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1.7.2

Let ∆ be finitely satisfiable and complete, and let ν be as given in the problem.
We show by induction on α that ν(α) = T iff α ∈ ∆.

Base Case: If α is a sentence symbol, ν(α) = ν(α) = T iff α ∈ ∆ by the
definition of ν.

Inductive Case for ¬: If ν(¬α) = T then ν(α) = F , so by IH, α 6∈ ∆, and
since ∆ is complete, we must have ¬α ∈ ∆. If ν(¬α) = F then ν(α) = T , so
by IH, α ∈ ∆; if ¬α ∈ ∆ then {α,¬α} is a finite unsatisfiable subset of ∆, and
since this is impossible, ¬α 6∈ ∆.

Inductive Case for ∧: If ν(α ∧ β) = T then ν(α) = ν(β) = T , so by IH
{α, β} ⊆ ∆; if α ∧ β 6∈ ∆ then ¬(α ∧ β) ∈ ∆, and so {α, β,¬(α ∧ β)} is a
finite unsatisfiable subset of ∆, and since this is impossible, α ∧ β ∈ ∆. If
ν(α∧β) = F and ν(α) = F then by IH, α 6∈ ∆, so ¬α ∈ ∆. If we had α∧β ∈ ∆
then {¬α, α∧β} would be a finite unsatisfiable subset of ∆, and since there are
none, α ∧ β 6∈ ∆. If ν(α ∧ β) = F and ν(α) = T then ν(β) = F , and a similar
argument applies.

The other inductive cases are simialr.

1.7.3

Suppose Corollary 17A holds and that Σ is not satisfiable. If Σ were unsatis-
fiable, we would have Σ � A1 ∧ ¬A1. By the corollary, there must be a finite
Σ0 ⊆ Σ such that Σ0 � A1 ∧ ¬A1, and therefore Σ0 is a finite unsatisfiable
subset of Σ, so Σ is not finitely satisfiable. This is the contrapositive of the
compactness theorem, and therefore equivalent to the compactness theorem.

1.7.10

a

Let ∆ be the set of tautological consequences of Σ. Consider the following
procedure: For an expression τ , first check if τ is a wff. By Theorem 17B, there
is an effective procedure for this, so in a finite number of steps, this will produce
“yes” if τ is a wff, “no” if τ is not. If “no”, we will output “no”. If “yes”, we
will continue as follows.
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Σ is effectively enumerable, so we have an effective way to enumerate Σ,
{σ0, σ1, σ2, . . .}. Let Σn = {σi | i ≤ n}. Since each Σn is finite, there is an
effective procedure for determining whether Σn � τ . We successively check if
Σ0 � τ , then if Σ0 � ¬τ , then if Σ1 � τ , then if Σ1 � ¬τ , and so on. If we find
some n such that Σn � τ , we output “yes”, if we find some n such that Σn � ¬τ ,
we output “no”.

By assumption, either Σ |= τ or Σ |= ¬τ but not both, so at some n, we will
have either Σn |= ε or Σn |= ¬ε, so this procedure always eventually stops with
the correct answer.

b

Suppose that there is τ such that Σ |= τ and Σ |= ¬τ . Then Σ is unsatisfiable,
so Σ � σ′ for every wff σ′. Therefore we take the decision procedure which
outputs “yes” on every wff.

Otherwise, there is no such τ , so we are in the case of part a.
(Note that the procedure here is non-uniform, in the sense that we can’t

decide, given a description of Σ, which of the two prcedures to use. But that
doesn’t change the fact that the set is decidable, we just don’t know how to
decide it!)

1.7.11

a

Let A and B be effectively enumerable. By Theorem 17E, they are both semide-
cidable. Let C = A∪B and let τ be an expression. We dovetail the two semide-
cision procedures: we first spend 1 minute checking if τ ∈ A, then 1 minute
checking if τ ∈ B, then 2 minutes checking if τ ∈ A, then 2 minutes checking
if τ ∈ B, and so on. If either τ ∈ A or τ ∈ B, this process will eventually
stop, and we output “yes”. If τ 6∈ A ∪ B, this process runs forever. This is a
semidecision procedure, so C is effectively enumerable.

b

Again, let A and B be effectively enumerable, and note that by Theorem 17E
they are each semidecidable. Given an expression τ , first run the semidecision
procedure checking if τ ∈ A. If the procedure runs forever, τ 6∈ A, so τ 6∈ A∩B,
and we run forever.

Otherwise, the semidecision procedure eventually tells us τ ∈ A. Then we
run the semidecision procedure for B. If this procedure runs forever, τ 6∈ B, so
τ 6∈ A ∩ B, and we run forever. If this procedure stops, we output “yes”, since
τ ∈ A and τ ∈ B.
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1.7.12

a

Γ = {A1,¬A1}

b

Γ = {A1, A2,¬(A1 ∧A2)}

c

Γ = {A1, A2, A3,¬(A1 ∧A2 ∧A3)}
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