Extra Credit

- 1. (a) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} v_1 + v_3 = [s(v_1|d_1)(v_2|d_2)(v_3|d_3)]$ $\inf \overline{s(v_1|d_1)(v_2|d_2)(v_3|d_3)}(v_1) + \mathfrak{A} \overline{s(v_1|d_1)(v_2|d_2)(v_3|d_3)}(v_3) = \overline{s(v_1|d_1)(v_2|d_2)(v_3|d_3)}(v_2)$ iff $d_1 + d_3 = d_2$. (b) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \neg v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)(v_3|d_3)]$ iff $\nvDash_{\mathfrak{A}} \neg v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)(v_3|d_3)]$ iff $d_1 + d_3 \neq d_2$ by part (a). (c) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_3 \neg v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\models_{\mathfrak{A}} \neg v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)(v_3|c)]$ for all $c \in |\mathfrak{A}|$ iff $\overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_1) + \mathfrak{A} \overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_3) \neq \overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_2)$ for all $c \in |\mathfrak{A}|$ iff $d_1 + c \neq d_2$ for all $c \in |\mathfrak{A}|$ iff $d_1 > d_2$. (d) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \neg \forall v_3 \neg v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\models_{\mathfrak{A}} \exists v_3 v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\models_{\mathfrak{A}} v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)(v_3|c)]$ for some $c \in |\mathfrak{A}|$ iff $\overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_1) + \mathfrak{A} \overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_3) = \overline{s(v_1|d_1)(v_2|d_2)(v_3|c)}(v_2)$ for some $c \in |\mathfrak{A}|$ iff $d_1 + c = d_2$ for some $c \in |\mathfrak{A}|$ iff $d_1 \leq d_2$. (e) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \exists v_3 v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $d_1 < d_2$ by part (d). (f) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} v_1 < v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\langle \overline{s(v_1|d_1)(v_2|d_2)}(v_1), \overline{s(v_1|d_1)(v_2|d_2)}(v_2) \rangle \in <^{\mathfrak{A}}$ iff $d_1 < d_2$. (g) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} v_1 < v_2 \to \exists v_3 v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\models_{\mathfrak{A}} \neg v_1 < v_2[s(v_1|d_1)(v_2|d_2)]$ or $\models_{\mathfrak{A}} \exists v_3v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ iff $\langle \overline{s(v_1|d_1)(v_2|d_2)}(v_1), \overline{s(v_1|d_1)(v_2|d_2)}(v_2) \rangle \notin <^{\mathfrak{A}}$ or $d_1 < d_2$ by (e) iff $d_1 \not < d_2$ or $d_1 \leq d_2$ iff $d_2 \leq d_1$ or $d_1 \leq d_2$, which is true for all d_1 and d_2 . (h) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_2(v_1 < v_2 \to \exists v_e v_1 + v_e = v_2)[s(v_1|d_1)]$ iff $\models_{\mathfrak{A}} v_1 < v_2 \to \exists v_3 v_1 | v_3 = v_2[s(v_1 | d_1)(v_2 | d_2)]$ for all $d_2 \in |\mathfrak{A}|$, which is true for all d_1 , by (g). (i) For any $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_1 \forall v_2 (v_1 < v_2 \to \exists v_3 v_1 + v_3 = v_2)[s]$ iff $\models_{\mathfrak{A}} v_1 < v_2 \to \exists v_3 v_1 + v_3 = v_2[s(v_1|d_1)(v_2|d_2)]$ for all $d_1, d_2 \in |\mathfrak{A}|$, which is true by (g).
 - (j) Yes, since by (i), this holds for every $s: V \to |\mathfrak{A}|$.

2. $\models_{\mathfrak{A}} \exists v_1 \forall v_2 v_2 < v_2 + v_1$

iff for every $s: V \to |\mathfrak{A}|, \models_{\mathfrak{A}} \exists v_1 \forall v_2 v_2 < v_2 + v_1[s]$ iff there is $d_1 \in |\mathfrak{A}|$ such that for all $d_2 \in |\mathfrak{A}|, \models_{\mathfrak{A}} v_2 < v_2 + v_1[s(v_1|d_1)(v_2|d_2)]$ <u>iff there is $d_1 \in |\mathfrak{A}|$ such that for all $d_2 \in |\mathfrak{A}|, \langle \overline{s(v_1|d_1)(v_2|d_2)}(v_2), \overline{s(v_1|d_1)(v_2|d_2)}(v_2) + \mathfrak{A}$ </u> $\overline{s(v_1|d_1)(v_2|d_2)(v_2)} \in <^{\mathfrak{A}}$ iff there is $d_1 \in \mathbb{N}$ such that for all $d_2 \in \mathbb{N}, d_2 < d_2 + d_1$. This is true, take $d_1 = 1. \ d_2 < d_2 + 1$ for all $d_2 \in \mathbb{N}$.

3. First note that α says that the ordering is dense, β says the the ordering has no maximum, and γ says that the ordering is strict. Further note that $\neg \alpha$ is $\exists x \exists y (x < y \land \neg \exists z (x < z \land z < y))$ (there are two elements with no elements "between" them) and $\neg \beta$ is $\exists x \forall y \neg x < y$ (there is a max).

Soundness and completeness tell us that $\Gamma \vdash \phi \Leftrightarrow \Gamma \models \phi$, so $\Gamma \nvDash \phi \Leftrightarrow \Gamma \nvDash \phi$. So, to show $\Gamma \nvDash \phi$, it is enough to show $\Gamma \nvDash \phi$. Thus, we just need a structure \mathfrak{A} which models Γ and not ϕ .

(a) $\alpha, \gamma \nvDash \beta$

 $\mathfrak{A} = ([0,1],<)$ with the usual ordering. This is dense and strict, but does not have a max.

(b) $\alpha, \gamma \nvDash \neg \beta$

 $\mathfrak{A} = (\mathbb{Q}, <)$ with the usual ordering. This is dense and strict, but has no max (so $\neg\beta$ does not hold).

(c) $\beta, \gamma \nvDash \alpha$

 $\mathfrak{A} = (\mathbb{N}, <)$ with the usual ordering. This has no max, is strict, but is not dense.

(d) $\beta, \gamma \nvDash \neg \alpha$

 $\mathfrak{A} = (\mathbb{Q}, <)$ with the usual ordering. It has no max, is strict, and is dense (so $\neg \alpha$ does not hold).

- 4. (1) $\forall x (\forall y \phi \rightarrow \phi) (Ax 2)$
 - (2) $\forall x (\forall y \phi \to \phi) \to (\forall x \forall y \phi) \to \forall x \phi \text{ (Ax 3)}$
 - (3) $\forall x \forall y \phi \rightarrow \forall x \phi \text{ (mp, lines 1 and 2)}$
 - (4) $\forall x \forall y \phi$ (assumption)
 - (5) $\forall x \phi$ (mp, lines 3 and 4)

Therefore $\forall x \forall y \phi \vdash \forall x \phi$.

- 5. (1) $\forall y \forall x (\forall y \phi \rightarrow \phi)$ (Ax 2)
 - (2) $\forall y [\forall x (\forall y \phi \rightarrow \phi) \rightarrow (\forall x \forall y \phi) \rightarrow \forall x \phi]$ (Ax 3)
 - $\begin{array}{l} (3) \ \forall y [\forall x (\forall y \phi \to \phi) \to (\forall x \forall y \phi) \to \forall x \phi] \to \forall y \forall x (\forall y \phi \to \phi) \to \forall y ((\forall x \forall y \phi) \to \forall x \phi) \\ (Ax \ 3) \end{array}$
 - (4) $\forall y \forall x (\forall y \phi \rightarrow \phi) \rightarrow \forall y ((\forall x \forall y \phi) \rightarrow \forall x \phi) \text{ (mp, lines 2 and 3)}$
 - (5) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \text{ (mp, lines 1 and 4)}$

(6) $\forall x \forall y \phi$ (assumption)

- (7) $\forall x \forall y \phi \rightarrow \forall y \forall x \forall y \phi \text{ (Ax 4)}$
- (8) $\forall y \forall x \forall y \phi$ (mp, lines 6 and 7)
- (9) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \rightarrow \forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi \text{ (Ax 3)}$
- (10) $\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi \text{ (mp, lines 5 and 9)}$
- (11) $\forall y \forall x \phi$ (lines 8 and 10)

Therefore $\forall x \forall y \phi \vdash \forall y \forall x \phi$.

- 6. (1) $\forall y \forall x (\forall y \phi \rightarrow \phi)$ (Ax 2)
 - (2) $\forall y [\forall x (\forall y \phi \rightarrow \phi) \rightarrow (\forall x \forall y \phi) \rightarrow \forall x \phi]$ (Ax 3)
 - $\begin{array}{ll} (3) & \forall y [\forall x (\forall y \phi \to \phi) \to (\forall x \forall y \phi) \to \forall x \phi] \to \forall y \forall x (\forall y \phi \to \phi) \to \forall y ((\forall x \forall y \phi) \to \forall x \phi) \\ & (Ax \ 3) \end{array}$
 - (4) $\forall y \forall x (\forall y \phi \rightarrow \phi) \rightarrow \forall y ((\forall x \forall y \phi) \rightarrow \forall x \phi) \text{ (mp, lines 2 and 3)}$
 - (5) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \text{ (mp, lines 1 and 4)}$
 - (6) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \rightarrow \forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi \text{ (Ax 3)}$
 - (7) $\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi \text{ (mp, lines 5 and 6)}$
 - (8) $\forall x \forall y \phi \rightarrow \forall y \forall x \forall y \phi \text{ (Ax 4)}$
 - $(9) \ (\forall x \forall y \phi \to \forall y \forall x \forall y \phi) \to (\forall y \forall x \forall y \phi \to \forall y \forall x \phi) \to (\forall x \forall y \phi \to \forall x \forall y \phi) \ (Ax \ 1)$
 - (10) $(\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi) \rightarrow (\forall x \forall y \phi \rightarrow \forall x \forall y \phi)$ (mp, lines 8 and 9)
 - (11) $\forall x \forall y \phi \rightarrow \forall x \forall y \phi \text{ (mp, lines 7 and 10)}$

Therefore $\vdash \forall x \forall y \phi \rightarrow \forall x \forall y \phi$

7. Let Γ be a consistent set of first order formulas in a countable language. Then there are countably many first order formulas in this language: Consider a formula of length n. The language is countable, so in each of the n positions, there are countably many symbols which can be used. Thus, there are at most $\omega^n = \omega$ possible formulas of length n. Furthermore, formulas are finite in length, so there are at most $\omega \cdot \omega = \omega$ many formulas.

Hence, we can enumerate the formulas $\{\phi_1, \phi_2, \ldots\}$.

Define $\Gamma_0 := \Gamma$. Γ_0 is consistent (by assumption) and for every $i \leq 0, \phi_i \in \Gamma_0$ or $\neg \phi_i \in \Gamma_0$ (vacuously).

Suppose Γ_n has been defined and assume for all $i \leq 1$ that $\phi_i \in \Gamma_n$ or $\neg \phi_i \in \Gamma_n$, and that Γ_n is consistent.

Let \mathfrak{A}_n be a structure in the language such that $\models_{\mathfrak{A}_n} \Gamma_n$ (this exists since Γ_n is consistent). Then $\models_{\mathfrak{A}_n} \phi_{n+1}$ or $\nvDash_{\mathfrak{A}_n} \neg \phi_{n+1}$, so either $\models_{\mathfrak{A}_n} \phi_{n+1}$ or $\models_{\mathfrak{A}_n} \neg \phi_{n+1}$. In the first case, define $\Gamma_{n+1} := \Gamma_n \cup \{\phi_{n+1}\}$, in the second case, let $\Gamma_{n+1} := \Gamma_n \cup \{\neg \phi_{n+1}\}$. So, $\models_{\mathfrak{A}_n} \Gamma_{n+1}$, which means that Γ_{n+1} is consistent, and for all $i \leq n+1$, $\phi_i \in \Gamma_{n+1}$ or $\neg \phi_i \in \Gamma_{n+1}$. Now, define $\bigcup_{n \in \mathbb{N}} \Gamma_n$.

Let σ be given. Then, for some $i \in \mathbb{N}$, $\sigma = \phi_i$ (since the ϕ_i 's enumerate all formulas). So either $\sigma \in \Gamma_i \subset \Delta$, or $\neg \sigma \in \Gamma_i \subset \Delta$. Hence, Δ is complete. Let $\Delta_0 \subset \Delta$ be finte. Let *i* be the max such that $\phi_i \in \Delta_0$. Then $\Delta_0 \subset \Gamma_i$. By construction, Γ_i is consistent. Thus, Δ_0 is consistent. Hence, since $\Delta_0 \subset \Delta$ finite was arbitrary, by compactness, Δ is consistent.

Finally, $\Gamma \subset \Delta$. Thus, Δ is as required.