1. (15 points) Give general solutions to the following differential equations:
(a) $z^{\prime}=\frac{x^{2}}{\cos z}$

The equation $\frac{d z}{d x}=\frac{x^{2}}{\cos z}$ is separable. We first separate variables and then integrate, $\int \cos z d z=\int x^{2} d x$. This gives $\sin z=\frac{x^{3}}{3}+C$.
(b) $\quad t u^{\prime}=e^{u}$

The equation $t \frac{d u}{d t}=e^{u}$ is separable. We first separate variables and then integrate, $\int e^{-u} d u=\int \frac{d t}{t}$. This gives $-e^{-u}=\ln |t|+C_{1}$. To solve for u, we multiply through by -1 , take the natural log, and multiply through by -1 again, $u(t)=-\ln (-\ln |t|+C)$.
2. (15 points) (a) Solve the following initial value problem

$$
t^{2} u^{\prime}=e^{u}, u(1)=0
$$

The equation $t^{2} \frac{d u}{d t}=e^{u}$ is separable. We first separate variables and then integrate, $\int e^{-u} d u=\int \frac{d t}{t^{2}}$. This gives $-e^{-u}=-\frac{1}{t}+C_{1}$. To solve for u, we multiply through by -1 , take the natural log, and multiply through by -1 again, $u=-\ln \left(\frac{1}{t}+C\right)$. We now use the initial condition $u(1)=0$ to get $0=u(1)=-\ln (1+C)$, and this implies $1+C=1$. Thus $C=0$, so the solution to the initial value problem is $u(t)=-\ln \left(\frac{1}{t}\right)=\ln (t)$.
(b) What is the interval of existence of this solution?

The natural \log function is defined for all $x>0$, so the interval of existence is $(0, \infty)$.
3. (20 points) Indiana Jones has fallen into a deep pit containing $100 \mathrm{~m}^{3}$ of pure water. Corrosive acid is pouring into the pit at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$, while $2 \mathrm{~m}^{3} / \mathrm{min}$ of liquid drains from the pit.
(a) Let $A(t)$ be the amount of acid in the pit after t minutes. Write a differential equation expressing $A^{\prime}(t)$ in terms of $A(t)$ and t (assuming instantaneous mixing).
Using that

$$
\text { rate of change }=\text { rate in }- \text { rate out },
$$

the differential equation is $A^{\prime}(t)=3-\frac{2 A(t)}{100+t}$.
(b) Find a general solution of the equation in part a.

The equation $A^{\prime}+\frac{2 A}{100+t}=3$ is linear, and the general integrating factor is given by

$$
\mu(t)=e^{\int \frac{2}{100+t} d t}=e^{2 \ln |100+t|+C_{1}}=C_{2}(100+t)^{2} .
$$

The constant C is arbitrary, so we can set $C_{2}=1$ and use $\mu=(100+t)^{2}$. We multiply through by $\mu,\left((100+t)^{2} A\right)^{\prime}=3(100+t)^{2}$, then integrate, $(100+t)^{2} A=\int 3(100+$ $t)^{2} d t=(100+t)^{3}+C$. Solving for A gives $A(t)=100+t+\frac{C}{(100+t)^{2}}$.
(c) Find the particular solution to the equation in part a, taking into account information about the initial situation.
Since the pit contains pure water initially, the initial condition is $A(0)=0$. This implies $0=A(0)=100+\frac{C}{100^{2}}$, so $C=-100^{3}$ and the particular solution to the equation in part (a) is $A(t)=100+t-\frac{100^{3}}{(100+t)^{2}}$.
(d) When the concentration of the acid (that is, $A(t)$ divided by $V(t)$) reaches $1 / 4$, Indiana Jones will die. How long does he have to escape? (That is, at what t does $A(t) / V(t)=1 / 4$. You need not evaluate any numerical calculations; it suffices to solve the appropriate equation for t.)
We solve

$$
\frac{1}{4}=\frac{A(t)}{V(t)}=\frac{100+t-100^{3}(100+t)^{-2}}{100+t}=1-\frac{100^{3}}{(100+t)^{3}}
$$

for t, getting $\frac{100^{3}}{(100+t)^{3}}=\frac{3}{4}$, and therefore $(100+t)^{3}=\frac{4 \cdot 100^{3}}{3}$. The solution is $t=$ $100\left(\frac{4}{3}\right)^{1 / 3}-100$.
4. (15 points) Consider the following direction field of an unknown differential equation:

(a) Give the equation for a particular solution of this differential equation.

We can see from the direction field that a particular solution is given by the straight line through the points $(-2,0)$ and $(0,2)$, and its equation is therefore

$$
y(x)=x+2 .
$$

(b) Draw (on the direction field above) the solution through $(0,0)$.
(c) Is this differential equation autonomous? How can you tell? (NO credit without an explanation.)
The equation is not autonomous. The slope for a fixed value of $y(x)$ depends on x. For example, the slope for $y(x)=5$ decreases from a positive number to a negative number as x increases from -10 to 10 .
5. (20 points) Consider the differential equation

$$
5 y+(3+y) x y^{\prime}=0
$$

or, written with differentials, $5 y d x+(3+y) x d y=0$.
(a) For which values of a, b, c is $x^{a} y^{b} e^{c y}$ an integrating factor? (Give two equations relating a, b, c; you need not get them in a particular form.)
Multiply the differential form $5 y d x+(3+y) x d y=0$ by $x^{a} y^{b} e^{c y}$ to get

$$
5 x^{a} y^{b+1} e^{c y} d x+\left(3 x^{a+1} y^{b} e^{c y}+x^{a+1} y^{b+1} e^{c y}\right) \quad d y=0
$$

Now let $P(x, y)=5 x^{a} y^{b+1} e^{c y} \quad$ and $\quad Q(x, y)=3 x^{a+1} y^{b} e^{c y}+x^{a+1} y^{b+1} e^{c y}$. The requirement for $x^{a} y^{b} e^{c y}$ to be an integrating factor is

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},
$$

that is, $5(b+1) x^{a} y^{b} e^{c y}+5 c x^{a} y^{b+1} e^{c y}=3(a+1) x^{a} y^{b} e^{c y}+(a+1) x^{a} y^{b+1} e^{c y}$. Simplifying a bit, $5 x^{a} y^{b} e^{c y}((b+1)+c y)=(a+1) x^{a} y^{b} e^{c y}(3+y)$, and dividing by the integrating factor $x^{a} y^{b} e^{c y}$, we get $5(b+1)+5 c y=(a+1)(3+y)$. Two equations relating a, b, c are

$$
3(a+1)=5(b+1) \quad \text { and } \quad a+1=5 c .
$$

(b) Using an integrating factor from the first part, give the general solution. (Hint: try setting $b=0$.) Setting $b=0$, the equations from part (a) imply that $a=2 / 3$ and $c=1 / 3$, so

$$
\mu(x, y)=x^{2 / 3} e^{y / 3}
$$

is an integrating factor. We multiply the given differential form by this integrating factor, $5 x^{2 / 3} y e^{y / 3} d x+x(3+y) x^{2 / 3} e^{y / 3} d y=0$, and we get an exact equation. Let $\tilde{P}(x, y)=5 x^{2 / 3} y e^{y / 3} \quad$ and $\quad \tilde{Q}(x, y)=x(3+y) x^{2 / 3} e^{y / 3}$. We integrate to solve $\partial F / \partial x=$ \tilde{P},

$$
F(x, y)=\int 5 x^{2 / 3} y e^{y / 3} d x+\phi(y)=3 x^{5 / 3} y e^{y / 3}+\phi(y),
$$

and differentiate to solve $\partial F / \partial y=\tilde{Q}$,

$$
x(3+y) x^{2 / 3} e^{y / 3}=\frac{\partial}{\partial y}\left(3 x^{5 / 3} y e^{y / 3}+\phi(y)\right)=3 x^{5 / 3} e^{y / 3}+x^{5 / 3} y e^{y / 3}+\phi^{\prime}(y) .
$$

It follows that $3+y=3+y+\phi^{\prime}(y)$, so $\phi^{\prime}(y)=0$ and therefore $\phi(y)=C$. Thus the general solution is $F(x, y)=3 x^{5 / 3} y e^{y / 3}=D$.
6. (15 points) Suppose y is a solution to the initial value problem

$$
y^{\prime}=(y-5) e^{t^{2} y} \text { and } y(1)=2
$$

Show that $y(t)<5$ for all t for which y is defined. First, note that

$$
f(y, t)=(y-5) e^{t^{2} y} \quad \text { and } \quad \frac{\partial f}{\partial y}=e^{t^{2} y}-5 t^{2} e^{t^{2} y}
$$

are continuous everywhere in t, y-plane, so by the uniqueness theorem, the solution for any initial condition exists and is unique wherever it is defined.
By substitution, we see that $y_{1}(t)=5$ is a particular solution to the differential equation

$$
y^{\prime}=(y-5) e^{t^{2} y} .
$$

Suppose $y_{2}(t)$ is a solution to the initial value problem

$$
y^{\prime}=(y-5) e^{t^{2} y}, \quad y(1)=2
$$

and $y_{2}(t) \geq 5$ for some t. Since y_{2} is continuous, the intermediate value theorem implies that there is a value t_{0} such that $y_{2}\left(t_{0}\right)=5$ (that is, the solution curve y_{2} 'crosses') the solution curve y_{1} at $t=t_{0}$). But then $y_{1}(t)$ and $y_{2}(t)$ are distinct solutions of the inital value problem

$$
y^{\prime}=(y-5) e^{t^{2} y}, \quad y\left(t_{0}\right)=5,
$$

contradicting the uniquness theorem. Hence any solution $y(t)$ of the initial value problem

$$
y^{\prime}=(y-5) e^{t^{2} y}, \quad y(1)=2
$$

must satisfy $y(t)<5$ for all t for which y is defined.

