Extra Credit

1. (a) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} v_{1}+v_{3}=\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)\right]$ iff $\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)}\left(v_{1}\right)+{ }^{\mathfrak{A}} \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)}\left(v_{3}\right)=\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)}\left(v_{2}\right)$ iff $d_{1}+d_{3}=d_{2}$.
(b) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \neg v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)\right]$
iff $\nvdash_{\mathfrak{A}} \neg v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid d_{3}\right)\right]$
iff $d_{1}+d_{3} \neq d_{2}$ by part (a).
(c) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_{3} \neg v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $\models_{\mathfrak{A}} \neg v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)\right]$ for all $c \in|\mathfrak{A}|$
iff $\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{1}\right)+{ }^{\mathfrak{A}} \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{3}\right) \neq \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{2}\right)$
for all $c \in|\mathfrak{A}|$
iff $d_{1}+c \neq d_{2}$ for all $c \in|\mathfrak{A}|$
iff $d_{1}>d_{2}$.
(d) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \neg \forall v_{3} \neg v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $\models_{\mathfrak{A}} \exists v_{3} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $\models_{\mathfrak{A}} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)\right]$ for some $c \in|\mathfrak{A}|$
iff $\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{1}\right)+{ }^{\mathfrak{A}} \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{3}\right)=\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\left(v_{3} \mid c\right)}\left(v_{2}\right)$
for some $c \in|\mathfrak{A}|$
iff $d_{1}+c=d_{2}$ for some $c \in|\mathfrak{A}|$
iff $d_{1} \leq d_{2}$.
(e) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \exists v_{3} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $d_{1} \leq d_{2}$ by part (d).
(f) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} v_{1}<v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$ iff $\left\langle\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{1}\right), \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{2}\right)\right\rangle \in<^{\mathfrak{A}}$
iff $d_{1}<d_{2}$.
(g) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} v_{1}<v_{2} \rightarrow \exists v_{3} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $\models_{\mathfrak{A}} \neg v_{1}<v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$ or $\models_{\mathfrak{A}} \exists v_{3} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff $\left\langle\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{1}\right), \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{2}\right)\right\rangle \notin<^{\mathfrak{A}}$ or $d_{1} \leq d_{2}$ by (e)
iff $d_{1} k d_{2}$ or $d_{1} \leq d_{2}$
iff $d_{2} \leq d_{1}$ or $d_{1} \leq d_{2}$,
which is true for all d_{1} and d_{2}.
(h) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_{2}\left(v_{1}<v_{2} \rightarrow \exists v_{e} v_{1}+v_{e}=v_{2}\right)\left[s\left(v_{1} \mid d_{1}\right)\right]$ iff $\models_{\mathfrak{A}} v_{1}<v_{2} \rightarrow \exists v_{3} v_{1} \mid v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$ for all $d_{2} \in|\mathfrak{A}|$, which is true for all d_{1}, by (g).
(i) For any $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \forall v_{1} \forall v_{2}\left(v_{1}<v_{2} \rightarrow \exists v_{3} v_{1}+v_{3}=v_{2}\right)[s]$ iff $\models_{\mathfrak{A}} v_{1}<v_{2} \rightarrow \exists v_{3} v_{1}+v_{3}=v_{2}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$ for all $d_{1}, d_{2} \in|\mathfrak{A}|$, which is true by (g).
(j) Yes, since by (i), this holds for every $s: V \rightarrow|\mathfrak{A}|$.
2. $\models_{\mathfrak{A}} \exists v_{1} \forall v_{2} v_{2}<v_{2}+v_{1}$
iff for every $s: V \rightarrow|\mathfrak{A}|, \models_{\mathfrak{A}} \exists v_{1} \forall v_{2} v_{2}<v_{2}+v_{1}[s]$
iff there is $d_{1} \in|\mathfrak{A}|$ such that for all $d_{2} \in|\mathfrak{A}|, \models_{\mathfrak{A}} v_{2}<v_{2}+v_{1}\left[s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)\right]$
iff there is $d_{1} \in|\mathfrak{A}|$ such that for all $d_{2} \in|\mathfrak{A}|,\left\langle\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{2}\right), \overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{2}\right)+{ }^{\mathfrak{A}}\right.$ $\left.\overline{s\left(v_{1} \mid d_{1}\right)\left(v_{2} \mid d_{2}\right)}\left(v_{2}\right)\right\rangle \in<^{\mathfrak{A}}$
iff there is $d_{1} \in \mathbb{N}$ such that for all $d_{2} \in \mathbb{N}, d_{2}<d_{2}+d_{1}$.
This is true, take $d_{1}=1$. $d_{2}<d_{2}+1$ for all $d_{2} \in \mathbb{N}$.
3. First note that α says that the ordering is dense, β says the the ordering has no maximum, and γ says that the ordering is strict. Further note that $\neg \alpha$ is $\exists x \exists y(x<$ $y \wedge \neg \exists z(x<z \wedge z<y))$ (there are two elements with no elements "between" them) and $\neg \beta$ is $\exists x \forall y \neg x<y$ (there is a max).
Soundness and completeness tell us that $\Gamma \vdash \phi \Leftrightarrow \Gamma \models \phi$, so $\Gamma \nvdash \phi \Leftrightarrow \Gamma \not \models \phi$. So, to show $\Gamma \nvdash \phi$, it is enough to show $\Gamma \not \models \phi$. Thus, we just need a structure \mathfrak{A} which models Γ and not ϕ.
(a) $\alpha, \gamma \nvdash \beta$
$\mathfrak{A}=([0,1],<)$ with the usual ordering. This is dense and strict, but does not have a max.
(b) $\alpha, \gamma \nvdash \neg \beta$
$\mathfrak{A}=(\mathbb{Q},<)$ with the usual ordering. This is dense and strict, but has no max (so $\neg \beta$ does not hold).
(c) $\beta, \gamma \nvdash \alpha$
$\mathfrak{A}=(\mathbb{N},<)$ with the usual ordering. This has no max, is strict, but is not dense.
(d) $\beta, \gamma \nvdash \neg \alpha$
$\mathfrak{A}=(\mathbb{Q},<)$ with the usual ordering. It has no max, is strict, and is dense (so $\neg \alpha$ does not hold).
4. (1) $\forall x(\forall y \phi \rightarrow \phi)(\operatorname{Ax} 2)$
(2) $\forall x(\forall y \phi \rightarrow \phi) \rightarrow(\forall x \forall y \phi) \rightarrow \forall x \phi(\operatorname{Ax} 3)$
(3) $\forall x \forall y \phi \rightarrow \forall x \phi$ (mp, lines 1 and 2)
(4) $\forall x \forall y \phi$ (assumption)
(5) $\forall x \phi$ (mp , lines 3 and 4)

Therefore $\forall x \forall y \phi \vdash \forall x \phi$.
5. (1) $\forall y \forall x(\forall y \phi \rightarrow \phi)(\operatorname{Ax} 2)$
(2) $\forall y[\forall x(\forall y \phi \rightarrow \phi) \rightarrow(\forall x \forall y \phi) \rightarrow \forall x \phi]($ Ax 3$)$
(3) $\forall y[\forall x(\forall y \phi \rightarrow \phi) \rightarrow(\forall x \forall y \phi) \rightarrow \forall x \phi] \rightarrow \forall y \forall x(\forall y \phi \rightarrow \phi) \rightarrow \forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)$ (Ax 3)
(4) $\forall y \forall x(\forall y \phi \rightarrow \phi) \rightarrow \forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)(\mathrm{mp}$, lines 2 and 3$)$
(5) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)(\mathrm{mp}$, lines 1 and 4)
(6) $\forall x \forall y \phi$ (assumption)
(7) $\forall x \forall y \phi \rightarrow \forall y \forall x \forall y \phi(\operatorname{Ax} 4)$
(8) $\forall y \forall x \forall y \phi$ (mp, lines 6 and 7)
(9) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \rightarrow \forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi(\mathrm{Ax} 3)$
(10) $\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi(\mathrm{mp}$, lines 5 and 9$)$
(11) $\forall y \forall x \phi$ (lines 8 and 10)

Therefore $\forall x \forall y \phi \vdash \forall y \forall x \phi$.
6. (1) $\forall y \forall x(\forall y \phi \rightarrow \phi)(\operatorname{Ax} 2)$
(2) $\forall y[\forall x(\forall y \phi \rightarrow \phi) \rightarrow(\forall x \forall y \phi) \rightarrow \forall x \phi](\mathrm{Ax} 3)$
(3) $\forall y[\forall x(\forall y \phi \rightarrow \phi) \rightarrow(\forall x \forall y \phi) \rightarrow \forall x \phi] \rightarrow \forall y \forall x(\forall y \phi \rightarrow \phi) \rightarrow \forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)$ (Ax 3)
(4) $\forall y \forall x(\forall y \phi \rightarrow \phi) \rightarrow \forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)(\mathrm{mp}$, lines 2 and 3$)$
(5) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi)(\mathrm{mp}$, lines 1 and 4$)$
(6) $\forall y((\forall x \forall y \phi) \rightarrow \forall x \phi) \rightarrow \forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi(\mathrm{Ax} 3)$
(7) $\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi$ (mp, lines 5 and 6)
(8) $\forall x \forall y \phi \rightarrow \forall y \forall x \forall y \phi(\operatorname{Ax} 4)$
(9) $(\forall x \forall y \phi \rightarrow \forall y \forall x \forall y \phi) \rightarrow(\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi) \rightarrow(\forall x \forall y \phi \rightarrow \forall x \forall y \phi)(\operatorname{Ax} 1)$
(10) $(\forall y \forall x \forall y \phi \rightarrow \forall y \forall x \phi) \rightarrow(\forall x \forall y \phi \rightarrow \forall x \forall y \phi)(\mathrm{mp}$, lines 8 and 9)
(11) $\forall x \forall y \phi \rightarrow \forall x \forall y \phi$ (mp, lines 7 and 10)

Therefore $\vdash \forall x \forall y \phi \rightarrow \forall x \forall y \phi$
7. Let Γ be a consistent set of first order formulas in a countable language. Then there are countably many first order formulas in this language: Consider a formula of length n. The language is countable, so in each of the n positions, there are countably many symbols which can be used. Thus, there are at most $\omega^{n}=\omega$ possible formulas of length n. Furthermore, formulas are finite in length, so there are at most $\omega \cdot \omega=\omega$ many formulas.
Hence, we can enumerate the formulas $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$.
Define $\Gamma_{0}:=\Gamma . \Gamma_{0}$ is consistent (by assumption) and for every $i \leq 0, \phi_{i} \in \Gamma_{0}$ or $\neg \phi_{i} \in \Gamma_{0}$ (vacuously).
Suppose Γ_{n} has been defined and assume for all $i \leq 1$ that $\phi_{i} \in \Gamma_{n}$ or $\neg \phi_{i} \in \Gamma_{n}$, and that Γ_{n} is consistent.
Let \mathfrak{A}_{n} be a structure in the language such that $\models_{\mathfrak{A}_{n}} \Gamma_{n}$ (this exists since Γ_{n} is consistent). Then $\models_{\mathfrak{A}_{n}} \phi_{n+1}$ or $\not \models_{\mathfrak{A}_{n}} \neg \phi_{n+1}$, so either $\models_{\mathfrak{A}_{n}} \phi_{n+1}$ or $\models_{\mathfrak{A}_{n}} \neg \phi_{n+1}$. In the first case, define $\Gamma_{n+1}:=\Gamma_{n} \cup\left\{\phi_{n+1}\right\}$, in the second case, let $\Gamma_{n+1}:=\Gamma_{n} \cup\left\{\neg \phi_{n+1}\right\}$. So, $\models_{\mathfrak{A}_{n}} \Gamma_{n+1}$, which means that Γ_{n+1} is consistent, and for all $i \leq n+1, \phi_{i} \in \Gamma_{n+1}$ or $\neg \phi_{i} \in \Gamma_{n+1}$. Now, define $\bigcup_{n \in \mathbb{N}} \Gamma_{n}$.
Let σ be given. Then, for some $i \in \mathbb{N}, \sigma=\phi_{i}$ (since the ϕ_{i} 's enumerate all formulas). So either $\sigma \in \Gamma_{i} \subset \Delta$, or $\neg \sigma \in \Gamma_{i} \subset \Delta$. Hence, Δ is complete.

Let $\Delta_{0} \subset \Delta$ be finte. Let i be the max such that $\phi_{i} \in \Delta_{0}$. Then $\Delta_{0} \subset \Gamma_{i}$. By construction, Γ_{i} is consistent. Thus, Δ_{0} is consistent. Hence, since $\Delta_{0} \subset \Delta$ finite was arbitrary, by compactness, Δ is consistent.
Finally, $\Gamma \subset \Delta$. Thus, Δ is as required.

