Joe McGuire's research page

Publications

McGuire, J.T., & Kable, J.W. (2015). Medial prefrontal cortical activity reflects dynamic re-evaluation during voluntary persistence. Nature Neuroscience, 18, 760–766. doi:10.1038/nn.3994

Abstract
Deciding how long to keep waiting for future rewards is a nontrivial problem, especially when the timing of rewards is uncertain. We report an experiment in which human decision makers waited for rewards in two environments, in which reward-timing statistics favored either a greater or lesser degree of behavioral persistence. We found that decision makers adaptively calibrated their level of persistence for each environment. Functional neuroimaging revealed signals that evolved differently during physically identical delays in the two environments, consistent with a dynamic and context-sensitive reappraisal of subjective value. This effect was observed in a region of ventromedial prefrontal cortex that is sensitive to subjective value in other contexts, demonstrating continuity between valuation mechanisms involved in discrete choice and in temporally extended decisions analogous to foraging. Our findings support a model in which voluntary persistence emerges from dynamic cost/benefit evaluation rather than from a control process that overrides valuation mechanisms.
Full text

McGuire, J.T.,* Nassar, M.R.,* Gold, J.I., & Kable, J.W. (2014). Functionally dissociable influences on learning rate in a dynamic environment. Neuron, 84, 870-881. doi:10.1016/j.neuron.2014.10.013

Abstract
Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals.
Full text
Preview by Fischer and Ullsperger
Coefficient maps on NeuroVault

McGuire, J.T. & Kable, J.W. (2014). Go means green. Nature Neuroscience, 17, 489-490. doi:10.1038/nn.3680

News & Views commentary on this paper by Tom Schonberg, Akram Bakkour, and colleagues.

Abstract
A simple cued-approach training procedure can bias economic choices toward specific goods. It appears to work by drawing overt attention toward trained items, scaling up their judged value.
Full text

Kool, W., McGuire, J.T., Wang, G.J., & Botvinick, M.M. (2013). Neural and behavioral evidence for an intrinsic cost of self-control. PLoS ONE, 8, e72626. doi:10.1371/journal.pone.0072626

Abstract
The capacity for self-control is critical to adaptive functioning, yet our knowledge of the underlying processes and mechanisms is presently only inchoate. Theoretical work in economics has suggested a model of self-control centering on two key assumptions: (1) a division within the decision-maker between two ‘selves’ with differing preferences; (2) the idea that self-control is intrinsically costly. Neuroscience has recently generated findings supporting the ‘dual-self’ assumption. The idea of self-control costs, in contrast, has remained speculative. We report the first independent evidence for self-control costs. Through a neuroimaging meta-analysis, we establish an anatomical link between self-control and the registration of cognitive effort costs. This link predicts that individuals who strongly avoid cognitive demand should also display poor self-control. To test this, we conducted a behavioral experiment leveraging a measure of demand avoidance along with two measures of self-control. The results obtained provide clear support for the idea of self-control costs.
Full text (open access)

Bartra, O.,* McGuire, J.T.,* & Kable, J.W.* (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. doi:10.1016/j.neuroimage.2013.02.063

Abstract
Numerous experiments have recently sought to identify neural signals associated with the subjective value (SV) of choice alternatives. Theoretically, SV assessment is an intermediate computational step during decision making, in which alternatives are placed on a common scale to facilitate value-maximizing choice. Here we present a quantitative, coordinate-based meta-analysis of 206 published fMRI studies investigating neural correlates of SV. Our results identify two general patterns of SV-correlated brain responses. In one set of regions, both positive and negative effects of SV on BOLD are reported at above-chance rates across the literature. Areas exhibiting this pattern include anterior insula, dorsomedial prefrontal cortex, dorsal and posterior striatum, and thalamus. The mixture of positive and negative effects potentially reflects an underlying U-shaped function, indicative of signal related to arousal or salience. In a second set of areas, including ventromedial prefrontal cortex and anterior ventral striatum, positive effects predominate. Positive effects in the latter regions are seen both when a decision is confronted and when an outcome is delivered, as well as for both monetary and primary rewards. These regions appear to constitute a "valuation system," carrying a domain-general SV signal and potentially contributing to value-based decision making.
Full text
Open-access full text
Project page: download results and ROI masks.

McGuire, J.T., & Kable, J.W. (2013). Rational temporal predictions can underlie apparent failures to delay gratification. Psychological Review, 120, 395–410. doi:10.1037/a0031910

Abstract
An important category of seemingly maladaptive decisions involves failure to postpone gratification. A person pursuing a desirable long-run outcome may abandon it in favor of a short-run alternative that has been available all along. Here we present a theoretical framework in which this seemingly irrational behavior emerges from stable preferences and veridical judgments. Our account recognizes that decision makers generally face uncertainty regarding the time at which future outcomes will materialize. When timing is uncertain, the value of persistence depends crucially on the nature of a decision maker’s prior temporal beliefs. Certain forms of temporal beliefs imply that a delay’s predicted remaining length increases as a function of time already waited. In this type of situation, the rational, utility-maximizing strategy is to persist for a limited amount of time and then give up. We show empirically that people’s explicit predictions of remaining delay lengths indeed increase as a function of elapsed time in several relevant domains, implying that temporal judgments offer a rational basis for limiting persistence. We then develop our framework into a simple working model and show how it accounts for individual differences in a laboratory task (the well-known “marshmallow test”). We conclude that delay-of-gratification failure, generally viewed as a manifestation of limited self-control capacity, can instead arise as an adaptive response to the perceived statistics of one’s environment.
Full text
Open-access full text
Download supplementary materials (code and data).

McGuire, J.T., Cohen, J.D., & Botvinick, M.M. (2013). Mental effort. In H. Pashler (Ed.), Encyclopedia of the Mind (pp. 502–506). Thousand Oaks, CA: SAGE Publications. doi:10.4135/9781452257044.n186

McGuire, J.T., & Kable, J.W. (2012). Decision makers calibrate behavioral persistence on the basis of time-interval experience. Cognition, 124, 216–226. doi:10.1016/j.cognition.2012.03.008

Abstract
A central question in intertemporal decision making is why people reverse their own past choices. Someone who initially prefers a long-run outcome might fail to maintain that preference for long enough to see the outcome realized. Such behavior is usually understood as reflecting preference instability or self-control failure. However, if a decision maker is unsure exactly how long an awaited outcome will be delayed, a reversal can constitute the rational, utility-maximizing course of action. In the present behavioral experiments, we placed participants in timing environments where persistence toward delayed rewards was either productive or counterproductive. Our results show that human decision makers are responsive to statistical timing cues, modulating their level of persistence according to the distribution of delay durations they encounter. We conclude that temporal expectations act as a powerful and adaptive influence on people’s tendency to sustain patient decisions.
Full text
Open-access full text

Ribas-Fernandes, J.J.F., Solway, A., Diuk, C., McGuire, J.T., Barto, A.G., Niv, Y., & Botvinick, M.M. (2011). A neural signature of hierarchical reinforcement learning. Neuron, 71, 370–379. doi:10.1016/j.neuron.2011.05.042

Abstract
Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors arecomputedwhen there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoalrelated reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.
Full text

Kool, W.,* McGuire, J.T.,* Rosen, Z.B., & Botvinick, M.M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139, 665–682. doi:10.1037/a0020198

Abstract
Behavioral and economic theories have long maintained that actions are chosen so as to minimize demands for exertion or work, a principle sometimes referred to as the law of less work. The data supporting this idea pertain almost entirely to demands for physical effort. However, the same minimization principle has often been assumed also to apply to cognitive demand. The authors set out to evaluate the validity of this assumption. In 6 behavioral experiments, participants chose freely between courses of action associated with different levels of demand for controlled information processing. Together, the results of these experiments revealed a bias in favor of the less demanding course of action. The bias was obtained across a range of choice settings and demand manipulations and was not wholly attributable to strategic avoidance of errors, minimization of time on task, or maximization of the rate of goal achievement. It is remarkable that the effect also did not depend on awareness of the demand manipulation. Consistent with a motivational account, avoidance of demand displayed sensitivity to task incentives and covaried with individual differences in the efficacy of executive control. The findings reported, together with convergent neuroscientific evidence, lend support to the idea that anticipated cognitive demand plays a significant role in behavioral decision making.
Full text

McGuire, J.T., & Botvinick, M.M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences of the United States of America, 107, 7922–7926. doi:10.1073/pnas.0910662107

Abstract
Human choice behavior takes account of internal decision costs: people show a tendency to avoid making decisions in ways that are computationally demanding and subjectively effortful. Here, we investigate neural processes underlying the registration of decision costs. We report two functional MRI experiments that implicate lateral prefrontal cortex (LPFC) in this function. In Experiment 1, LPFC activity correlated positively with a self-report measure of costs as this measure varied over blocks of simple decisions. In Experiment 2, LPFC activity also correlated with individual differences in effortbased choice, taking on higher levels in subjects with a strong tendency to avoid cognitively demanding decisions. These relationships persisted even when effects of reaction time and error were partialled out, linking LPFC activity to subjectively experienced costs and not merely to response accuracy or time on task. In contrast to LPFC, dorsomedial frontal cortex—an area widely implicated in performance monitoring—showed no relationship to decision costs independent of overt performance. Previous work has implicated LPFC in executive control. Our results thus imply that costs may be registered based on the degree to which control mechanisms are recruited during decision-making.
Full text
Access results images in SumsDB.

McGuire, J.T., & Botvinick, M.M. (2010). The impact of anticipated cognitive demand on attention and behavioral choice. In B. Bruya (Ed.), Effortless attention: A new perspective in the cognitive science of attention and action (pp. 103–120). Cambridge, MA: MIT Press.

Botvinick, M.M., Huffstetler, S., & McGuire, J.T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9, 16–27. doi:10.3758/CABN.9.1.16

Abstract
A great deal of behavioral and economic research suggests that the value attached to a reward stands in inverse relation to the amount of effort required to obtain it, a principle known as effort discounting. In the present article, we present the first direct evidence for a neural analogue of effort discounting. We used fMRI to measure neural responses to monetary rewards in the human nucleus accumbens (NAcc), a structure previously demonstrated to encode reference-dependent reward information. The magnitude of accumbens activation was found to vary with both reward outcome and the degree of mental effort demanded to obtain individual rewards. For a fixed level of reward, the NAcc was less strongly activated following a high-demand for effort than following a low demand. The magnitude of this effect was noted to correlate with preceding activation in the dorsal anterior cingulate cortex, a region that has been proposed to monitor information-processing demands and to mediate in the subjective experience of effort.
Full text

Mitchell, K.J., Raye, C.L., McGuire, J.T., Frankel, H., Greene, E.J., & Johnson, M.K. (2008). Neuroimaging evidence for agenda-dependent monitoring of different features during short-term source memory tests. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 780–790. doi:10.1037/0278-7393.34.4.780

Abstract
A short-term source monitoring procedure with functional magnetic resonance imaging assessed neural activity when participants made judgments about the format of 1 of 4 studied items (picture, word), the encoding task performed (cost, place), or whether an item was old or new. The results support findings from long-term memory studies showing that left anterior ventrolateral prefrontal cortex (PFC) is engaged when people make source attributions about reflectively generated information (cognitive operations, conceptual features). The findings also point to a role for right lateral PFC in attention to perceptual features and/or familiarity in making source decisions. Activity in posterior regions also differed depending on what was evaluated. These results provide neuroimaging evidence for theoretical approaches emphasizing that agendas influence which features are monitored during remembering (e.g., M. K. Johnson, S. Hashtroudi, & D. S. Lindsay, 1993). They also support the hypothesis that some of the activity in left lateral PFC and posterior regions associated with remembering specific information is not unique to long-term memory but rather is associated with agenda-driven source monitoring processes common to working memory and long-term memory.
Full text

Johnson, M.K., Mitchell, K.J., Raye, C.L., McGuire, J.T., & Sanislow, C.A. (2006). Mental rubbernecking to negative information depends on task context. Psychonomic Bulletin & Review, 13, 614–618. doi:10.3758/BF03193971

Abstract
We previously demonstrated mental rubbernecking during the simple cognitive act of refreshing a just activated representation. Participants saw two neutral and one negative word presented simultaneously and, 425 msec later, were cued to mentally refresh (i.e., think of) one of the no-longer-present words. They were slower to refresh a neutral word than the negative word (Johnson et al., 2005, Experiment 6A). The present experiments extended that work by showing mental rubbernecking when negative items were sometimes the target of refreshing, but not when negative items were present but never the target of refreshing, indicating that expectations influence mental rubbernecking. How expectations might modulate the impact of emotional distraction is discussed.
Full text

* denotes equal contribution.