

The Future of Markets

Fernando Arteaga,¹ Jesús Fernández-Villaverde,¹ Jacob Hall,¹ Ivan Luzardo Luna,¹ and Andrej Svorenčik ¹ April 23, 2024

¹University of Pennsylvania

Why should I care about posterity? What's posterity ever done for me?

— Groucho Marx —

AZQUOTES

Niels Bohr?

It is difficult to make predictions, especially about the future.

- But I see four key forces:
 - 1. Demographics.
 - 2. Climate change.
 - 3. Geopolitical fragmentation.
 - 4. Artificial intelligence.
- I will focus on the first two and briefly mention the last two.
- Also, I will skip a discussion of intellectual forces.

The demographic future of humanity

Table 1: G7 plus Spain: Basic Growth and Population Facts

1991-2019	Canada	France	Germany	Italy	Japan	Spain	UK	U.S.
GDP	2.47	1.61	1.38	0.70	0.83	2.05	2.08	2.58
GDP per capita	1.40	1.10	1.25	0.52	0.76	1.35	1.53	1.63
Population	1.05	0.50	0.14	0.18	0.08	0.68	0.54	0.94
GDP per working-age adult	1.48	1.33	1.47	0.79	1.39	1.41	1.62	1.65
Working-age population	0.98	0.27	-0.09	-0.08	-0.54	0.63	0.46	0.91

Table 2: Output Growth Decomposition

1991-2019	Canada	France	Germany	Italy	Japan	Spain	UK	U.S.
GDP	2.47	1.61	1.38	0.70	0.83	2.05	2.08	2.58
Population	1.05	0.50	0.14	0.18	0.08	0.68	0.54	0.94
Working-age per person	-0.08	-0.23	-0.22	-0.27	-0.62	-0.05	-0.08	-0.03
Emp. rate per working-age	0.42	0.35	0.57	0.34	0.74	0.90	0.36	0.17
Hours worked per worker	-0.17	-0.30	-0.40	-0.26	-0.61	-0.14	-0.11	-0.04
GDP per hour worked	1.23	1.28	1.31	0.71	1.26	0.67	1.37	1.53
GDP per worker	1.05	0.98	0.90	0.45	0.65	0.53	1.25	1.49
GDP per working-age adult	1.48	1.33	1.47	0.79	1.39	1.41	1.62	1.65
Total hours worked	1.23	0.33	0.08	0.00	-0.43	1.40	0.71	1.04
Working-age pop.	0.98	0.27	-0.09	-0.08	-0.54	0.63	0.46	0.91

Quid rides? Mutato nomine de te fabula narratur

• The present of Japan is the future of the globe.

The total fertility rate (TFR) of a population

The average number of children that would be born to a woman over her lifetime if:

- 1. She were to experience the current age-specific fertility rates throughout her lifetime.
- 2. She were to live through ages 15-44.
- Japan's TFR fell below 2.1 (explanation of the importance of 2.1 in next slide) in 1974. Right now is around 1.2.
- A few other examples:
 - 1. Iran: 1.66.
 - 2. U.S.: 1.60.
 - 3. Brazil: 1.44.
 - 4. China: 1.07.
 - 5. South Korea: 0.72.

The replacement rate

- The TFR governs whether a population reaches the *replacement rate*: whether enough children are born to sustain population levels (forgetting net immigration).
- A simple formula:

 $\label{eq:Replacement rate} \ensuremath{\mathsf{Replacement rate}} \approx \frac{1 + \mathsf{sex ratio at birth}}{\mathsf{Probability of a woman to survive to 30}}$

- Replacement rate for rich countries: ≈ 2.1 . Why?
 - Without outside intervention \approx 1.05 boys are born for every girl.
 - Probability of a woman surviving to 30 is about 0.98.
- Thus:

Replacement rate rich country
$$pprox rac{1+1.05}{0.98} pprox 2.1$$

- Think, however, about developing countries with different parameters:
 - 1. Many populations practice selective abortions.
 - 2. Female mortality rates are quite higher.
- Thus:

Replacement rate developing country
$$\approx \frac{1+1.1}{0.8} \approx 2.6$$

• Replacement rate for some African countries can be as high as 3.

Average sex ratio at birth, or the number of male births per 100 female births, from 2000-20

Note: Globally, the natural sex ratio at birth ranges from 103 to 107 boys per 100 girls. Source: United Nations World Population Division, 2019.

"India's Sex Ratio at Birth Begins To Normalize"

PEW RESEARCH CENTER

The world replacement rate

• The world replacement rate in 2023:

Replacement rate world
$$pprox rac{1+1.07}{0.91}pprox 2.25$$

- According to the United Nations World Population Prospects 2022, the world TFR is 2.3.
- However, the United Nations World Population Prospects *overestimate* the world TFR. For example, in 2023, there were 9 million births in China vs. 10.6 million in the UN forecast.
- I calculate that we are around 2.1-2.2.
- Thus, most likely, the world is *already below* the replacement rate.
- The world population is still growing: momentum effect of past large cohorts and increases in life expectancy.

When will momentum end?

- More uncertainty here: it depends on the future evolution of fertility and mortality.
- According to the United Nations World Population Prospects 2022, medium variant, the world population will peak in 2086 at 10.43 billion (vs. 8 billion right now).
- I disagree. I see the peak of population size at around 9.7 billion c. 2055.
- Why?
 - 1. United Nations World Population Prospects are conservative in their assumptions about the fall of fertility:
 - For example, China had in 2023 the births the United Nations World Population Prospects forecasted for 2050.
 - The United Nations World Population Prospects assumes partial recoveries of fertility in low-fertility countries. We have yet to see many examples of this happening.
 - 2. My research shows that fertility falls are becoming faster.

An easy way to check: "the rule of 85"

- Imagine you have a country where life expectancy is 85 years: the highest life expectancy in the world right now (Japan, Spain, etc.).
- Imagine that, from now on, you have 1,000 births per year, every year.
- What would be your population in about 100 years? 85,000 = 85 * 1,000.
- Thus, you can look at the current births of any given country, multiply by 85, and get *a sense* of the long-run population (without migrations).
- For example, South Korea had 230k births in 2023. Long-run population: 19.5 million (85*230k). Current population: 51.6 million.
- An equivalent way to look at it: 1000/85 = 11.76. When a country's CBR falls below 11.76 per 1000, births are already insufficient to keep the population constant (this usually happens *around 30 years after* TFR falls below replacement).

- Like all changes, this momentous demographic shift will have good and bad consequences.
- Which ones will predominate will depend on the policy responses we offer.
- Also, please remember: we are venturing into *terra incognita*. Things can change.
- If you pick a social sciences textbook from the 1980s (or even 1990s), the main concern was the population explosion.
- When I was a kid, my parents bought a book that stated that population growth in Mauritius was so out of control that this island nation was doomed. Mauritius has had a negative population growth in 2022 and 2023.
- So, there is a non-trivial risk someone might make fun of me in 25 years.

- With a lower population growth rate or falling population, it is much easier to design policies that ensure the sustainability of natural resources.
- Fewer pressures on infrastructure, housing, emissions, etc.
- For example, we can re-design many of Latin America's cities.
- Also, before population aging really kicks in, many developing economies have extra fiscal space to take advantage of lower fertility and undertake essential reforms.

But there are also bad news

- The unpleasant arithmetic of demographics.
- Take any country you like: e.g., U.S., Germany, China,...
- A basic identity:

• Thus, output growth:

• Your "average" advanced economy c. 1965 (in the middle of the so-called "thirty glorious years"):

- 3% is the "normal" output growth that you expect:
 - When the economy is booming (i.e., unemployment is falling and labor is growing faster than average), you see 4%.
 - 2. When the economy is depressed (i.e., unemployment is increasing and labor is growing slower than average), you see 2%.

The way we are

• Your "average" advanced economy c. 2025 (or Japan today):

- 1% is the "normal" output growth that you expect:
 - When the economy is booming (i.e., unemployment is falling and labor is growing faster than average), you see 2%.
 - 2. When the economy is depressed (i.e., unemployment is increasing and labor is growing slower than average), you see 0%.
- There is nothing the central bank can do with further monetary stimulus (or the fiscal authority with fiscal packages).
- As we saw above, Japan has been doing pretty well in terms of output per worker growth during the last 25 years.

(a) Sources

(b) Alternative Measures

Labor Force Growth

- Don't we care about output per capita?
- Yes and no.
- Yes, output per capita is the primary measure of individual welfare but...
- ...our ability to service debt and social security obligations depends on total output.
- Also, labor productivity is unlikely to grow at 2% any longer.
- Why?
 - 1. Firm dynamism.
 - 2. New technologies.

- Low output growth.
- Low (real) interest rates.
- Complex fiscal position of most governments.
- Depopulation of certain regions (mainly rural areas).
- Real estate prices.
- Education, health, and other public services.

- We are in a whole new world.
- I have skipped, in the interest of time, tons of other aspects.
- But, as a matter of fact, it is that, to a large extent, demography is destiny.
- Once you start thinking about it, it is hard to think about anything else.

Climate change

Five observations from Hassler et al. (2024)

- 1. A simple system of five difference equations describes the relation between emissions of CO_2 and global warming quite well, both qualitatively and quantitatively.
- 2. Global warming is approximately proportional to the cumulative emissions of CO_2 , in both the short and long run.
- 3. The frequency and intensity of key weather extremes increase with the global mean temperature. The predicted increase is gradual and approximately linear, but the uncertainty is very large.
- 4. Global CO₂ emissions are not falling, but they are increasing at a lower rate than two decades ago. Both consumption- and production-based emissions have fallen in the EU and the U.S. over the last two decades, whereas the opposite is true for emissions in China and India.
- The amount of fossil fuel left in the ground is very large compared to the carbon budgets for 1.5°C and 2°C global warming. The amount of oil and gas with low extraction costs is of the same order of magnitude as these carbon budgets.

- Use of integrated assessment models (IAM): how the economy and climate interact quantitatively.
- Three blocks: economy, climate, and damages.
- Nonlinear and stochastic dynamics.
- Uses:
 - 1. Positive analysis \Rightarrow future paths of variables of interest.
 - 2. Normative analysis \Rightarrow design of optimal policies.
 - 3. Counterfactuals \Rightarrow mitigation, changes in technology, ...
- Interestingly, IPCC does not have an IAM (and its economic analysis, in general, is pretty bad).

Figure 1: Stylized representation of an IAM.

- Cruz and Rossi-Hansberg (2023).
- Average welfare losses of 6%.
- Large heterogeneity in climate damages across space: from welfare losses of 20% to gains of 11%.
- Large role of adaptation, particularly migration.
- Large disagreement across regions.

- Complex computation.
- Quality of climate emulators: Folini et al. (2024).
- Long-run impacts.
- Uncertainty:
 - 1. Precautionary behavior.
 - 2. Tail events.

- The 2015 Paris Agreement required limiting global warming to "well below 2°C."
- Current efforts are far from the goal.
- Particularly serious from China and India.

The challenges, I

• Large transition costs.

"The worst economic argument ever"

The de-carbonization of the economy will create many "green" jobs, "green" investments,...

- Every job "created" (or investment required) is a cost for society, not a benefit.
- Which technology would you choose?
 - A net-zero technology that would generate all the energy we need on earth, with an investment cost of \$1, and that only requires one worker to operate.
 - 2. A net-zero technology that would generate all the energy we need on earth, with an investment cost of \$1 trillion, and that requires ten million workers to operate?
- More in general, no, de-carbonization will *not* increase economic growth. Let's be honest with the public.

- Large re-distributional effects: reallocation of production across space and sectors.
- Large free-riders problems.
- Border adjustments.
- Limited fiscal space.
- Geopolitical fragmentation.
- Higher interest rates?

Figure 8. Fiscal Transfers if Revenue of a \$25 per ton Global Carbon Tax is Shared on a per-capita basis (2030)

B. Capped Carbon price

Base erosion

Capped carbon tax revenues

Net with capped carbon tax

United Kingdom

Base erosion

Full carbon tax revenues

♦Net with full carbon tax

- Human ingenuity plus the power of incentives is extremely powerful.
- In fact, technology has progressed faster than expected.
 - Levelized Cost of Energy (LCOE) from state-of-the-art utility-range solar is probably now lower than any alternative (≈ \$24 MWh).
 - Fast developments in syngas and carbon capture.
- Network externalities (van der Ploeg and Venables, 2022).
- Incredibly fast drop in global fertility.

Europe

(2021 Billion USD)

EV car sales (percent of car sales volume)

Share of global electricity generation by fuel

The policy balance, I

- How do we ensure that the opportunities dominate the challenges?
- Economists have traditionally defended carbon tax and technology-agnostic subsidies.
- Carbon tax: Golosov et al. (2014).
 - 1. Tax proportional to current GDP, damage parameter, and duration of carbon in the atmosphere.
 - 2. Independent of technology, future output, alternative energy, carbon capture, uncertainty, ...
 - 3. Also, rather robust to the mistake of being "pessimistic."
 - 4. A global carbon tax of around 100/tc will probably get most of what we need.
 - 5. But even a carbon tax of around \$25/tc will make a considerable difference.
- See, also, Kotlikoff et al. (2023).

Global GHG abatement cost curve beyond business-as-usual – 2030

A. Shadow CO₂ Prices (or Incremental Mitigation Costs)

B. Mitigation Costs and Domestic Environmental Co-Benefits

Source: Black, Parry, and Zhunussova (2023c).

- Why technology-agnostic subsidies?
- Technological progress is directed.
- But also unknown.
- Not an idle worry:
 - If we had let nuclear energy develop in the 1970s, we would not be here.
 - Personally, I assess letting the nuclear technology train pass as one of the largest mistakes humanity has ever made.

- Political-economy considerations make optimal policies rather difficult to implement.
- Large range of alternative policies:
 - 1. Reduction emissions.
 - 2. Mitigation (and geoengineering?).
 - 3. R&D.
- Unfortunately, most policies selected by governments are too expensive for the results they yield or even counterproductive (e.g., IRA).
- What about Sinn's Green Paradox?

THE GREEN PARADOX

A SUPPLY-SIDE APPROACH TO GLOBAL WARMING

hans-werner SINN

- Most lifestyle changes (e.g., less flying and eating less meat) are at best useless, at worst counterproductive.
- Effect on total net global emissions is minuscule: not even a rounding error!
- Large negative welfare effects and alienate voters.
- Degrowth ideas are not even wrong.
- Nonetheless, better information (e.g., how to re-design houses to reduce electricity consumption with minimal effects on welfare) and solving network effects have proven to be useful.

- Using monetary policy/central banks/financial regulation for climate change is truly an awful idea.
- Extremely costly: Abiry et al. (2022).
- It would be the end of the independence of central banks.
- There is plenty of capital out there without the need for "green bonds" or similar.
- The same goes for ESG. Most of it is greenwashing, and the rest is kidnapping shareholders for private political goals.
- There is, however, a genuine concern about stranded assets.

- From a purely technological perspective, the problem of climate change has been fixed.
- We have the technology (either already existing or in the short-run pipeline) to achieve net zero at a reasonable cost.
- And, no, we do not need to do crazy things (like all going vegan) or jeopardize monetary policy.
- Now the issue is merely of political economy: who will pay the bill?
- Of course, this is both optimistic and pessimistic.
- Think about Argentina: we perfectly know what has been wrong with it since 1945, and yet, no progress has been made.

Geopolitical fragmentation

Artificial intelligence

- Effects on long-run growth?
- Effects on wage distribution.
- Effects on capital vs. labor.
- Effects on market power.
- Effects on regulation.
- Existential risk?