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1.7.2

Let A be finitely satisfiable and complete, and let v be as given in the problem.
We show by induction on « that 7(a) =T iff o € A.

Base Case: If « is a sentence symbol, 7(a) = v(a) = T iff & € A by the
definition of v.

Inductive Case for —: If U(—a) = T then T(a) = F, so by ITH, o ¢ A, and
since A is complete, we must have —a € A. If (—-a) = F then v(a) = T, so
by IH, a € A; if ~a € A then {a, —a} is a finite unsatisfiable subset of A, and
since this is impossible, ~a & A.

Inductive Case for A: If (e A 8) = T then 7(a) = 7(B) = T, so by TH
{a, 0} CT A;if anNp & A then 2(a A ) € A, and so {a, 5,7 (a A B)} is a
finite unsatisfiable subset of A, and since this is impossible, a A 8 € A. If
v(aAB) = F and U(«) = F then by IH, o € A, so ma € A. If we had aAf € A
then {—a, a A 8} would be a finite unsatisfiable subset of A, and since there are
none, a A € A. f v(aAf) = F and (o) = T then 7(3) = F, and a similar
argument applies.

The other inductive cases are simialr.

1.7.3

Suppose Corollary 17A holds and that ¥ is not satisfiable. If ¥ were unsatis-
fiable, we would have ¥ F A; A =A;. By the corollary, there must be a finite
Yo C X such that Xy F A; A =A1, and therefore Xq is a finite unsatisfiable
subset of ¥, so X is not finitely satisfiable. This is the contrapositive of the
compactness theorem, and therefore equivalent to the compactness theorem.

1.7.10

a

Let A be the set of tautological consequences of X. Consider the following
procedure: For an expression 7, first check if 7 is a wiff. By Theorem 17B, there
is an effective procedure for this, so in a finite number of steps, this will produce
“yes” if 7 is a wif, “no” if 7 is not. If “no”, we will output “no”. If “yes”, we
will continue as follows.



Y is effectively enumerable, so we have an effective way to enumerate X,
{00,01,09,...}. Let ¥, = {o; | ¢ < n}. Since each X, is finite, there is an
effective procedure for determining whether 3, F 7. We successively check if
Yo E 7, then if ¥¢ F =7, then if 31 E 7, then if ¥; F =7, and so on. If we find
some n such that 3,, F 7, we output “yes”, if we find some n such that ¥, F =7,
we output “no”.

By assumption, either ¥ = 7 or ¥ = —7 but not both, so at some n, we will
have either 3, = € or ¥,, |= —e, so this procedure always eventually stops with
the correct answer.

b

Suppose that there is 7 such that ¥ | 7 and ¥ | —7. Then ¥ is unsatisfiable,
so ¥ F ¢ for every wif ¢/. Therefore we take the decision procedure which
outputs “yes” on every wif.

Otherwise, there is no such 7, so we are in the case of part a.

(Note that the procedure here is non-uniform, in the sense that we can’t
decide, given a description of ¥, which of the two prcedures to use. But that
doesn’t change the fact that the set is decidable, we just don’t know how to
decide it!)

1.7.11

a

Let A and B be effectively enumerable. By Theorem 17E, they are both semide-
cidable. Let C = AUB and let 7 be an expression. We dovetail the two semide-
cision procedures: we first spend 1 minute checking if 7 € A, then 1 minute
checking if 7 € B, then 2 minutes checking if 7 € A, then 2 minutes checking
if 7 € B, and so on. If either 7 € A or 7 € B, this process will eventually
stop, and we output “yes”. If 7 ¢ AU B, this process runs forever. This is a
semidecision procedure, so C is effectively enumerable.

b

Again, let A and B be effectively enumerable, and note that by Theorem 17E
they are each semidecidable. Given an expression 7, first run the semidecision
procedure checking if 7 € A. If the procedure runs forever, 7 € A, so 7 ¢ AN B,
and we run forever.

Otherwise, the semidecision procedure eventually tells us 7 € A. Then we
run the semidecision procedure for B. If this procedure runs forever, 7 ¢ B, so
T ¢ AN B, and we run forever. If this procedure stops, we output “yes”, since
7€ Aand 7T € B.



1.7.12
a

I'={A;,-4}

b
I'={41,A5,-(A1 N Ay)}

C

T = {Ay, Ay, A3, (A1 A Ay A A3)}



