## Math 114L

Homework 3 Solutions

Spring 2011

## Solution to 5b

Let $\phi_{n}$ be the formula

$$
\mathbf{R} x_{1} x_{2} \wedge \cdots \wedge \mathbf{R} x_{n-1} x_{n} \wedge \mathbf{R} x_{n} x_{1}
$$

and let $\sigma_{n}$ be

$$
\neg \exists x_{1} \exists x_{2} \cdots \exists x_{n} \phi_{n} .
$$

Let $\Sigma=\left\{\sigma_{n} \mid n \geq 1\right\}$. If $\mathfrak{A}$ contains a cycle $a_{1}, \ldots, a_{n}$ then,

$$
\mathfrak{A} \vDash \phi_{n}\left[\left[a_{1}, \ldots, a_{n}\right]\right]
$$

and therefore

$$
\mathfrak{A} \vDash \neg \sigma_{n} .
$$

Conversely, if $\mathfrak{A} \not \vDash \Sigma$ then $\mathfrak{A} \not \vDash \sigma_{n}$ for some $n$, so there must be elements $a_{1}, \ldots, a_{n}$ such that

$$
\mathfrak{A} \vDash \phi_{n}\left[\left[a_{1}, \ldots, a_{n}\right]\right]
$$

and therefore these elements form a cycle.

## Solution to 5c

Suppose the class of structures without cycles were an $E C$ class; let $\tau$ be the formula defining this class. Since $\Sigma \vDash \tau$, by compactness there is a finite subset $\Sigma_{0}$ of $\Sigma$ such that $\Sigma_{0} \vDash \tau$, and therefore for some $n,\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \vDash \tau$.

Consider the structure $\mathfrak{A}$ consisting of a cycle $n+1$ points $a_{1}, \ldots, a_{n+1}$. Then $\mathfrak{A} \vDash\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, so $\mathfrak{A} \vDash \tau$. But this structure has a cycle, so $\tau$ does not define the structures without cycles.

