MIDTERM 2

Math 114
5/15/2009

Name:

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	20	
4	15	
5	15	
6	20	
Total	100	

1. (15 points) In each of the following formulas, determine whether $f x y z$ is substitutable for x. If not, explain why not.
(a) $\quad \forall x \exists y(R x y \rightarrow \forall z Q x y z)$
(b) $\quad \exists w(R x y \rightarrow \forall z Q w y z)$
(c) $\quad \forall y(R x y \rightarrow \exists z Q w y z)$
(d) $\quad \exists w(R x y \rightarrow \forall z Q w w x)$
2. (15 points) Consider a language with a single constant symbol, $\mathbf{0}$, and a single binary function, \mathbf{F}. Let $\mathfrak{A}=(\mathbb{N}, 0,+)$ and let $s\left(v_{i}\right)=i$. (Recall that the notation $s(x \mapsto n)$ has the same meaning as $s(x \mid n)$.) Find:
(a) $\quad \bar{s}\left(\mathbf{F} v_{7} \mathbf{F} \mathbf{0} v_{3}\right)$
(b) $\quad \overline{s\left(v_{2} \mapsto 4\right)}\left(\mathbf{F} v_{7} \mathbf{F} \mathbf{0} v_{3}\right)$
(c) $\quad \overline{s\left(v_{3} \mapsto 4\right)}\left(\mathbf{F} v_{7} \mathbf{F} \mathbf{0} v_{3}\right)$
(d) Does $\vDash_{\mathfrak{A}} \forall x \mathbf{F F} x v_{1} v_{3}=\mathbf{F} x v_{4}[s]$?
(e) \quad Does $\vDash_{\mathfrak{A}} \forall x \mathbf{F F} x v_{1} v_{3}=\mathbf{F} x v_{4}\left[s\left(v_{3} \mapsto 4\right)\right]$?
3. (20 points) State whether the following are axioms. If they are, state which group they belong to; if not, change a single symbol to make it an axiom.
(a) $\quad \forall v_{4}\left(\forall v_{2} \neg \forall v_{3} \neg \mathbf{P} v_{2} v_{3}=\mathbf{P} v_{3} \mathbf{0} \rightarrow \neg \forall v_{3} \neg \mathbf{P P} v_{0} v_{3} v_{3}=\mathbf{P} v_{3} \mathbf{0}\right)$
(b) $\quad \forall v_{5}\left(\mathbf{P} v_{5} \mathbf{0}=\mathbf{0} \rightarrow \forall v_{4} v_{4}=v_{5}\right) \rightarrow \forall v_{5} \mathbf{P} v_{5} \mathbf{0}=\mathbf{0} \rightarrow \forall v_{5} \forall v_{4} v_{4}=v_{5}$
(c) $\quad \mathbf{P} v_{5}=\mathbf{0} \rightarrow \forall v_{5} \mathbf{P} v_{5}=\mathbf{0}$
(d) $\quad \forall v_{6} \forall v_{2} \forall v_{3}\left(\mathbf{P} v_{2} \mathbf{0}=\mathbf{P} v_{3} v_{6} \wedge \forall v_{1} \mathbf{P} v_{2} \mathbf{0}=v_{1} \rightarrow \mathbf{P} v_{2} \mathbf{0}=\mathbf{P} v_{3} v_{6}\right)$
4. (15 points) Prove that there is a derivation of the formula $\forall x(\alpha \vee \beta) \rightarrow \exists x \alpha \vee \exists x \beta$.
5. (15 points) Prove that there is not a derivation of the formula $\forall x(\alpha \vee \beta) \rightarrow \forall x \alpha \vee \forall x \beta$.
6. (20 points) Consider a language containing a single binary predicate \mathbf{Q}, and consider some model \mathfrak{A} where the universe is the natural numbers, \mathbb{N}. Suppose that

$$
\left\{n, m \mid \vDash_{\mathfrak{A}} \mathbf{Q} x y[s(x \mapsto n, y \mapsto m)]\right.
$$

is decidable. Show that

$$
\left\{n \mid \vDash_{\mathfrak{A}} \exists y \mathbf{Q} x y[s(x \mapsto n)]\right.
$$

is effectively enumerable.

