
Extra Credit

1. (a) For any s : V → |A|, |=A v1 + v3 = [s(v1|d1)(v2|d2)(v3|d3)]

iff s(v1|d1)(v2|d2)(v3|d3)(v1)+
As(v1|d1)(v2|d2)(v3|d3)(v3) = s(v1|d1)(v2|d2)(v3|d3)(v2)

iff d1 + d3 = d2.

(b) For any s : V → |A|, |=A ¬v1 + v3 = v2[s(v1|d1)(v2|d2)(v3|d3)]

iff 2A ¬v1 + v3 = v2[s(v1|d1)(v2|d2)(v3|d3)]

iff d1 + d3 6= d2 by part (a).

(c) For any s : V → |A|, |=A ∀v3¬v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff |=A ¬v1 + v3 = v2[s(v1|d1)(v2|d2)(v3|c)] for all c ∈ |A|
iff s(v1|d1)(v2|d2)(v3|c)(v1) +A s(v1|d1)(v2|d2)(v3|c)(v3) 6= s(v1|d1)(v2|d2)(v3|c)(v2)
for all c ∈ |A|
iff d1 + c 6= d2 for all c ∈ |A|
iff d1 > d2.

(d) For any s : V → |A|, |=A ¬∀v3¬v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff |=A ∃v3v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff |=A v1 + v3 = v2[s(v1|d1)(v2|d2)(v3|c)] for some c ∈ |A|
iff s(v1|d1)(v2|d2)(v3|c)(v1) +A s(v1|d1)(v2|d2)(v3|c)(v3) = s(v1|d1)(v2|d2)(v3|c)(v2)
for some c ∈ |A|
iff d1 + c = d2 for some c ∈ |A|
iff d1 ≤ d2.

(e) For any s : V → |A|, |=A ∃v3v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff d1 ≤ d2 by part (d).

(f) For any s : V → |A|, |=A v1 < v2[s(v1|d1)(v2|d2)]

iff 〈s(v1|d1)(v2|d2)(v1), s(v1|d1)(v2|d2)(v2)〉 ∈<A

iff d1 < d2.

(g) For any s : V → |A|, |=A v1 < v2 → ∃v3v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff |=A ¬v1 < v2[s(v1|d1)(v2|d2)] or |=A ∃v3v1 + v3 = v2[s(v1|d1)(v2|d2)]

iff 〈s(v1|d1)(v2|d2)(v1), s(v1|d1)(v2|d2)(v2)〉 /∈<A or d1 ≤ d2 by (e)

iff d1 6 <d2 or d1 ≤ d2

iff d2 ≤ d1 or d1 ≤ d2,

which is true for all d1 and d2.

(h) For any s : V → |A|, |=A ∀v2(v1 < v2 → ∃vev1 + ve = v2)[s(v1|d1)]

iff |=A v1 < v2 → ∃v3v1|v3 = v2[s(v1|d1)(v2|d2)] for all d2 ∈ |A|,
which is true for all d1, by (g).

(i) For any s : V → |A|, |=A ∀v1∀v2(v1 < v2 → ∃v3v1 + v3 = v2)[s]

iff |=A v1 < v2 → ∃v3v1 + v3 = v2[s(v1|d1)(v2|d2)] for all d1, d2 ∈ |A|,
which is true by (g).

(j) Yes, since by (i), this holds for every s : V → |A|.
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2. |=A ∃v1∀v2v2 < v2 + v1

iff for every s : V → |A|, |=A ∃v1∀v2v2 < v2 + v1[s]

iff there is d1 ∈ |A| such that for all d2 ∈ |A|, |=A v2 < v2 + v1[s(v1|d1)(v2|d2)]

iff there is d1 ∈ |A| such that for all d2 ∈ |A|, 〈s(v1|d1)(v2|d2)(v2), s(v1|d1)(v2|d2)(v2)+A

s(v1|d1)(v2|d2)(v2)〉 ∈<A

iff there is d1 ∈ N such that for all d2 ∈ N, d2 < d2 + d1.

This is true, take d1 = 1. d2 < d2 + 1 for all d2 ∈ N.

3. First note that α says that the ordering is dense, β says the the ordering has no
maximum, and γ says that the ordering is strict. Further note that ¬α is ∃x∃y(x <
y ∧ ¬∃z(x < z ∧ z < y))(there are two elements with no elements “between” them)
and ¬β is ∃x∀y¬x < y (there is a max).

Soundness and completeness tell us that Γ ` φ ⇔ Γ |= φ, so Γ 0 φ ⇔ Γ 2 φ. So,
to show Γ 0 φ, it is enough to show Γ 2 φ. Thus, we just need a structure A which
models Γ and not φ.

(a) α, γ 0 β

A = ([0, 1], <) with the usual ordering. This is dense and strict, but does not
have a max.

(b) α, γ 0 ¬β
A = (Q, <) with the usual ordering. This is dense and strict, but has no max (so
¬β does not hold).

(c) β, γ 0 α

A = (N, <) with the usual ordering. This has no max, is strict, but is not dense.

(d) β, γ 0 ¬α
A = (Q, <) with the usual ordering. It has no max, is strict, and is dense (so ¬α
does not hold).

4. (1) ∀x(∀yφ→ φ) (Ax 2)

(2) ∀x(∀yφ→ φ)→ (∀x∀yφ)→ ∀xφ (Ax 3)

(3) ∀x∀yφ→ ∀xφ (mp, lines 1 and 2)

(4) ∀x∀yφ (assumption)

(5) ∀xφ (mp, lines 3 and 4)

Therefore ∀x∀yφ ` ∀xφ.

5. (1) ∀y∀x(∀yφ→ φ) (Ax 2)

(2) ∀y[∀x(∀yφ→ φ)→ (∀x∀yφ)→ ∀xφ] (Ax 3)

(3) ∀y[∀x(∀yφ → φ) → (∀x∀yφ) → ∀xφ] → ∀y∀x(∀yφ → φ) → ∀y((∀x∀yφ) → ∀xφ)
(Ax 3)

(4) ∀y∀x(∀yφ→ φ)→ ∀y((∀x∀yφ)→ ∀xφ) (mp, lines 2 and 3)

(5) ∀y((∀x∀yφ)→ ∀xφ) (mp, lines 1 and 4)
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(6) ∀x∀yφ (assumption)

(7) ∀x∀yφ→ ∀y∀x∀yφ (Ax 4)

(8) ∀y∀x∀yφ (mp, lines 6 and 7)

(9) ∀y((∀x∀yφ)→ ∀xφ)→ ∀y∀x∀yφ→ ∀y∀xφ (Ax 3)

(10) ∀y∀x∀yφ→ ∀y∀xφ (mp, lines 5 and 9)

(11) ∀y∀xφ (lines 8 and 10)

Therefore ∀x∀yφ ` ∀y∀xφ.

6. (1) ∀y∀x(∀yφ→ φ) (Ax 2)

(2) ∀y[∀x(∀yφ→ φ)→ (∀x∀yφ)→ ∀xφ] (Ax 3)

(3) ∀y[∀x(∀yφ → φ) → (∀x∀yφ) → ∀xφ] → ∀y∀x(∀yφ → φ) → ∀y((∀x∀yφ) → ∀xφ)
(Ax 3)

(4) ∀y∀x(∀yφ→ φ)→ ∀y((∀x∀yφ)→ ∀xφ) (mp, lines 2 and 3)

(5) ∀y((∀x∀yφ)→ ∀xφ) (mp, lines 1 and 4)

(6) ∀y((∀x∀yφ)→ ∀xφ)→ ∀y∀x∀yφ→ ∀y∀xφ (Ax 3)

(7) ∀y∀x∀yφ→ ∀y∀xφ (mp, lines 5 and 6)

(8) ∀x∀yφ→ ∀y∀x∀yφ (Ax 4)

(9) (∀x∀yφ→ ∀y∀x∀yφ)→ (∀y∀x∀yφ→ ∀y∀xφ)→ (∀x∀yφ→ ∀x∀yφ) (Ax 1)

(10) (∀y∀x∀yφ→ ∀y∀xφ)→ (∀x∀yφ→ ∀x∀yφ) (mp, lines 8 and 9)

(11) ∀x∀yφ→ ∀x∀yφ (mp, lines 7 and 10)

Therefore ` ∀x∀yφ→ ∀x∀yφ

7. Let Γ be a consistent set of first order formulas in a countable language. Then there
are countably many first order formulas in this language: Consider a formula of length
n. The language is countable, so in each of the n positions, there are countably many
symbols which can be used. Thus, there are at most ωn = ω possible formulas of length
n. Furthermore, formulas are finite in length, so there are at most ω · ω = ω many
formulas.

Hence, we can enumerate the formulas {φ1, φ2, . . .}.
Define Γ0 := Γ. Γ0 is consistent (by assumption) and for every i ≤ 0, φi ∈ Γ0 or
¬φi ∈ Γ0 (vacuously).

Suppose Γn has been defined and assume for all i ≤ 1 that φi ∈ Γn or ¬φi ∈ Γn, and
that Γn is consistent.

Let An be a structure in the language such that |=An Γn (this exists since Γn is con-
sistent). Then |=An φn+1 or 2An ¬φn+1, so either |=An φn+1 or |=An ¬φn+1. In the first
case, define Γn+1 := Γn ∪ {φn+1}, in the second case, let Γn+1 := Γn ∪ {¬φn+1}. So,
|=An Γn+1, which means that Γn+1 is consistent, and for all i ≤ n + 1, φi ∈ Γn+1 or

¬φi ∈ Γn+1. Now, define
⋃
n∈N

Γn.

Let σ be given. Then, for some i ∈ N, σ = φi (since the φi’s enumerate all formulas).
So either σ ∈ Γi ⊂ ∆, or ¬σ ∈ Γi ⊂ ∆. Hence, ∆ is complete.
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Let ∆0 ⊂ ∆ be finte. Let i be the max such that φi ∈ ∆0. Then ∆0 ⊂ Γi. By
construction, Γi is consistent. Thus, ∆0 is consistent. Hence, since ∆0 ⊂ ∆ finite was
arbitrary, by compactness, ∆ is consistent.

Finally, Γ ⊂ ∆. Thus, ∆ is as required.
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