MIDTERM 2

Math 114 5/14/2010

Name:

、_____

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	15	
4	20	
5	20	
6	15	
Total	100	

1. (15 points) Consider a language with a single constant symbol **e**, a unary function **S**, and a binary predicate **R**. Consider the model \mathfrak{A} with $|\mathfrak{A}| = \mathbb{N}$, $\mathbf{e}^{\mathfrak{A}} = 0$, $\mathbf{S}^{\mathfrak{A}}$ the function taking *n* to n + 1, and $\mathbf{R}^{\mathfrak{A}} = \{(n, m) \mid n < m\}$. Let $s(v_i) = i$ for all *i*. (Recall that the notation $s(x \mapsto n)$ has the same meaning as $s(x \mid n)$.) Find: (**a**) $\overline{s}(\mathbf{S}v_3)$

(b)
$$\overline{s(v_2 \mapsto 4)}(\mathbf{Se})$$

(c)
$$\overline{s(v_2 \mapsto 4)}(\mathbf{S}v_2)$$

(d) Does
$$\vDash_{\mathfrak{A}} \forall v_2 \mathbf{ReS} v_2[s]$$
?

(e) Does $\vDash_{\mathfrak{A}} \forall v_3 \mathbf{ReS} v_2[s]$?

2. (15 points) Consider the first-order language with a single 2-place relation symbol <. Let \mathfrak{Z} be a structure with $|\mathfrak{Z}| = \mathbb{Z}$ and $<^{\mathfrak{I}}$ the usual ordering on the integers. Let \mathfrak{N} be a structure with $|\mathfrak{N}| = \mathbb{N}$ and $<^{\mathfrak{N}}$ the usual ordering on the integers. Show that the structures \mathfrak{Z} and \mathfrak{N} are not isomorphic.

3. (20 points) Prove that there is not a derivation of

 $\forall x \neg \forall y \mathbf{R} x y \rightarrow \neg \forall y \mathbf{R} y y.$

4. (20 points) Prove, using induction on deductions, that whenever $\Gamma; \beta \vdash \gamma$, also $\Gamma; \alpha \to \beta \vdash \alpha \to \gamma$.

5. (15 points) Consider the first-order language with a single 2-place relation symbol <, a unary relation symbol **P**, and a constant symbol **0**. Consider the model \mathfrak{N} where $|\mathfrak{N}| = \mathbb{N}$, $<^{\mathfrak{N}}$ is the usual ordering on the integers, $\mathbf{P}^{\mathfrak{N}}$ is the set of primes, and $\mathbf{0}^{\mathfrak{N}}$ is 0. Express the following sentences with formulas in this language:

(a) Every prime number is greater than 0.

(b) There is only one prime number.

6. (15 points) Prove that there is a deduction of

$$\exists x (\mathbf{P}x \land \mathbf{Q}x) \to \exists x \mathbf{P}x.$$

Be sure to justify each step.