Math 114L

Homework 1 Solutions

Spring 2010

1.1.2

We first show that there are wffs of every length other than 2, 3, 6 with some examples followed by induction on natural numbers. The sentence symbol A_1 is a wff of length 1. $(\neg A_1)$ is a wff of length 4. The wff $(A_1 \land A_1)$ is a wff of length 5. Finally, $(\neg(\neg A_1)), (\neg(A_1 \land A_1)), ((A_1 \land A_1) \land A_1)$ are wffs of lengths 7, 8, 9 respectively. Now we show by induction that if n > 9, there is a wff of length n: let n > 9 be given and suppose that for all $m \in (9, n)$, there is a wff of length m. Then in particular, either $n - 3 \in (9, n)$ or $n - 3 \in \{7, 8, 9\}$, so there is a wff α of length n - 3. Then $(\neg \alpha)$ has length n - 3 + 3 = n.

Now we show by induction on α that if α is a wff then the length of α is not 2, 3,, or 6.

Base Case: If α is a sentence symbol, the length of α is 1, which is not 2, 3, or 6.

Inductive Case: Suppose α has length k > 0 where $k \neq 2, k \neq 3, k \neq 6$. Then $(\neg \alpha)$ has length k + 3, and therefore $k + 3 \neq 2, k + 3 \neq 3, k + 3 \neq 6$.

Suppose α has length k_{α} and β has length k_{β} where neither k_{α} nor k_{β} are 2, 3, or 6. Then $(\alpha \triangle \beta)$, where $\triangle \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, has length $k_{\alpha} + k_{\beta} + 3$, and therefore is not 2, 3, or 6.

1.1.5

1.1.5a

By induction, we show that for all α , the length of α is odd.

Base Case: If α is a sentence symbol, the length of α is 1, which is odd.

Inductive Case: Suppose the length of α is an odd number n_{α} and the length of β is an odd number n_{β} . Then the length of $(\alpha \triangle \beta)$, where $\triangle \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, is $n_{\alpha} + n_{\beta} + 3$, which is a sum of three odd numbers, and so also odd.

1.1.5b

We show by induction that the length of α is of the form 4k + 1, with k + 1 sentence symbols. In particular, this implies that more than a quarter of the symbols are sentence symbols.

Base Case: If α is a sentence symbol then k = 0, so α has 0 + 1 = 1 sentence symbol, and $4 \cdot 0 + 1 = 1$ total symbols.

Inductive Case: Suppose α has $4k_{\alpha} + 1$ symbols including $k_{\alpha} + 1$ sentence symbols, and β has $4k_{\beta} + 1$ symbols including $k_{\beta} + 1$ sentence symbols. Then the length of $(\alpha \triangle \beta)$ where $\triangle \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ is $4k_{\alpha} + 1 + 4k_{\beta} + 1 + 3 = 4(k_{\alpha} + k_{\beta} + 1) + 1$ and there are $k_{\alpha} + 1 + k_{\beta} + 1 = (k_{\alpha} + k_{\beta} + 1) + 1$ sentence symbols.

1.2.1

Consider the truth assignment given by $\nu(A) = \nu(B) = \nu(C) = F$. Then $\overline{\nu}((A \wedge B \wedge C) \vee (\neg A \wedge \neg B \wedge \neg C)) = T$ while $\overline{\nu}(A \leftrightarrow B \leftrightarrow C) = F$, so the former does not tautologically imply the latter.

Consider the truth assignment given by $\nu(A) = T$ while $\nu(B) = \nu(C) = F$. Then $\overline{\nu}(A \leftrightarrow B \leftrightarrow C) = T$ while $\overline{\nu}((A \wedge B \wedge C) \vee (\neg A \wedge \neg B \wedge \neg C)) = F$, so $A \leftrightarrow B \leftrightarrow C$ does not tautologically imply $(A \wedge B \wedge C) \vee (\neg A \wedge \neg B \wedge \neg C)$, either.

1.2.3

1.2.3a

1.2.3b

р	0	D	$(\mathbf{D} \land \mathbf{O}) \rightarrow \mathbf{D}$	$(\mathbf{D} \times \mathbf{D}) \setminus (\mathbf{O} \times \mathbf{D})$
Ρ	Q	R	$(P \land Q) \rightarrow R$	$(P \to R) \lor (Q \to R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T
				_

Whenever the second to last column is T, so is the last, so $(P \land Q) \to R$ tautologically implies $(P \to R) \lor (Q \to R)$.

1.2.4

1.2.4a

For the left to right direction, assume $\Sigma; \alpha \models \beta$. Let ν be a truth assignment such that $\overline{\nu}(\sigma) = T$ for every $\sigma \in \Sigma$. If $\overline{\nu}(\alpha) = F$ then $\overline{\nu}(\alpha \to \beta) = T$. If $\overline{\nu}(\alpha) = T$ then $\overline{\nu}(\sigma) = T$ for every $\sigma \in \Sigma \cup \{\alpha\}$, so by assumption $\overline{\nu}(\beta) = T$ and again $\overline{\nu}(\alpha \to \beta) = T$. Therefore whenever $\overline{\nu}(\sigma) = T$ for all $\sigma \in \Sigma$, also $\overline{\nu}(\alpha \to \beta) = T$, so $\Sigma \models (\alpha \to \beta)$.

For the right to left direction, assume $\Sigma \vDash (\alpha \to \beta)$, and let ν be a truth assignment such that for every $\sigma \in \Sigma \cup \{\alpha\}$, $\overline{\nu}(\sigma) = T$. Then by assumption, $\overline{\nu}(\alpha \to \beta) = T$, and since $\overline{\nu}(\alpha) = T$, also $\overline{\nu}(\beta) = T$. So $\Sigma; \alpha \vDash \beta$.

1.2.4b

For the left to right direction, assume $\alpha \vDash \beta$ and $\beta \vDash \alpha$. Then for any ν , if $\overline{\nu}(\alpha) = T$ then $\overline{\nu}(\beta) = T$, and if $\overline{\nu}(\alpha) = F$ then $\overline{\nu}(\beta) = F$. In particular, $\overline{\nu}(\alpha \leftrightarrow \beta) = T$. Since this holds for any $\nu, \vDash \alpha \leftrightarrow \beta$.

For the right to left direction, assumpe $\vDash \alpha \leftrightarrow \beta$. If ν is a truth assignment such that $\overline{\nu}(\alpha) = T$ then since $\overline{\nu}(\alpha \leftrightarrow \beta) = T$, $\overline{\nu}(\beta) = T$, so $\alpha \vDash \beta$. By a symmetric argument, also $\beta \vDash \alpha$.

1.2.9

By induction on α , we show that $\alpha^* \vDash (\neg \alpha)$ and $(\neg \alpha) \vDash \alpha^*$.

Base Case: If α is a sentence symbol then α^* is $(\neg \alpha)$, so the claim is trivial. Inductive Case: Suppose $(\neg \alpha)$ is tautologically equivalent to α^* and $(\neg \beta)$ is tautologically equivalent to β^* . Then $(\alpha \lor \beta)^* = \alpha^* \land \beta^*$, so for any ν , $\overline{\nu}(\neg(\alpha \lor \beta)) = \overline{\nu}(\neg \alpha \land \neg \beta) = \overline{\nu}(\alpha^* \land \beta^*)$ using the de Morgan's law.

Similarly, $(\alpha \wedge \beta)^* = \alpha^* \vee \beta^*$, so for any ν , $\overline{\nu}(\neg(\alpha \wedge \beta)) = \overline{\nu}(\neg \alpha \vee \neg \beta) = \overline{\nu}(\alpha^* \vee \beta^*)$.

1.2.10

1.2.10a

By induction on the size of Σ . If $|\Sigma| = 0$, $\Sigma = \emptyset$ is automatically independent, and therefore Σ is an independent equivalent subset of itself.

Suppose that for all Δ with $|\Delta| = n$, Δ has an independent equivalent subset. Let Σ be given with $|\Sigma| = n + 1$. If Σ is independent then Σ is an independent equivalent subset of itself. If Σ is not independent, let $\alpha \in \Sigma$ be some formula such that $\Sigma \setminus \{\alpha\} \models \alpha$. Let $\Delta = \Sigma \setminus \{\alpha\}$. Then whenever $\Delta \models \beta$, also $\Sigma \models \beta$ since $\Delta \subseteq \Sigma$. Whenever $\Sigma \models \beta$, since $\Sigma = \Delta; \alpha$, also $\Delta; \alpha \models \beta$, so by problem $4, \Delta \models \alpha \rightarrow \beta$. Since $\Delta \models \alpha$, also $\Delta \models \beta$. So Σ and Δ are equivalent. $|\Delta| = n$, so by IH, there is an independent $\Gamma \subseteq \Delta$ equivalent to Δ . Since $\Delta \subseteq \Sigma$, also $\Gamma \subseteq \Sigma$, and since Γ is equivalent to Δ and Δ is equivalent to Σ , Γ is equivalent to Σ .

1.2.10b

For each n, let σ_n be the formula $A_1 \wedge A_2 \wedge \cdots \wedge A_n$. Let $\Sigma = \{\sigma_n \mid n \in \mathbb{N}\}$. Suppose $\Delta \subseteq \Sigma$ were an independent equivalent subset. If $|\Delta| > 1$ then we have $\sigma_n, \sigma_m \in \Delta$ with n < m, which is impossible since then $\sigma_m \vDash \sigma_n$, contradicting the fact that Δ is independent. But if $|\Delta| = 1$, $\Delta = \{\sigma_n\}$ for some n, and so, for instance, $\Delta \nvDash \sigma_{n+1}$ while $\Sigma \vDash \sigma_{n+1}$, so Δ is not equivalent to Σ .

1.2.10c

Let $\Sigma = \{\sigma_0, \sigma_1, \ldots\}$. Let $\Sigma_n = \{\sigma_i \mid i < n\}$. We recursively construct a sequence $\Delta_0 \subseteq \Delta_1 \subseteq \cdots$ of finite sets of wffs such that for all n, Δ_n is independent and equivalent to Σ_n . For convenience, whenever $\Delta_n = \{\alpha_0, \ldots, \alpha_k\}$ is one of these finite sets, let δ_n be the formula $\alpha_0 \land \cdots \land \alpha_k$.

Let $\Delta_0 = \emptyset$. Given Δ_n , if $\Delta_n \models \sigma_n$, let $\Delta_{n+1} = \Delta_n$. If $\Delta_n \not\models \sigma_n$, let $\Delta_{n+1} = \Delta_n \cup \{\delta_n \to \sigma_n\}$.

We first show by induction that Δ_n is equivalent to Σ_n . For n = 0, both Δ_0 and Σ_0 are the empty set. Suppose that Δ_n is equivalent to Σ_n ; we consider two cases. If $\Delta_n \vDash \sigma_n$ then since Δ_n is equivalent to Σ_n by the inductive hypothesis, $\Sigma_n \vDash \sigma_n$, and therefore Σ_n is equivalent to Σ_{n+1} , so $\Delta_{n+1} = \Delta_n$ is equivalent to Σ_{n+1} . Otherwise, $\Delta_n \nvDash \sigma_n$, so $\Delta_{n+1} = \Delta_n \cup \{\delta_n \to \sigma_n\}$. Since $\Delta_n \vDash \delta_n$, $\Delta_{n+1} \vDash \sigma_n$, and since Δ_n is equivalent to Σ_n , for every $\sigma \in \Sigma_{n+1}$, $\Delta_{n+1} \vDash \sigma$. Conversely, if $\Sigma_{n+1} \vDash \delta_n \to \sigma_n$, so for every $\delta \in \Delta_{n+1}$, $\Sigma_{n+1} \vDash \delta$. Therefore Δ_{n+1} is equivalent to Σ_{n+1} .

Next we show that Δ_n is independent for all n, again by induction on n. Δ_0 is independent by definition. If Δ_n is independent and $\Delta_n \vDash \sigma_n$ then $\Delta_{n+1} = \Delta_n$, so naturally Δ_{n+1} is independent. So suppose $\Delta_n \nvDash \sigma_n$, so $\Delta_{n+1} = \Delta_n \cup \{\delta_n \to \sigma_n\}$. Let $\alpha \in \Delta_{n+1}$; we must show that $\Delta_{n+1} \setminus \{\alpha\} \nvDash \alpha$. If $\alpha = \delta_n \to \sigma_n$ then since $\Delta_{n+1} \setminus \{\alpha\} = \Delta_n$ and $\Delta_n \nvDash \sigma_n$, there must be some ν such that ν satisfies Δ_n but $\overline{\nu}(\sigma_n) = F$. But then $\overline{\nu}(\delta_n) = T$, so $\overline{\nu}(\delta_n \to \sigma_n) = F$. Therefore $\Delta_n \nvDash \alpha$. Otherwise, $\alpha \in \Delta_n$. Since Δ_n is independent, there is a ν such that $\overline{\nu}(\beta) = T$ for $\beta \in \Delta_n \setminus \{\alpha\}$ and $\overline{\nu}(\alpha) = F$. Since $\overline{\nu}(\delta_n) = F$, $\overline{\nu}(\delta_n \to \sigma_n) = T$, so ν satisfies $\Delta_{n+1} \setminus \{\delta_n \to \sigma_n\}$, and therefore demonstrates that $\Delta_{n+1} \setminus \{\alpha\} \nvDash \alpha$.

Let $\Delta = \bigcup_n \Delta_n$. We claim that Δ is independent and equivalent to Σ . To see that Δ is independent, suppose there were $\alpha \in \Delta$ such that $\Delta \setminus \{\alpha\} \vDash \alpha$. Then by compactness, there would be a finite $\Gamma \subseteq \Delta \setminus \{\alpha\}$ such that $\Gamma \vDash \alpha$, and then there would be a $\Delta_n \supseteq \Gamma$ such that $\Delta_n \setminus \{\alpha\} \vDash \alpha$, contradicting the fact that Δ_n is independent.

To see that Σ is equivalent to Δ , if $\Sigma \vDash \beta$ then there is a finite $\Sigma_n \subseteq \Sigma$ such that $\Sigma_n \vDash \beta$, so $\Delta_n \vDash \beta$, and therefore $\Delta \vDash \beta$. Conversely, if $\Delta \vDash \beta$ then there is a finite $\Delta_n \subseteq \Delta$ such that $\Delta_n \vDash \beta$, so $\Sigma_n \vDash \beta$, and therefore $\Sigma \vDash \beta$.

1.2.14

Suppose ν is a truth assignment and $\overline{\nu}_1, \overline{\nu}_2$ are two functions satisfying the conditions for $\overline{\nu}$. We show by induction on α that $\overline{\nu}_1(\alpha) = \overline{\nu}_2(\alpha)$.

Base Case: If α is a sentence symbol, $\overline{\nu}_1(\alpha) = \nu(\alpha) = \overline{\nu}_2(\alpha)$.

Inductive Cases: Suppose $\overline{\nu}_1(\alpha) = \overline{\nu}_2(\alpha)$. Then $\overline{\nu}_1(\neg \alpha) = T$ iff $\overline{\nu}_1(\alpha) = T$ iff $\overline{\nu}_1(\beta) = T$ iff $\overline{\nu}_2(\neg \alpha) = T$.

Suppose $\overline{\nu}_1(\alpha) = \overline{\nu}_2(\alpha)$ and $\overline{\nu}_1(\beta) = \overline{\nu}_2(\beta)$. Then $\overline{\nu}_1(\alpha \wedge \beta) = T$ iff both $\overline{\nu}_1(\alpha) = T$ and $\overline{\nu}_1(\beta) = T$, which happens iff both $\overline{\nu}_2(\alpha) = T$ and $\overline{\nu}_2(\beta) = T$, which happens iff $\overline{\nu}_2(\alpha \wedge \beta) = T$. The cases for $\lor, \to, \leftrightarrow$ are similar.

$\mathbf{A1}$

 (A_1) has length 3, and we have shown that no wff has length 3.

Alternatively, (A_1) has no \neg , but does not have length of the form 4k + 1.

Alternatively, we show by induction that either α is a single sentence symbol or α contains at least 1 connective.

Base Case: If α is a sentence symbol, the claim is satisfied.

Inductive Cases: Suppose α and β are either sentence symbols or contain connectives. Then $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ all contain connectives.