Math 114L

Homework 2 Solutions

Spring 2011

1.5.1

1.5.1a
$\left(\neg A_{1} \wedge \neg A_{2} \wedge \neg A_{3}\right) \vee\left(\neg A_{1} \wedge \neg A_{2} \wedge A_{3}\right) \vee\left(\neg A_{1} \wedge A_{2} \wedge \neg A_{3}\right) \vee\left(A_{1} \wedge \neg A_{2} \wedge \neg A_{3}\right)$

1.5.1a

$$
\left(A_{1} \vee A_{2}\right) \rightarrow \neg\left(A_{3} \vee\left(A_{1} \wedge A_{2}\right)\right)
$$

1.5.3

We will prove by induction that if α is a wff built only from \neg and $\#$ and containing the sentence symbols A, B then α is tautologically equivalent to one of $A, \neg A, B, \neg B$.

Base case: Any sentence symbol is either A or B.
Inductive case for \neg : If α is tautologically equivalent to A then $\neg \alpha$ is tautologically equivalent to $\neg A$, and similarly if α is tautologically equivalent to one of $\neg A, B, \neg B$.

Inductive case for $\#$: If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are each tautologically equivalent to one of

$$
\alpha_{1} \models \neq \alpha_{2} \quad \alpha_{1} \vDash \neg \neg \alpha_{2}
$$

$A, \neg A, B, \neg B$, at least one of the following must hold: $\quad \alpha_{1} \vDash \neq \alpha_{3} \quad \alpha_{1} \vDash \neq \neg \alpha_{3}$
$\alpha_{2} \vDash=\alpha_{3} \quad \alpha_{2} \vDash \neg \neg \alpha_{3}$
Let us suppose we are in one of the cases in the left column, say $\alpha_{1} \vDash=\alpha_{3}$. Then $\# \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to α_{1} (since α_{1} and α_{3} agree, and will therefore outvote α_{2}).

Suppose we are in one of the cases in the right column, say $\alpha_{2} \models \neq \neg \alpha_{3}$. Then $\# \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to α_{1} (since α_{2} and α_{3} will vote against each other, and α_{1} will always cast the tie breaking vote).

The other cases are similar, with just the specific numbers changed. In either case, $\# \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to one of $A, \neg A, B, \neg B$.

In particular, $A \wedge B$ is a formula which is not tautologically equivalent to any of $A, \neg A, B, \neg B$, so there is no way for it to be expressed with \neg and $\#$.

1.5.4

1.5.4a

- $M \alpha \alpha \alpha$ is tautologically equivalent to $\neg \alpha$
- $M(\neg \perp)(\neg \alpha)(\neg \beta)$ is tautologically equivalent to $\alpha \wedge \beta$

Since $\{\neg, \wedge\}$ is complete and \neg and \wedge can be represented with M and \perp, it follows that $\{M, \perp\}$ is complete.

$1.5 .4 b$

We will prove by induction that if α is a wff built only from M and containing the sentence symbols A, B then α is tautologically equivalent to one of $A, \neg A, B, \neg B$.

Base case: Any sentence symbol is either A or B.
Inductive case for $\#$: If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are each tautologically equivalent to one of

$$
\alpha_{1} \models \neq \alpha_{2} \quad \alpha_{1} \vDash \neg \neg \alpha_{2}
$$

$A, \neg A, B, \neg B$, at least one of the following must hold: $\quad \alpha_{1} \vDash \neq \alpha_{3} \quad \alpha_{1} \vDash=\neg \alpha_{3}$
$\alpha_{2} \vDash=\alpha_{3} \quad \alpha_{2} \vDash \neq \neg \alpha_{3}$
Let us suppose we are in one of the cases in the left column, say $\alpha_{1} \vDash=\alpha_{3}$. Then $M \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to $\neg \alpha_{1}$ (since α_{1} and α_{3} agree, and will therefore outvote α_{2}).

Suppose we are in one of the cases in the right column, say $\alpha_{2} \vDash \neq \neg \alpha_{3}$. Then $M \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to α_{1} (since α_{2} and α_{3} will vote against each other, and $\neg \alpha_{1}$ will always cast the tie breaking vote).

The other cases are similar, with just the specific numbers changed. In either case, $M \alpha_{1} \alpha_{2} \alpha_{3}$ is tautologically equivalent to one of $A, \neg A, B, \neg B$.

In particular, $A \wedge B$ is a formula which is not tautologically equivalent to any of $A, \neg A, B, \neg B$, so there is no way for it to be expressed with just M.

1.5.5

If α has only the sentence symbols A, B, there are four relevant truth assignments (making $A T$ or F and $B T$ or F). We show by induction that if α is built from $\{\top, \perp, \neg, \leftrightarrow,+\}$ and the sentence symbols A, B then $\bar{\nu}(\alpha)=T$ for an even number of the relevant truth assignments.

Base Case: $\bar{\nu}(A)=T$ for two of the four possible truth assignments, and the same is true for B.

Inductive Case: $\mathrm{T}: \bar{\nu}(\mathrm{T})=T$ for all 4 possible truth assignments.
$\perp: \bar{\nu}(\perp)=T$ is 0 of the possible truth assignments.
\neg : If $\bar{\nu}(\alpha)=T$ for n of the possible truth assignments, $\bar{\nu}(\neg \alpha)=T$ for $4-n$ of the possible truth assignments. In particular, if n is even, so is $4-n$.
\leftrightarrow : Let $\bar{\nu}(\alpha)=T$ for n_{a} truth assignemnts and $\overline{n u}(\beta)=T$ for n_{b} truth assignments with n_{a} and n_{b} both even. If $n_{a}=4$ then $\bar{\nu}(\alpha \leftrightarrow \beta)=\bar{\nu}(\beta)$ for every ν, so $\bar{\nu}(\alpha \leftrightarrow \beta)=T$ for n_{b} of the possible truth assignments, an even number. If $n_{a}=0$ then $\bar{\nu}(\alpha \leftrightarrow \beta)=\bar{\nu}(\neg \beta)$ for every ν, so $\bar{\nu}(\alpha \leftrightarrow \beta)=T$ for
$4-n_{b}$ of the possible truth assignments, also an even number. If $n_{b}=4$ or $n_{b}=0$, a symmetric argument applies.

If $n_{a}=n_{b}=2$, we consider three subcases. If the two truth assignments ν such that $\bar{\nu}(\alpha)=T$ are the same as the two such that $\bar{\nu}(\beta)=T$ then $\bar{\nu}(\alpha \leftrightarrow$ $\beta)=T$ for all 4 truth assignments. If there is no overlap, $\bar{\nu}(\alpha \leftrightarrow \beta)=T$ for 0 truth assignments. In the final case, there is an overlap of 1 , so all four possible combinations are realized: there is a ν such that $\bar{\nu}(\alpha)=\bar{\nu}(\beta)=T$, a ν such that $\bar{\nu}(\alpha)=\bar{\nu}(\beta)=F$, a ν such that $\bar{\nu}(\alpha)=T$ while $\bar{\nu}(\beta)=F$, and a ν such that $\bar{\nu}(\alpha)=F$ while $\bar{\nu}(\beta)=T$. This gives exactly two ν satisfying $\alpha \leftrightarrow \beta$.

+ : We can reduce this case to the previous one, since $\bar{\nu}(\alpha+\beta)=\bar{\nu}(\neg(\alpha \leftrightarrow$ β), so by the previous two cases, if $\bar{\nu}(\alpha)=T$ for an even number of ν and $\bar{\nu}(\beta)=T$ for an even number of ν, the same holds for $\alpha \leftrightarrow \beta$, and therefore also for $\neg(\alpha \leftrightarrow \beta) \vDash \neq \alpha+\beta$.

1.5.7

1.5.7a

$+{ }^{3} \top \perp \alpha$ is tautologically equivalent to $\neg \alpha$. Since $\{\neg, \wedge\}$ is complete and \neg and \wedge can be represented with $\left\{T, \perp, \wedge,+^{3}\right\}$, it follows that $\left\{\top, \perp, \wedge,+^{3}\right\}$ is complete.

1.5.7b

It suffices to consider the four subsets with three of the four connectives, since every proper subset is a subset of one of them.

1.5.7b1

$\left\{T, \perp,+^{4}\right\}$: For any truth assignment ν, define the opposite of ν, ν^{\prime} by $\nu^{\prime}(A)=T$ iff $\nu(A)=F$. To see that $\left\{T, \perp,+^{3}\right\}$ is not complete, we show inductively that any formula α with sentence symbols A, B and connectives from $\left\{\top, \perp,+^{3}\right\}$ has the property that either:

- For every $\nu, \overline{\nu^{\prime}}(\alpha)=\bar{\nu}(\alpha)$, or
- For every $\nu, \overline{\nu^{\prime}}(\alpha) \neq \bar{\nu}(\alpha)$.
(In other words, either the truth value assigned to α does not depend on A at all, or flipping the truth value assigned to A always flips the truth value assigned to α, no matter which truth value was assigned to B.)

Observe that $A \wedge B$ has neither of these properties: when $\nu(A)=\nu(B)=T$, $\bar{\nu}(A \wedge B)=T \neq F=\overline{\nu^{\prime}}(A \wedge B)$, while when $\nu(A)=T$ and $\nu(B)=F$, $\bar{\nu}(A \wedge B)=F=\overline{\nu^{\prime}}(A \wedge B)$.

Base case: If α is the sentence symbol A then we are in the second case. If α is the sentence symbol B then we are in the first case.

Indutive case for $\perp, T: \bar{\nu}(T)=T$ for all ν, so $\overline{\nu^{\prime}}(\alpha)=\bar{\nu}(\alpha)$ for all ν. Similarly for \perp.

Inductive case for $+^{3}$: Suppose $\alpha_{1}, \alpha_{2}, \alpha_{3}$ each have the proeprty that either

- For every $\nu, \overline{\nu^{\prime}}\left(\alpha_{i}\right)=\bar{\nu}\left(\alpha_{i}\right)$, or
- For every $\nu, \overline{\nu^{\prime}}\left(\alpha_{i}\right) \neq \bar{\nu}\left(\alpha_{i}\right)$.

Observe that in the formula $+{ }^{3} A B C$, changing the truth value of an even number of A, B, C leaves the truth value of $+{ }^{3} A B C$ unchanged, while changing the truth value of an odd number flips the truth value of $+{ }^{3} A B C$.

If an even number of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are in the second case then $+{ }^{3} \alpha_{1} \alpha_{2} \alpha_{3}$ must be in the first case. Otherwise, an odd number of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are in the second case, so $+{ }^{3} \alpha_{1} \alpha_{2} \alpha_{3}$ is as well.

So \wedge cannot be represented by $T, \perp,+^{3}$.

1.5.7b2

$\{T, \perp, \wedge\}$: Let $\nu_{T}\left(A_{n}\right)=T$ for all n. We prove by induction that if α is built from $\{\top, \perp, \wedge\}$ and any number of sentence symbols, either $\overline{\nu_{T}}(\alpha)=T$ or $\bar{\nu}(\alpha)=F$ for all ν.

Base case: $\nu_{T}\left(A_{n}\right)=T$ for any sentence symbol
Inductive case for $\mathrm{T}: \overline{\nu_{T}}(\mathrm{~T})=T$
Inductive case for $\perp: \bar{\nu}(\alpha)=F$ for all ν
Inductive case for \wedge : Suppose α_{1} and α_{2} both have the property that either $\overline{\nu_{T}}\left(\alpha_{i}\right)=T$ or $\bar{\nu}\left(\alpha_{i}\right)=F$ for all ν. If, for either $i, \bar{\nu}\left(\alpha_{i}\right)=F$ for all ν then $\bar{\nu}\left(\alpha_{1} \wedge \alpha_{2}\right)=F$ for all ν. Otherwise, $\overline{\nu_{T}}\left(\alpha_{1}\right)=\overline{\nu_{T}}\left(\alpha_{2}\right)$, so $\overline{\nu_{T}}\left(\alpha_{1} \wedge \alpha_{2}\right)=T$.
$\neg A$ has the property that $\overline{\nu_{T}}(\neg A)=F$ but there are ν such that $\bar{\nu}(\alpha)=T$, so $\neg A$ is not tautologically equivalent to any formula built from $\mathrm{T}, \perp, \wedge$.

1.5.7b3

$\left\{\perp, \wedge,+{ }^{3}\right\}$: We prove by induction that if α is built from $\left\{\perp, \wedge,+{ }^{3}\right\}$ with only the sentence symbol A then for any $\nu, \overline{\nu_{F}}(\alpha)=F$ (where $\left.\nu_{F}(A)=F\right)$.

Base case: By definition, $\overline{\nu_{F}}(A)=F$
Inductive case for \perp : Clearly $\overline{\nu_{F}}(\perp)=F$
Inductive case for \wedge : If $\overline{\nu_{F}}(\alpha)=F$ then $\overline{\nu_{F}}(\alpha \wedge \beta)=F$
Inductive case for $+^{3}$: If $\overline{\nu_{F}}\left(\alpha_{i}\right)=F$ for all i then $\overline{\nu_{F}}\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)=F$.
$\overline{\nu_{F}}(\neg A)=T$, so \neg cannot be represented by $\wedge, \perp,+^{3}$.

1.5.7b4

$\left\{T, \wedge,+{ }^{3}\right\}$: We prove by induction that if α is built from $\left\{\perp, \wedge,+{ }^{3}\right\}$ with only the sentence symbol A then for any $\nu, \overline{\nu_{T}}(\alpha)=T$.

Base case: By definition, $\overline{\nu_{T}}(A)=T$
Inductive case for T : Clearly $\overline{\nu_{T}}(\perp)=T$
Inductive case for \wedge : If $\overline{\nu_{T}}(\alpha)=\overline{\overline{\nu_{T}}}(\beta)=T$ then $\overline{\nu_{T}}(\alpha \wedge \beta)=T$
Inductive case for $+^{3}$: If $\overline{\nu_{T}}\left(\alpha_{i}\right)=T$ for all i then $\overline{\nu_{T}}\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)=T$.
$\overline{\nu_{T}}(\neg A)=F$, so \neg cannot be represented by $\wedge, \top,+^{3}$.

1.5.9

1.5.9a

$$
\beta=(\neg A \vee \neg B \vee C) \wedge(\neg A \vee B \vee \neg C) \wedge(A \vee \neg B \vee \neg C) \wedge(A \vee B \vee C) .
$$

We check the equivalence:

| A | B | C | $A \leftrightarrow B \leftrightarrow C$ | $\neg A \vee \neg B \vee C$ | $\neg A \vee B \vee \neg C$ | $A \vee \neg B \vee \neg C$ | $A \vee B \vee C$ | β |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T |
T	T	F	F	F	T	T	T	F
T	F	T	F	T	F	T	T	F
T	F	F	T	T	T	T	T	T
F	T	T	F	T	T	F	T	F
F	T	F	T	T	T	T	T	T
F	F	T						
F	F	F	F	T	T	T	F	F

1.5.9b

Let α be a formula. We have already shown that $\neg \alpha$ is tautologically equivalent to a formula in disjunctive normal form; that is, a formula of the form

$$
(\neg \alpha)^{D N F}=\gamma_{1} \vee \gamma_{2} \vee \cdots \vee \gamma_{k}
$$

where each γ_{i} has the form

$$
\gamma_{i}=\beta_{i 1} \wedge \cdots \wedge \beta_{i n_{k}}
$$

and each $\beta_{i j}$ is either a sentence symbol or the negation of a sentence symbol. If $\beta_{i j}$ is a sentence symbol, define $\beta_{i j}^{\prime}$ to be $\neg \beta_{i j}$, and if $\beta_{i j}$ is the negation of a sentence symbol, define $\beta_{i j}^{\prime}$ to be that sentence symbol. (So $\beta_{i j}^{\prime}$ is either a sentence symbol or the negation of a sentence symbol, and is tautologically equivalent to $\neg \beta_{i j}$).

Then α is tautologically equivalent to $\neg(\neg \alpha)^{D N F}$, which is tautologically equivalent to

$$
\gamma_{1}^{\prime} \wedge \gamma_{2}^{\prime} \wedge \cdots \wedge \gamma_{k}^{\prime}
$$

where

$$
\gamma_{i}^{\prime}=\beta_{i 1}^{\prime} \vee \cdots \beta_{i n_{k}}^{\prime}
$$

1.5.12

No. This is part 1.5.7b2.

