MIDTERM 1

Math 114 4/23/2010

Name:

. .

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	25	
4	25	
5	20	
Total	100	

1. (15 points) (a) Prove that $(A_1A_2 \wedge A_3)$ is not a wff. (You may use any theorems proven in class or in the textbook if you wish.)

(b) Give an example of an infinite set of wffs Σ such that Σ is not tautologically equivalent to any finite set of wffs.

2. (15 points) Consider the following three formulas. Indicate all tautological implications among them:

1. $\neg A \rightarrow B$ 2. $\neg((A \rightarrow B) \rightarrow (\neg(B \rightarrow A)))$ 3. $\neg((A \lor B) \land (\neg A \lor \neg B))$ **3.** (25 points) Recall the ternery connective \mathbb{I} , with the property that $\mathbb{I}\alpha\beta\gamma$ is assigned the value T if exactly one of the formulas α, β, γ is assigned the value T.

(a) Prove that $\{\mathbb{I}, \top\}$ is complete.

(b) Prove that $\{I\}$ is not complete. (Hint: can you make a formula α with sentence symbols A, B so that $\overline{\nu}(\alpha) = T$ when $\nu(A) = \nu(B) = F$?)

4. (25 points) (a) Prove that for every finite set $\Sigma = \{\sigma_1, \ldots, \sigma_n\}$ of wffs and every $\alpha, \Sigma \models \alpha$ iff $\models ((\sigma_1 \land \cdots \land \sigma_n) \rightarrow \alpha)$.

(b) Show that if Σ is any (not necessarily finite) set of wffs and α is a wff such that $\Sigma \vDash \alpha$ then there are finitely many $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that $\vDash ((\sigma_1 \land \cdots \land \sigma_n) \to \alpha)$.

5. (20 points) (a) Give a new (that is, one not used lecture or the text book) example of a first order language containing at least one predicate symbol which is not equality, and at least one function symbol. Describe an intended interpretation for this language.

(b) Write down a formula in this language, with at least one quantifier, whose intended interpretation is true.

 (\mathbf{c}) Write down a formula in this language, with at least one quantifier, whose intended interpretation is false.