MIDTERM 1

Name:

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	25	
4	25	
5	20	
Total	100	

1. (15 points) (a) Prove that $\left(A_{1} A_{2} \wedge A_{3}\right)$ is not a wff. (You may use any theorems proven in class or in the textbook if you wish.)
(b) Give an example of an infinite set of wffs Σ such that Σ is not tautologically equivalent to any finite set of wffs.
2. (15 points) Consider the following three formulas. Indicate all tautological implications among them:
3. $\neg A \rightarrow B$
4. $\neg((A \rightarrow B) \rightarrow(\neg(B \rightarrow A)))$
5. $\neg((A \vee B) \wedge(\neg A \vee \neg B))$
6. (25 points) Recall the ternery connective \mathbb{I}, with the property that $\mathbb{I} \alpha \beta \gamma$ is assigned the value T if exactly one of the formulas α, β, γ is assigned the value T.
(a) Prove that $\{\mathbb{I}, \top\}$ is complete.
(b) Prove that $\{\mathbb{I}\}$ is not complete. (Hint: can you make a formula α with sentence symbols A, B so that $\bar{\nu}(\alpha)=T$ when $\nu(A)=\nu(B)=F ?$)
7. (25 points) (a) Prove that for every finite set $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of wffs and every $\alpha, \Sigma \vDash \alpha$ iff $\vDash\left(\left(\sigma_{1} \wedge \cdots \wedge \sigma_{n}\right) \rightarrow \alpha\right)$.
(b) Show that if Σ is any (not necessarily finite) set of wffs and α is a wff such that $\Sigma \vDash \alpha$ then there are finitely many $\sigma_{1}, \ldots, \sigma_{n} \in \Sigma$ such that $\vDash\left(\left(\sigma_{1} \wedge \cdots \wedge \sigma_{n}\right) \rightarrow \alpha\right)$.
8. (20 points) (a) Give a new (that is, one not used lecture or the text book) example of a first order language containing at least one predicate symbol which is not equality, and at least one function symbol. Describe an intended interpretation for this language.
(b) Write down a formula in this language, with at least one quantifier, whose intended interpretation is true.
(c) Write down a formula in this language, with at least one quantifier, whose intended interpretation is false.
