Math 114L

Homework 3 Solutions

Spring 2011

2.1.1

- 1. $\forall xx < 0 \text{ or } \forall xx < 0 \lor x = 0$
- 2. $\exists x I x \rightarrow I 0$
- 3. $\forall x \neg x < 0$
- 4. $\forall x((\neg Ix \land \forall yy < x \rightarrow Iy) \rightarrow Ix)$
- 5. $\forall x \neg (\forall yy < x)$ or perhaps $\forall x \neg (\forall yy < x \lor y = x)$
- 6. $\forall x \neg \forall y \neg y < x$

2.1.4

 $(\forall x E x \to A x) \to \forall x \left((\exists y E y \land x = h y) \to (\exists y (A y \land x = h y)) \right)$

2.1.10

- 1. $(\neg((\neg\forall v_1(\neg v_1Pv_1)) \rightarrow (\neg Pv_1))), v_1$ appears free
- 2. $((\neg(\forall v_1Av_1 \rightarrow (\neg Bv_1))) \rightarrow ((\neg(\neg\forall v_2(\neg(\neg Cv_2)))) \rightarrow Dv_2))$, both v_1 and v_2 occur free.

2.2.1

а

⇒: Suppose $\Gamma; \alpha \models \phi$, and let \mathfrak{A}, s be given so that for every $\gamma \in \Gamma$, $\models_{\mathfrak{A}} \gamma[s]$. Then either $\nvDash_{\mathfrak{A}} \alpha[s]$, in which case $\models_{\mathfrak{A}} \alpha \to \phi[s]$ by definition, or $\models_{\mathfrak{A}} \alpha[s]$, in which case, since $\Gamma; \alpha \models \phi$, we again have $\models_{\mathfrak{A}} \models \phi[s]$ and therefore $\models_{\mathfrak{A}} \alpha \to \phi[s]$.

 \Leftarrow : Suppose Γ ⊨ α → φ, and let 𝔄, s be given so that for every γ ∈ Γ∪{α}, ⊨_{𝔅 γ[s]}. Then this in particular holds for γ ∈ Γ, so ⊨_{𝔅 α} α → φ[s]. Since ⊨_{𝔅 α}[s], we must have ⊨_{𝔅 φ}[s].

\mathbf{b}

⇒: Suppose $\phi \models \exists \psi$ and let \mathfrak{A}, s be given. If $\models_{\mathfrak{A}} \phi[s]$ then since $\phi \models \psi$, $\models_{\mathfrak{A}} \psi[s]$, and therefore $\models_{\mathfrak{A}} \phi \leftrightarrow \psi[s]$. Otherwise $\nvDash_{\mathfrak{A}} \phi[s]$, and since $\psi \models \phi$, we must have $\nvDash_{\mathfrak{A}} \psi[s]$, so again $\models_{\mathfrak{A}} \phi \leftrightarrow \psi[s]$.

2.2.2

 $a, b \not\models c$: Take the universe to be \mathbb{N} and interpret P by <.

 $a, c \neq b$: Let the universe consist of two points (or any set with more than one element), and let P hold of every pair.

 $b, c \not\models a$: Take the universe to be \mathbb{N} and let $(n, m) \in P^{\mathfrak{A}}$ exactly when n = m + 1. (Note that the left side of (c) fails, so (c) is true.)

2.2.3

Let \mathfrak{A} , s be given so that $\models_{\mathfrak{A}} \forall x(\alpha \to \beta)[s]$ and $\models_{\mathfrak{A}} \forall x\alpha[s]$. Let $a \in |\mathfrak{A}|$. Then $\models_{\mathfrak{A}} \alpha \to \beta[s(a/x)]$ and $\models_{\mathfrak{A}} \alpha[s(a/x)]$, so $\models_{\mathfrak{A}} \beta[s(a/x)]$. Since this holds for all $a, \models_{\mathfrak{A}} \forall x\beta[s]$.

2.2.6

⇒: Suppose $\models \theta$. Let \mathfrak{A}, s be given, and let $a \in |\mathfrak{A}|$. Then by assumption, $\models_{\mathfrak{A}} \theta[s(a/x)]$. Since this holds for any $a, \models_{\mathfrak{A}} \forall x \theta[s]$.

 $\Leftarrow: \text{Suppose} \vDash \forall x\theta. \text{ Let } \mathfrak{A}, s \text{ be given. Thet } \vDash_{\mathfrak{A}} \forall x\theta[s], \text{ and so in } particular \vdash_{\mathfrak{A}} \theta[s(s(x)/x)]. \text{ Since } s(s(x)/x) = s, \text{ also } \vDash_{\mathfrak{A}} \theta[s].$

2.2.9

а

 $\exists x \exists y (x \neq y \land \forall z (z = x \lor z = y))$

\mathbf{b}

 $\forall x \exists y Pxy \land \forall z (Pxz \rightarrow y = z)$

с

 $(\forall x \exists y Pxy \land \forall z (Pxz \rightarrow y = z)) \land \forall y \exists x Pxy$