MIDTERM 2

Math 114 5/15/2009

Name:

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	20	
4	15	
5	15	
6	20	
Total	100	

1. (15 points) In each of the following formulas, determine whether fxyz is substitutable for x. If not, explain why not.

(a) $\forall x \exists y (Rxy \rightarrow \forall z Qxyz)$

(**b**) $\exists w(Rxy \rightarrow \forall zQwyz)$

(c) $\forall y(Rxy \rightarrow \exists zQwyz)$

(d) $\exists w(Rxy \rightarrow \forall zQwwx)$

2. (15 points) Consider a language with a single constant symbol, **0**, and a single binary function, **F**. Let $\mathfrak{A} = (\mathbb{N}, 0, +)$ and let $s(v_i) = i$. (Recall that the notation $s(x \mapsto n)$ has the same meaning as $s(x \mid n)$.) Find:

(a) $\overline{s}(\mathbf{F}v_7\mathbf{F0}v_3)$

(b)
$$\overline{s(v_2 \mapsto 4)}(\mathbf{F}v_7\mathbf{F}\mathbf{0}v_3)$$

(c)
$$\overline{s(v_3 \mapsto 4)}(\mathbf{F}v_7\mathbf{F0}v_3)$$

(d) Does
$$\vDash_{\mathfrak{A}} \forall x \mathbf{F} \mathbf{F} x v_1 v_3 = \mathbf{F} x v_4[s]$$
?

(e) Does
$$\vDash_{\mathfrak{A}} \forall x \mathbf{F} \mathbf{F} x v_1 v_3 = \mathbf{F} x v_4 [s(v_3 \mapsto 4)]?$$

3. (20 points) State whether the following are axioms. If they are, state which group they belong to; if not, change a single symbol to make it an axiom.

(a) $\forall v_4(\forall v_2 \neg \forall v_3 \neg \mathbf{P} v_2 v_3 = \mathbf{P} v_3 \mathbf{0} \rightarrow \neg \forall v_3 \neg \mathbf{P} \mathbf{P} v_0 v_3 v_3 = \mathbf{P} v_3 \mathbf{0})$

(b)
$$\forall v_5(\mathbf{P}v_5\mathbf{0} = \mathbf{0} \to \forall v_4v_4 = v_5) \to \forall v_5\mathbf{P}v_5\mathbf{0} = \mathbf{0} \to \forall v_5\forall v_4v_4 = v_5$$

(c) $\mathbf{P}v_5 = \mathbf{0} \rightarrow \forall v_5 \mathbf{P}v_5 = \mathbf{0}$

(d) $\forall v_6 \forall v_2 \forall v_3 (\mathbf{P}v_2 \mathbf{0} = \mathbf{P}v_3 v_6 \land \forall v_1 \mathbf{P}v_2 \mathbf{0} = v_1 \rightarrow \mathbf{P}v_2 \mathbf{0} = \mathbf{P}v_3 v_6)$

4. (15 points) Prove that there is a derivation of the formula $\forall x(\alpha \lor \beta) \to \exists x \alpha \lor \exists x \beta$.

5. (15 points) Prove that there is not a derivation of the formula $\forall x(\alpha \lor \beta) \to \forall x \alpha \lor \forall x \beta$.

6. (20 points) Consider a language containing a single binary predicate \mathbf{Q} , and consider some model \mathfrak{A} where the universe is the natural numbers, \mathbb{N} . Suppose that

$$\{n, m \models_{\mathfrak{A}} \mathbf{Q}xy[s(x \mapsto n, y \mapsto m)]$$

is decidable. Show that

$$\{n \models_{\mathfrak{A}} \exists y \mathbf{Q} x y [s(x \mapsto n)]$$

is effectively enumerable.