
and h1 are both neighbors of h, then we need π′0(h0) = π′1(h1). (There is a
stronger notion of amalgamation, strong amalgamation, where we add the
requirement that rng(π′0) ∩ rng(π′1) = rng(π′0 ◦ π0)—that is, that the only
vertices of H0 and H1 which get identified in H ′ are those in H.)

For a non-example, consider the collection of all graphs which do not
contain a copy of C5. Let H consist of two vertices and no edges, let H0
connect those two vertices by a path of length 2, and let H1 connect those
two vertices by a path of length 3. Then none of H, H0, or H1 contain a
cycle of length 5, but if we try to find an H ′ containing both H0 and H1, it
must contain a cycle of length 5.

Definition 9.17. Let K be a Fraïssé class. We say M is a Fraïssé limit of
K if M is a countable structure such that:

• every finite induced sub-k-graph of M is isomorphic to an element of
K,

• whenever K0,K1 ∈ K with K0 an induced sub-k-graph of K1, every
induced copy of K0 in M can be extended to an induced copy of K1 in
M .

Theorem 9.18 (Fraïssé’s Theorem). When K is a Fraïssé class, a Fraïssé
limit exists.

Proof. Enumerate K = {K0,K1, . . . , } in such a way that every element
of K appears infinitely often. We will define a structure M on N as the
union of a sequence of finite structures ({0, 1, . . . , ni}, Ei) so that Ei+1 �
{0, 1, . . . , ni} = Ei, and so that each ({0, 1, . . . , ni}, Ei) is an element of K.

We can let n0 be the size of the domain of K0 and choose E0 so
that ({0, 1, . . . , n−}, E0) is a copy of K0. Suppose we have constructed
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({0, 1, . . . , ni}, Ei). We will construct ni+1, Ei+1 as the union of a finite se-
quence of extensions. Let (u0, π0, ρ0), . . . , (ud, πd, ρd) be the list of all triples
such that
(1) uj ≤ i,

(2) πj is an induced copy of Kuj in Ki+1,

(3) ρj is an induced copy of Kuj in ({0, 1, . . . , ni}, Ei).
We want to arrange that by the time we build ({0, 1, . . . , ni+1}, Ei+1), each
ρj has been extended to a copy of Ki+1.

Let n′0 = ni and E′0 = Ei. Given ({0, 1, . . . , n′j}, E′j), the induced
copies πj , ρj are an instance of the amalgamation property, so there is
a Kv ∈ K, an induced copy π′k of Ki+1 in Kv, and an induced copy ρ′j of
({0, 1, . . . , n′j}, E′j) in Kv. In particular, we may choose n′j+1 to be the size
of the domain of Kv and choose E′j+1 so that E′j+1 � {0, 1, . . . , n′j} = E′j and
({0, 1, . . . , n′j+1}, E′j+1) is isomorphic to Kv.

Finally we take ni+1 = n′d+1 and Ei+1 = E′d+1.
We let M be the union (N, E) we get after infinitely many sets. If H

is a finite induced sub-k-graph of M then H is an induced sub-k-graph of
({0, 1, . . . , ni}, Ei) for some large enough i, so by the hereditary property, H
is in K.

If H,H ′ ∈ K, ρ is an induced copy of H in M , and π is an induced copy
of H in H ′, we have some large enough i so that rng(ρ) ⊆ {0, 1, . . . , ni} and
also Ki+1 = H ′ (since the former happens cofinitely and the latter happens
infinitely often). We have constructed Ei+1 precisely so that there is some
induced copy π′ of H ′ in ({0, 1, . . . , ni+1}, Ei+1) with π ◦ π = ρ.

Theorem 9.19. Any two Fraïssé limits of K are isomorphic.

Proof. Let M,N be Fraïssé limits of K. We use a classic back-and-forth
argument, constructing a sequence of finite bijections. It suffices to show
that if π is a partial isomorphism from a finite subset of the domain of M to
a finite subset of the domain of N and a is an element ofM , there is a partial
isomorphism π′ ⊇ π with dom(π′) = dom(π) ∪ {a}. (To add some b ∈ N to
the range, we can use the fact that π−1 is also a partial isomorphism, use
the same result to get π′ ⊇ π−1 and then rng(π′)−1 = rng(π) ∪ {b}.)

So suppose the partial isomorphism π is given. Then there are H,H0
in K so that H is isomorphic to M � dom(π) and H0 is isomorphic to
M � dom(π) ∪ {a}. Then rng(π) is a copy of H in N , and since N is a
Fraïssé limit, rng(π) can be extended to a copy of H0 in N ; we define π′ by
mapping a to the new element in this copy of H0.
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We have already mentioned that the set of finite graphs is a Fraïssé class,
and its Fraïssé limit is the Rado graph. More generally, it is not hard to
see that the set of finite k-graphs, for any fixed k, is a Fraïssé class (for the
amalgamation property, we may just take the union); there is an analogous
Fraïssé limit, usually called the random k-graph. There are also variations
on these notions, like the random bipartite graph (the Fraïssé limit of the
set of finite bipartite graphs), and similar variants for k-graphs.

For a slightly different looking class of structures, consider the collection
of triangle-free graphs—graphs with the property that, among any set of three
vertices, at least one edge is missing—forms a Fraïssé class. The hereditary
property follows from the definition (if K has no triangles, removing vertices
will certainly not create a triangle). For the amalgamation property, if we
have H ⊆ H0, H1, we can take the union of H0 and H1 which adds no new
edges; then any set of three vertices is either totally contained in H0 (so
triangle-free because H0 is), totally contained in H1 (so triangle-free because
H1 is), or contains a vertex in H0 \H1 and a vertex in H1 \H0, and these
two have no edge between them.

Note that the same argument would apply in general to the collection of
k-graphs which contain no clique of m vertices, for any k < m.

9.5 Measures Concentrating on a Structure

The Fraïssé limit of the triangle-free graphs is called the Henson graph. For
many years, it was an open question whether the Henson graph could be
generated randomly in a way analogous to the Rado graph—that is, is there
a probability measure on graphs which, with probability 1, gives a copy of
the Henson graph?

More generally, we can ask which k-graphs can be randomly generated
with probability 1—that is, when is there a probability measure which is
invariant under permutations which concentrates on k-graphs isomorphic to
a particular k-graph. The main constraint is the observation that “anything
which happens must happen infinitely often”. For instance, if there is a
postive probability of finding a triangle then, with probability 1, the graph
must contain infinitely many triangles: we can take infinitely many pairwise
disjoint sets of three vertices, and since each set of three vertices has the
same probability of being a triangle, independently of the others, infinitely
many must be one.

We can push this slightly further: if I take any set of vertices and ask
whether an extension to a particular graph happens, either the extension
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never happens or it happens infinitely often. For instance, I can pick three
vertices which happen to be a triangle and ask whether they extend to a copy
of K4; I can take infinitely many vertices, and each has the same probability,
independently of the others, of completing the triangle to a K4, so either this
has probability 0 and so never happens, or positive probability, and therefore
happens infinitely often.

Making this precise gives us the following property.

Definition 9.20. A structureM has trivial group-theoretic definable closure
if whenever S ⊆ N is finite and a 6∈ S, there is an automorphism ofM which
fixes S and moves a.

Not all Fraïssé limits have this property. For example, let K be the
collection of matchings: graphs in which each vertex has degree at most
1. This certainly has the hereditary property. To see the amalgamation
property, note that H might have a vertex a with degree 0 but that π0(a) and
π1(a) might both have degree 1. In this case H ′ must identify the neighbors
of a with the same vertex—we have π′0(b0) = π′1(b1), even though b0, b1 are
not in the range of π0 and π1.

The Fraïssé limit is a graph with countably many isolated vertices and
countably many pairs of matched vertices. But if we hold one end of an
edge fixed, an automorphism cannot move the other end of the same edge:
knowing one end of an edge is enough to “define” the other end of the same
edge.

Conversely, not every structure with trivial group-theoretic definable
closure is a Fraïssé limit. Consider the graph on N where there’s an edge
between any pair of distinct even vertices, and no others. That is, every
odd vertex is isolated while the even vertices form a single infinite clique.
This graph cannot be a Fraïssé limit: consider the age of this graph, the
set of all finite induced sub-graphs; it consists of vertices with a single
finite clique and finitely many isolated vertices. This set does not have the
amalgamation property: take H to consist of a single vertex, let H0 consist
of two adjacent vertice, and let H1 consist of two adjacent vertices together
with a third isolated vertex. Let π0 : H → H0 map the vertex of H to
any vertex of H0, let π1 : H → H1 map the vertex of H to the isolated
vertex of H1. Then any amalgam would need two edges in distinct connected
components. On the other hand, this graph does have trivial group-theoretic
definable closure: we get an isomorphism by permuting the even vertices
and, separately, permuting the odd vertices; given any finite set S and any a,
we can find an automorphism holding S fixed and mapping a to any number
of the same parity not in S.



270 CHAPTER 9. RANDOM COUNTABLE GRAPHS

Theorem 9.21. If M is a structure and µ is a permutation invariant
probability measure which gives a copy ofM with probability 1 thenM has
trivial group-theoretic definable closure.

Proof. Consider some fixed finite S ⊆ N and some a 6∈ S. For a given tuple
(m1, . . . ,m|S|, n) ∈ N|S|+1, let us write Am1,...,m|S|,n for the event “there ex-
ists an isomorphism of X toM mapping m1, . . . ,m|S| to S and n to a”. Since,
with probability 1, X is isomorphic toM, we have µ(⋃m1,...,m|S|,n

Am1,...,m|S|,n) =
1, so by countable additivity, there is somem1, . . . ,m|S|, n with µ(Am1,...,m|S|,n) >
0, and by permutation invariance, this holds for all (m1, . . . ,m|S|, n).

For fixed m1, . . . ,m|S|, we have 0 < µ(⋃nAm1,...,m|S|,n) ≤ 1. This means
we cannot have µ(⋃nAm1,...,m|S|,n) = ∑

nAm1,...,m|S|,n, so there must be n, n′
with µ(Am1,...,m|S|,n ∩Am1,...,m|S|,n′) > 0.

So consider some choice of X in this event, and let π, π′ be isomorphisms
of X taking m1, . . . ,m|S| to S and n or n′ to a, respectively. Then π′ ◦π−1 is
an automorphism ofM fixing S and mapping a to something other than a.

Since this holds for any S and any a 6∈ S, M does not have trivial
group-theoretic definable closure.

In order to prove a converse, it is helpful to work directly with the way
automorphisms move elements around.

Definition 9.22. Given a structureM with universe N, write [M]d for the
collection of equivalence classes of Nd under the automorphisms ofM.

We can think of [M]d as representing a notion of “type” of a d-tuple,
where two tuples have the same type exactly when one can be mapped
to the other by an automorphism. (This is a bit stronger than the usual
model-theoretic notion of a type—more precisely, it’s roughly a type in the
logic Lω1,ω.) Note that each element of [M]k determines E—that is, each
element of [M]k is either an equivalence class of edges or an equivalence class
of non-edges—since an automorphism certainly preserves whether there’s an
edge between a given k-tuple.

We are skirting the bounds of what it is reasonable to do while working
only with k-graphs. We should really think of this as the passage to a new
structure, M′, in an expanded language of first-order logic containing a
relation symbol for each element of each [M]d. This new structure con-
tinues to have trivial group-theoretic definable closure, and additionally is
ultrahomogeneous—whenever we have a partial automorphism between finite
subsets, it can be extended to an automorphism of the whole structure.

Still, we can state this fact without introducing more abstraction.
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Lemma 9.23. Let d < d0, d1 be given, and suppose we have (n1, . . . , nd) ∈
Nd, and two tuples (n1, . . . , nd,m

0
1, . . . ,m

0
d0−d) ∈ Nd0 and (n1, . . . , nd,m

1
1, . . . ,m

1
d1−d) ∈

Nd1.
There exists a tuple (n1, . . . , nd,m

2
1, . . . ,m

2
d1−d) ∈ Nd1 which has the

same d1-type as (n1, . . . , nd,m
1
1, . . . ,m

1
d1−d) and so that {m0

1, . . . ,m
0
d0−d} ∩

{m2
1, . . . ,m

2
d1−d} = ∅.

This is essentially an almagamation theorem for types: it says that if p is
a sub-type of both p0 and p1 then there is a type p2 which amalgamates p0
and p1without identifying any elements of p0 \ p with elements of p1 \ p. In
this guise, it is a standard fact from model theory—that a when a structure
has both trivial group-theoretic definable closure and is ultrahomogeneous,
it has the strong amalgamation property, which is the strengthening of the
amalgamation property in which the copies of H0 and H1 in H ′ do not share
any elements other than those in H.

Stating this directly as amalgamation about types, however, would require
some sort of notation for writing embeddings of types. Rather than introduce
this notation for one application, we have stated this more bare bones version
which suffices for us.

Proof. LetN = {n1, . . . , nd},M0 = {m0
1, . . . ,m

0
d1−d}, andM1 = {m1

1, . . . ,m
1
d1−d}.

We show the claim by induction on |M0 ∩M1|. If M0 ∩M1 = ∅, we may
simply take M2 = M1 and be done.

Otherwise, choose some m ∈ M0 ∩ M1. Since M has trivial group-
theoretic definable closure, we may find an automorphism fixing N and
M0 ∪ M1 \ {m} and mapping m to some m′. Then m′ 6∈ M0, so N ∪
(M1 \ {m}) ∪ {m′} has the same d1-type as (n1, . . . , nd,m

1
1, . . . ,m

1
d1−d), but

intersects M0 in one fewer point. The inductive hypothesis then gives the
desired M2.

We can now prove a converse to Theorem 9.21, giving us an exact
characterization of those structures which can be generated with probability
1 by a permutation invariant probability measure.

Theorem 9.24 (Ackerman–Freer–Patel). SupposeM has trivial definable
group-theoretic closure. Then there is a permutation invariant measure µ
which, with probability 1, concentrates on structures isomorphic toM.

The idea is that we’ll build our measure by deciding how to assign d-tuples
to elements ofM: we’ll build our measure in stages where, at a given stage,
we’ve divided [0, 1] into intervals I1, . . . , Id, and whenever (x1, . . . , xd) is a
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tuple with xi ∈ Ii for all i, we will have chosen an element ofMd to assign
(x1, . . . , xd).

Proof. We fix a list of all the “one-point extensions”—that is, all pairs (p, p′)
where p ∈ [M]d, p′ ∈ [M]d+1—so that all such pairs appear infinitely often.

At each stage, we will have a disjoint list of intervals I1 < . . . < Is of
[0, 1] so that max Is < 1, and a type p in [M]d, and we have committed that
a tuple (x1, . . . , xd) with xi ∈ Ii for all i will have type p.

At infinitely many stages, we refine an interval. Let j be such that |Ij | is
largest and, if there are multiple such j, so j is least among such intervals.
We divide Ij into two sub-intervals (say, by dividing in half). Consider any
representative (n1, . . . , ns) of the chosen type p. Fixing all elements other
than nj , there is an automorphism ofM moving nj to some n′j . Let p′ be
the type of (n1, . . . , nj−1, nj , n′j , nj+1, . . . , ns); we decide that a tuple from
from I1, . . . , Ij/2, Ij/2, . . . , Is will be assigned to p′.

At infinitely many stages we arrange an extension. We choose the next
tuple (p, p′) our list. Let v be the number of sub-tuples of ps which are p. We
take the interval [max Is, 1] and divide it into v sub-intervals Is+1, . . . , Is+v.
For each Is+j , we want to ensure that the j-th interval extends the j-th tuple
to a copy of p′. By strong amalgamation, we can then amalgamate these all
to find a ps+1.

The way we have defined our measure, it is only defined up to measure
0 (a countable set of points are boundaries of intervals); we can define the
measure arbitrarily on tuples containing a boundary.

Now suppose we choose some structure N according to µ. We must show
that, with probability 1, it is isomorphic to M. We use a back-and-forth
argument. Suppose we have constructed a finite automorphism π :M→N .
Let (x1, . . . , xd) be the range of N , in increasing order.

Given any a ∈ N \ dom(π), consider the type of dom(π) ∪ {a}. At some
later stage, we considered dom(π),dom(π)∪{a}, and at that stage, we added
an interval so that any element from that interval would give the desired
type; with probability 1, N contains that element as an interval, so we may
choose that for π(a).

Given any b ∈ |N |\{rng(π)}, we chose (x1, . . . , xd, b) from some intervals,
which were assigned to some type in [M]d+1. Since this type extends the
type of dom(π), there must be an element ofM realizing the type, so we set
π(a) = b.
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9.6 Remarks
The study of exchangeable array, in their current generality begins with [4],
which proves the k = 2 case of the Aldous–Hoover Theorem. The general
case was settled in [86], using model theoretic methods similar to those
we have used here. Many subsequent results on exchangeable arrays and
variations on the idea are described in [95]. The connection with graph limits
was noted in [43].

The construction of a probability measure concentrating on the Henson
graph is from [127], which was then generalized to the construction given
here in [1].

There is a connection between the properties of Fraïssé classes and the
properties of measures which are invariant under the automorphisms of the
Fraïssé limit. If G is the group automorphisms (or, indeed, any group), a
G-invariant measure is a G-flow. The study of these is a large topic we cannot
begin to survey here, but one fundamental result is [96], which connects the
Ramsey properties of the Fraïssé class (that is, the question of whether one
can “color” substructures of the Fraïssé limit and then find a copy of the
Fraïssé limit which is monochromatic) to the extreme amenability of the
G-flow.
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