Math 114L

Homework 2 Solutions

Spring 2011

1.7.2

Let Δ be finitely satisfiable and complete, and let ν be as given in the problem. We show by induction on α that $\overline{\nu}(\alpha) = T$ iff $\alpha \in \Delta$.

Base Case: If α is a sentence symbol, $\overline{\nu}(\alpha) = \nu(\alpha) = T$ iff $\alpha \in \Delta$ by the definition of ν .

Inductive Case for \neg : If $\overline{\nu}(\neg \alpha) = T$ then $\overline{\nu}(\alpha) = F$, so by IH, $\alpha \notin \Delta$, and since Δ is complete, we must have $\neg \alpha \in \Delta$. If $\overline{\nu}(\neg \alpha) = F$ then $\overline{\nu}(\alpha) = T$, so by IH, $\alpha \in \Delta$; if $\neg \alpha \in \Delta$ then $\{\alpha, \neg \alpha\}$ is a finite unsatisfiable subset of Δ , and since this is impossible, $\neg \alpha \notin \Delta$.

Inductive Case for \wedge : If $\overline{\nu}(\alpha \wedge \beta) = T$ then $\overline{\nu}(\alpha) = \overline{\nu}(\beta) = T$, so by IH $\{\alpha, \beta\} \subseteq \Delta$; if $\alpha \wedge \beta \notin \Delta$ then $\neg(\alpha \wedge \beta) \in \Delta$, and so $\{\alpha, \beta, \neg(\alpha \wedge \beta)\}$ is a finite unsatisfiable subset of Δ , and since this is impossible, $\alpha \wedge \beta \in \Delta$. If $\overline{\nu}(\alpha \wedge \beta) = F$ and $\overline{\nu}(\alpha) = F$ then by IH, $\alpha \notin \Delta$, so $\neg \alpha \in \Delta$. If we had $\alpha \wedge \beta \in \Delta$ then $\{\neg \alpha, \alpha \wedge \beta\}$ would be a finite unsatisfiable subset of Δ , and since there are none, $\alpha \wedge \beta \notin \Delta$. If $\overline{\nu}(\alpha \wedge \beta) = F$ and $\overline{\nu}(\alpha) = T$ then $\overline{\nu}(\beta) = F$, and a similar argument applies.

The other inductive cases are simialr.

1.7.3

Suppose Corollary 17A holds and that Σ is not satisfiable. If Σ were unsatisfiable, we would have $\Sigma \models A_1 \land \neg A_1$. By the corollary, there must be a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models A_1 \land \neg A_1$, and therefore Σ_0 is a finite unsatisfiable subset of Σ , so Σ is not finitely satisfiable. This is the contrapositive of the compactness theorem, and therefore equivalent to the compactness theorem.

1.7.10

а

Let Δ be the set of tautological consequences of Σ . Consider the following procedure: For an expression τ , first check if τ is a wff. By Theorem 17B, there is an effective procedure for this, so in a finite number of steps, this will produce "yes" if τ is a wff, "no" if τ is not. If "no", we will output "no". If "yes", we will continue as follows.

 Σ is effectively enumerable, so we have an effective way to enumerate Σ , $\{\sigma_0, \sigma_1, \sigma_2, \ldots\}$. Let $\Sigma_n = \{\sigma_i \mid i \leq n\}$. Since each Σ_n is finite, there is an effective procedure for determining whether $\Sigma_n \models \tau$. We successively check if $\Sigma_0 \models \tau$, then if $\Sigma_0 \models \neg \tau$, then if $\Sigma_1 \models \tau$, then if $\Sigma_1 \models \neg \tau$, and so on. If we find some *n* such that $\Sigma_n \models \tau$, we output "yes", if we find some *n* such that $\Sigma_n \models \neg \tau$, we output "no".

By assumption, either $\Sigma \models \tau$ or $\Sigma \models \neg \tau$ but not both, so at some *n*, we will have either $\Sigma_n \models \epsilon$ or $\Sigma_n \models \neg \epsilon$, so this procedure always eventually stops with the correct answer.

\mathbf{b}

Suppose that there is τ such that $\Sigma \models \tau$ and $\Sigma \models \neg \tau$. Then Σ is unsatisfiable, so $\Sigma \models \sigma'$ for every wff σ' . Therefore we take the decision procedure which outputs "yes" on every wff.

Otherwise, there is no such τ , so we are in the case of part a.

(Note that the procedure here is *non-uniform*, in the sense that we can't decide, given a description of Σ , which of the two predures to use. But that doesn't change the fact that the set is decidable, we just don't know how to decide it!)

1.7.11

а

Let A and B be effectively enumerable. By Theorem 17E, they are both semidecidable. Let $C = A \cup B$ and let τ be an expression. We dovetail the two semidecision procedures: we first spend 1 minute checking if $\tau \in A$, then 1 minute checking if $\tau \in B$, then 2 minutes checking if $\tau \in A$, then 2 minutes checking if $\tau \in B$, and so on. If either $\tau \in A$ or $\tau \in B$, this process will eventually stop, and we output "yes". If $\tau \notin A \cup B$, this process runs forever. This is a semidecision procedure, so C is effectively enumerable.

\mathbf{b}

Again, let A and B be effectively enumerable, and note that by Theorem 17E they are each semidecidable. Given an expression τ , first run the semidecision procedure checking if $\tau \in A$. If the procedure runs forever, $\tau \notin A$, so $\tau \notin A \cap B$, and we run forever.

Otherwise, the semidecision procedure eventually tells us $\tau \in A$. Then we run the semidecision procedure for B. If this procedure runs forever, $\tau \notin B$, so $\tau \notin A \cap B$, and we run forever. If this procedure stops, we output "yes", since $\tau \in A$ and $\tau \in B$.

1.7.12 a $\Gamma = \{A_1, \neg A_1\}$ **b** $\Gamma = \{A_1, A_2, \neg (A_1 \land A_2)\}$ **c** $\Gamma = \{A_1, A_2, A_3, \neg (A_1 \land A_2 \land A_3)\}$