Extra Credit

1. (a) Forany s:V — |2, |Eo v1 + vz = [s(v1]|dy)(v2|d2)(vs|d3)]

iff (vi[dy) (va]da) (vs]ds) (v1) 475 (vi|dy ) (va]da) (vs]ds) (v3) = s(v1]da)(v2]d2) (vs]d3) (v2)
ift dy + d3 = ds.

(b) For any s:V — ||, o =01 + v3 = va[s(v1]d1)(v2]d2)(v3]ds)]
iff Fo =1 + v3 = va[s(v1]dy) (ve]dz) (vs]ds)]
iff d; + d3 # ds by part (a).

(c) For any s : V' — [, o Vuz—w1 + v3 = va[s(v1]di) (v2|d)]
iff =g —v1 + v3 = va[s(v1]dy) (v2|d2)(vs]c)] for all ¢ € |2
iff s(v1d1)(va]d2) (vsle) (vi) +* s(vi]di) (va|da) (v3]c) (vs) # s(vi|di)(va]d2)(vs]e) (v2)
for all ¢ € |2
iff dy + ¢ # dy for all ¢ € ||
ift dy > d,.

(d) For any s:V — ||, o =Vuz—v1 + v3 = va[s(vy|dy) (v2]da)]
iff =g Jusvy + v3 = va[s(v1|dy) (ve|da)]
iff =g v1 + v3 = va[s(v1]dy)(ve]ds)(vs|c)] for some ¢ € ||
iff s(v1d1)(va]d2) (vsle) (vi) +* s(vi]di) (va|da) (v3]c) (vs) = s(vi|di)(va]d2)(vs]e) (v2)
for some ¢ € ||
iff d; + ¢ = dy for some ¢ € ||
ift dy < d.

(e) For any s: V — ||, o Jusvy + vz = va[s(v1|dy)(ve|ds)]
iff d; < dy by part (d).

(f) Forany s: V — [2], [=a v1 < va[s(vidy)(v2|d2)]
iff (s(vi|dy)(va|da)(v1), s(vi|di) (va|da) (v2)) €<®
iff dy < ds.

(g) Forany s:V — ||, o v1 < v — Jugvy + vg = va[s(vi]dy)(v2|d2)]
iff =g ~v1 < va[s(v1]dy)(v2|d2)] or o Fugvr + v3 = ve[s(vy|dy)(v2]da)]
iff (s(v1]d1)(valda) (v1), s(v1]di) (va]da) (v2)) < or di < da by (e)
iff di Kdy or di < dy
iff dy < dy or dy < d,
which is true for all d; and d».

(h) For any s:V — ||, o Yoo (v1 < vg — Jvevr + v = v2)[s(v1]dy)]
iff =g v1 < v — Juzvr|vs = va[s(v1|dy)(v2|dy)] for all dy € U],
which is true for all dy, by (g).

(i) For any s: V — |, a Yo Voo (v) < vg — Jugvg + vz = v9)]$]
iff =g v1 < v — Fuzvy + v3 = vo[s(v1|dy)(ve|dy)] for all dy,dy € |,
which is true by (g).

(j) Yes, since by (i), this holds for every s : V' — |2|.



2. }:Q[ Juv1Vuave < vy + 11
iff for every s: V — ||, o Jv1Vvovs < v9 + v1][9]
iff there is d; € || such that for all dy € ||, Fq v2 < vy + vi[s(v1|dy)(ve|d2)]

iff there is d; € |2| such that for all dy € ||, {s(vy|dy)(v2|d2)(va), s(v1]dy)(va|da)(v2) +*
s(v1]di)(va|d2) (v2)) €<®

iff there is d; € N such that for all dy € N, dy < dy + d;.
This is true, take dy = 1. dy < dy + 1 for all dy € N.

3. First note that « says that the ordering is dense, (5 says the the ordering has no
maximum, and v says that the ordering is strict. Further note that -« is Jz3Jy(z <
y A —-3z(z < z Az < y))(there are two elements with no elements “between” them)
and —f is JzVy—x < y (there is a max).

Soundness and completeness tell us that T' - ¢ < T' | ¢, so T ¥ ¢ < T' # ¢. So,
to show I' ¥ ¢, it is enough to show I' ¥ ¢. Thus, we just need a structure 2l which
models I' and not ¢.

(a) a,y¥
A = ([0,1], <) with the usual ordering. This is dense and strict, but does not
have a max.

(b> 047’}/174 _'6
2 = (Q, <) with the usual ordering. This is dense and strict, but has no max (so
=0 does not hold).

(c) B,7Fa

2 = (N, <) with the usual ordering. This has no max, is strict, but is not dense.

(d> 57 Y ¥ —a
A = (Q, <) with the usual ordering. It has no max, is strict, and is dense (so -«
does not hold).

1) Va(Vyé — 6) (Ax 2)
2) Va(Vyp — ¢) — (Vaye) — Vae (Ax 3)
3) VaVy¢p — Vaeo (mp, lines 1 and 2)

4) YaVy¢ (assumption)

5) Vx¢ (mp, lines 3 and 4)

Therefore VaVyo = Vro.
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5. (1) VyVz(Vyop — ¢) (Ax 2)
(2) VylVz(Vy¢ — ¢) — (VaVy¢) — Va¢] (Ax 3)

(3) (V/’i[vw)(vycb — ¢) — (VaVyp) — Vag] — VyVaz(Vyg — ¢) — Vy((VaVyd) — Vze)
x 3

(4) VyVz(Vyd — ¢) — Yy((VaVye) — Vo) (mp, lines 2 and 3)
(5) Yy((VaVyp) — VYaep) (mp, lines 1 and 4)



(6) YaVy¢ (assumption)

(7) VaVyo — YyVaVyeo (Ax 4)

(8) VyVaVye (mp, lines 6 and 7)

(9) Vy((VaVyg) — Vag) — VyVaVyep — VyVae (Ax 3)
(10) YyVaVyo — YyVz¢ (mp, lines 5 and 9)

(11) VYyYx¢ (lines 8 and 10)

Therefore VaVy¢ - VyVae.

6. (1) VyVz(Vyop — ¢) (Ax 2)
(2) VylVa(¥yo — 6) — (VaVys) — Vag] (Ax 3)

(3) \(f}y\[\mng — ¢) — (VaVyp) — Vag] — VyVz(Vy¢ — ¢) — Vy((VaVye) — Vo)
X3

(4) VyVz(Vyp — ¢) — Yy((VaVyo) — Ya¢) (mp, lines 2 and 3)
(5) Yy((VaVyp) — V) (mp, lines 1 and 4)
(6) Vy((VaVy¢) — Vag) — VyVaVye — VyVaed (Ax 3)
(7) YyVaVyo — VyVre (mp, lines 5 and 6)
(8) VaVyo — VyVaVyo (Ax 4)
(9) )
)

8
9) (VaVyo — VyVaVyep) — (VyVaVyd — VyVad) — (VaVyp — VaVye) (Ax 1)
(10) (VyVaVyo — YyVzo) — (VaVyp — YaVye) (mp, lines 8 and 9)

(11) VaVy¢ — VaVy¢ (mp, lines 7 and 10)
Therefore F VaVyp — VaVyo

7. Let T" be a consistent set of first order formulas in a countable language. Then there
are countably many first order formulas in this language: Consider a formula of length
n. The language is countable, so in each of the n positions, there are countably many
symbols which can be used. Thus, there are at most w™ = w possible formulas of length
n. Furthermore, formulas are finite in length, so there are at most w - w = w many
formulas.

Hence, we can enumerate the formulas {41, o, ...}

Define I'y := I". Ty is consistent (by assumption) and for every i < 0, ¢; € T’y or
—¢; € I'y (vacuously).

Suppose I',, has been defined and assume for all + < 1 that ¢; € '), or —¢; € T',,, and
that I',, is consistent.

Let 2, be a structure in the language such that =y, I', (this exists since I', is con-
sistent). Then |=g, ¢dni1 or By, —dn i1, S0 either =g, @piq O Fo, —¢n41. In the first
case, define T', 11 := ', U {¢,41}, in the second case, let T, 1 =T, U{=¢dni1}. So,
o, i1, which means that I, is consistent, and for all : < n+ 1, ¢; € [',,4q or
=¢; € Tpy1. Now, define | JT.
neN

Let o be given. Then, for some ¢ € N, 0 = ¢; (since the ¢;’s enumerate all formulas).
So either 0 € I'; C A, or =g € I'; C A. Hence, A is complete.
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Let Ay C A be finte. Let ¢ be the max such that ¢; € Ag. Then Ay C I';. By
construction, I'; is consistent. Thus, Ay is consistent. Hence, since Ag C A finite was
arbitrary, by compactness, A is consistent.

Finally, I' € A. Thus, A is as required.



