Labels facilitate learning of novel categories

Gary Lupyan

Center for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, Pittsburgh PA

The traditional view

Language is just a tool for communication

The facts of grammar make it difficult to argue that language shows design for the expression of thought in any sense that is substantially distinct from communication.

...is wrong

A growing body of work shows the traditional view to be wrong. Recent cross-cultural findings have provided evidence that language is closely linked to the human ability to appreciate exact numerosities (Gordon, 2004) and to form color categories (Davidoff et al., 1999; Ögren, 2004). Evidence has also shown that in neuropsychological conditions a fluctuating ability to name (anosmia), the ability to form and act based on category knowledge is severely compromised (Robeson et al., 1999). There are numerous sometime-subtle, but pervasive effects of language on non-linguistic cognition (Gentner and Goldin-Meadow, 2003).

Many animals form categories. Only humans have names for theirs. Words can act as "invitations" to form categories (e.g., Waxman and Markow, 1995), but do words play a role in category learning apart from their meaning?

One possibility is that labels serve as conceptual "anchors" (Clark, 1997) enabling humans to form representations that would otherwise be more difficult or impossible to form by providing perceptually-invariant category information.

The Questions

1. Are labeled categories easier to learn (even when the labels are entirely redundant)?
2. Are representations of categories learned with labels more stable than those learned without labels?

The Framework

Labels as conceptual "anchors"

Categories

- Without labels

- With labels

- Initially overlapping

- Categorization

- Categorization with labels

- Categorization without labels

Materials and Methods

Participants: 40 Carnegie Mellon undergraduates

Materials: Two categories of "aliens" (YUFOs)—one to be approached, one to be avoided; two nonsense labels: "leebish" and "gracious.

Procedure: Participants were divided into label and no-label conditions. All participants performed the identical task of learning to classify YUFOs into those that should be approached and those that should be avoided.

144 categorization trials with feedback—correct/incorrect followed by 144 testing trials without feedback or labels.

A sample training trial:

The label does not provide any additional information

An "explore" appears in a random position. Participants decide to approach or avoid.

Feedback: Buzz / bell 200 ms after response.

Results

The presence of labels resulted in faster learning even though the labels did not provide additional information (Fig. 1 left).

Learning labeled categories produced more stable category representations (Fig. 1 right).

Additional issues:

Are words special?

A follow-up experiment has shown that the labelling advantage persists for processing labels and words (as well as auditory labels suggesting that it is not specific to words, but may extend to other discrete environmental cues that are highly correlated with the categories. Words are special in that they normally constitute these discrete environmental cues.)

Did the labelled advantage arise from greater time spent on task?

No, there is no difference in latencies between the two conditions.

Were participants really doing category learning (or merely memorizing exemplars)?

Participants in both conditions performed well (>95% on generalization trials of novel stimuli (included at test), suggesting that they were not entirely relying on memory for specific exemplars.

Conclusions

Providing redundant labels facilitated learning of novel categories and resulted in more stable category representations.

Despite undergoing the same amount of experience categorizing perceptual stimuli into behavioral categories (move away or move towards), the presence of labels (nonsense words: "leebish"/"gracious") helped normal English-speaking adults to represent the stimuli in terms of the appropriate behavioral categories.

Words or other discrete modes of representation may be necessary for entertaining certain abstract concepts like large exact numerosities (Gordon, 2004). However, learning to associate words even with more ordinary perceptually-based categories such as those used here, facilitates their acquisition and results in more robust subsequent knowledge.

References

Acknowledgments

Thanks to Jay McClelland, David Rakison, Brian MacWhinney for useful discussion, Mike Tarr for help in providing the YUFO stimuli, and Brian Mathias for help with data collection. This work was supported in part by a NSF Graduate Fellowship to the author.

For further information

Please contact Gary Lupyan at glupyan@cnbc.cmu.edu. A PDF copy of this poster is available at www.cnbc.cmu.edu/~glupyan/lupyanLeibig2005.pdf