MIDTERM 1

Math 3A
10/19/2009
Name: \qquad

Signature:

\qquad

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Whenever you invoke a theorem to justify a result, make sure to clearly identify all premises of the theorem, show that they are true, and specify which theorem you are using.
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	15	
4	15	
5	15	
6	15	
7	10	
Total	100	

1. (15 points) Find the following limits if they exist; if not, state that they do not exist, and indicate if they go to ∞ or $-\infty$, indicate this as well. You may use any method you like, but clearly indicate intermediate steps and how you obtain your answer.
(a) $\quad \lim _{x \rightarrow \infty} \tan x$
$\tan x$ oscillates as $x \rightarrow \infty$, so $\lim _{x \rightarrow \infty} \tan x$ DNE
(b) Find $\lim _{x \rightarrow \pi / 2^{-}} e^{\tan x}$
$\lim _{x \rightarrow \pi / 2^{-}} \tan x=\infty$, and $\lim _{y \rightarrow \infty} e^{y}=\infty$, so $\lim _{x \rightarrow \pi / 2^{-}} e^{\tan x}=\infty$ (and therefore DNE)
(c) Find $\lim _{x \rightarrow \infty} \frac{5 x^{4}-7 x^{2}+2}{3 x^{2}+4}$

Since the highest power on the top is x^{4}, while the highest on the bottom is only $x^{2}, \lim _{x \rightarrow \infty} \frac{5 x^{4}-7 x^{2}+2}{3 x^{2}+4}=\infty$, and therefore DNE.
(d) Find $\lim _{x \rightarrow 1} \frac{1}{x+1}$
$\frac{1}{1+1}=\frac{1}{2}$, and since $\frac{1}{x+1}$ is continuous whereever it is defined, $\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}$.
(e) Consider the sequence $a_{n}=\sin n \pi$. What is $\lim _{n \rightarrow \infty} a_{n}$?

For every $n, \sin n \pi=0$, so $\lim _{n \rightarrow \infty} a_{n}=0$.
2. (15 points) Compute

$$
\lim _{x \rightarrow 0^{-}} \sin (2 x) \cos \frac{2}{x}
$$

$-1 \leq \cos \frac{2}{x} \leq 1$ for all x
Since, when $x<0, \sin x<0, \sin 2 x \leq \sin (2 x) \cos \frac{2}{x} \leq-\sin 2 x$ for all $x<0$
$\lim _{x \rightarrow 0^{-}}-\sin 2 x=0=\lim _{x \rightarrow 0^{-}} \sin 2 x$
By the sandwich theorem, $\lim _{x \rightarrow 0^{-}} \sin (2 x) \cos \frac{2}{x}=0$.
3. (15 points) Show that the polynomial

$$
x^{3}-100 x^{2}+10
$$

has at least two roots.
Let $f(x)=x^{3}-100 x^{2}+10 . \quad f$ is continuous everywhere. Since $f(-1)=-91<0<$ $10=f(0)$, by IVT there is some c with $-1<c<0$ such that $f(c)=0$.

Since $f(0)=10>0>-89=f(1)$, by IVT there is some d with $0<d<1$ such that $f(d)=0$. So c and d are two roots of the polynomial.
4. (15 points) For what value of a is the function

$$
f(x)= \begin{cases}\frac{x^{2}-x-20}{x-5} & \text { if } x \neq 5 \\ a & \text { if } x=5\end{cases}
$$

continuous everywhere?
$\lim _{x \rightarrow 5} \frac{x^{2}-x-20}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+4)}{x-5}=\lim _{x \rightarrow 5} x+4 \lim _{x \rightarrow 5} \frac{x-5}{x-5}=9$. So if $a=9$, the function will be continuous at 5 . For $x \neq 5, f(x)=x+4$, which is continuous everywhere, so when $a=9, f$ is continuous everywhere.
5. (15 points) Given an example of three sequences, a_{n}, b_{n}, and c_{n}, such that:

- None of the limits $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}, \lim _{n \rightarrow \infty} \frac{a_{n}}{c_{n}}$ exist
- The limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n} c_{n}}=1$
$a_{n}=n^{2}, b_{n}=c_{n}=n$. Then $\lim _{n \rightarrow \infty} a_{n}=\infty, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n}}{c_{n}}=\lim _{n \rightarrow \infty} n=\infty$, so these three limits do not exist. But $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n} c_{n}}=\lim _{n \rightarrow \infty} 1=1$.

6. (15 points) (a) Find the derivative of $\sqrt{2 x+1}$ using the chain rule. $\frac{d}{d x} \sqrt{2 x+1}=\frac{1}{2 \sqrt{2 x+1}} \cdot \frac{d}{d x}(2 x+1)=\frac{1}{\sqrt{2 x+1}}$
(b) Find the derivative of $\sqrt{2 x+1}$ using the definition of the derivative.

$$
\begin{array}{r}
\lim _{h \rightarrow \infty} \frac{\sqrt{2(x+h)+1}-\sqrt{2 x+1}}{h}=\lim _{h \rightarrow \infty} \frac{\sqrt{2(x+h)+1}-\sqrt{2 x+1}}{h} \frac{\sqrt{2(x+h)+1}+\sqrt{2 x+1}}{\sqrt{2(x+h)+1}+\sqrt{2 x+1}} \\
=\lim _{h \rightarrow \infty} \frac{2(x+h)+1-(2 x+1)}{h(\sqrt{2(x+h)+1}+\sqrt{2 x+1})} \\
=\lim _{h \rightarrow \infty} \frac{2 h}{h(\sqrt{2(x+h)+1}+\sqrt{2 x+1})} \\
=\lim _{h \rightarrow \infty} \frac{2}{\sqrt{2(x+h)+1}+\sqrt{2 x+1}} \\
=\frac{2}{\sqrt{2 x+1}+\sqrt{2 x+1}} \\
=\frac{1}{\sqrt{2 x+1}}
\end{array}
$$

7. (10 points) Consider the equality
$f(x+h) g(x+h)-f(x) g(x)=f(x)[g(x+h)-g(x)]+g(x)[f(x+h)-f(x)]+[f(x+h)-f(x)][g(x+h)-g(x)]$.
Draw a diagram illustrating this equality; each of the quantities in the equation should be represented as the area of some shape in this diagram.
$\left.\begin{array}{c|c|c}g(x) & g(x+h)-g(x) \\ {[f(x+h)-f(x)] g(x)} \\ f(x) g(x) & f(x+h)-f(x)][g(x+h)-g(x)] \\ f(x)[g(x+h)-g(x)] \\ -f(x)\end{array}\right]$

There are five terms in the equation, and five areas in the diagram: the area of the big rectangle, and the areas of the four little rectangles.

