MIDTERM 2

Math 114
5/14/2010

Name:

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	15	
4	20	
5	20	
6	15	
Total	100	

1. (15 points) Consider a language with a single constant symbol \mathbf{e}, a unary function \mathbf{S}, and a binary predicate \mathbf{R}. Consider the model \mathfrak{A} with $|\mathfrak{A}|=\mathbb{N}, \mathbf{e}^{\mathfrak{A}}=0, \mathbf{S}^{\mathfrak{A}}$ the function taking n to $n+1$, and $\mathbf{R}^{\mathfrak{A}}=\{(n, m) \mid n<m\}$. Let $s\left(v_{i}\right)=i$ for all i. (Recall that the notation $s(x \mapsto n)$ has the same meaning as $s(x \mid n)$.)
Find: $\quad(\mathbf{a}) \quad \bar{s}\left(\mathbf{S} v_{3}\right)$
(b) $\quad \overline{s\left(v_{2} \mapsto 4\right)}(\mathbf{S e})$
(c) $\quad \overline{s\left(v_{2} \mapsto 4\right)}\left(\mathbf{S} v_{2}\right)$
(d) \quad Does $\vDash_{\mathfrak{A}} \forall v_{2} \operatorname{Re} \boldsymbol{S} v_{2}[s]$?
(e) \quad Does $\vDash_{\mathfrak{A}} \forall v_{3} \operatorname{Re} \boldsymbol{S} v_{2}[s]$?
2. (15 points) Consider the first-order language with a single 2-place relation symbol $<$. Let \mathfrak{Z} be a structure with $|\mathfrak{Z}|=\mathbb{Z}$ and $<^{3}$ the usual ordering on the integers. Let \mathfrak{N} be a structure with $|\mathfrak{N}|=\mathbb{N}$ and $<\mathfrak{N}$ the usual ordering on the integers.
Show that the structures \mathfrak{Z} and \mathfrak{N} are not isomorphic.
3. (20 points) Prove that there is not a derivation of

$$
\forall x \neg \forall y \mathbf{R} x y \rightarrow \neg \forall y \mathbf{R} y y .
$$

4. (20 points) Prove, using induction on deductions, that whenever $\Gamma ; \beta \vdash \gamma$, also $\Gamma ; \alpha \rightarrow \beta \vdash$ $\alpha \rightarrow \gamma$.
5. (15 points) Consider the first-order language with a single 2 -place relation symbol $<$, a unary relation symbol \mathbf{P}, and a constant symbol $\mathbf{0}$. Consider the model \mathfrak{N} where $|\mathfrak{N}|=\mathbb{N},<\mathfrak{N}$ is the usual ordering on the integers, $\mathbf{P}^{\mathfrak{N}}$ is the set of primes, and $\mathbf{0}^{\mathfrak{N}}$ is 0 . Express the following sentences with formulas in this language:
(a) Every prime number is greater than 0 .
(b) There is only one prime number.
6. (15 points) Prove that there is a deduction of

$$
\exists x(\mathbf{P} x \wedge \mathbf{Q} x) \rightarrow \exists x \mathbf{P} x .
$$

Be sure to justify each step.

