MIDTERM 1

 $\begin{array}{l} \text{Math 3A} \\ 10/19/2009 \end{array}$

Name:

Signature:

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Whenever you invoke a theorem to justify a result, make sure to clearly identify all premises of the theorem, show that they are true, and specify which theorem you are using.
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	15	
4	15	
5	15	
6	15	
7	10	
Total	100	

1. (15 points) Find the following limits if they exist; if not, state that they do not exist, and indicate if they go to ∞ or $-\infty$, indicate this as well. You may use any method you like, but clearly indicate intermediate steps and how you obtain your answer.

(a) $\lim_{x\to\infty} \tan x$

 $\tan x$ oscillates as $x \to \infty$, so $\lim_{x \to \infty} \tan x$ DNE

(**b**) Find $\lim_{x \to \pi/2^-} e^{\tan x}$

 $\lim_{x\to\pi/2^-} \tan x = \infty$, and $\lim_{y\to\infty} e^y = \infty$, so $\lim_{x\to\pi/2^-} e^{\tan x} = \infty$ (and therefore DNE)

(c) Find
$$\lim_{x \to \infty} \frac{5x^4 - 7x^2 + 2}{3x^2 + 4}$$

Since the highest power on the top is x^4 , while the highest on the bottom is only x^2 , $\lim_{x\to\infty} \frac{5x^4-7x^2+2}{3x^2+4} = \infty$, and therefore DNE.

(d) Find $\lim_{x\to 1} \frac{1}{x+1}$ $\frac{1}{1+1} = \frac{1}{2}$, and since $\frac{1}{x+1}$ is continuous whereever it is defined, $\lim_{x\to 1} \frac{1}{x+1} = \frac{1}{2}$.

(e) Consider the sequence $a_n = \sin n\pi$. What is $\lim_{n\to\infty} a_n$?

For every n, $\sin n\pi = 0$, so $\lim_{n\to\infty} a_n = 0$.

2. (15 points) Compute

$$\lim_{x \to 0^-} \sin(2x) \cos \frac{2}{x}$$

 $-1 \leq \cos \frac{2}{x} \leq 1$ for all xSince, when x < 0, $\sin x < 0$, $\sin 2x \leq \sin(2x) \cos \frac{2}{x} \leq -\sin 2x$ for all x < 0 $\lim_{x \to 0^-} -\sin 2x = 0 = \lim_{x \to 0^-} \sin 2x$ By the sandwich theorem, $\lim_{x \to 0^-} \sin(2x) \cos \frac{2}{x} = 0$.

3. (15 points) Show that the polynomial

$$x^3 - 100x^2 + 10$$

has at least two roots.

Let $f(x) = x^3 - 100x^2 + 10$. f is continuous everywhere. Since f(-1) = -91 < 0 < 10 = f(0), by IVT there is some c with -1 < c < 0 such that f(c) = 0.

Since f(0) = 10 > 0 > -89 = f(1), by IVT there is some d with 0 < d < 1 such that f(d) = 0. So c and d are two roots of the polynomial.

4. (15 points) For what value of a is the function

$$f(x) = \begin{cases} \frac{x^2 - x - 20}{x - 5} & \text{if } x \neq 5\\ a & \text{if } x = 5 \end{cases}$$

continuous everywhere?

 $\lim_{x\to 5} \frac{x^2 - x - 20}{x - 5} = \lim_{x\to 5} \frac{(x - 5)(x + 4)}{x - 5} = \lim_{x\to 5} x + 4 \lim_{x\to 5} \frac{x - 5}{x - 5} = 9.$ So if a = 9, the function will be continuous at 5. For $x \neq 5$, f(x) = x + 4, which is continuous everywhere, so when a = 9, f is continuous everywhere.

5. (15 points) Given an example of three sequences, a_n , b_n , and c_n , such that:

- None of the limits $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} \frac{a_n}{b_n}$, $\lim_{n\to\infty} \frac{a_n}{c_n}$ exist
- The limit $\lim_{n\to\infty} \frac{a_n}{b_n c_n} = 1$

 $a_n = n^2$, $b_n = c_n = n$. Then $\lim_{n \to \infty} a_n = \infty$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n}{c_n} = \lim_{n \to \infty} n = \infty$, so these three limits do not exist. But $\lim_{n \to \infty} \frac{a_n}{b_n c_n} = \lim_{n \to \infty} 1 = 1$.

6. (15 points) (a) Find the derivative of $\sqrt{2x+1}$ using the chain rule. $\frac{d}{dx}\sqrt{2x+1} = \frac{1}{2\sqrt{2x+1}} \cdot \frac{d}{dx}(2x+1) = \frac{1}{\sqrt{2x+1}}$

(b) Find the derivative of $\sqrt{2x+1}$ using the definition of the derivative.

$$\lim_{h \to \infty} \frac{\sqrt{2(x+h)+1} - \sqrt{2x+1}}{h} = \lim_{h \to \infty} \frac{\sqrt{2(x+h)+1} - \sqrt{2x+1}}{h} \frac{\sqrt{2(x+h)+1} + \sqrt{2x+1}}{\sqrt{2(x+h)+1} + \sqrt{2x+1}}$$
$$= \lim_{h \to \infty} \frac{2(x+h)+1 - (2x+1)}{h(\sqrt{2(x+h)+1} + \sqrt{2x+1})}$$
$$= \lim_{h \to \infty} \frac{2h}{h(\sqrt{2(x+h)+1} + \sqrt{2x+1})}$$
$$= \lim_{h \to \infty} \frac{2}{\sqrt{2(x+h)+1} + \sqrt{2x+1}}$$
$$= \frac{2}{\sqrt{2x+1} + \sqrt{2x+1}}$$
$$= \frac{1}{\sqrt{2x+1}}$$

7. (10 points) Consider the equality

$$f(x+h)g(x+h) - f(x)g(x) = f(x)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)] + [f(x+h) - f(x)][g(x+h) - g(x)].$$

Draw a diagram illustrating this equality; each of the quantities in the equation should be represented as the area of some shape in this diagram.

g(x)	$g(x{+}h){-}g(x)$	
[f(x+h) - f(x)]g(x)	[f(x+h) - f(x)][g(x+h) - g(x)]	$ \begin{array}{c} f(x+h) \\ -f(x) \end{array} $
f(x)g(x)	f(x)[g(x+h) - g(x)]	f(x)

There are five terms in the equation, and five areas in the diagram: the area of the big rectangle, and the areas of the four little rectangles.