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Using words to label categories is a true human universal. In addition to their public func-
tion in communication, labels may also serve private functions in shaping how concepts 
are represented. The present work explored the effects of assigning category labels on 
perceptual representations. A connectionist simulation is presented that examines the ef-
fects of labels on learning different types of categories. It is found that labels can aug-
ment perceptual information, and play an especially important role in shaping represen-
tations of entities whose perceptual features alone are insufficient for reliable classifica-
tion. 

1. Introduction 
The phrase carving nature at its joints goes back to the ancient Greeks, who no-
ticed that properties in the world are not equally distributed, but rather come in 
clusters. For instance, things that have beaks also tend to fly, so the property 
[has beak] is more likely to occur with [flies] than not. In forming a concept 
[bird], we pay heed to this correlation. But concept formation is not just a pas-
sive process of observing correlations. As the only species to evolve language, 
the human process of concept formation is bi-directional—not only do we learn 
to represent the natural joints of nature, we continuously carve our own joints 
using words. The present work explores through a connectionist simulation 
what happens when, in learning to form a concept, we are presented with not 
just the correlated perceptual properties of a concept like [bird], but also with 
the corresponding category label “bird.” 

The most obvious function of words is to communicate information be-
tween individuals. One provocative consequence is that once the meaning of 
words is shared in a community, their use allows for the learning of novel com-
binations of concepts through manipulation of labels rather than trial-and-error 
learning (Cangelosi, Greco, & Harnad, 2000). But in addition to this public 
function of labels, they may also have a private function. Words may help to 
cohere concepts, reinforcing the correlated perceptual features that comprise 



 

them, and aid in contrasting similar, but functionally different concepts. The 
goal of the first simulation was to serve as a broad testing platform for the ar-
gument that labels have an effect on representation of categories and that the ef-
fect depends on how well-formed the categories are. Specifically, the presence 
of labels may help in categorizing exemplars in high-variability categories, but 
not in low-variability ones. Consider categorizing apples versus strawberries on 
the one hand, and tables versus chairs on the other. Apples and strawberries are 
members of what can justifiably be called low-variability categories. These 
categories have high internal coherence (Gentner, 1981), having both a high 
within-category similarity and a high between-category contrast. On the other 
hand, categorizing objects like chairs and tables is made more difficult by both 
their high perceptual within-category variability (tables and chairs can take a 
wide variety of shapes) and the fuzzy boundary between the categories (some 
tables are quite chair-like, and vice-versa). Including labels in one’s experience 
of such high-variability categories may facilitate accurate identification of ex-
emplars. On the other hand, including labels as part of training on low-
variability categories is not predicted to make a difference due to the perceptual 
well-formedness of such categories. If the effect of labels is to increase the in-
ternal coherence of a category (Kotovsky & Gentner, 1996; Kersten & Smith, 
2002), then in doing so, representations of exemplars from one category will be 
made more similar, while representations of items from separate categories will 
be made more distinct.  

A secondary aim of this simulation was to further explore the consequences 
of introducing labels: if labels improve categorization accuracy, does this im-
provement come at a cost? A basic tenet of categorization is that placing an item 
into a category involves highlighting some properties while abstracting over 
others (e.g., Pothos, 2004). For instance, color is probably unimportant to the 
category chair, and so should be suppressed in the representation of a particular 
chair. However, color is important for the category banana, and so should be 
highlighted in its representation. If resources are abundant and each item can be 
memorized, abstraction and highlighting of particular dimensions may speed re-
sponses, but is otherwise not crucial. If one can afford to encode accurately 
every observable property of an object, categorization is not necessarily com-
promised by representing all the dimensions. However, when resources are lim-
ited, preventing memorization of individual exemplars (as was the case in the 
current simulation), the properties that are important to a category will be repre-
sented at the expense of properties irrelevant to the category. Making a repre-
sentation more categorical (i.e., moving it closer to the prototype) will therefore 



 

lead to better categorization (smaller categorization errors), but at the same time, 
greater difficulty with reconstructing the exact item with all its original features 
(i.e., larger reconstruction error). Furthermore, this effect should be larger for 
high-variability categories since it is for these categories that labels are pre-
dicted to have the greatest effects. 

2. Method 

2.1. Network Architecture 
The simulations used a standard feedforward network configured as an auto-
associator. This particular framework is used in the present model for several 
reasons. First, architectures of this type are quite familiar, commonly used to 
model category learning (e.g., Plunkett, Sinha, Moller, & Strandsby, 1992; 
Mareschal, French, & Quinn, 2000). Auto-associators perform a type of princi-
pal component analysis, first picking up on the broad distinctions between ex-
emplars, and then on the finer differences. With training, representations in the 
hidden layer come to reflect the category structure present in the training set. 
Because these networks are self-supervised, no external teaching signal is nec-
essary—the structure of the training set itself guides learning. 

The network was configured with the following set of connections: A 30-
unit input layer connected to a 6-unit hidden layer that connected to a second 6-
unit hidden layer, which in turn connected to a 30-unit output layer.i In the la-
beling conditions, the second hidden layer also connected to a 4-unit labeling 
output layer. Because labels were only presented as outputs, they could have an 
effect only during training. Labels were not included as inputs because it was 
discovered that doing so did not change the results qualitatively, while greatly 
complicating the training procedure. If labels were to have an effect on repre-
sentations, it was having to represent the labels as outputs that would make the 
difference. 

Due to the difference between the size of the two output layers (30 versus 4 
units), the error derivatives of the labeling output layer were multiplied by a 
constant factor to 10. This approximately equated the contributions of the two 
layers. 

2.2. Stimuli 
The training corpora consisted of 30-unit binary patterns. First, four category 
prototypes were generated with each one overlapping on 24 out of 30 bits with 



 

the other prototypes. Training items were generated by randomly flipping a set 
number of bits: 5 out of 30 for the low-variability training set and 10 out of 30 
for the high-variability set. Each category consisted of 8 exemplars for a total of 
32 (4*8) exemplars per training set. The category labels were modeled by 4-bit 
orthogonal vectors (e.g., 1000 for all examples from the first category, 0100 for 
the second category, etc.). 

2.3.Training procedure 
The networks were trained in Lens v.2.4 with cross entropy error using “Doug’s 
Momentum,” a modified version of steepest gradient descent (Rohde, 1999). 
The learning rate was set to 0.1, and momentum to 0.9. Training was done in 
batch mode—weights were updated only after presenting all the examples.  

On each training trial, the outputs of the input layer were clamped to a ran-
domly selected example. Since the network’s task was simply to auto-associate 
the inputs, the targets of the main output layer were identical to the network in-
puts. In the labeling conditions, the second output layer provided the additional 
targets corresponding to the category labels. Twenty randomly-initialized net-
works were run in each of the four condition (labeled low-variability, unlabeled 
low-variability, labeled high-variability, and unlabeled high-variability). 

2.4. Testing procedure 
Testing was conducted by running a forward pass through the network for each 
item after training. Results are reported for 200 epochs of training. Three meas-
ures were computed to gauge the networks’ performance. First, an accuracy 
measure was calculated to answer the question “is the network’s response clos-
est to the correct category?” This was done by computing the Euclidean distance 
between the produced output and the 4 category prototypes. The network’s re-
sponse was marked correct if the minimum distance corresponded to the correct 
category. The responses were translated to a percentage correct measure over 
the 32 testing items (8 for each category). The second measure was the cross-
entropy error of the training items, and answers the broad question “how good is 
the network at representing the trained patterns?” Since the networks’ hidden 
layers were kept deliberately small to prevent the network from memorizing the 
exact patterns, this error is not expected to be close to 0. The third measure cor-
responded to the error of the mapping from the trained or novel items to the 
category prototype from which the item was derived. This answers the question 



 

“how categorical is the network’s representation?” In other words, how close to 
the correct category is the network’s response? 

3. Results 
The simulation results confirmed both predictions. Labels did not affect catego-
rization performance for the low-variability corpus, t(38) = 1.16, ns, with per-
formance very close to 100% regardless of labels. Labels did affect 
categorization for the fuzzier category structure of the high-variability corpus 
t(38)=22.57, p<.0001, creating a highly significant interaction between labeling 
condition and category structure as a predictor of categorization accuracy, 
F(3,76)=487.18, p<.0001. Performance was very close to 100% for the high-
variability corpus when trained with labels, but dropped to an average of 55.6% 
when trained without labels (chance=25%; see Figure 1).  

 
Figure 1: Labels improve categorization accuracy for high-variability categories, but not low-
variability ones. 

 
A parallel pattern of performance was observed when the network was tested on 
novel items. When tested on previously unseen items, performance was pre-
dictably lower overall, but labels still did not affect categorization accuracy for 
the low-variability corpus t(38)=0.6, while significantly aiding performance in 
the high-variability corpus t(38)=7.06, p<.0001, with correct categorization av-
erages of 54.75% and 37.20% with and without labels, respectively. The inter-
action remained highly significant: F(3,76)=368.27, p<.0001. As a way to 
ensure that the null effect of labels on the low-variability corpus was not due to 
a ceiling effect, an additional analysis examined performance over time. Figure 
2 shows that for the low-variability condition, labels did not affect performance 



 

at any point during training t(24)=.65. For the high-variability corpus, labels 
improved categorization accuracy throughout training both for the trained ex-
emplars t(24)=7.30, p<.0001) and for the novel items t(24)=8.03, p<.0001. 

The second measure looked at reconstruction error—how efficient was the 
network at auto-associating the input patterns. Figure 3 shows that exemplars 
from the high-variability categories were more difficult to reconstruct accurately 
F(1,78)=553.24, p<.0001. More importantly, there was a differential effect of 
labels on the two corpora F(3,76)=550, p<.0001. The presence of labels did not 
affect reconstruction accuracy for the low-variability set, t(38)=-.15, but led to a 
significant increase in the error for the high-variability set t(38)=14, p<.0001. 
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Figure 2: Averaged training profiles for the high and low variability corpora. At no point in training, 
do labels improve categorization performance for the low-variability categories. 

 
To examine what caused this increase in reconstruction error, the final 

measure looked at the degree to which the network’s representations were clus-
tered around the prototype. This measure was the error between the network’s 
output and the category prototype. Here, labels led to a smaller error (more 
categorical responses) for both training corpora F(1,78)=224.38, p < .0001; 
however, there was also a significant interaction that indicated that labels had 
more effect for the high-variability corpus than the low-variability one 
F(3,76)=2087, p<.0001. The effect of labels on the degree of clustering can be 
observed more directly by looking at principal component analysis (PCA) plots 
of the hidden unit activations of the trained network. Figure 4 shows the effect 



 

of labels on forming more categorical representations for the high- and low- 
variability sets. The degree to which exemplar representations were categorical 
was enhanced for both corpora, but since low-variability unlabeled representa-
tions were already quite categorical, the inclusion of labels did not alter the re-
sponse accuracy.  
 

 
Figure 3: The improved categorization accuracy comes at a cost to accurate representation. 

4. Discussion 
As predicted, labels improved categorization accuracy of items organized in 

high-variability, but not low-variability categories. Although training with labels 
resulted in more categorical representations regardless of the training set, the ef-
fect was much greater for the fuzzier categories, suggesting that it is these cate-
gories that benefit most from having some of their features abstracted. By 
associating a single label with numerous exemplars, the resulting category rep-
resentations of initially ill-formed categories became less idiosyncratic, resulting 
in improved categorization, and better generalization to unseen exemplars.ii In 
accord with the present findings, Tijsseling and Harnad (1997) found that cate-
gory labels had no effect on representations when categories were initially very 
discriminable (e.g., apples and cars). This does not mean, however, that such la-
bels play no role in shaping these category representation. While perceptual 
properties are quite sufficient to discriminate apples and cars, calling different-
looking cars by the same name may help cohere the category, helping individu-
als to find the features common to its members. The present simulation provides 
evidence that when presented with a category containing highly-variable exem-



 

plars, labels help to highlight common features at the cost of abstracting irrele-
vant ones. 

An intuitive interpretation of these results is that labels made the representa-
tions more categorical because training with labels meant that networks were 
performing a categorization task in addition to the auto-encoding one. One may 

 
Figure 4: PCA plots of the hidden unit activations for the two traininng corpora and labeling 
conditions. The different symbols represent the four categories used in training. 

 
therefore object to my referring to the category output nodes in the simulation as 
labels. Although the function of nodes in connectionist simulations is largely a 
matter of interpretation, the act of assigning a discrete code to a range of exem-
plars as done here and in other similar situations (Harnad, Hanson, & Lubin, 
1991; Tijsseling & Harnad, 1997) may be particularly characteristic of linguistic 
labels. While categories can be formed without labels, as evidenced by a com-
mon response of an organism to a range of stimuli (e.g., Cangelosi, Greco, & 
Harnad, 2002), such common behavior does not imply a shared representation 
among the category members. For instance, a well-behaved cat may be said to 
have formed a category [surfaces in the house that may be scratched]. However, 
one cannot infer from the cat’s behavior that it is not treating each instance of 
the category on an individual basis. The learning of a unique category label en-
courages the formation of a shared (rather than idiosyncratic) representation of 
the category. Words also allow the combining of concepts. Cangelosi et al. 
(2000) provide a compelling illustration of the advantage of combining existing 
grounded symbols into propositions through “symbolic theft” over learning the 
perceptual properties through “sensorimotor toil.” For instance, knowing [horse] 
and [stripes] permits a working definition of [zebra] (horse+stripes) without 



 

having to experience one. The present work suggests that even in the absence of 
the combinatorial powers of words, providing discrete category labels facilitates 
the highlighting of relevant features and abstracting of irrelevant ones. 

The reason experience with labels led to more categorical representations in 
the model is simply that each act of labeling was also an instance of categoriza-
tion. Merely perceiving an object does not require categorizing it. In contrast, 
naming an object (whether to communicate to another individual or for your 
own benefit) does require placing it into a category. The repeated experience 
with categorizing exemplars through labeling has the effect of gradually altering 
the category representations to be more in line with the named categories. This 
does not mean that words and language are required to entertain certain thoughts 
or to hold particular representations (this is an open question, e.g., Hermer-
Vazquez, Spelke, & Katsnelson, 1999). Indeed, not making the labels available 
to the models at test was done expressly to observe the process by which labels 
may affect representations of exemplars as distinct from using them during rec-
ognition. 

This reasoning relates directly to work on Categorical Perception (CP) 
(Harnad, 1987), a phenomenon in which the repeated placement of exemplars 
into categories exaggerates the perceptual difference between categories (ac-
quired distinctiveness) and collapses perceptual differences within a category 
(acquired similarity). Categorical perception, unlike language, is not unique to 
humans (e.g., categorical perception of phonemes in chinchillas, Kuhl & Miller, 
1978), and so would appear to not require language. Indeed, the literature on CP 
rarely makes any mention of the role of words or language. While numerous ex-
periments by Goldstone and colleagues (e.g., Goldstone, 1998 for review) pro-
vide evidence that categorization in the laboratory can alter perceptual 
representations of both familiar and novel dimensions, the role of linguistic la-
bels in this process is not fully specified. However, recent studies have shown 
that under some circumstances verbal interference can extinguish CP of colors 
and facial expressions (Roberson & Davidoff, 2000), implicating verbal coding 
of some kind in the functioning of CP in human adults. Özgen and Davies 
(2002) provided evidence of how experience with categorization can create new 
boundaries in the domain of color perception, arguing that lifetime experience 
with color words heavily influences the resulting color categories. While CP can 
occur in the absence of language, our ubiquitous experience with named catego-
ries suggests that further study of the role of language in category formation will 
be a useful and productive line of research. 
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i The reported pattern of results does not change if only one hidden layer is used. The architecture 
made use of two hidden layers in order to investigate the effects of selective lesioning of one layer 
versus the other. These results are not discussed here. 
ii Interestingly, in a study the author was not aware of at the time, Homa and Cultice (1984) reported 
a strikingly similar pattern of results in a behavioral experiment using adult participants. In investi-
gating the role of feedback on learning categories of varying levels of well-formedness, Homa and 
Cultice (1984) found that while feedback provided little benefit for well-formed categories, learning 
ill-defined categories was only possible with category feedback. 

 


