Math 114L

Homework 3 Solutions

Spring 2011

2.1.1

1. $\forall x x<0$ or $\forall x x<0 \vee x=0$
2. $\exists x I x \rightarrow I 0$
3. $\forall x \neg x<0$
4. $\forall x((\neg I x \wedge \forall y y<x \rightarrow I y) \rightarrow I x)$
5. $\forall x \neg(\forall y y<x)$ or perhaps $\forall x \neg(\forall y y<x \vee y=x)$
6. $\forall x \neg \forall y \neg y<x$

2.1.4

$$
(\forall x E x \rightarrow A x) \rightarrow \forall x((\exists y E y \wedge x=h y) \rightarrow(\exists y(A y \wedge x=h y)))
$$

2.1.10

1. $\left(\neg\left(\left(\neg \forall v_{1}\left(\neg v_{1} P v_{1}\right)\right) \rightarrow\left(\neg P v_{1}\right)\right)\right), v_{1}$ appears free
2. $\left(\left(\neg\left(\forall v_{1} A v_{1} \rightarrow\left(\neg B v_{1}\right)\right)\right) \rightarrow\left(\left(\neg\left(\neg \forall v_{2}\left(\neg\left(\neg C v_{2}\right)\right)\right)\right) \rightarrow D v_{2}\right)\right)$, both v_{1} and v_{2} occur free.

2.2.1

a
\Rightarrow : Suppose $\Gamma ; \alpha \vDash \phi$, and let \mathfrak{A}, s be given so that for every $\gamma \in \Gamma, \models_{\mathfrak{A}} \gamma[s]$. Then either $\not \vDash_{\mathfrak{A}} \alpha[s]$, in which case $\models_{\mathfrak{A}} \alpha \rightarrow \phi[s]$ by definition, or $\models_{\mathfrak{A}} \alpha[s]$, in which case, since $\Gamma ; \alpha \models \phi$, we again have $\models_{\mathfrak{A}} \vDash \phi[s]$ and therefore $\models_{\mathfrak{A}} \alpha \rightarrow$ $\phi[s]$.
\Leftarrow : Suppose $\Gamma \vDash \alpha \rightarrow \phi$, and let \mathfrak{A}, s be given so that for every $\gamma \in \Gamma \cup\{\alpha\}$, $\models_{\mathfrak{A}} \gamma[s]$. Then this in particular holds for $\gamma \in \Gamma$, so $\models_{\mathfrak{A}} \alpha \rightarrow \phi[s]$. Since $\models_{\mathfrak{A}} \alpha[s]$, we must have $\models_{\mathfrak{A}} \phi[s]$.

b

\Rightarrow : Suppose $\phi \vDash=\psi$ and let \mathfrak{A}, s be given. If $\vDash_{\mathfrak{A}} \phi[s]$ then since $\phi \vDash \psi$, $\models_{\mathfrak{A}} \psi[s]$, and therefore $\models_{\mathfrak{A}} \phi \leftrightarrow \psi[s]$. Otherwise $\not \vDash_{\mathfrak{A}} \phi[s]$, and since $\psi \vDash \phi$, we must have $\not \vDash_{\mathfrak{A}} \psi[s]$, so again $\models_{\mathfrak{A}} \phi \leftrightarrow \psi[s]$.

2.2.2

$a, b \not \vDash c$: Take the universe to be \mathbb{N} and interpret P by $<$.
$a, c \not \models b$: Let the universe consist of two points (or any set with more than one element), and let P hold of every pair.
$b, c \not \vDash a$: Take the universe to be \mathbb{N} and let $(n, m) \in P^{\mathfrak{A}}$ exactly when $n=m+1$. (Note that the left side of (c) fails, so (c) is true.)

2.2.3

Let \mathfrak{A}, s be given so that $\models_{\mathfrak{A}} \forall x(\alpha \rightarrow \beta)[s]$ and $\models_{\mathfrak{A}} \forall x \alpha[s]$. Let $a \in|\mathfrak{A}|$. Then $\models_{\mathfrak{A}} \alpha \rightarrow \beta[s(a / x)]$ and $\models_{\mathfrak{A}} \alpha[s(a / x)]$, so $\models_{\mathfrak{A}} \beta[s(a / x)]$. Since this holds for all $a, \models_{\mathfrak{A}} \forall x \beta[s]$.

2.2.6

\Rightarrow : Suppose $\vDash \theta$. Let \mathfrak{A}, s be given, and let $a \in|\mathfrak{A}|$. Then by assumption, $\models_{\mathfrak{A}} \theta[s(a / x)]$. Since this holds for any $a, \models_{\mathfrak{A}} \forall x \theta[s]$.
\Leftarrow : Suppose $\vDash \forall x \theta$. Let \mathfrak{A}, s be given. Thet $\vDash_{\mathfrak{A}} \forall x \theta[s]$, and so in particular $\vdash_{\mathfrak{A}} \theta[s(s(x) / x)]$. Since $s(s(x) / x)=s$, also $\models_{\mathfrak{A}} \theta[s]$.

2.2.9

a
$\exists x \exists y(x \neq y \wedge \forall z(z=x \vee z=y))$
b
$\forall x \exists y P x y \wedge \forall z(P x z \rightarrow y=z)$
c
$(\forall x \exists y P x y \wedge \forall z(P x z \rightarrow y=z)) \wedge \forall y \exists x P x y$

