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The research presented in this dissertation is guided by the question of how to

improve the General Equilibrium Ecological Model (GEEM) as a realistic population

model, and how to incorporate GEEM in a dynamic resource management model.

The first part of this dissertation (Chapter 2) extends GEEM from an 8 to a

13-species marine system with multiple predator-prey relations, and provides

simulations of the ecosystem dynamics under various influences, especially human

activities. Functional and numerical responses in GEEM as a population model are

also derived and discussed.

The second part of the dissertation (Chapter 3 and 4) addresses the application of

GEEM in economic models, including deriving a reduced form of GEEM (R-GEEM)

so that the variables from GEEM can be easily integrated with the economic model,

and applying R-GEEM to dynamic optimization problems with multiple species

harvesting and endangered species protection plans.
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Chapter 1

INTRODUCTION

In the past two decades, human and nature interaction has been an increasingly

important topic in both ecology and economics. Ecologists are usually concerned

about the health of the ecosystem with human intervention (a scientific problem)

while economists focus more on economic goals subject to the human-nature

interrelationship (a social problem). Not surprisingly, there are a number of articles in

the literature that aim to shed light on this interdisciplinary research (Costanza, 2004).

An example of this joint effort of ecologists and economists is renewable

resource management in which economists attempt to optimally exploit the resource

given the resource renewal constraints and ecologists build population models

incorporating the interactions between human and the ecosystem (de la Mare, 1996;

Estes et al, 1998). While significant progress has been made in developing integrated

ecological models, there is a gap between ecologists and economics on the issue of

how much ecological information should be taken into an economic model. The most

noticeable and perhaps most harmful difference is the way ecologists and economists

treat the resource renewal mechanism.

For centuries ecologists have been trying to understand the complicated

relationships in ecosystems and predict population dynamics. Whenever an ecologist

mentions a particular species, she thinks about not only the population of that species

but also the characteristics of its prey, predators, living environment, and maybe

parasites or symbiosis. Surprisingly it is a different story for most resource

economists. In trying to find a balance between economic development and resource

protection, economists search for detailed economic data, build various economic
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models, take advantage of advanced computational technology, and simulate the

evaluated economies as accurately as possible. But not many economists go through

the same procedure when it comes to the evaluation of the ecosystem reactions. Most

of us are quite comfortable with the one-species logistic function, assuming that

function also accounts for the unknown interrelationships within an ecosystem and the

interaction between the ecosystem and human activities.

Though the single species logistic growth function is simple and convenient, it is

questionable as an efficient and reliable model for species’dynamics. One obvious

shortcoming of the logistic growth function is that it does not consider the interactions

among species that comprise ecosystems. Besides, the logistic growth function cannot

incorporate either resource competition or substitutions of prey, both of which are

important for the dynamics of any ecosystem.

Single-species management also creates problems for economic solutions. For

example, in a single-fish dynamic management problem, economic optimality

eradicates the stock whenever the maximum per capita growth rate is less than the

discount rate and the price for the last fish is greater than the cost for harvesting it

(MRAG Americas 2000).

Because resource exploitations usually operate within a complex array of

species interactions, scientists increasingly recommend multi-species approaches to

resource management. Basically, current multi-species resource management research

focuses on two aspects. One is to capture the interactions between the ecosystems and

the economies related to or contained in them (Lynne et al, 1981; Ellis and Fisher,

1986; Crocker and Tschirhart, 1993; Barbier and Strand, 1998; Barbier, 2003). For

example, Settle and Shogren (2002) apply an economic system-ecosystem model to a
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specific problem and compare the integrated model with the model in which two

systems are separate.

The other strand of research, the direction I am following in this dissertation, is

to address the interrelationships within an ecosystem and incorporate this information

in economic models (Clark, 1990; Milton and Shogren, 1995; Tschirhart, 2000). A

recent example is the GEEM (General Equilibrium Ecosystem Model) approach

Finnoff and Tschirhart (2003) proposed. They employ this new integrated

ecological/economic model to track both ecological relations and human influence on

the ecosystem. Although they did not discuss the application of GEEM in

multispecies management, GEEM offers a stock assessment method set in a food web

context and provides an important step toward developing a method that recognizes

resource exploitation as a component of ecosystem dynamics. In my dissertation, I

will use GEEM as the basic ecological model. For those readers who are not familiar

with the GEEM, an introduction to this model is provided in Chapter 2.

While GEEM contributes to both population ecology and resource economics as

an innovative biomass-based ecosystem model and a new resource management

model, the success of integrating the GEEM with an economic model in application is

not so obvious. There are at least two questions to be answered: how to improve the

accuracy of the predictions of the ecosystem model in isolation and how well

variables from one model can be effectively incorporated in the other.

1.1 The Research Proposed

The research presented in this dissertation is guided by the question of how to

improve the GEEM as a realistic population model, and how to incorporate GEEM in

a dynamic resource management model. The first part of this dissertation is concerned
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with extending GEEM to multiple predators and prey and applying the extended

model to a 13-species marine system. The second part of the dissertation addresses the

application of GEEM in economic models, including deriving a reduced form of

GEEM so that the variables from GEEM can be easily integrated with the economic

model.

My research contributes to the existing ecological economics literature in four

ways. First, I extend the GEEM to include multiple predator-prey relationships. In the

ecosystem I inspect there are 13 species, several of which have multiple predators or

multiple prey. Second, I use time series techniques to reduce the nonlinear GEEM to a

linear population dynamics model, which is consistent with the general model for

interacting species proposed by previous research (Williams et al, 2002). Third, I

introduce multiple-species harvestings into the traditional fishery model by using

harvestings as control variables and including the interactions in the ecosystem as

constraints. Fourth, I also include endangered species protection plans as constraints

in the dynamic optimization model, which provides a new way to optimize the social

welfare that includes both fishery benefits and ecological values of species.

1.2 The Dissertation Structure

The structure of my dissertation is as following:

Chapter 1 provides the introduction and the literature review that gives an

overview of previous research-- the facts, the arguments, the positions taken, and

proposes the research objects that are completed in this dissertation.
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Chapter 2 extends GEEM to a 13-species marine system with several multiple

predator-prey relations, and provides simulations of the ecosystem dynamics under

various influences, especially human activities. The simulation results in chapter 2

will be used in subsequent chapters. Functional and numerical responses in GEEM as

a population model are also derived and discussed in this chapter. Appendices 1-9

report the parameter calibration table and GEEM simulations under various

conditions.

Chapter 3 focuses on using vector autoregression (VAR) to derive a linear

dynamic population model for interactive species, the reduced form of GEEM, or

R-GEEM in this paper. The stability of the R-GEEM is discussed and the resemblance

of GEEM and R-GEEM are tested using three methods: mathematical, graphic, and

statistical. Appendices 10-15 describe the R-GEEM structure, simulations, and the

tests for the similarity.

Chapter 4 applies R-GEEM to the dynamic optimization problem with multiple

species harvesting and endangered species protection plans. This chapter provides

application examples of the GEEM in resource management and jointly with chapter

3 completes the answer to the second question raised in chapter 1 on the integrating of

GEEM with an economics model in application: how does one effectively incorporate

variables in one model into the other? Appendices 16-21 present more details

developed in this chapter.

Chapter 5 summarizes the main contributions made by this dissertation and

concludes the thesis by suggesting some directions for further research.
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Chapter 2

THE GENERAL EQUILIBRIUM ECOLOGICAL MODEL

WITH MULTIPLE PREDATORS AND PREY

This chapter attempts to answer one of two issues raised in Chapter 1 on the

success of integrating the GEEM (Finnoff and Tschirhart, 2003) with an economic

model in application: the accuracy of GEEM prediction. To improve GEEM as an

ecosystem population model, I extend the GEEM to include multiple predators and

prey, apply the extended GEEM to a 13-species marine system in the Eastern Bering

Sea (EBS), explore 22 predator and prey dynamics, and simulate the ecosystem under

various perturbations.

The layout of this chapter is as follows: section 2.1 is the introduction explaining

why I focus on multiple interactions and why I choose the EBS ecosystem. Section

2.2 presents the ecological characteristics and interrelationships of 13 species in the

food-web and is followed by section 2.3 which shows the underlying mechanism of

GEEM in detail as well as introduce multiple predators and prey into the model. The

data collection and the parameter calibration are illustrated in section 2.4. The GEEM

simulations under various conditions, the stability of ecosystem, the functional

responses and numerical responses of predators are discussed in section 2.5. The last

section, section 2.6, concludes this chapter and proposes several extensions for future

research.

2.1 Introduction

As a new population model built by economists using traditional economics

tools, not surprisingly GEEM leaves much space for extensions. Possible extensions
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include, but are not limited to, more realistic food-webs to incorporate multiple

predator and prey, individual-based models to handle individual differences within

one species, improved data collection for better parameter calibration, etc. Among all

those possible improvements, I choose to deal with the issue of multiple predators and

prey first because multiple prey traits and multiple predators are “keys to

understanding complex community dynamics” (Dewitt and Langerhans, 2003.)

“Multiple interactions”is also a key phrase for my effort to improve GEEM and

incorporate it in economic problems in this dissertation.

In Chapter 2, GEEM is extended to include multiple predators and prey and

applied to a 13-species marine ecosystem in the Eastern Bering Sea area (Figure 1).

There are several reasons why I choose this particular ecosystem. First, although there

are only 13 species in the model, this interlocking network includes four trophic levels.

Phytoplankton and kelp, which perform the necessary process of photosynthesis,

occupy the first trophic level, plants. Herbivores such as zooplankton and sea urchins

are at the second level. Fish and most marine mammals are carnivores which belong

to the third. The highest trophic level is the top carnivore, the killer whale. As a result

of the feeding interactions between species on these four levels, clear paths of energy

flow can be explored and a variety of interactions, beneficial or detrimental, on the

same trophic level or different levels, are available for GEEM analysis.

Second, the ecosystem contains several multiple predator-prey interactions. For

example, both pollock and herring are prey to northern fur seal that in turn is one of

seven prey species to the top predator, killer whale. Notice that in order to track the

interactions among species in the ecosystem, I hold all other relevant conditions

constant, such as weather, ocean currents, and any other species that are connected to

one or more of the 13 species in the real marine system but not in the food-web in



8

Figure 1. For instance, in the Gulf of Alaska, Pacific cod’s major diets include capelin,

pollock (21%), pandalids, miscellaneous fish, euphausiids, and crabs (Yang, 2004).

Since only pollock are in the food-web, I consider only the biomass flow from pollock,

which is 160 kg unit-1 y-1. The number on the energy arrow indicates the percentage of

the prey in the diet composition of the predator. For more information, please refer to

the calibration table in Appendix 3.

A third reason why I choose this area is because of its interactions with the

human society. For instance, the Eastern Bering Sea supports the world’s largest

pollock fishery (Alaska Marine Information System, 2004). This ecosystem also

contains endangered and keystone species, whose population declines have concerned

both ecologists and tourism departments in recent years. I will model the interactions

between the ecosystem and the economy both from the economist’s and the

ecologist’s perspective.

Another reason for my choice is that researchers have been working on the

ecosystem in this area for quite a long time, which means that there are better data

available for parameter calibrations and simulation comparison. The last reason is that

this model extends the 8-species marine ecosystem developed earlier by Finnoff and

Tschirhart (2003). It will be interesting to see how the introduction of more species

and multiple predators and prey affects the ecosystem stability and the converging

path.

2.2 The Food-Web Representation

Figure 1 represents the ecosystem I am going to simulate using GEEM. In

ecological terms, it is an interactive system since the consuming population influences
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Figure 1: The food web represented in my general equilibrium ecosystem model.
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the rate of resource production and consumers interfere with each other’s search for

food.

In the ecosystem there are thirteen species, both from the Eastern Bering Sea

(EBS) and the Alaska’s Aleutian Islands (AI). Basically the ecosystem is an extension

of the food-web in Finnoff and Tschirhart (2003), in which single predator-prey

relationships among eight species (species 1- 8) are discussed and only one species

(killer whale) has more than one prey species. To better represent the real Alaska

marine system, I add five more species (species 9- 13) as well as multiple predators

and prey interactions such that several species are preyed upon by several others,

which may have several prey species. The selection of additional species and the

design of the energy flow are based on previous ecology or zoology literature, such as

Lowry et al. (1982), Perez and McAlister (1993), and Williams et al. (2004).

Note that some species in the food web actually are aggregates of various

species. For example, various microscopic plants that live in the EBS and compete for

light are aggregated into a single species called phytoplankton. They are the

foundation of the marine food chain. Phytoplankton requires sunlight, water, and

nutrients for growth. Because sunlight is most abundant at and near the sea surface,

phytoplankton remains at or near the surface. As shown in the food web, zooplankton,

which is another aggregate species, preys on phytoplankton. Larger fish then prey on

zooplankton. Humans catch and consume some of these larger fish, which provides a

link between the ecosystem and the economy. For example, in 2004 the inshore

pollock catch in the Bering Sea was 637,970 metric tons (NOAA Catch Report, 2004)

while the total U.S. domestic landing is 1,526,348 tons (NMFS Fishery Statistics

Division, 2004).



11

In the Aleutian Islands (the right side of the food-web), the foundation of the

food chain is the kelp forest that is an aggregate of various species of brown and red

algae. A dependence upon light for photosynthesis restricts the kelp forest to clear

shallow water and it is rarely much deeper than 40 m. Kelp is preyed on by the sea

urchin that in turn is preyed on by the sea otter.

In the food-web there are also marine mammals that prey on larger fish. Marine

mammals are thought to be important to the tourism industry, such as offering whale

watching on a cruise ship and ecotourism to the region. Tourism or other

entertainment industries provide alternative ways to link the ecosystem and the

economy other than through commercial fishing. A third link between the ecosystem

and the economy is that some marine mammals are endangered and subject to

recovery plans. For example, the number of Steller sea lions in the western stock

declined by 75% between 1976 and 1990 (National Marine Mammal Laboratory,

2005). In the 1990s, the decline continued for the western stock in Alaska, which was

declared endangered by the National Marine Fisheries Service under the Endangered

Species Act.

The top predator in the ecosystem is the killer whale, which preys on large fish,

whales, and small marine mammals. As we will see later in the paper, GEEM predicts

that the killer whale illustrates a very interesting predation pattern by switching prey

when the populations of its prey change, which is consistent with what researchers

have observed (Hatfield et al, 1998; Springer et al., 2003). For instance, Springer et al.

(2003) suggests that overexploitation of large whales forced killer whales to prey

switch from baleen whales to pinnipeds and sea otters, resulting in population declines

for these smaller marine mammals. Later in this chapter I shall discuss how the

GEEM predicts the killer whale’s prey switching pattern when large fish, which are
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preyed upon by the killer whale as well as by marine mammals, are harvested

constantly by humans.

2.3 The General Equilibrium Ecological Model (GEEM)

Devised by Finnoff and Tschirhart (2003) and applied to an Alaskan marine

ecosystem, the general equilibrium ecosystem model (GEEM) is a mass-balanced

population model based on energy flows between species and individual plant and

animal optimization. In this section, I extend GEEM to include multiple predators and

prey and apply it to the 13-species ecosystem represented in Figure 1.

2.3.1 The Net Energy Objective Functions

Following Finnoff and Tschirhart (2003), in a GEEM model, we assume that

individual plants and animals are maximizing their net energy. A member of species i

that preys on organisms in species j and is preyed on by members of species k chooses

x i,j to maximize

,...),(]1[][
21 ,,,,,, ijiji

i
kiiki

k
iji

j
jiji xxfyetexeeR   (1)

where Ri is in power units (Watts or kilocalories/time); ej is the energy embodied

in a unit of biomass (in kilocalories/kilogram) from a member of species j; e i,j is the

energy price; xi ,j is the biomass (in kilograms/time) transferred from the member of

species j to the member of species i; ti is a tax on the individual because it loses energy

above what it loses owing to being captured; ek,i is the energy the predator k use in

capture attempts; yi ,k, the biomass supplied by i to k, is a function of the summation of

all xi ,j; if is the variable respiration function in terms of all xi,j; βi is the basal

metabolism.
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The first term on the RHS of (1) is the inflow of energy from prey species to the

representative individual of species i; the second term is the outflow of energy to

animals of species k that prey on i, while the term in the brackets is the energy the

individual uses in attempts to avoid being preyed upon; the third term is the part of

respiration which depends on energy intake; the fourth term is basal metabolism

which is independent of energy intake. The metabolism terms follow Gurney and

Nisbet (1998).

For the biomass supply by species i to species j, y ik, I assume that

)( 5.
,,, 

j
jikiki xdy (2)

where kid , is the predator parameter that will be calibrated; the function form follows

Tschirhart (2000).

The variable metabolism function ,...),(
21 ,, jiji

i xxf takes the quadratic form

(Tschirhart, 2000). Mathematically,

...)....(5.,...),(
212121 ,,

2
,

2
,,,  jijijijiijiji

i xxxxrxxf (3)

where ri is the metabolism parameter that will be calibrated later. A complete list of

the net energy equations for all 13 species is showed in Appendix 1.

To better understand the above equations which are core equations in GEEM, I

will explain the net energy objective function for pollock in detail. As seen in Figure 1,

pollock prey on zooplankton and are preyed on by sea lion, Pacific cod, and Northern

fur seal. So the net energy objective function for pollock is

4
5.

2,44,8448,4
5.

2,44,134413,4

5.
2,44,104410,4

5.
2,44,6446,4

2
2,442,42,424

)1()1(

)1()1()(

bxetedxeted

xetedxetedxrxeeR




(4)

The first term on the right side of the above equation is the inflow of energy

from zooplankton to pollock; the second, third, and fourth terms are the outflow of
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energy to sea lion, Northern fur seal and Pacific cod, respectively. The fifth term is

the part of respiration which depends on how much the pollock prey on zooplankton,

and the last term is the basal metabolism.

2.3.2 Short-Run Equilibrium

In a short–run equilibrium, each individual in the ecosystem chooses optimal

intake energy to maximize its net energy. In mathematical terms, each individual

choose jix , to maximize its respective net energy objective functions (see Appendix

1). Each function is associated with one or more first-order conditions, depending on

how many different prey the species feeds on. In this ecosystem, there are 22

predator-prey pairs in the food-web, which yields 22 first-order conditions. In the

short run, the value of Ri can be positive, zero, or negative, which as shown later, will

correspond to increasing, constant, and decreasing populations respectively.

Besides all first-order conditions, there are another set of equations to be met

during a short-run equilibrium. Similar to an economy, there should be no excess

demand or supply of any species biomass or energy. The supply-demand equilibrium

condition of each pair of predator and prey is constructed by equating the sum of all the

predator demands with the sum of all the prey supplies. Thus, the equilibrium equation

for animals can be written as:

)( 5.
,,,, 

j
jikiikiiikk xdNyNxN (5)

where Nk is the predator’s population and Ni is the prey’s population.

For example, the equilibrium condition between sea lion and its predator, killer

whale, can be written as:

5.
13,69,64,68,666,88 )( xxxdNxN  (6)
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The left side of (6) is the total killer whale demand for sea lion, and the right side

is the total supply of sea lion to killer whale, which depends on how much sea lion feeds

on its prey, including pollock, Pacific herring, and Pacific cod.

For plants in the ecosystem, namely kelp and phytoplankton, the equation is

similar to equation (5) except that the supply depends on the physical space the plants

occupy (Tschirhart, 2002). A complete list of the supply-demand equations is reported

in Appendix 2. Simultaneously solving the above 22 first-order conditions and 22

supply-demand equations, we get a set of 22 energy prices and 22 biomass demands

for the short-run equilibrium.

2.3.3 Population Updating and Long-Run Equilibrium

Unlike the short-run equilibrium in which positive, zero, or negative net energy

is possible, a long-run equilibrium or a steady state implies that the populations adjust

annually until all species have zero net energy and constant populations. Following

Finnoff and Tschirhart (2003), the population updating equation for species i is

]1ˆ
)(][)1([1 

i

i
t

i

i

s
t
i

t
i

t
i

V
VNR

s
ppNNN

i

(7)

where
i

kiji

w

xd
p

5.
,, is the predation rate and equals to zero for the top predator, killer

whale; tN is a vector of the populations of all 13 species in period t; si is the lifespan

of a representative species; vî is the steady-state variable respiration; Vi is the

non-steady-state variable respiration.

An example of the updating equation is that for the top predator, the killer

whale:
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For more details and the derivation of the equations, please refer to Finnoff and

Tschirhart (2003). A complete list of updating equations for all species is available

upon request.

2.4 Data Collection and Parameters Calibration

A common procedure to select parameter values in a general equilibriums model

is “calibration” (Mansur and Whalley, 1984). Typically, researchers use only one

year’s data or an average observation for the calibration (Shoven and Whalley, 1992).

In this paper, most benchmark data are from the year of 1980 with a few exceptions.

For details, please refer to the notes attached to the calibration table in Appendix 3.

In the calibration, I assume that the year-of-record benchmark system is in a

steady state (Finnoff and Tschirhart, 2002), which means that populations are constant,

which in turn implies that the net energies are zero. Simultaneously solving 13 zero

net energy equations, 22 first-order conditions, and 22 supply-demand equations,

yields the values of 57 parameters in the system. Calibrated parameter values are

reported in the calibration table in Appendix 3. All equations can be found in the

GAMS codes, which are available upon request.

2.5 Simulated Ecosystem Dynamics

Once we calibrate the parameter values as in Section 4, we can use the GEEM to

simulate the dynamics of the ecosystem. As discussed in Section 3, in each period, we

solve 22 first-order conditions and 22 supply-demand equilibrium conditions

simultaneously for 22 energy prices and 22 biomass demands. Then we substitute the

optimum prices and demands into the net energy objective function (1) to obtain the
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optimum net energy which is used in the updating equation (7) as the net energy in

current period to yield the beginning population in the next period. The long-term

ecosystem dynamics obtained as the above procedure is repeated over time.

In this section, I use GEEM simulations to address the following three issues: 1)

the stability analysis and the converging path discussion of GEEM under assorted

shocks; 2) functional and numerical components of predations in GEEM in response

to the prey density change; 3) how the ecosystem responds to human activities

(fishery), including the new steady state of the system and the prey switching

behaviors of the sea lion and the killer whale.

2.5.1 The Stability Analysis and the Converging Paths

To determine whether or not a given community is stable, the researcher needs

to know all the intrinsic rates of population increase, all the species interaction terms,

and the equations that describe the interactions. Usually, because we do not have this

information, we cannot determine whether or not the system is stable. Nevertheless,

the simulation graphs from GEEM when the ecosystem is affected by various

exogenous perturbations shed light on the community stability1 as well as the

converging paths. By perturbations, I mean any element within or outside of the

system that changes the population of one or more species and causes the ecosystem

to deviate from the steady state. Possible perturbations include, but are not limited to,

weather changes, ocean currents, seasonal oscillations, species behavior adjustments,

human interventions, etc.

2.5.1.1 GEEM Simulation under Random Shocks

1 A mathematical stability analysis is presented in 3.4.2 after the reduced form of the GEEM
(R-GEEM) is derived.
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To simulate the ecosystem within a more realistic framework and test the

stability, I add shocks to the system at a random frequency, then observe how the

system responds to the shocks, including whether the system returns to the steady

state and its converging paths from shocks of various scales. Figure 2 illustrates the

GEEM dynamics under relatively small shocks with the standard deviation equal to

0.03.

In Figure 2, as well as in most graphs in this paper, the horizontal axis is the

time period (year) and the vertical axis indicates the population values in each period.

The units used in the graph are not the same units used in Table 1. Instead, they are

the percentages relative to their respective steady state values. For example, the steady

state population of pollock is 6.16215. In time period t, the calculated pollock

population from GEEM is 6.34. Then I divide 6.34 by 6.16215 and get 1.03, which is

the population of pollock at time t in the graph in terms of percentage of the steady

state value. The steady state values themselves are, of course, equal to one.

The dynamics in Figure 2 are simulated as follows: in each period, the computer

randomly chooses one number for each species. The chosen numbers are uniformly

distributed between 0 and 1. If a species’number in time period t is greater than 0.978,

this species receives a percentage shock to its population. So in each period, the

probability that at least one of 13 species is hit by a shock is about 0.25.2 Shocks are

normally distributed with a mean of 0 and a standard deviation of 0.03. Shocks are

independent between species as well as periods. If a species is hit by a shock, its

population is adjusted accordingly.

For instance, in time period t, a computer generates 13 numbers for 13 species.

Only the number for the pollock is greater than 0.978. Then the computer generates

2 The probability of no shock added in a period is 0.97813.So the probability that at least one shock is
added is 1- 0.97813 = 0.25.
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Figure 2: GEEM Simulations under Random Shocks
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another random number, -0.05, for the pollock, whose population is 1.02. Hit by the

shock, the pollock population becomes 1.02*(1-0.05) =0.969. By substituting all

populations including the pollock’s adjusted population into GEEM as the new

starting populations, solving for the optimal net energies which are then input to the

updating equations, we get the populations in the next period. Repeating the same

procedure in every period, we have the dynamics of the ecosystem under small shocks

along the time path.

Formally
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where 1tN is the steady state population vector of species;  is the population

updating function through GEEM; )1,0(~V);03.0,0(..~ t
i UdNiit

i ; i = 1,2,… .,13.

Figure 2 shows the stability of the GEEM system. If the shocks are within a

certain reasonable range, all species in the system recover to the steady state no matter

how the species was hit (directly or indirectly3) and how frequently the shocks hit. In

that sense, the system is stable. Notice also that the converging paths of species

demonstrate different patterns, which I will explain more in 2.5.1.2.

2.5.1.2 A Close Look at the Converging Path

Figure 3 illustrates how the ecosystem converges to the steady state starting

from a random set of conditions. Figure 3 is different from Figure 2 in that 1) instead

of shocks being added along the path, the ecosystem is allowed to converge to the

steady state after the one-time shock so that there is no random noise along the

3 The indirect shock means shocks added to other species in the ecosystem, which will affect the
species in discussion through species interactions.
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Figure 3: Converging Path of GEEM from a Random Point
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converging path; 2) the shocks are normally distributed with a standard deviation of

0.30 in stead of 0.03, which enables larger shocks to be added to the system.

The starting point is generated by letting the computer add a random percentage

shock to the steady state population of each species. The shock is normally distributed

with a mean of zero and a standard deviation of 0.30. Formally, the dynamics can be

written as
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where ss
iN is the steady state population of species I;  is the population updating

function through GEEM; .13,....2,1);3.0,0(..~i idNii

As seen in Figure 3, although all species return to the steady state values

eventually, the converging paths are quite diversified. Most species follow a smooth

path to return to one, but some species overshoot (sea lion) or undershoot (kelp) the

steady state value before finally converging to it. There is also disparity in the

converging speeds of single species. Usually the farther the starting point is away

from one, the longer it takes that species to return to one. But some species, such as

zooplankton and northern fur seal, rebound to their steady state populations very

quickly from relatively large shocks (39% and negative 34% respectively), while it

takes much longer for others to return to the steady state. For example, the blue whale

has to adjust to the effects of the negative 15% shock constantly for more than 90

periods before it hits the steady state. The speed of convergence is related to the

lifespan parameter in the updating equation, since the lifespan parameter functions

similarly to the internal growth rate in the logistic population function.

While the converging path information in Figure 3 can be used in making

species protection plans and recovery programs, one must be careful about
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generalizing the observed converging characteristics because the converging path and

the starting state have a one-to-one correspondence. If the system starts from an

alternative point, GEEM predicts different converging paths.

2.5.1.3 Dynamics Following Disturbance in One Species

While last section and Figure 3 discuss how the system converges to the steady

state from a random point where none of the species were at their steady-state values,

this section shows in more detail how all species in the system respond to a

disturbance in one species, assuming all other species start at their respective steady

state.

Figure 4 illustrates the system dynamics when 40% of pollock are harvested in

the first period (the population of the pollock is reduced to 60% of the steady-state

value). The pollock population rebounds soon after the harvesting, overshoots before

converging to the steady state at period 5. What is more interesting is how other

species in the ecosystem responds to this pollock harvesting. As seen in Figure 4,

pollock’s prey, zooplankton, closely follows pollock’s population changes in the

opposite direction by increasing first (corresponding to decreased pollock population

from harvesting), then decreasing (reflecting the quick recovery of the pollock

population) before it reaches its steady state. Unsurprisingly, pollock’s predators, sea

lion, Northern fur seal, killer whale, and Pacific cod all show decreased populations

following the pollock harvesting, then gradually recover to their steady states. While

it is straight forward to predict and explain how those species that are in a direct

predator-prey relationship with pollock respond to the pollock harvesting, the

responses of other species are more complex. For example, the herring population

increases first before it damps to the steady state. This dynamic is connected to the
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Figure 4: Dynamics following a 40% harvesting of pollock
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pollock harvesting through two pathways, one through pollock’s prey, zooplankton,

which is also prey to the herring. Along this energy flow, harvesting pollock is

beneficial to the herring because of reduced competition for common prey. The other

pathway is through pollock’s predators, sea lion, Northern fur seal, and killer whale,

which are predator of the herring too. Along this second pathway, harvesting pollock

is detrimental to herring because predators switch from pollock to herring. In the case

in Figure 4, the positive effect of pollock harvesting overpowers the negative effect,

and herrings’population increases following the pollock harvesting. Other species,

such as phytoplankton and sperm whale, also connect to the harvesting through

energy flows and respond to the harvesting accordingly. Note that some of those

indirect responses are quite small and reflect directional information rather than

substantial population changes.

2.5.2 Functional and Numerical Responses of Predation

With 22 multiple predator and prey relationships in the ecosystem, it is worth

delving deeper into the predation behavior in GEEM. A variety of factors, including

the food preferences, the energy content of the prey, and the density and quality of

alternative prey, are known to influence the predation rate. In this section, I focus on

the responses of predators to changing prey density.

2.5.2.1 Previous Research on the Functional and Numerical Response in

GEEM

Solomon (1949) recognized two responses of predators to the density of their

resources. They are a functional response, which describes how the consumption rate
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changes with respect to the resource density, and a numerical response, which results

in a change in the density of predators within a given feeding area.

Holling (1959a) identified three basic types of behavioral responses: Type I

(linear) response describing a proportional increase in consumption with increasing

prey density; Type II (cyrtoid.) response describing a decreasing increase, or a

concave response; and Type III (sigmoid) response or an accelerating consumption

increase at low levels of prey density and a decreasing increase at high levels of prey

density. All three forms impose an upper limit on prey consumption and each type has

a specific form reflecting aspects of predatory behaviors in relation to variation in

prey abundance (Ruscoe et al, 2005).

Tschirhart (2004) identifies four cases to track functional responses in a GEEM

in which the densities and the consumptions of both the predator and prey result from

complex interactions among species, including but not exclusive to the predator and

the prey, in the ecosystem. Functional response forms in three cases can be

analytically obtained. In case (i) where the prey consumption is fixed, the functional

response in GEEM is Type I while case (ii) where the total prey consumption is fixed

implies a Type II functional response. Unlike case (i) and case (ii) in which the

predator density is fixed, for case (iii) and (iv), both predator density and prey

consumption are allowed to vary. It is mathematically proved in Tschirhart (2004) that

with the predator density being allowed to adjust to a steady state in case (iv), the

functional response of the predator is constant and independent of prey density. All

the above analytical results apply to the extended GEEM in this dissertation.

In addition to changes in the predation rate, predators also respond to prey

density through their own abundance, or numerical response. The numerical change

usually results from the alteration in the reproductive activity of the predator. In
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GEEM, this is implemented through the net energy term in the population updating

equation.

There are three basic kinds of numerical responses: 1) a direct response, in

which the population of the predator increase as that of its prey increases; 2) no

response, in which the population of the predator stays the same as that of its prey

increases and the entire response is functional; 3) an inverse response, in which the

population of the predator decreases as that of its prey increases (Elseth and

Baumgardner, 1981). Tschirhart (2004) suggested that if the predator’s population is

allowed to attain a steady state for each prey density (case iv), the numerical response

is strictly concave.

2.5.2.2 Functional and Numerical Response in Case (iii)

The only case without an analytical conclusion, and the case I shall focus on in

this section, is case (iii) in which both the consumption and the predatory density are

allowed to adjust over one reproductive cycle. It can be more than one cycle as long

as the predatory density does not reach a steady state. But I will allow one period only

in the simulations to catch the short-term functional response to a direct prey density

change without involving residue functional responses to the density change in the

past periods.

Note that unlike case (iii) presented in Tschirhart (2004) in which the major

reason for not having an analytical solution is because of the transition feature of the

system, we cannot find analytical results here with one cycle because it is complex to

sign the Jacobian matrix and the numerator matrix. For example, when determining

the direction of the functional response of a species i to the biomass change in its prey

J ( jij Nx  ), we can use Cramer’s rule. Since this is in a system with 22 first order
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conditions and 22 demand-supply equations, we need to sign two 44 by 44 matrices,

the Jacobian matrix (the denominator) and the numerator matrix. It would be very

difficult to do so and even if we could, the result cannot be generalized to other

functional responses.

An alternative approach to shed some light on the functional response and

numerical response in GEEM is to use statistics for estimating the shapes of the

responses. Simulations are run for 12 prey species in Figure 1 separately. For each

prey species, 100 simulations are generated. In each simulation, the system starts at

the steady state with the prey density varied from 10% to 1000% of the steady state

value. The densities and consumptions of all predators are tracked for estimating the

functional and numerical response functions using a Box-Cox transformation (Box

and Cox, 1964). For example, to track the functional and numerical response of

predators of pollock, I generate 100 simulations. In each simulation, the species

populations are at the steady state with the exception of the density of pollock which

varies from 10% to 1000% of the steady state value. In the first simulation, the

pollock density is set to be 10% of the steady-state value while all others are at their

steady-state values. Then GEEM is allowed to run freely for one period without any

constraints on the prey consumption (as in case (i) or (ii)), and reports the optimal

consumptions of predators on the pollock (functional response) and the predator

densities at the end of running (numerical response). The same procedure is repeated

in the second (third, fourth, … ., hundredth) simulation except that the starting density

of the pollock is set to 20% (30%, 40%,… ., 1000%) of the steady-state value. Because

the only difference in each simulation is the prey density, I am catching the functional

and numerical response of the predators on the pollock density holding all other
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ecological factors in the model constant. Notice that predator density change is

actually one period lagged, which is illustrated in equation (15) below.

To estimate the functional response of species i over the density change of its

prey, species j, ecologists use various function forms, usually assuming one particular

type of response . For example, Holling (1959) derives a Type II functional response

taking the form of
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Since the types of the functional responses generated by GEEM are unknown, a

more general function form that allows for more response types is used. Following

Box and Cox (1964), I use equation (12)
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Thus, the functional response is an increasing function if βis greater than zero.

Depending on whether λ is equal to or less than one, it is a Type I (linear) or II 

(concave) response. Note that for a Type III response, a spline regression can be used

to determine the shape. That is, a regression at low levels of t
jN and another at high

levels of t
jN .

The estimation of the numerical response is similar to the functional response.

The Box-Cox transformation is represented as following:
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where t
iN is the predator density; 1t

jN is the prey density in time period t-1; τis the

transformation power; γ is the constant; δ is the density coefficient; ε is the error term 

and is assumed to normally distributed.

From equation (15), the numerical response is derived as
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The three basic kinds of numerical responses suggested by Baumgardner (1981)

can be identified depending on the value of δand τ. If δand τare of the same sign,

there is a direct numerical response. δbeing zero implies no response while an inverse

response corresponds to either δor τbeing negative. If a numerical response does

exist, then τbeing greater than one implies a concave function.

2.5.2.3 Functional and Numerical Response to Pollock Density Change
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This section reports the functional and numerical response of predators of

pollock: sea lion, killer whale, northern fur seal, and Pacific cod. The functional and

numerical response of predators of other species derived from the Box-Cox

transformation and those derived from the Holling’s Type II response function can be

found in Appendix 5. Figure 5b in Appendix 7 illustrates the differences between the

Box-Cox functional response and the Holling’s Type II response function for all prey

species except for pollock, which is shown in Figure 5a.

The steady-state density for pollock is 6.612, and the pollock density in the

simulations varies between 0.6612 (10%) and 66.12 (1000%). As seen in Figure 5a,

which plots the functional response of four predators, all Box-Cox transformed

functional responses are Type II. This follows from the parameter estimation in Table

2 in which for all four predators β is positive and all four predators’ λ is > 1. Notice

that although both response functions are concave, we derived the shape of the

Box-Cox transformation from the data while the concavity of the Holling’s Type II

response function is preassumed. As a result, the Box-Cox transformed functions fit

GEEM data better than the Holling type II functions. This is shown in Figure 5a and

4b in which the GEEM data lines almost perfectly overlap with the Box-Cox

transformed function curves for most species while the Holling function II estimate

fits the data less well. In general, functional responses simulated from GEEM and

Box-Cox transformation are flatter than those from the Holling type II function, which

usually underestimate the consumption of the prey when the prey density is low or

high and overestimate the consumption when the prey density is at a medium level.

Information in Table 2 can be used to derive an explicit function form for the

functional response. For example, the functional response of sea lion to pollock

density can be derived from
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Note that most λ values in the functional responses are equal to or close to 2. 

This is because in GEEM, we assume that all species' net energy following the same
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in which the exponential values for all species are the same. In other words, we

assumed that all species' dynamics follows one specific function form although the

number of terms and the parameter values are varied depending on the energy flow of

the species. As a result, the GEEM simulation, which has been used to estimate the

Box-Cox transformation, implies similar functional response (similar λ) but different

parameter values (varied α and β) for different species. Were the GEEM structures

have varied exponential values across species, we would expect to get varied λ 

accordingly. This can also be a potential modification over current GEEM.

Similar analysis can be applied to the numerical response. While functional

responses of the four predators of pollock demonstrate similarity, numerical responses

for them are diversified. As shown Figure 6, northern fur seal has a numerical

response which is obviously differently shaped from that of the other three predators
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with concave numerical response. The parameter estimation in Table 3 reports a

less-than-one τ(0.9069), which suggests that northern fur seal has a convex numerical

response to pollock density.

Table 2: Functional Response to the Pollock Density

λ α β

Sea Lion 2.00 9.7428 575460

Killer Whale 2.00 3.5012 223340

Northern Fur Seal 2.00 -0.4366 3597.7

Pacific Cod 2.00 -0.4643 2077.2

Note: All estimates are statistically significant at 99% level.

Table 3: Numerical Response to the Pollock Density

τ γ δ

Sea Lion 2.3450 -0.4260 0.000267

Killer Whale 4.06 -0.2463 4.27E-11

Northern Fur Seal 0.9069 -1.0043 0.00386

Pacific Cod 2.5585 -0.2222 0.5461

Note: All estimates are statistically significant at 99% level.

According to GEEM, the energy price of the prey usually increases as the

population of the predator increases, which explains why most species here have

concave numerical response functions. Why would northern fur seal illustrate a

different numerical response than the other three predators (sea lion, killer whale, and

Pacific cod), which show concave functions? The answer may lie in the energy flow

chart in Figure 1. In GEEM, the speed of the species population change (the shape of

the numerical response function) depends on both the prey density and its predator

behavior. In the northern fur seal case, as the pollock density increases, the energy

price of pollock to the northern fur seal decreases, which leads to an increasing

numerical response. At the same time, the energy price of pollock to the northern fur



34

seal's predator, the killer whale, is decreased too, which causes the killer whale to

switch from the northern fur seal (currently constitutes 3% of its prey) to the pollock

(currently constitutes 38% of its prey). It is this reduction in the predator pressure that

makes the convex numerical response of the northern fur seal to the pollock possible.

Among other predators, sea lion has energy flows similar to the northern fur seal, but

the predator pressure reduction from the killer whale's prey switching behavior is not

enough to cancel the "population effect" in which the increasing number of sea lions

pushes up the energy price of pollock, which explains why the sea lion has a concave

numerical response function to the pollock.

Figure 6: Numerical responses of predators of pollock

2.5.3 GEEM with Human Activity

Next, I introduce human activities into the GEEM and illustrate how the

ecosystem responds to the interventions. In Chapter 4 I will answer the question of

how humans and the ecosystem interact and how they respond to each other’s
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activities. For now, I assume humans are naïve and have no optimization goals in

mind. Instead, they follow a simple regulatory rule, which states that they can harvest

up to a fixed percent of all fish each year. For instance, in Figure 7 from Appendix 8

they harvest 20% of the populations of pollock, Pacific herring, and Pacific cod each

year.

Formally the dynamics for species i is
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where  is the population updating function through GEEM; 1t
ih is the harvesting

of species in period t-1, which equals 20% of 1t
iN ; i=1,2,… ,13.

Figure 7 in Appendix 8 shows the GEEM dynamics and new steady state with

harvesting, or in ecological terms, numerical responses of species to the density

change of fish resulting from harvestings. The original steady state is at one. The

changes are proportional to the original states. All three fish are harvested by 20% of

their current state, which means that the starting states of fish are 0.8 as shown in the

graph.

Not surprisingly, all three harvested fish species’new steady states are lower

than their original ones. Although the harvesting percentage is 20% for all three

species, the magnitudes in the decrease of the steady state are different. For pollock

the steady state drops by 18%, herring 20%, and Pacific cod 29%. The reason why the

Pacific cod steady state decreases by 29% is because of the population decrease of its

prey, pollock. Recall from Figure 1 that pollock constitutes 21% of the energy to the

Pacific cod. What is more interesting is the indirect influence of harvesting over other

species in the food-web. For example, marine mammals that prey on fish reach a

lower steady state while blue whale, which is a competitive predator to the fish over



36

zooplankton, reaches a higher steady state. The decreases in the marine mammals in

turn affect the populations of the fish they prey on. For example, the population of

pollock recovers to .82 from .80 after a few periods when the populations of its prey

(sea lion, northern fur seal, Pacific cod, and killer whale) population decrease.

Figure 8 below and Figure 9 (in Appendix 9) illustrate the functional responses

of predators, including the prey switching behavior and the energy prices. Usually

when prey is abundant, less energy is needed for the capture of food and a

correspondingly greater amount can be expended on reproductive activity. In GEEM

terms, the energy price for that prey is lower. On the other hand, when suitable prey is

rare, considerable energy must be spent on search and pursuit, or the energy price is

higher. To maximize its net energy, an individual applies “feeding strategies”to lower

the energy costs of search and pursuit. For example, when a certain kind of prey is

common, predators tend to prey more on that species than other prey with higher

energy prices. This is reflected in Figure 8 with an obvious negative relationship

between the energy price and the consumption of each prey of sea lion.

Notice that the consumption of one prey species depends on not only the energy

price of that species, but also on the energy prices for other prey. A simple linear

relationship between energy prices and consumptions cannot explain why in period 2

the consumptions of both pollock and herring decrease about 10%, but the energy

price of pollock increases much more than that of herring. Also we notice that in the

new steady state, the energy prices of all prey are close to the original steady state

energy price (the relative values on the y axis are close to one), but the consumption

of cod in the new steady state is about 10% below the original steady state value. This

prey switching behavior can also be explained by the marginal rule as in an economic

problem. The sea lion, who is maximizing its total net energy, switches prey among
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pollock, herring, and Pacific cod until the ratio of the marginal energy gain from

consuming one more unit of a prey to that prey’s energy price are equal for all three

prey species.

Figure 8: Sea lion’s Consumptions and Energy Prices

A more complicated example of prey switching behavior, the prey preferences

of the top predator (killer whale) is illustrated in Figure 9 in Appendix 9. As the top

predator, the killer whale preys on seven species, two of which, pollock and herring,

are harvested by humans. Similar to the sea lion, the killer whale decreases its

consumptions of pollock and herring when the harvestings start because the energy

prices increase. But over time, the consumptions of pollock and herring converge to

new steady states, which are very close to the original ones despite the fact that the

populations of both fish in the new steady state are lower (see Figure 7). Notice that

the energy prices of pollock and herring converge to the original steady states too.

This can be explained as follows. When the fish densities initially decrease, the

energy prices increase and each killer whale consumes less fish. But that means less

net energy, which in turn leads to decreased killer whale density as shown in Figure 7.

GEEM predicts that lower predator density will reduce the competition among

predators and thus decrease energy prices and increase consumption over time, which

is illustrated in Figure 9. While the consumptions of the fish are almost intact, the

consumptions of prey species which are not harvested are adjusted in order to satisfy

the net energy maximization conditions in GEEM. To be specific, the consumption of
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northern fur seal, sea lion, and sperm whales decreases while that of sea otter and blue

whales increases. These changes in the consumption of marine mammals are

consistent with the population changes in Figure 7. For example, the increase in the

blue whale consumption coincides with the increased density of blue whale while the

decrease in the sperm whale consumption coincides with the increased density of

sperm whale.

2.6 Conclusion and Future Extension

The extended GEEM developed in this essay is used to simulate a 13-species

marine ecosystem dynamics. To improve the prediction accuracy of GEEM as a

population model, multiple predators and prey are added to the model and new data

are used for the parameter calibration. In the empirical simulations, the stability

analysis of the system, the converging path comparison, and the functional and

numerical responses of predators are completed to yield more information on the

interactions within the ecosystem and between the system and the economy.

Basically, GEEM extends economists’ methodology to the ecosystem.

Depending on how well those net energy functions are consistent with the species

behavior and how accurate the parameter calibrations are, the ecosystem simulations

provided by GEEM may be good or not so good. But with no doubt it offers an

ecological framework that can be used either to model predator-prey systems or to

integrate the ecosystem and the economy.

As discussed at the beginning of this chapter, GEEM leaves much space for

improvement. With the multiple species interaction issue being addressed in this essay,

several other possible extensions remain to be explored. For example, we can

introduce harvesting into the calibration instead of assuming that the benchmark
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system is in the steady state, which will give better estimated parameters. Another

possible improvement is to change the species aggregation in GEEM. Although

GEEM provides the microfoundation (the energy flow) for population dynamics, it is

not a real individual-based model in ecological sense because GEEM assumes no

difference among individuals within a species. A population model that focuses on the

individual behavior like GEEM would benefit from distinguishing individuals of

different characteristics.

Besides possible improvements of GEEM, it is also of importance to compare

GEEM simulations with simulations from other ecological models, or better, real data

series. Although GEEM uses economic research tools and serves for economic

problems, it is a population model based on ecological theory in essence and needs to

be tested in the ecologist’s battlefield.
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Chapter 3

REDUCED FORM OF THE GENERAL EQUILIBRIUM MODEL

-----------An Alternative Population Dynamics Model for Interaction Species

In Chapter 1 I raised two questions on the success of integrating the GEEM

(Finnoff and Tschirhart, 2003) with an economic model in application: how can we

improve the prediction accuracy of GEEM as a population model and how well can

variables from one model be effectively incorporated in the other? While the first

question was answered in Chapter 2, Chapters 3 and 4 jointly answer the second

question.

For the purpose of including the GEEM simulations in an economic problem, in

this chapter I apply a vector autoregression (VAR) model to the simulations from

GEEM and derive a linear system for population dynamics of interacting species.

Since the derived population dynamics model is based on the simulations of the

GEEM, I call it “the Reduced Form of the GEEM”, or R-GEEM for abbreviation.

This chapter is organized in the following ways: Section 3.1 presents the

research motivations of deriving R-GEEM. After an overview of nonlinear model

reduction methodology (Section 3.2), a vector autoregression model is built and the

data generation algorithm is discussed in Section 3.3. Section 3.4 reports the

econometric results, analyzes the stability of R-GEEM, and compares R-GEEM and

GEEM from three perspectives: mathematical, graphic, and statistical.

Appendices 10-15 give more implementation details, such as the estimated

matrix in R-GEEM, graphs of R-GEEM and GEEM responding to random shocks,

and Q- statistics for single species under shocks of various scales.
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3.1 The Motivations of the Deriving of R-GEEM

There are two mutually dependent motivations behind my deriving R-GEEM:

one is for the easy application of GEEM in resource management models and the

other is for the contributions to the population ecology literature.

3.1.1 Motivation A -- Application of GEEM in Economic Models

The major reason why I estimate R-GEEM is the technical difficulty researchers

will encounter if GEEM is used in an optimization problem. As discussed in Chapter

II, GEEM can track both the interactions among species in the ecosystem and the

interactions between the economy and the ecosystem, hence performing useful

forecasting and policy-analysis functions. But GEEM variables are not easy to

incorporate in an economics model because GEEM is a general equilibrium system of

implicit functions without explicit solutions. As a result, to utilize GEEM information

modelers have to include the complete general equilibrium model in the setup.

Including the complete GEEM may be achievable in a static model, but will be

troublesome in a dynamic model since the modeler has to run GEEM multiple times

for the population updating. For example, in the discrete time multiple species

harvesting dynamic optimization model that I will illustrate in Chapter 4, to take

advantage of the rich interaction information provided by GEEM, the complete

GEEM needs to be included in the model as the population updating constraints. To

get the global optimum of such a dynamic model, I need to use the numerical

approach, which means that the complete GEEM will be run in each iteration.

Although there are algorithms to avoid slow grid search, and optimization using

simpler GEEM with less species has been accomplished, more complicated GEEM

like the one presented in this paper could cause technological problems and we may
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never be able to find solutions for such nonlinear dynamic problems. One way to

tackle the above technological problem is to reduce the nonlinear GEEM to an explicit

linear dynamic population system, R-GEEM. As will be seen later in this chapter,

R-GEEM is a good approximation for GEEM iterations, and it enables researchers to

solve dynamic optimization problems without losing the advantage of using the

interaction information from GEEM.

3.1.2 Motivation B –Contributions to the Population Ecology Models

Although the initial purpose of deriving R-GEEM is to solve the technical issues

in economic models and offer a feasible method for economists to utilize the

interaction information, R-GEEM also contributes to current ecology research,

specifically the population dynamic models, in three ways.

First, R-GEEM presents a new mass-balanced population dynamics model. In

terms of population dynamics, ecologists have long passed the stage where the logistic

model was the main single-species model and the Lotka-Volterra model was the main

multispecies competition and predation model (Kingsland 1985; Gutierrez, 1996). In

the past two decades, ecologists have paid increasing attention to population models

using mass-balance conditions, feeding interactions, and nutrient flow (Deangelis and

Gross, 1992; Pauly and Christensen, 1993). One of the most applied biomass balanced

models is the ECOPATH model. For example, to evaluate the impact of fishing on the

ecosystem, Arreguin-Sanchez et al (2002) constructed a mass-balanced model of a

benthic ecosystem using ECOPATH software (Christensen and Pauly, 1992a, b). For

those who are not familiar with ECOPATH, it “consists of a set of linear equations

representing each of the functional groups in the ecosystem, and describes the balance

between biomass gains through production and losses, involving predation, fishing
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and other exports” (Arreguin-Sanchez et al, 2002). The major limitation of the

ECOPATH is that it is a static model, though this weakness can be dealt with using

Ecosim, a time dynamic simulation method (Walters et al., 1997, 2000; Christensen

and Walters, 2004). While ECOPATH models shed some light on the biomass flow in

the ecosystem, they fail to provide important theoretical information about the kinds

of dynamic behavior that can emerge from interactions between individuals. As an

alternative biomass model, R-GEEM studies problems that cannot be addressed with

ECOPATH models, such as the biomass flow among individuals, individual

optimizing behavior, or the microfoundation of the population dynamics.

Second, R-GEEM is an attempt to build an ecosystem population model, which

was once regarded “too complex” to build because “we ecologists have more

parameters than we have pockets”(Elseth and Baumgardner, 1981). In recent years,

researchers have attempted to build more complicated and realistic population

dynamics models, such as incorporating environmental factors, management effects,

cohort structures, and stochastic events (Williams et al. 2002). Researchers also have

realized the importance of species interaction in a successful population model, and

some proposed theoretic models for interacting species (Williams et al. 2002). As will

be seen later in this essay, the function form of R-GEEM is consistent with the

general model suggested by Williams et al. (2002). Some researchers have also

attempted to build empirical dynamics models on the base of the ecosystems (Cox et

al. 2002; Weisberg et al. 2002; Tews et al. 2006), although generally such ecosystem

based population models are still rare.

Third, R-GEEM is a prediction model instead of retrospection models in most

ecology literature. Some researchers have been criticizing ecology for its

overemphasis on retrospection and lack of concern with prediction (Peters 1991).
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Using time series technique, R-GEEM is a population prediction model incorporating

past ecosystem information, which enables us to answer the question-- given present

populations, what changes can we expect in the future and how can we affect those

changes to our own ends?

Last but not the least, R-GEEM connects two major methods researchers employ

to model natural phenomena: theoretical models and statistical approaches.

Theoretical population models are based on assumptions, ecological knowledge, and

mathematical equations. While more detail in theoretical models brings more realism,

such descriptions require heavier computation with long simulation times and may be

very difficult to understand. The other approach is the purely statistical approach.

Researchers who prefer this approach usually model the population dynamics as a

function of one or more independent variables, then apply statistical techniques to

estimate the function forms and parameters in the functions. Statistical models can be

quite precise, but without including any biological process they fail to illuminate the

underlying population dynamic mechanism. Unlike most previous research which

applies either the individual-based model or the statistical approach, R-GEEM is a

statistical population dynamics model with a biomass-based ecological model, GEEM,

as its micro foundation.

3.2 Methodology Discussion

To find a reduced form with satisfactory accuracy for a complicated nonlinear

and interrelated system like GEEM, researchers usually tackle the problem from two

directions, mathematical or statistical. In this section, I will discuss the feasibility,

advantages, and disadvantages of both methods.
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3.2.1 The Mathematical Approach

In terms of the mathematical method, Taylor expansion (to certain degree,

mostly one for the linearity) is the most commonly used model reduction method in

the economics literature. The GEEM system discussed in Chapter 2 can be reduced by

following the procedure:

1) Use first order Taylor expansion to linearize 22 first-order conditions from

the net energy equations (equations in Appendix 1) and 22 demand-supply equations

(equations in Appendix 2) around the steady state values of jix , and jie , ;

2) Solve the above linear system for 22 jix , and 22 jie , in terms of 13 iN ,

steady state values, and parameters;

3) Substitute jix , and jie , back to the 13 net energy equations to get the

optimized iR in terms of 13 iN , steady state values, and parameters;

4) Substitute optimized iR back to the population updating equations (equation

7).

5) Use first order Taylor expansion again to linearize the population updating

equations around the steady state values of 13 iN .

Note that the above procedure involves applying Taylor expansion twice, once

in step 1) to solve for jix , and jie , in terms of 13 iN , steady state values, and

parameters, and once in step 5) to linearize the updating equations so that the

population dynamics is a linear system. This extra approximation procedure will add

more noise to the derived system than a normal Taylor approximation.

Systems derived using first order Taylor approximation work well if operated in

linear regime, or small departure from the equilibrium, but work poorly in a more

general case (Chen, 1999). In other words, in the GEEM case, a linear system derived
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from Taylor approximation will predict population dynamics reasonably well when

the state is close to the steady state, but will do poorly once one or more species’

populations move away from the steady state. Note that there is no guarantee that the

perturbations on the equilibrium state in the GEEM are small. In fact, human activities

affect the ecosystem so much that we can extinguish some species.

3.2.3 The Statistical Approach

An alternative approach is to use statistical modeling. Similar to the statistical

population modeling discussed in the last section, using the data from experiments,

simulations, or natural observations researchers can estimate a system without

theoretical perspectives. Statistics helps researchers select the model structure,

estimate the parameters, and test the validity of the model. If applied appropriately,

statistical models can approximate the original system to a quite high precision.

An example of application of statistical models is the VAR (vector

autoregression) model in empirical macroeconomics. First applied by Christopher

Sims (1980) in macroeconomics research to estimate a six-variable, four-lag dynamic

system, a VAR is a n-equation, n-variable linear model in which each variable is

explained by the lagged values of n variables. Since then, VAR has been used by

macroeconomists extensively and has made major impact on new generations (Cogley

et al. 2005). Since VAR provide a consistent and realistic approach to data description,

forecasting, and policy analysis (Sims 1980), it suits my purpose to describe the

GEEM data and generate a reliable reduced form for the population dynamics and

tracking ecosystem responses to shocks.

There are three major uses of the VAR in the macroeconomics literature (Leeper

and Zha, 1999). The first strand is to identify monetary shocks and test whether policy
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shocks have contributed to business cycles (Leeper et al, 1996). The second strand

tests whether the responses to policy shocks predicted by macroeconomics theories

match those that VARs produce (Christiano et al, 1998a, 1998b). The third use

involves forecasts with VAR models conditional on relatively long sequences of

variables (Fackler and McMillin, 2002). The VAR model in this chapter entails all

three uses. I will identify the VAR model (R-GEEM), use R-GEEM to predict the

responses to various shocks, and test whether the responses in R-GEEM match those

that GEEM predicts. For a more detailed summary of the VAR application in

macroeconomics, please refer to the CREI archive for the “Macroeconomics and

Reality, 25 Years Later”conference (CREI, 2005).

3.3 The Econometric Model

Depending on how many lags are in the model, a VAR model is called VAR(m)

where m is the number of lags. After having tried nonlinear function forms combined

with different VAR(m), I choose VAR(3) with linear terms only. For the comparison

of linear and nonlinear estimation of the GEEM system, please see Q-statistics in the

Table 9 in Appendix 12.

3.3.1 The VAR Model Setup

The time-aggregated version of VAR with 3 lags is :

3
3

2
2

1
1

ttttt NNNCN   (20)

where 321 ,,,  tttt NNNN are vectors of populations of 13 species at time t, t-1, t-2,

and t-3 respectively; C is a vector of constants; ,, 321  are 13×13 matrices;

);,0(~ iidt .for0),cov( jiji 
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The matrix  '321 C is called the linear model or VAR matrix

hereafter.

To test the nonlinearity of the system, I also applied a quadratic model:
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3.3.2 GEEM Simulations Generation

My next step is to use time series data generated from the GEEM in Chapter 2 to

estimate 1 , 2 , 3 . To ensure enough dynamics but not too much noise in the

GEEM time series data, I start the populations at their steady–state values, then

randomly add small shocks to any species in the system. In each period, the

probability that no species is hit by a shock is 0.97813 = 75%. That is, the probability

of at least one of 13 species being shocked is 25%. The number of the observations

(time periods) the GEEM generated is 10,000.

Formally,
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where ss
iN is the steady state population pf species i;  is the population updating

function through GEEM; );10.0,0(..~ dNiit
i );1,0(~t

i U ;13,....,2,1i and

.10000,....,2,1t

Since the disturbance terms are not correlated, the VAR system is a seemingly

unrelated regression model (SUR) with identical regressors, which means that the

equations can be estimated separately by ordinary least squares (Greene, 2001). The

GAUSS code for the estimation is available upon request.
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3.4 The R-GEEM Estimate and Econometric Analysis

In this section, I will report the R-GEEM, analyze the stability of the system,

and discuss the similarity of GEEM and R-GEEM from three perspectives: calculated

steady states, graphic comparison, and a formal statistical test using Q-Statistics.

3.4.1 The R-GEEM model

The R-GEEM matrix is reported in Table 5 in Appendix 5. All coefficients are

rounded off to two decimals. While the matrix itself is easy to read, there are two

things worth mentioning: First, the reported matrix corresponds to the linear model,

which is the model I finally chose. I also estimated the quadratic model matrix and

compared it with the linear model using a Q-test (see Table 9 in Appendix 12). The

matrix for the quadratic model is available in Appendix 13 (Table 10). Q-test follows

Cogley and Nason (1995) and I shall discuss the calculation of Q statistics more in

detail in 3.4.3.3.

Second, for easy interpretation, the populations are divided by the steady state

values and the predicted values are proportional to steady state populations. The

matrix will be altered in the next chapter for the dynamic optimization problem so that

R-GEEM predicts the populations in terms of the units used in the calibration, not the

percentage to the steady state values. The matrix used in the numerical optimization

problem in Section 4.3 is reported in Appendix 14.

Third, for easy analysis of the maximum principles in the dynamic problem in

Section 4.2, I change the R-GEEM from equation (20) to

tttt NNNCN   3
3

2
2

1'
1 (23)

Note that 1 becomes '
1 when I move 1t

iN to the left side to calculate
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N , which is a vector of 13 population updating rate.

3.4.2 Stability Analysis of R-GEEM

As discussed in 2.5.1, it is usually difficult to obtain all necessary information

for the community stability analysis. But with the explicit form of R-GEEM, a

mathematical analysis of the ecosystem analysis can be accomplished.

The VAR represented in the equation (20) can also be rewritten as a first-order

model:

1 ttt vYCY   (24)

where
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The stationarity condition of R-GEEM dynamics, which is that all eigenvalues

of the 3939 companion matrix are less than one in absolute value, is satisfied.

The values for roots are in Appendix 15.

3.4.3 The comparison of R-GEEM and GEEM

In this section, I compare R-GEEM and GEEM from three perspectives: the

steady state values, the model outputs, and a formal statistical test, the Q-test. All

three approaches try to answer the same question: how well does R-GEEM resemble

GEEM?

3.4.3.1 Steady State Values in R-GEEM

Since we have proved in Section 3.4.2 that the R-GEEM is stable, the steady
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state values of the system can be calculated by replacing tN , 1tN , 2tN , 3tN in

equation (20) with ssN , then solving for ssN , which gives the formula:

CIN ss 1
3211313 )( 

  (25)

Substituting C, ,, 321  from the matrix in Table 6 to equation (25), I get the

steady state values in R-GEEM, which are reported in Table 7. All 13 values are very

close to 1, the steady state value in GEEM, which indicates a good resemblance at the

steady state of two models.

Table 7: Steady State Values in the R-GEEM

Species R-GEEM SS Value Species R-GEEM SS Value
Phytoplankton 0.999929 Killer whale 1.000725
Zooplankton 1.00056 Herring 1.000434
Kelp 0.999715 Northern fur seal 1.000419
Pollock 1.000401 Blue whale 0.998437
Urchin 0.999642 Sperm whale 1.001689
Sea lion 1.000771 Pacific cod 1.000279
Sea otter 1.000498

3.4.3.2 Graphic Comparison

Further insight into the similarity of R-GEEM and GEEM can be obtained by

looking at the converging paths of these two systems from the same random state, as

plotted in Figure 10 in Appendix 11. The GEEM path is shown by the grey line and

the R-GEEM path is shown by the black line. As before, the vertical values are in

terms of the population percentage of the steady state value.

Species are under various shocks, positive or negative, small or large. This is

incorporated in their starting populations. For example, the starting population of kelp

is 1.34 (34% positive shock) while that of sperm whale is 0.29 (71% negative shock).

R-GEEM and GEEM converge to the same steady state, as proved in 3.4.3.1.

Although the converging paths are close for both small and large shocks, we cannot

conclude that the dynamic mechanisms in the two systems are the same because
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Figure 10 was generated from one random starting point. Should the systems start at

alternative starting points, we would expect both systems to yield different dynamics.

A formal statistical test is needed for assessing whether GEEM and R-GEEM have the

same dynamic mechanisms.

3.4.3.3 Q Test

To test whether the R-GEEM is a good reduced form of GEEM, or to be specific,

to test whether the impulse response functions in R-GEEM replicate the dynamics of

GEEM under various shocks, I use a version of the Q-test proposed by Cogley and

Nason (1995) by computing the generalized Q statistics, which can be defined as:

)()()'( 1
GEEMRGEEMGEEMRGEEMGEEMRGEEM rrVVrrQ 


  (26)

The vectors GEEMr and GEEMRr  represent theoretical impulse response

functions from GEEM and R-GEEM, respectively. They are calculated by averaging

N (=1000) observations generated by GEEM or R-GEEM. That is,





N

i
ijj rNr

1
,)/1( (27)

where j = GEEM, R-GEEM and i is the iteration index. The generation procedures of

the data are as follows: first, 1000 states are randomly chosen. Each state, which

includes populations of 13 species, is input to GEEM and GEEM runs 10 periods to

generate 1000 time series datasets, namely GEEM data. Then the same 1000 random

states are input to R-GEEM, and R-GEEM runs 10 periods for prediction so that

another 1000 time series datasets, R-GEEM data, are generated. The Q-test

compares the resemblance of GEEM to R-GEEM data, or test how well R-GEEM

predicts GEEM dynamics.

Unlike the Q-test in Cogley and Nason (1995) in which the covariance matrix is
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the ensemble average of the outer product of the simulated impulse response functions,

in equation (26) the covariance is the summation of GEEMV and GEEMRV  . V is

computed as

)'()( ,
1

,
1

jij

N

i
jijj rrrrNV  




(28)

where j = GEEM, R-GEEM and i is the iteration index.

The test statistic Q has approximately a 2 distribution with degrees of

freedom equal to the number of elements in r. For the single species test, the

distribution is 2 (L) where L is the number of lags, or the number of time periods in

each observation4 . To make sure that GEEM and R-GEEM are similar both in short

run and long run, I performed a Q test using a 1-period lag, 3-period lag, 5-period lag,

and 10-period lag, respectively. For the complete system test, the distribution is

2(13*L)5.

For the resemblance of R-GEEM and GEEM as complete systems, I test two

competing hypotheses, H0 and H1, which can be stated as:

H0: The R-GEEM and GEEM give the same dynamics;

H1: The R-GEEM and GEEM do not give the same dynamics.

If Q statistic is bigger than the critical value of
2 (13*L), then H0 is rejected in

favor of H1, i.e. R-GEEM and GEEM do not give the same dynamics. Otherwise, we

cannot reject H0 that R-GEEM and GEEM give the same dynamics. In other words,

we cannot reject the hypothesis that R-GEEM is statistically the same system as

GEEM.

4 According to Cogley and Nason (1995), choosing too high a lag order reduces the power of the test
while too low a lag order sacrifices information about the shape of the transitory impulse response
function.
5 130 = 13 * 10 where 13 is the number of the species in the system and 10 is the number of lags.
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Table 8 reports Q statistics for both the linear model (equation 20) and the

quadratic model (equation 22) under various external shocks. As seen in the table, all

statistics are very small compared with the 95% critical values, which means that H0

holds for all models. For simplicity, I choose the linear model as the R-GEEM

structure. Notice that R-GEEM provides good estimate of GEEM no matter the

ecosystem is having big or small perturbations.

Table 8: Q-test for complete systems

Model
Linear Model Quadratic Model

Number
of
Lags(L)

95%critical
value of

2 (13*L)6

Shock
Distribution

Q Statistics Reject H0
at 95% ? Q Statistics Reject H0

at 95% ?
N(0,0.1) 9.06E-4 NO 4.59E-5 NO
N(0,0.3) 9.67E-4 NO 1.25E-3 NO1 22.36

N(0,0.5) 1.05E-3 NO 2.18E-3 NO
N(0,0.1) 0.02 NO 0.02 NO
N(0,0.3) 0.02 NO 0.02 NO3 54.57

N(0,0.5) 0.02 NO 0.02 NO
N(0,0.1) 0.39 NO 0.04 NO
N(0,0.3) 0.04 NO 0.04 NO5 84.82

N(0,0.5) 0.04 NO 3.02 NO
N(0,0.1) 0.25 NO 0.24 NO
N(0,0.3) 0.21 NO 0.20 NO10 157.6

N(0,0.5) 0.42 NO 1.27 NO

Similar econometric analysis can be applied to test single species dynamics.

Two competing hypothesis are:

H0: The R-GEEM and GEEM give the same dynamics for species n;

H1: The R-GEEM and GEEM do not give the same dynamics for species n.

If Q statistics is bigger than the critical value of
2 (10), then H0 is rejected in

favor of H1. As seen in Table 9a-9d in Appendix 12, H0 holds for all species

estimated in R-GEEM for all time lags.

6 Chi squared calculator from http://www.fourmilab.ch.
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3.5 Conclusion

This chapter presents the meaning, process, and results of deriving R-GEEM. A

vector autoregression (VAR) model is applied to the simulations from GEEM and a

linear system for population dynamics of interacting species, R-GEEM, is derived and

tested using a mathematical, graphic, and statistical approach respectively. All tests

indicated that R-GEEM is a good reduced form of GEEM and resembles GEEM

dynamics under various shocks.

This essay partially answers the question raised in Chapter 1 on how we can

incorporate variables from GEEM with an economic model. The economic problems

discussed in the next chapter will complete the answer to this question.
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Chapter 4

INCORPORATING GEEM IN ECONOMIC MODELS

This chapter provides application examples of the GEEM in resource

management, and jointly with Chapter 3, completes the answer to the second question

raised in Chapter 1 on integrating GEEM with economic models in application: how

to effectively incorporate variables in one model into the other? The answer is

comprised of two parts: theoretical models and policy simulations of harvesting in the

Eastern Bering Sea (EBS).

This chapter is organized as follows: Section 4.1 presents an overview of

multispecies models. In Section 4.2, a theoretical model with a profit-maximization

objective and various constraints is set up and maximum principles are analyzed. In

Section 4.3, the multispecies profit maximization model is applied to fishery

management in the Eastern Bering Sea using real data, assuming single owner

property rights. Results from the multispecies and single species approaches are

compared and discussed first, then comparative simulations for parameters are

reported and analyzed.

Appendices 16-21 give more details for the material discussed in this chapter,

such as the estimation of the harvesting functions, more comparative simulation

results for the parameters, etc.

4.1 Introduction

Traditional biological resource management models usually assume the

exploitation of a single stock that exists independent of other species. Take, for

example, fishery management. Most fishery management models are largely
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single-species based (Clark, 1984), although actual fisheries usually involve

multispecies interactions.

The inadequacy of single species based management has become of “increasing

consequence with the tremendous expansion in the intensity of fishing operations and

an increase in the variety and trophic level of species harvested”(Mercer, 1982). In

the past two decades, bioeconomists have taken a more realistic approach to

management. The management of multi-species embraces not only the situation in

which one type of gear takes more than one species, but also the effects harvesting

one species has on other species. In a sense, multi-species fishery means management

of the resource in a region where more than one species coexist and interact with each

other. Clark (1990) divides interactions among resources into two categories:

ecological interdependency which involves biological interactions such as predation

and competition (Anderson, 1975 a, b; Begon et al., 1996; MRAG Americas 2000),

and technical interdependency whereby capture of one species results in capture of

other species (Clark, 1985; Flaaten and Stollery, 1996; Hartwick and Olewiler, 1986).

In this essay, I focus on the role the ecological interdependency plays in multispecies

management approach.

Most researchers agree that although short-term management objectives may be

achievable in ignorance of their ecosystem, long-term, strategic management requires

the consideration of species interactions, or the ecosystem mechanism (Bax, 1998).

With rare exceptions, previous research on the optimal harvesting of species in the

context of multiple species has been confined to two species which either form a

predator-prey system (Goh et al, 1974; Clark, 1976; Ragozin and Brown, 1985,

Strobele and Wacker, 1995; Hartwick and Olewiler, 1986) or a mutualistic system

(Wacker, 1999). For example, Hartwick and Olewiler (1986) analyze optimal
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utilization for two interacting species in a predator-prey system, shark and tuna, and

demonstrate how interesting policy inferences can be drawn from such an exercise.

Wacker (1999) analyzes the case of an optimization model with the context of a

mutualistic system in which two regenerative natural resources interact. Although

humans consume only one of the two resources, the other resource has a positive

value for its positive feedback. Not surprisingly, the author concludes that at the

optimum, society keeps a bigger resource stock than in the corresponding

single-species case, where the positive feedback is neglected.

In recent years, some researchers have proposed the application of the

ecosystem-based fishery management approach (National Marine Fisheries Service,

1999; Brodziak and Link. 2002; Pikitch et al, 2004), which implies more than two

species and more complicated interactions than the models described above. But

according to van Kooten and Bulte (1999), most multi-species models ignore many

important relationships and are partial models due to incomplete information of

ecosystems. Clark (1990) even argues that no marine system has probably been

studied enough for sophisticated multi-species models. For instance, Flatten and

Stolley (1996) examined the economic cost of predation of minke whales on

economically valuable species such as herring and capelin. While they have shown

that the cost of predation depends on the management regime of prey species, they

neglect the interactions among prey species because modeling a more complete

multispecies model of the ecological system proved to be very difficult. With GEEM

or R-GEEM in the picture, it is actually possible to set up and solve complex

multispecies bioeconomic models that involve ecological interdependencies.

Although GEEM or R-GEEM is still a new ecological model the validity of which
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remains to be tested, the multispecies models in this paper can be a further step in

incorporating modern ecological science in economics.

In the rest of this chapter, I shall set up dynamic models depicting the role of

GEEM in the optimal choices of a sole owner’s profit maximization problem. That is,

an intertemporal model of a sole-owner-managed fishery involving multiple species

harvestings is adopted to illustrate how information in GEEM can be used in resource

management. The methodology to solve the dynamic problem is discussed, the

maximum principles are analyzed, and a numerical Alaskan fishery management

model with real data is used as an application example.

4.2 The Model Setup

In this section, I set up a dynamic optimization model in which a sole owner

intends to maximize her total discounted profit from harvesting two species in the

R-GEEM system.

4.2.1 Introduction

As in previous chapters, I use the 13-species marine system GEEM as the

ecological foundation for the dynamics optimization problems. For the technical

reasons discussed in Chapter 3, I use the R-GEEM (in the form of equation (23)) as

the population updating constraints instead of directly including the complete general

equilibrium model in the optimization problem. Since humans harvest pollock and

Pacific cod in this ecosystem, the choice variables are pollock and Pacific cod

harvesting and there are 13 state variables in the system.

Although the dynamic model in this section addresses the optimization problem
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in a particular ecosystem (the 13-species Alaskan marine system), its setup can be

extended to dynamic optimization problems in other ecosystems that are suitable for

GEEM simulations or many other multiple species interaction models. The choice

variables can be more than two and the objectives are, of course, not limited to profit

maximization. Depending on the economy and ecosystem setup, the dynamic models

discussed in this section can have numerous variations, but the underlying principles

are the same. What is worth mentioning is that R-GEEM is only an approximation of

GEEM. That is, if the ecosystem is small enough (maybe a two or three species

ecosystem) or the economic problem (maybe a static problem) is simple enough not to

cause technological issues, GEEM is preferable to R-GEEM as the updating

constraints. The methodology to solve a dynamic optimization problem with GEEM

as constraints is similar to the numerical approach that will be discussed in the Section

4.3 for solving the dynamic problem with the R-GEEM as constraints.

4.2.2 The Sole Owner Profit-Maximization Problem

Now assume that the marine system is managed by a firm with well-defined

property rights or a sole owner who is to maximize her discounted total profits from

harvesting pollock and Pacific cod. Selective harvesting is available and there is no

technical interdependency (Anderson, 1977) between pollock and Pacific cod

harvesting. For simplicity, the owner does not care about other values of the

ecosystem such as tourism. But the harvesting is subject to fishery regulations, which

either set a cap to the harvesting or set a minimum safety population limit for the

endangered species, or both. Depending on the policy setup, the regulatory constraints

can exist in each period or a particular period. If the regulatory constraint exists in

each period, the problem becomes a state constrained one. If the regulatory constraint
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applies to only the last period, it can serve as a transversality condition. Other

assumptions include fixed technology and market price over time, no market power in

either fish markets or input markets, and perfect information for the owner. By perfect

information, we mean that the owner knows current conditions in the ecosystem and

is able to infer the populations in the future through GEEM or R-GEEM.

Using the 13-species R-GEEM as the updating constraint, the harvesting

problem without a minimum safety limit7 is
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Species i are the harvested species, pollock and Pacific cod; ip is the price of

species i; iC is the cost function of harvesting species i, ,0,0 
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δ is the

discount rate in the economy; 21,,  ttt NNN are vectors of populations of all 13

species in period t, t-1, and t-2 respectively; j is the constant term in R-GEEM for

species j; jjj ,3,2,1 ,,  are vectors of coefficients from R-GEEM for species j ; and

 1000000001000A  .

There are two things in the GEEM updating equations that do not exist in a

traditional single species model. First, tN is a vector of all species in the ecosystem.

In other words, this optimization problem has 13 state variables. Second, 21,  tt NN ,

7 A minimum safety limit will be added in next section when a numerical approach is used to solve the
problem. It is left out here to avoid a state constrained dynamic problem so that the economic analysis
of maximum principles is clearer.
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which are the values of state variables in previous periods affect the population

updating of species j in period t. As will be seen below, these elements in the GEEM

updating constraint complicate the solutions to the problem and provide new

perspectives to the economic analysis.

The Lagrangian expression for the problem presented in equation (29) is defined

as
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where 1t
j is the costate variable for species j, and can be interpreted as the value of an

additional unit of 1t
jN in period t+1. Notice that the value is discounted by

1
1

to put it on the same period as the objective function. Thus, the expression in {.} in

(30) is a value from the perspective of period t, and it is discounted by t)
1

1
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
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to the present, and discounted values from other periods are summed to calculate the

present value of the Lagrangian.

First-order conditions with respect to the choice variables are
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Equation (31) and (32) imply that for a harvest strategy to be optimal the

marginal net profit (RHS) from harvesting species i in period t must equal the

opportunity cost (user cost), 1)
1

1
( 


t
j

, which is the discounted value of an additional
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unit of the resource j in period t+1. These are similar to the optimum rules in the

single species case, but since the owner is harvesting two species (two choice

variables), equation (31) and (32) need to be satisfied simultaneously, together with

13 costate variable conditions that will be discussed below.

First-order conditions regarding the costate variables are more complicated and

different from the single species case. For our problem, there are 13 equations for the

costate variables (corresponding to 13 species):
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Equation (33) can be simplified and rewritten as

)
),,(),,(

()
1

1
(

)
),,(),,(

()
1

1
(

),,(
)

1
1

()
),,(

1()
1

1
(

),(

13

1

122
3

122
33

13

1

111
2

111
22

13

1

21
1

21
1














































































mj
and
j m

tttt
jt

j
m

tttt
mt

m

mj
and
j m

tttt
jt

j
m

tttt
mt

m

mj
and
j m

tttt
jt

j
m

tttt
mt

m
m

t
m

t
mmt

m

N

NNNRG

N
NNNRG

N

NNNRG

N
NNNRG

N

NNNRG

N
NNNRG

N
NhC















(34)

Before we continue to explain specific terms in (34), it is worth elaborating on

the meanings of two sets of elements in this costate condition for species m, t
i, and
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partial derivatives
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indicates how species i

influences the growth of species j. The product of the shadow value and the partial

derivative represents the economic effect of a change in species m in terms of value

change of species j. In other words, this product term reflects how the ecological

interaction caused by an ecological variable change ( mN ) can be valued in terms of

economic value. Following Wacker (1999), the summation of the product terms for all

species in the ecosystem is defined as the sum of “multi-species effect”.

While equation (34) looks daunting, its interpretation is actually quite simple if

we compare it with the first-order condition to the state variable in a single species

model which can be written as
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where )( t
mNG is the growth function of mN , and other variables are defined as in

the problem presented in (29).

According to equation (35), in a single species model, when the species is

optimally harvested, t
m , the value of an additional unit of the species in period t,

equals the current period marginal profit,
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is the value of the marginal unit and its marginal growth discounted by one period.

For discussion purposes, I rewrite equation (34) as
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Comparing (34) and (35), we can see that the state variable first-order conditions

for (29) have three extra terms, Z3, Z4, and Z5. Z3 reflects the ecological

interdependencies among species. It is similar to the extra term in a two-species

model which has the following first-order condition:
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where m represents the other species.

In the present model, the ecological interdependency term, Z3, is composed of

12 terms, one for each species except for species m, the growth of which is included

in the second term, Z2. Each of the 12 terms has a user cost of species m, and a “cross

growth rate”,
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, which describes how the stock of species m affects the

growth of the stock of species j. As discussed before, the summation term is defined

as the sum of “multi-species effect”. Depending on the sign and magnitude of each

individual multi-species, a species in the ecosystem may decrease or increase the user

cost of species m, t
m , along the optimal path.

Z4 and Z5 may seem a bit puzzling, but not if we take into account the effect of

21,  tt NN in the R-GEEM updating equation. Z4 can be interpreted as effects of

species m in period t on the values of one more unit of other species in period t+2

discounted to present value. Notice that Z4 is a summation of 13 values, including the

value of one more unit of species m in period t+2. So the Z4 term includes both

inter-species interactions and dynamic (across time) effect. Similarly Z5 represents

how the population of species m in current period t affects all 13 species in period t+3.

Again this term is from the lagged term in the R-GEEM equations. Note that Z4 and
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Z5 come from lags in VAR. Should the R-GEEM take a different form, these two

time lag terms would be different too. A more general analysis is given later in

equation (44) through (47).

As a summary, equation (34), the costate variable condition for the ecosystem

based optimization problem, states that in each period t, the value of an additional unit

of the species m (LHS) equals the summation (RHS) of the marginal profit from

harvesting species m in period t (Z1), the marginal value of species m in period t+1

(Z2), current value of multi-species effects in period t+1(Z3), t+2 (Z4), and t+3 (Z5).

Note that while two first order conditions for choice variables (equation 31 and 32)

are pure economic conditions, equation (34) involves both economic and ecological

information. To satisfy equation (34), not only are traditional economic elements such

as marginal profit, discount rate, and shadow values taken into consideration,

ecological interactions (as partial derivatives terms) are also measured and play an

important role. This is a key difference between single species model and ecosystem

based model. It is this difference that makes ecosystem based model both powerful

and difficult. More discussion on comparing optimal rules of single species model and

that of ecosystem based models can be found in next section when a R-GEEM based

model is applied to an empirical problem.

Now that we have 28 difference equations (2 first order conditions, 13 equations

of movement for costate variables, and 13 population updating constraints) to derive

feasible optimal harvesting rules for pollock and Pacific cod. It is extremely difficult

to solve for closed-form equations for a dynamic system with so many difference

equations. And unlike continuous time models in which we can derive some modified

Ramsey rule at steady state, the analysis on the first-order conditions to our problem

will not yield an explicit harvesting rule. Nevertheless, evaluating equation (31), (32),
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and (34) assuming the system is at steady state can shed some light on the optimal

harvesting choices of the resources. As shown below, we can derive a modified

"fundamental equation of renewable resources" (Clark, 1990).

At steady state, t
j

t
j NN 1 , t

j
t
j  1 , and t

j
t
j hh 1 so that all time subscripts in

the first-order conditions can be suppressed. Taking pollock for example, at steady

state, the first-order conditions for pollock are
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Substitute (38) into (39) and rearrange, we have
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Equation (40) is the modified "fundamental equation for renewable resource" the

interpretation of which is quite straightforward if we compare it with the fundamental

equation for renewable resource in a single-species model:
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As in equation (41), the LHS of equation (40) is the discount rate in the society

and represents the opportunity cost of deferring harvesting one more unit of pollock.

On the RHS, the first term is the marginal net growth rate of pollock. The second term

has been referred to in literature as the marginal stock effect (Clark, 1990), reflects the
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impact of the biomass on the harvesting cost, or values of the stock relative to the

marginal value of harvest. In our model, the larger the size of the biomass, the lower

is the harvesting cost ( 0
4

4 


N
C

), and the greater the net profit from the exploitation of

the resource. The RHS of (41) can be interpreted as the internal rate of return of the

resource in a single species case without lagged values.

Similar to the single species case, for a multiple species model, at optimal steady

state, the internal rate of return of the resource should equal to the discount rate in

society, as shown in equation (40). Compared with equation (41), the internal rate of

return in a multiple species with lagged values, which is represented in RSH of

equation (40) has two extra terms. The third term represents sum of discounted values

from marginal growth of an unharvested unit of pollock in period t+2 and period t+3.

As discussed earlier, this term is from the lagged values in the R-GEEM updating

equations.

The fourth term is of special interest with ratios of shadow prices and cross

species partial derivatives. This multispecies effect term as defined earlier is

composed of two piece of information:
4N

RG j




represents ecological interactions

between pollock and species j , and
4

j represents economic relationship of the two

species. The fourth term reflects the impact of pollock over other species in period t+1,

t+2, and t+3, or the indirect increase of cost due to the harvesting of pollock. The

multispecies effect is discounted to present by multiplying the discount term in the

bracket, which is composed of three discount factors responding to period t+1, t+2,

and t+3 respectively.
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The summation of all four terms in RHS reflects the opportunity cost of

harvesting one more unit of pollock. The fundamental rule requires that the optimal

steady-state values of the harvesting and biomass of pollock satisfy the condition that

the discounting rate in the economy equals the marginal growth rate accounting for

the marginal stock effect and the multi-species effect across three periods, or the

opportunity costs of harvesting and holding harvesting one more unit of pollock are

equal. In other words, the forgone interest the owner can earn from the profit of

harvesting one more unit of pollock should equal the summation of the current value

of reduced harvesting cost, extra pollock growth in the next three periods, and values

changes of other species in terms of pollock values in the next three periods, should

the owner keep that unit of pollock in the sea instead of harvesting it.

A similar analysis can be applied to Pacific cod, which yield the fundamental

equation for cod as
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Combine equation (40) and (42), we have
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Equation (43) can be read as the fundamental rule of a multi-species model and

requires that the opportunity costs of harvesting one more unit of pollock and that of

Pacific cod are equal and coincides with the discounting rate in the economy. What is

worth mentioning here is that there are no clear-cut expectations on the connection of

the multispecies terms in these two harvested species. For example, the fact that the

Pacific cod prey on pollock implies a positive
4

13

N
RG

 and a negative

13

4

N
RG

 in the

usual case, but not in our model. As seen in Figure 1, the Pacific cod and pollock are

connected through another important relationship: both are prey to the sea lion.

Having a common predator implies a positive
4

13

N
RG

 and a positive

13

4

N
RG

 . But

this is not the end of the story. Pollock compete with herring over zooplankton, which

implies a negative
4

9

N
RG



. Herring, however, is connected to the Pacific cod through

their common predator, sea lion. So we have a positive
9

13

N
RG



, which in turn

indicates a negative
4

13

N
RG

 by the chain rule.

Note that all above analysis is based on the VAR(3) R-GEEM derived in

Chapter 3. I chose VAR(3) because having tried nonlinear function forms combined

with different VAR(m), VAR (3) was one of the simplest models yet provided best fit

for GEEM as proved by the Q-test in Section 3.4.3.3. If, however, the updating

equations are not from the VAR(3) R-GEEM but from a more general multiple

species ecosystem with n species and the lag term is not three but s, and the harvested

species is not two but x, the forgoing analysis can still be applied to such problems.

Consider the following problem:
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First-order conditions with respect to the choice variables are
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where i={x}.

And first-order conditions with respect to the state variables are
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(46)

The fundamental rule at steady state can be written as
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where i={x}.

The interpretation of equation (44) through (47) is similar to the discussion on

equation (29)- (43).
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4.3 An Empirical Example of Economics Analysis Using R-GEEM

As discussed earlier, it is difficult to find an exact solution analytically for the

dynamic system of so many variables or analyze its stability. That being said, it is not

impossible to apply the model to solve real optimization problems. An alternative

method, the numerical approach using computers, is available for the solution.

In this section, I apply the profit maximization setup in Section 4.2 to a real

economic problem: the profit maximization by the sole owner in the Eastern Bering

Sea. Real data from the Alaskan fishery industry is used for the parameter calibrations

in the problem. In practice, complex nonlinear optimal control problems are typically

solved numerically by programs like GAMS that are designed to solve large

constrained optimization problems.

Since the objective function is quadratic and constraints are linear, it is a

quadratic programming problem, which can be solved by the Nonlinear Programming

(NLP) package in GAMS. However, it is worth noting that the numerical solution to a

nonlinear programming problem may not be the global optimum. If the software used

to solve the problem is flexible enough, the researcher should check the solution

carefully to make sure that it is reasonable and not sensitive to starting values.

The empirical example applied here is to answer two specific questions: 1) does

the multispecies resource management lead to different harvesting behaviors than

applying the single species approach? and 2) how do the exogenous parameters such

as interest rate and species price affect the optimal choice?

4.3.1 The Benchmark Joint Harvesting Model

First, assume that the Eastern Bering Sea fishery is managed by a sole owner

who harvests pollock and Pacific cod and is subjected to the sea lion minimum safety
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population regulation. The owner has perfect foresight for the ecosystem

(deterministic R-GEEM) and cares about only the current value of total harvesting of

both fish over 1000 periods (there are no ecological values of other species to him).

He has no market power either in the product markets or in the factor markets. That is,

both prices and cost coefficients for pollock and cod are exogenous parameters. There

is no technology interaction between the harvests of two species which is connected

solely through the energy flows in the ecosystem as shown in Figure 1.

Assuming that harvests occur according to the Schaefer harvest function

(Schaefer, 1957) which is commonly used in bioeconomic analysis, I set up the

harvesting function for pollock and cod as
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where i = 4, 13; t
ih is the harvest of species i in time period t; iq is the catchability

coefficient; t
ie is the effort spent on harvesting species i in time period t; ai and bi are

harvesting parameters.

The profit function can be written in terms of harvests as following:
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The benchmark profit maximization model with multispecies management is:
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To simulate the infinite time horizon, I choose to maximize the profit over 1000

time periods. The population updating constraint follows R-GEEM as in equation (23).
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Table 13 reports the parameter values used in the benchmark model. The harvesting

functions are borrowed from Finnoff (2006) who kindly summarized the estimation

process in Appendix 16.

Table 13: Parameter Values in the Benchmark Model

Parameters Values
Pollock(p4) 0.000614Price

($/ million tons) Cod(p13) 0.000489
Pollock(c4) 7.3688Cost

($/ unit of harvesting effort) Cod(c13) 0.3168

Sea Lion Minimum Safety Density (Individual/ KM -1): min
6N 0.0769

Pollock(q4) 4574.616Catchability Coefficient
Cod(q13) 4.2370

a4 0.2245
b4 0.2494
a13 0.6888
b13 0.4506

Note: all monetary values were converted to be in terms of millions of 2000 dollars.

4.3.2 Joint Harvesting Model VS. Separate Harvesting Model

In the benchmark problem stated in equation (49), the owner harvests pollock

and Pacific cod, and chooses two optimal harvestings simultaneously subject to the

ecological interactions among all species in the ecosystem, including the two

harvested species. With perfect information, we know that to maximize the total profit

from two harvestings, the owner should follow the harvesting rules yield by (49). But

what if the owner is not aware of the economic connections (through ecological

interactions) between the two harvested species? Instead of following the multispecies

harvesting problem in (49), suppose she applies single choice variable management.

Will the separate models the owner applies lead to different harvesting behaviors than

the joint model? To address this question, first I need to set up comparable separate

models.

Consider that the owner determines the optimal harvest path based on a

one-species approach, but the problem is subjected to R-GEEM. That is, instead of
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choosing the harvests of pollock and cod simultaneously to maximize the summation

of the profits from two fisheries, the owner chooses the harvests of two species

separately to maximize the profit associated with the specific species. All other

conditions stay the same as in the joint model, including the parameter values and the

multi-species interactions in R-GEEM. The owner's problem becomes two separate

problems presented in equation (50) and (51). Note that (50) and (51) are not

traditional single species models because they take into account the multi-species

interactions presented in the updating equations. The purpose of including

multi-species updating equations in the separate models is to make the optimal

solutions from the joint model and the separating harvesting models comparable. If

we use the traditional logistic single species population model as the updating

equation in (50) and (51), then the optimal rule from the joint harvesting and the

separate harvestings are not comparable economically because more of the difference

is from the ecosystem simulation than from the optimization behavior.

Back to our separate harvesting models, the owner solves:
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Mathematically we expect that the joint model solutions satisfy equation (31)

and (32) simultaneously and its steady state satisfies equations (40), (42), and (43).

However, in a separate model setup, the solutions and the steady states for the pollock

model satisfy equation (31) and (40) while those of the Pacific cod model satisfy

equation (32) and (42). According to the simulation results summarized in Figure 11

and 12, compared with the single species approach, the multispecies resource

management does lead to different harvesting behaviors, which in turn influence the

ecosystem dynamics.

Figure 11 reports the optimal harvesting paths in the joint model and separate

model, respectively. For most of the 1000 time periods, both pollock and cod have

lower optimal harvest levels in the joint model than that in the separate models. A

reason for this result is that both pollock and cod are prey to sea lion8. Because of the

prey switching behavior of the sea lion discussed in Chapter 2, we expect positive

4

13

N
RG

 and

13

4

N
RG

 . That is, the existence of more pollock (cod) provides an

incentive (lower energy price for pollock (cod)) for the sea lion to switch from cod

(pollock) to pollock (cod), thus increasing the cod (pollock) population. In a separate

model, the owners consider the profit from harvesting one species and fails to take

into account how the harvesting affects the density of the other species through the

common predator, sea lion, and in turn affects the profit from harvesting the other

species because of the density variable in the harvest functions. As a result, the owner

tends to over-harvest in the separate model compared to the optimal harvest level in

the joint model in which the owner takes into account two kinds of interactions: the

ecological interaction between the two prey of sea lion (similar to the marginal rate of

substitution), and the economic interaction between the profits from two fisheries

8 Pollock composes 45% of the sea lion diet while Pacific cod composes 5% of the diet.
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(similar to the marginal rate of technological substitution).

Another interesting difference between the joint model and separate models is

the time when the owner’s harvesting jumps. Recall that the optimal harvesting rules

state that in each period t, the opportunity cost of leaving one unit of pollock in the

sea (the interest rate in the society) should equal the opportunity cost of harvesting

one more unit of pollock in period t (the summation of all future generated value from

this unit discounted to period t). Although we have 1000 periods in the problem, this

is not a real infinite horizon problem. As a result, after a certain point of time, because

of shorter time period until the termination point, the discounted summation of future

value of an extra unit of pollock (the opportunity cost of harvesting) drops so much

that it is not worth saving as much pollock for future harvesting as before. While both

the joint model and separate model have shown this jump at harvesting, the jump in

the joint model happens later than that in the separate model. This is consistent with

the behavior difference discussed earlier that the owner fails to take into consideration

how the harvesting of pollock affects the density of cod through the common predator,

sea lion, and in turn affects the profit from harvesting cod because of the density

variable in the harvest functions. Because of this ignorance of the economic value of

the ecological interaction, the opportunity cost of harvesting one more unit of pollock

(discounted summation of all future values) is underestimated, and the harvesting

jump point is earlier in the separate model than in the joint model. Notice that the

discount rate in the society influences the jump point too. More discussion follows

later in the comparative simulation section.

Figure 12 reports harvested species densities over time in joint model and

separate model respectively. For most of the time, pollock density (the upper graph) in

the joint model is higher than that in the separate model while the opposite is true for
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the cod density (the lower graph). Considering that pollock and cod have a common

Figure 11: Optimal Harvesting Path in Joint Model and Separate Model

predator, this finding is quite curious. But we can explain the results easily using the

information on the multi-species interactions in Figure 1. Besides the fact that both

pollock and cod are prey to a common predator, sea lion, there is another important

interaction between these two harvested species, namely the predator-prey interaction.

As seen in Figure 1, pollock composes 21% of the Pacific cod’s diet. A higher cod

density implicitly hurts the profit from the pollock harvesting by reducing the pollock

density through preying. There are also other implicit interactions between pollock

and cod, some beneficial and others harmful. For example, as discussed before more

pollock can harm cod by competing for zooplankton with herring, which is beneficial

to the cod because both herring and cod are prey to the sea lion. In a joint harvesting

model, the owner takes all this interactions into account and the relative salience of
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Figure 12: Species Density in Joint Model and Separate Model
implicit costs and benefits decides what the optimal populations are. For the cod, the

summation of implicit costs from a higher density of cod on the pollock is larger than

the summation of implicit benefits, which explains why a separate model that ignores

those implicit costs on the pollock yields higher cod density than that in a joint model.

Notice that we cannot directly compare the maximized profit from the joint

model with the summation of the maximized profits from two separate models

because in the latter the owner updates the ecosystem assuming there is only one

species harvested while she is actually harvesting both.

4.3.3 Comparative Simulation Study of Parameters

In this section, I will discuss how changes in the parameters in the model affect
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the optimal choices, both in terms of optimal harvesting paths and optimal steady

states.

As discussed in 4.2, an analytical comparative result for this multispecies model

is not forthcoming, because of the complexity and large number of the first-order

conditions. If the updating equations are in continuous time, we can derive a rule for

the optimal harvesting path overtime (similar to the Ramsay rule), then use the

modified Ramsay rule to analyze how changes in the values of the parameters affect

the optimal harvesting choices and states of the ecosystem. Such an approach,

however, is inapplicable with discrete time updating equations. Instead, we can use a

numerical approach to apply a comparative simulation study. In the rest of this section,

I will vary parameter values in the benchmark models to address the question of how

exogenous parameters affect the optimal choice in a dynamic multispecies model.

Discussion on the impacts of discount rate, own price, and cross price are provided

while numerical graphs on the cost parameter and safety minimum rule are reported in

appendixes for readers’reference.

Table 16 lists the parameter values in the comparative simulations. Six

parameters are varied and in each simulation, I vary one parameter using its high or

low value. The benchmark values are the same as in Table 13. All comparative results

are reported in figures in Appendix 17-21.

First, let's have a look at how the discount rate affects the optimal harvest choice

and the ecosystem dynamics, the simulation of which is illustrated in Figure 13a and

13b. In a single species model, a higher discount rate increases the opportunity cost of

lower resource exploitation and is usually associated with faster harvests (Clark, 1990;

Conrad, 1999). While one may be attempted to apply the same reasoning to a

multispecies management model, Figures 13a and 13b tells a different story which is
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not as simple as "the higher the discount rate, the faster the harvests" reasoning.

Table 16: Parameter Values in the Comparative Simulations

Parameters Benchmark Values Low Value High Value
Pollock(P4) 0.000614 0.000307 0.000921Price

($/ million tons) Cod(P13) 0.000489 0.000244 0.000733
Pollock(C4) 7.3688 3.6844 11.0532Cost ($/ unit of

harvesting
effort)

Cod(C13) 0.3168 0.1584 0.4753

Sea Lion Minimum Safety
Density min

6N
(Individual/KM-1):

0.0769 0.0481 0.0936

Discount Rate 0.03 0.01 0.10

In most periods, compared with the benchmark model, the owner harvests

pollock faster when the discount rate is higher, as seen in the first graph in Figure 13a.

This tendency is especially clear when we blow up the first 10 harvesting periods, as

shown in the first graph in Figure 13b where we see three wavy lines with the high

interest line on the top, the benchmark interest line in the middle, and the low interest

line at the bottom. Note that this argument is not absolute since the optimal harvesting

path actually oscillates over time and in some periods the owner harvest more in the

case of a lower discount rate than a higher discount rate (the lines cross sometimes). A

piece of more striking evidence that higher discount rate is not necessarily associated

with faster harvesting (as in single species case) is from the harvesting behavior of

cod shown in the second graph in Figure 3b. Again the owner’s optimal cod

harvestings are shown in three wavy lines. Contrary to the pollock harvesting, the low

interest line is on the top, the benchmark interest line is in the middle, and the high

interest line is at the bottom. This curious result can be explained by equation (40), the

modified "fundamental equation for renewable resource", which is
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Figure 13a: Comparative simulations of the Discount Rate
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Figure 13b: Comparative simulations of the Discount Rate (first 10 harvesting periods)
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Recall that the fundamental equation for renewable resource in a single species

model is:

4
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 (41)

As discussed in Clark (1990), a higher discount rate increases the opportunity

cost of lower resource exploitation (LHS of equation 41) and is usually associated

with faster harvests so that the internal rate of return of the resource (RHS of equation

41) equals the discount rate. In a multiple species model, however, we have two extra

terms, the lagged value term (the third term), and the multispecies terms (the fourth

term) in the RHS as seen in equation (40). Both terms are scaled using the discount

rate, which complicates the impact of changing the discount rate. For example, a

higher discount rate (opportunity cost of deferring harvesting one more unit of the

species) is no longer monotonically associated with faster harvesting because the

higher discount rates in the third and fourth term actually reduce the internal rate of

return of the resource when the marginal growth of an unharvested unit of pollock in

period t+2 and period t+3 (the third term) are discounted to present by multiplying a

lower discount term in the bracket. The fourth term, which is composed of twelve

multispecies effect terms,
44 N

RG jj







, further complicates the analysis since the

multispecies effect, or the indirect increase of cost due to the harvesting of pollock,

can be either positive or negative depending on the signs of j and
4N

RG j




. As a

result, a higher discount rate, or a lower discount term in the bracket before the fourth

term, can either decrease or increase the RHS value.

In summary, when the interest rate increases, it influences the optimal harvesting
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in three ways. First, it increases the opportunity cost of saving the resource for future

harvesting because the owner could earn a higher return if she harvests today. Second,

a higher interest rate decreases the opportunity cost of harvesting the resource today,

because the values of future populations of some species are discounted more if they

have positive value, such as pollock, cod, and their prey. The third effect is actually

the opposite of the second one in that higher interest rate increases the opportunity

cost of harvesting the resource, because some species have negative values, such as

pollock’s and cods’predators. These negative values are discounted more too, which

raises the opportunity cost of harvesting the resource now. For example, when the

owner harvests one unit of pollock today, beside the profit she gets from the

harvesting, she also reduces future populations of pollock’s predators. Since pollock’s

predators probably have negative values to the owner, by harvesting pollock, she

gains another benefit, namely reduced negative values of pollock’s predators in the

future. A higher interest rate makes these reduced negative values in the future worth

less now, which explains the existence of the third effect.

Note that the first two effects of a higher interest rate encourages higher

harvesting by either increasing the opportunity cost of deferring harvesting or

decreasing the opportunity cost of the harvesting, while the third effect reduces

harvesting by increasing the opportunity cost of the harvesting. The three effects

discussed above work jointly to determine whether a higher interest rate is associated

with higher harvesting or not. In the first graph of Figure 13b, for the pollock

harvesting, most of the time the first two effects overpower the third one, which

explains why the higher interest rate line is mostly on the top. Occasionally, the third

effect wins and causes the lines to cross. For the cod, however, the first two effects are

rarely big enough to cancel out the third one, and the low interest rate line is on the
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top. One reason for this curious finding is because cod preys on pollock, which makes

the shadow value of cod smaller. As a result, the second effect, which increases

harvesting, is smaller than if cod does not have a negative effect on the pollock.

Another interesting observation here is the disparity in the harvesting jump

points. As discussed before, the jump in the harvesting reflects a point in time when

the opportunity cost of harvesting one more unit of the resource is reduced so much

because of shorter duration until the terminal point, that it is not worth to save as

much resource for the future as before. Because the jump point is partly determined

by the opportunity cost of harvesting, which is inversely related to the discount rate, a

higher discount rate is expected to be associate with an earlier jump point and a

significantly low discount rate predicts a late jump, possible very close to the terminal

point. This is indeed true in Figure 13a.

As one would expect, the harvest behavior disparity resulting from the different

discount rate also influences the ecosystem dynamics. As seen in the third and fourth

graphs in Figures 13a and 13b, high, benchmark, and low interest population lines

cross with each other multiple times, which indicates that a higher discount rate can

cause either higher population or lower population depending on associated

harvesting.

Besides the discount rate, I also did comparative simulations for species prices

and harvest costs, the results of which are reported in Figure 14-17 in Appendix 17-21.

The first thing I look at is the own price elasticity on harvesting. Economic intuition

expects a positive own price elasticity, which is supported by the numerical results

mapped into graphs in Appendix 17. In the first graph of Figure 14a, a higher pollock

price is linked to a higher pollock harvest over time. Similar reasoning applies to the
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harvesting of pacific cod and is supported by the numerical graph in Figure 15

(second graph) where higher cod price is associated with higher cod harvest.

While the own price elasticity is straightforward, the cross price elasticity,

however, is not so clear-cut. As seen in the first graph of Figure 15, a higher cod price

accompanies a lower pollock harvest for most of the time, which indicates a negative

cross price affect. But in the second graph of Figure 14 in which the influence of

pollock price on the cod harvest is reported, at first a higher pollock price is

associated with a lower cod harvest, then a higher one. While the ambiguity of the

cross price effect is probably caused by complex ecological interactions between

pollock and cod, analysis in Section 4.2 can help us to better understand how the

ecological interactions influence the cross price elasticity here.

Recall that first order conditions for optimal harvesting include:
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From (33), we can derive
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Working together, equation (31), (32), (52) and (53) can partially explain the

irregular cross price elasticity observed in Figure 14 and 14. Consider how the cod

price influences the optimal pollock harvest as an example. Although 13p does not

appear in equation (31) directly, it has an effect on the pollock harvesting, 4h ,

through the shadow price of the pollock in next period, 1
4
t , which is connected to

t
13 through equation (53). t

13 , the shadow price of the Pacific cod is in turn

associated with the cod price according to equation (32). Note that the foregoing

analysis only partially explains the ambiguous cross price elasticity because besides
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the direct connections between those first order conditions corresponding to two

species, there are also indirect connections between cod and pollock through the

shadow prices of other species in the ecosystem according to equation (33).

The impact of the cod price on the pollock harvesting can also be explained in a

more intuitive way if we refer to the ecosystem food web presented in Figure 1. When

the price of cod increases, the owner is tempted to harvest more cod. This increase in

cod harvest driven by higher cod price has at least two effects on the pollock harvest.

1) It decreases pollock harvest because both cod and pollock are prey to a common

predator, sea lion. Increased cod harvest leads to decreased cod biomass, which causes

the sea lion to switch to pollock the population of which will be decreased

accordingly. Because of the marginal stock effect discussed before, the owner will

reduce the pollock harvest. 2) The increase in cod price increases cod harvest because

there is also predator-prey relationship between cod and pollock. Increased harvest of

cod from a higher cod price decreases the cod biomass, which leads to increased

population in its prey (pollock). More pollock in turn implies higher harvest of

pollock. Beside the two conflicting effects we just discussed, there also exist other

indirect effects according to Figure 1. For example, a changing cod price can also be

connected to a changing pollock harvest by herring, which has a common predator

with cod and pollock, and a zooplankton, which is prey to both herring and pollock.

Similar analysis can apply to the comparative simulations for the species costs

as illustrated in Figure 16 and 16 in Appendix 19 and 21 respectively. Again, I find

that the harvest cost of both species have clear negative affect on their own harvest

but the cross affects are vague. Figure 18 in Appendix 21 reports the comparative

analysis of the minimum safety constraint on sea lion. The owner generally harvests

slightly more in the low minimum safety case than in the high one. Although this is
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intuitionally true and supported by Figure 18, the optimal harvesting path is not very

sensitive to the constraint because of the set up of the model and its parameters. A

different model may yield more observable responses. This can be an interesting

extension in future research. Imagine an optimization case in which the discounting

rate is much higher than the example here so that it is optimal for the owner to harvest

much faster (higher harvesting now and lower in the future). However, since both fish

are prey to the sea lion, harvesting more fish will reduce the population of the sea lion.

Although there is no direct quota on the fishing, a bounded minimum safety constraint

actually sets a cap on the maximum amount of harvesting.

What is worth mentioning here is that although the analyses given in this section

apply to this particular problem only, the methodology, the way we incorporate the

economy and the ecosystem, can be applied in general cases.

4.4 Summary and Conclusion

The primary focus of this chapter is on completing the answer to the second

question raised in the introduction chapter: how to effectively incorporate variables in

one model in the other when incorporate GEEM with economic models?

A theoretical multispecies model with the R-GEEM as the updating constraints

is set up and the maximum principles are analyzed first, then the model is applied to

the fishery management in the Eastern Bering Sea with real data, assuming sole

property right.

The simulation results show that in this particular profit maximization problem,

1) compared with the multispecies optimal harvests, the single species approach tends

to over-harvest the resources; and 2) parameters in the optimization problem have
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important effects on the harvest choice and ecosystem dynamics, as predicted by the

maximum principles of the theoretic model.

The methodology used in this chapter can be applied in general case given

necessary data available.
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Chapter 5

CONCLUSIONS

This chapter summarizes the main contributions made by this dissertation and

suggests some directions for further research.

The research presented in this dissertation focuses on answering the two

questions raised in Chapter 1: how to improve the GEEM as a realistic population

model, and how to efficiently incorporate GEEM in economic models.

Chapter 2 answers the first question by extending GEEM from an 8 to a

13-species marine system with several multiple predator-prey relations, and provides

simulations of the ecosystem dynamics under various influences, especially human

activities. Functional and numerical responses in the ecosystem are identified and

discussed. This chapter contributes to ecological as well as economic research.

Chapter 3 uses vector autoregression (VAR) to derive a linear dynamic

population model for interactive species, the reduced form of GEEM. The stability of

the R-GEEM is discussed and the resemblance of GEEM and R-GEEM are tested

using three methods: mathematical, graphic, and statistical. All tests indicate that

R-GEEM is a good estimate of the GEEM.

Chapter 4 applies R-GEEM to the dynamic optimization problem with multiple

species harvesting and endangered species protection plans. This chapter provides

both theoretical and empirical examples of the GEEM applications in resource

management and jointly with Chapter 3 completes the answer to the second question

raised in Chapter 1 on the integrating of GEEM with an economics model in

application.

In many ways, the research reported here is only a first step. In spite of being

quite extensive, several interesting questions have been left aside in this paper:
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comparing GEEM simulations with real data or simulations from other population

models, making GEEM an ecological individual based model by allowing

heterogeneous individuals within a species, introducing uncertainty into GEEM or

assuming imperfect information for economic agent, considering more complicated

economic models such as economies with a richer endogenous dynamics or CGE

model, etc. These are some of the interesting extensions of this work.
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Appendix 1

Net Energy Objective Functions for Representative Individuals

Phytoplankton (labeled as species 1):
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Herring (labeled as species 9):
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10
5.

9,104,1010,810108,109,104,10
2

9,10
2

4,1010

9,104,10109,109,1094,104,10410

))(1()(5.

)()()(

bxxetedxxxxr

xxrxeexeeR





Blue whale (labeled as species 11):

11
5.

2,1111,811118,11
2

2,11112,112,11211 )1()( bxetedxrxeeR 

Sperm Whale (labeled as species 12):

12
2

13,1212
5.

13,1213,1212128,1213,1213,121212 )1()( bxrxetedxeeR 

Pacific Cod (labeled as species 13):

13
5.

4,1313,12131312,13
5.

4,1313,613136,13
2

4,13134,134,13413 )1()1()( bxetedxetedxrxeeR 



96

Appendix 2

Supply-Demand Equilibrium Equations
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Appendix 3

Table 1: The Parameters Calibration Table
Variables Parameters

Populat
ions

Ni
a

(units
km-2)

Biomass or Biomass
Flow
xij

Emb
odied

Energy
e i

Light
Absorp

tion
e0i

Resting
Metabolic

Rate bi

Wei
ght

wi

Predation
dij

bq

Plant
Conges

tion
i

br

Var.
Resp.

ri bs

(kcal
yr-1)

PREDA

TOR
dij

PHYTOPLA
NKTON

87.692
3b

1 unit =
1x10 12

ind.

435.6 0

kg unit-1

400
ad

kcal
kg-1

15150an

kcal
kg-1 yr-1

395,939 aq

kcal unit-1

yr-1

435.
6bd

kg
unit-1

ZOOPL
AKTON

158.093
0.029

5.64
0

PREDA
TOR

dij

POLLO
CK

6.690

HERRI
NG

0.721

ZOOPLANK
TON

162.30
8c

1 unit =
1x109

ind.

1782.7p

kg unit-1 y-1
559 ae

kcal
kg-1

NAao
178270ar

kcal unit-1

yr-1

3.75
7be

kg
unit-1

BLUE
WHALE

0.002

NA 0.08
4

PREDA

TOR
dij

NORT

HERN FUR
SEAL

0.035

SEA
LION

0.482

KILLER

WHALE
0.024

POLLOCK

6.1621
5 d

1 unit =
1000

ind.

7440q

kg unit-1 y-1

1128
af

kcal
kg-1

NAao
1247688 as

kcal unit-1

yr-1

1000
bf

kg
unit-1

PACIFI

C COD
0.672

NA 0.02
4

PREY
xij (kg

unit-1y-1)
POLLO

CK
2663 r

HERRI
NG

132.94 s
SEA LION

0.0961
54e

1 unit =
1 ind

PACIFI
C COD

299.74 s

2000
ag

kcal
kg-1

NAao 853214at

kcal yr-1

250 b

g

kg
0.579 NA

0.21
0
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PREY
xij (kg

unit-1y-1)
SEA

LION
401.0985 t

SEA
OTTER

221.6014 t

SPER
M WHALE

12.03637
3 t

BLUE
WHALE

0.048635 t

NORT
HERN FUR

SEAL

168.5885
50 t

HERRI
NG

82.81998
6u

KILLER
WHALE

0.0077
23 f

1 unit =
0.1 ind.

POLLO
CK

1659.079
7u

NA NAao
651780 au

kcal unit-1

yr-1

399.
6bh

kg
unit-1

NA NA 0.27
5

SEA OTTER

0.0506
31g

1 unit =
100

ind.

255,500 v

kg unit-1 y-1

1810
ah

kcal
kg-1

NAao

32193000a

v

kcal unit-1

yr-1

2800
bi

kg
unit-1

0.067 NA
0.00

05

URCHIN

10.769
2h

1 unit =
1 x 107

ind.

330,000w

kg unit-1 y-1

717ai

kcal
kg-1

NAao

67732500a

w

kcal unit-1

yr-1

8760
0bj

kg
unit-1

2.082 NA 0.00
06

KELP

1076.9
2i

1 unit =
1x104

ind.

21024x

kg unit-1
821aj

kcal
kg-1

650ap

kcal
kg-1

yr-1

819936ax

kcal unit-1

yr-1

2102
4bk

kg
unit-1

22.966
870.81
4

0.00
6

SPERM

WHALE

0.63 j

1 unit =
0.01

ind.

23.03 y

kg unit-1 y-1

2000
ak

kcal
kg-1

NAao
94.78ay

kcal unit-1

yr-1

280
bl

kg
unit-1

0.031 NA
0.48

0

PREY
xij (kg

unit-1y-1)
POLLO

CK
210.51zNORTHERN

FUR SEAL

0.088 k

1 unit =
1ind.

HERRI
NG

37.15 z

2000
ak

kcal
kg-1

NAao
1042.40az

kcal unit-1

yr-1

135
bm

kg
unit-1

0.940099 NA 0.63
7

PACIFIC
COD

2.2323 160 aa 1050
al NAao 54144ba

kcal unit-1
310

bn
PREDA

TOR
dij NA 2.52

9
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SEA
LION

1.021
87 l

1 unit =
100

ind.

kg unit-1 y-1 kcal
kg-1

yr-1 kg
unit-1

SPER
M WHALE

0.514

PREDA
TOR

dij

SEA
LION

0.139

KILLER
WHALE

0.007
HERRING

1.709m

1 unit =
1000

ind.

2890.8 ab

kg unit-1 y-1

1950
am

kcal
kg-1

NAao
484787bb

kcal unit-1

yr-1

180
bo

kg
unit-1

NORT
HERN FUR

SEAL
0.036

NA 0.05
9

BLUE

WHALE

0.0254
n

1 unit =
0.001

ind.

432 ac

kg unit-1 y-1

2000
ak

kcal
kg-1

NAao
1574.94 bc

kcal unit-1

yr-1

64.3
48 bp

kg
unit-1

0.0007 NA
0.00

9

Notes

NA –not applicable or not needed.

a Individuals are aggregated into population units and the units are divided by ocean surface area to yield population units per square kilometer. Pelagic populations are divided by 1.3x106

km2, the approximate area of the EBS, and nearshore populations are divided by 26,000 km2, the approximate area along the Aleutian Islands. Killer whales are divided by both areas.

b An aggregate of multiple phytoplankton producer and saprophage species (Petipa et al. 1970, Table 1). The data are from the Black Sea but assumed to be transferable to the EBS.

Populations in Petipa et al. are given in individuals per square meter; thus, when extrapolating to the EBS, the number of individuals is in an unmanageable sextillions. Consequently for

phytoplankton and other species in Table 1 populations are converted to population units, then placed on a square kilometer basis.

c An aggregate of multiple zooplankton herbivore species (Petipa et al. 1970, Table 1) The data are from the Black Sea but assumed to be transferable to the EBS.

d Finnoff and Tschirhart (2003), page 170.

e The Stellar sea lion population was estimated to be 125,000 (NMFS 2000), and on a km2 basis: 125,000/1,300,000 km2 = 0.096154.
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f Based on 1024 individuals (NMFS 2000). Because killer whale habitat includes both ocean and nearshore systems, the population was divided by 1,300,000 + 26,000 to put on a square

kilometer basis.

g Based on 131,631 individuals extrapolated from Estes and Duggins (1995) estimates of populations in Aleutians island groups.

h Individuals from multiple sea urchin species at 153 randomly selected sites in the Aleutians (Estes and Duggins 1995).

i Kelp density of multiple species is about 10% of urchin at the same 153 sites in the Aleutians (Estes and Duggins 1995).

j Based on 1,900,000*0.62*0.04=47120 individuals in Northeast Pacific. The area is 7,503,000 km2. So the population on a km2 basis is 0.0063 individual, or 0.63 units (Trites et al.

1997).

k Based on 1,200,000*0.55= 660,000 individuals in Northeast Pacific (Trites et al. 1997).

l Pacific cod biomass estimates for the year 1980 are 9x108 kgs (The Bering Sea Ecosystem 1996, pg 91). This is 692.3 Kg/ km2. The average weight of Pacific cod is 3.1 Kg

(http://atn-riae.agr.ca/seafood/mini_pacific_cod-e.htm). So the population density is 2.232387 units/ km2.

m Herring biomass estimates for the year 1980 are 4x108 kgs (The Bering Sea Ecosystem 1996, pg 106). This is 307.69 Kg/ km2 ,which is 1709.4 ind./ km2 since the average weight of

herring is 0.18 Kg ( bo).

n Based on 14,000*0.34*0.04 = 190.4 individuals in Northeast Pacific (Trites et al. 1997).

o A weighted average of phytoplankton species’body weights (4.35615x10-10 kg., Petipa et al. 1970, Table 1), in units of 1 x 1012 phytoplankton.

p A weighted average of zooplankton species indicates an individual weighs 3.757x10 -6 gm. and consumes 130% of its weight in phytoplankton per day (Petipa et al. 1970, Table 1). This

yields a consumption of 1782.7 kg unit-1 yr-1.

q Trites et al. (1997) p. 186. pollock eat mostly zooplankton (Witherell 2000) although adults may eat smaller fish including juvenile pollock. Here their diet is are assumed to be 80%

zooplankton.

r From Appendix D, SAFE, in 1990s Steller diet was 76% fish, of which 69% was groundfish and we assume 60% was pollock. Therefore, of the 5840 kg/yr taken by an individual sea lion

(based on Rosen and Trites 2000), the pollock consumption was (.76) (.60) (5840) = 2663kg/yr.

http://atn-riae.agr.ca/seafood/mini_pacific_cod-e.htm
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s According to Table 4.9 in The Bering Sea Ecosystem, 1996, Stellar sea lion’s major prey types include Demersal fishes, pelagic and semidemersal fishes. In our foodweb, the sea lion’s

major prey include pollock, herring , and Pacific cod. We assume that the proportions of those prey in the sea lion’s diet are the same as the proportion of their biomass in the EBS area.

t Killer whale’s major prey types include and semidemersal fishes, octopus and squids, and marine mammals (The Bering Sea Ecosystem, 1996, Table 4.10). 65% of its diet are fishes, 20%

are squids, and 15% are mammals. It eats 3-4% of its body weight daily. So every unit of the killer whale eats 399.6*3.5%*365*15%=765.73 kg marine mammals (www.seaworld.org) per year.

We assume that around 1980 the proportions of marine mammals in the killer whale diet was the same as the proportions of their populations in the sum of the populations of all marine

mammals in the EBS region as reported in Trites et al. (1997).

u Yearly consumption of fishes by a unit of killer whale is 399.6*3.5%*365*65%=3318.16 kg. 59% of the total biomass of all groundfish in EBS is pollock. We assume that proportions of

fishes in the sea lion’s diet are the same as the proportion of their biomass.

v Otter eat 20-30% of body weight per day and on average an adult weighs 28 kg. (Costa 1978). Otter eat mostly sea urchins (Mason and Macdonald 1986), and here they are assumed to

eat only sea urchins.

w Urchin weighing 0.00876 kg are assumed to grow by 38% in one year to 0.01201 (Estes and Duggins 1995, Table 11). This implies production of 0.003329 and if they consume ten times

their production implies 0.03329 of biomass flow per individual. This is rounded to 333000 per population unit.

x Average biomass of an urchin is 0.00876 kg (Estes and Duggins 1995) and multiplied by the urchin population (vii) yields 943382 kg for the population. Assuming prey biomass is 1.2

times predator biomass (Kerr 1974), and assuming 5% of predation on kelp is by sea urchin, yields a biomass for kelp of 943382 (1.2)/.05. Per population unit this is 21024 kg.

y Sperm whale’s major prey type is demersal fish, which is Pacific cod in our foodweb. The total estimated annual food consumption by the population in the EBS is 952.8x106 kgs, of

which 171.5x106 kgs (18%) is fish (Perez and McAlister 1993). 11% of catch in the Alaska groundfish fishery is Pacific cod. So we assume that 11% of fish in the sperm whale’s diet is Pacific

cod, which gives us 23.03 kg unit- 1 y-1.

z Northern fur seal’s diet includes Waleye pollock, Pacific saimon, Northern smoothtongue, Pacific herring, Pacific sand lance, Gonatopsis borealis/berryteuthis magister, Gonatus

madokai/ Gonatus middendorffi, etc(National Marine Mammal Laboratoty). Trites (1992) estimated 133,000,000 kg of pollock are consumed by northern fur seals in the EBS. So the biomass

flow from pollock to northern fur seal is 133,000,000/660,000=210.51 kg unit-1 y- 1.

http://www.seaworld.com/
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aa In the Gulf of Alaska, Pacific cod’s major diets include capelin, pollock (21%), pandalids, misc. fish, euphausiids, crabs, ect. (Yang 2004, Figure 5). On average, a typical Pacific cod

consume 2715*0.21/130= 4.38 g pollock, which give the yearly biomass of 160 kg unit-1 y-1.

ab Trites et al. (1997) p. 186. Herring feed primarily on zooplankton such as copepods and other crustaceans. Their Consumption/biomass ratio is adapted from Pauly (1989).

ac A blue whale preys primarily on large zooplankton (Pauly, 1998) and eats 3,600 kg of krill (one of zooplankton groups) each day for about 120 days, which is 432 kg unit-1 y-1.From

http://www.buschgardens.org/infobooks/Baleen/dietbw.html, and Zooplankton Laboratory, Fisheries and Oceans Canada,

http://www.pac.dfo-mpo.gc.ca/sci/OSAP/projects/plankton/zoolab_e.htm .

ad Weighted average of caloricity measures of three phytoplankton species groupings (Petipa et al. 1970, Table 7).

ae Weighted average of caloricity measures of three zooplankton species groupings (Petipa et al. 1970, Table 7).

af In a captive situation, 7.2kg d-1 of pollock was fed to sea lions and its energy content was 4.72 kJ g-1 (Rosen and Trites 2000); therefore, the kcal embodied energy in pollock is (4.72 kJ

g-1) (1Mcal/4.184MJ) (1 MJ/1000kJ)(1000kcal Mcal-1)(1000g kg-1) = 1128 kcal kg-1.

ag Estimated based on blubber content in a sea lion versus otter which have no blubber. (Costa 1978) (See w).

ah Estes et al. (1998).

ai Costa (1978).

aj Lembi and Waalan (1988).

ak Assume that embodied energies in the marine mammals are the same as in the sea lion.

al From weightlossforgood.co.uk.

am From weightlossforgood.co.uk.

an A rough rule of thumb is that 10% of the energy taken at one trophic level is passed on to the next trophic level (See, e.g., Pauly and Christensen 1995). Petipa et al. suggest a 20%

transfer rule for ocean communities. Therefore, equate 20% of the energy taken by phytoplankton to the energy taken by zooplankton: (20%) N1 x10 e01 = N2 x21 e1 and solve to obtain e01 = 15150.

kcal kg-1 yr-1. (Note N1 is from b, x10 from 0, N2 from c, x21 from p and e1 is from ae.

http://www.buschgardens.org/infobooks/Baleen/dietbw.html
http://www.pac.dfo-mpo.gc.ca/sci/OSAP/projects/plankton/zoolab_e.htm


103

ao Not applicable because only plants photosynthesize.

ap Using the 20% transfer rule (See an.), equate 20% of the energy taken by kelp to the energy taken by urchin: (20%) N2 x20 e02 = N6 x62 e2 and solve to obtain e02 = 650 kcal kg-1 yr-1.

aq An average of respiration as a % of body weight over multiple phytoplankton species yields 6%. (Petipa et al. 1970, Table 2). Incoming phytoplankton energy is e01 x10 =

(15149.2)(435.6), and 6% of this is 395,939 kcal yr-1.

ar An average of respiration as a % of body weight over multiple zooplankton species yields 25%. (Petipa et al. 1970, Table 2). Calculations are similar to aq.

as pollock are assumed to have an average respiration of 30%. Their incoming energy from zooplankton is 7440 kg unit-1 y-1 559 kcal kg-1 which is then multiplied by 30%.

at For mammals, resting metabolic rate in kcal d-1 (M) is related to body weight (W) by the formula M = 67.61W0.7565% (Kleiber 1975). Using 250 kg as sea lion weight and

extrapolating to one year yields 1603786 kcal yr-1. The RMB used in the simulations is lowered by (76%)(70%) to reflect that sea lions are preying on more than just Pollock, herring, and

Pacific cod (See r and s). 70% is the approximate proportion of three fish prey of sea lion’s in the EBS area’s fish biomass (See r).

au Use the formula from at and an average weight of 399.6 kg. The RMB used in the simulations is lowered to 50% of this figure to reflect that killer whales are preying on more than just

marine mammals and fishes in our food web (See t).

av Use the formula from bg and an average weight of 28 kg and a +5% because otter have high metabolic rates (Costa 1978).

aw Similar to the estimate in ar except urchin are assumed to respirate at about 25%.

ax Calculated as in aq except algae respiration (kelp) is assumed to be 15% of the value of photosynthesis (Petipa et al. 1970, Table 2).

ay Use the formula from at and an average weight of 280 kg/unit. The RMB used in the simulations is lowered by (18%)(11%) to reflect that sperm whales are preying on more than just

Pacific cod(See y.)

az Use the formula from at and an average weight of 135 kg/unit. The RMB used in the simulations is scaled by (210.51+37.15)*660,000/432,400,000=0.378 to reflect that Northern fur

seals are preying on more than just pollock and herring (See z.)

ba Assuming that Pacific cod has an average respiration of 30%. Their incoming energy from pollock is 160 kg unit-1 y-1 *1128 kcal kg-1 which is then multiplied by 30%.

bb Assuming that Pacific herring has an average respiration of 30%. Their incoming energy from zooplankton is 2890.8 kg unit-1 y-1* 559 kcal kg-1 which is then multiplied by 30%.
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bc Use the formula from at and an average weight of 64.348kg/unit.

bd . Finnoff and Tschirhart (2003).

be Average of multiple zooplankton herbivore species (Petipa et al. 1970, Table 1).

bf Average of adult and juvenile, both are taken by fisheries and Steller sea lions. (See d.)

bg Based on weights of immature sea lions in Rosen and Trites (2000) and adult weights in Audubon Field Guide to North American Mammals (1980).

bh Average of male and female adults is 3996 kg (Estes et al. 1998).

bi Average of male and female adults is 28 kg (Costa 1978).

bj Urchins at six locations in the Aleutians averaged 8.76 gm each with a wide variance (Estes and Duggins 1995, Table 2).

bk Kelp are plants; therefore, weight is given in x.

bl Nicole Leboeuf, Texas Marine Mammal Stranding Networking.

bm North Pacific Univeristy Marine Mammal research Consortium.

bn http://atn-riae.agr.ca/seafood/mini_pacific_cod-e.htm.

bo NOAA-NMFS-NWFSC TM-45: Status Review of Pacific Herring (Clupea pallasi) in Puget Sound, Washington, Figure 37b.

bp An average weight for an adult blue whale is about 64,348 kg ( www.seaworld.com ).

bq In population units km-2. Calculated from the short-run equilibrium (i.e., biomass clearing) conditions using benchmark values for populations, biomasses and biomass flows (i.e.,

demands) from the first two table columns.

br Calculated using the plant congestion conditions and assuming that at the benchmark values for populations, biomasses and biomass flows, the plants fully occupy the available water

space.

bs In kcal yr-1. Derived from calibration. The benchmark biomasses and biomass flows were used as parameters in the eight net energy objective functions set to zero and in the nine

first-order conditions to derive values for the variable respiration terms, ri, and the energy prices, eij. The derived energy prices are benchmark energy prices in the simulations

http://atn-riae.agr.ca/seafood/mini_pacific_cod-e.htm
http://www.seaworld.com/
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Table 4: Functional and Numerical Response in GEEM –Box-Cox Estimate

Prey Predators’Functional
And Numerical Response

λ(τ) α(γ) β(δ)

Functional 2.00 -0.4168 18120.3Phytoplankton Zooplankton
Numerical 2.40 2608.5 999.2
Functional 2.00 -0.4304 170520Pollock
Numerical 2.2247 -1.3555 0.2143
Functional 2.00 -0.4870 25743.4Herring
Numerical 2.3110 -0.4192 2.3110
Functional 2.00 -0.5020 574.9

Zooplankton

Blue Whale
Numerical 4.2359 -0.2361 2.8E-11
Functional 1.6538 45841846 421443Kelp Urchin
Numerical 2.0298 4.2109 0.0647
Functional 2.00 9.7428 575406Sea Lion
Numerical 2.3450 -0..4260 0.000267
Functional 2.00 3.5012 223340Killer Whale
Numerical 4.06 -0.2463 4.27E-11
Functional 2.00 -0.4366 3597.7Northern Fur

Seal Numerical 0.9069 -1.0043 0.00386
Functional 2.00 -0.4634 2077.2

Pollock

Pacific Cod
Numerical 2.5585 -0.2222 0.5461
Functional 2.00 45263.1 3.0308E+9Urchin Sea Otter
Numerical 3.0547 -0.2980 0.000013
Functional 2.00 7.8081 836561Sea Lion Killer Whale
Numerical 1.0071 -0.9856 0.000611
Functional 2.00 -5.8061 484972Sea Otter Killer Whale
Numerical 3.00 -0.333 3.577E-8
Functional 2.00 -0.5009 5170.6Sea Lion
Numerical 3.00 -0.333 2.298E-6
Functional 2.00 -0.4996 2006.8Killer Whale
Numerical 4.1360 -0.2418 -1.61E-12
Functional 2.00 -0.4917 403.8

Herring

Northern Fur
Seal Numerical 3.00 -0.3331 6.101E-6

Functional 2.00 -0.4992 161489Northern Fur
Seal

Killer Whale
Numerical 3.98 -0.2510 1.32E-10
Functional 2.0385 -0.4906 0.0426Blue Whale Killer Whale
Numerical -3.00 -730140 -9.49E-10
Functional 2.00 -0.50 115Sperm Whale Killer Whale
Numerical -3.00 -730140 1.738E-11
Functional 2.00 -0.1814 20122.3Sea Lion
Numerical 3.00 -0.333 4.888E-6
Functional 2.00 -0.4881 118.8

Pacific Cod

Sperm Whale
Numerical 0.6915 -0.4131 0.00797

Note: All functional response functions follow equation (12) and all numerical response functions

follow equation (15). All F statistics are significant at 95% level.
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Table 5: Functional Response in GEEM –Holling Type II Estimate

Prey Predators’
Functional Response

a b

Phytoplankton Zooplankton 20.5026 0.00267
Pollock 46.2301 0.00144
Herring 17.9626 0.00144

Zooplankton

Blue Whale 2.6843 0.00144
Kelp Urchin 311.9 0.000217

Sea Lion 435.8 0.0380
Killer Whale 271.5 0.0380

Northern Fur Seal 43.4534 0.0380

Pollock

Pacific Cod 26.1867 0.0380
Urchin Sea Otter 23927.6 0.0217

Sea Lion Killer Whale 4207.0 2.4322
Sea Otter Killer Whale 4414.1 4.619

Sea Lion 78.4523 0.1368
Killer Whale 48.8747 0.1368

Herring

Northern Fur Seal 21.9234 0.1368
Northern Fur Seal Killer Whale 1932.1 2.6576

Blue Whale Killer Whale 1.9291 9.1913
Sperm Whale Killer Whale 19.2684 0.3712

Sea Lion 135.4 0.1048Pacific Cod
Sperm Whale 10.4044 0.1048

Note: All functional response functions follow equation (11) and All F statistics are significant at
95% level.



Appendix 6: Functional Response From GEEM, Box-Cox, and Holling Equation
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Consumption of Urchin by Sea Otter (from GEEM,
Box-Cox, and Holling)
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Figure 5b: Functional Responses of Predators Estimated from GEEM, Box-Cox, and
Holling Equation
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Figure 7: GEEM with Constant Percentage Harvesting
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Figure 9: Killer Whale’s Consumptions and Energy Prices
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Table 6: The R-GEEM Matrix— Linear Model
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Figure 10: GEEM v.s R-GEEM Dynamics
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Table 9a: Q-test for single species (L=1)

Model

Linear Model Quadratic Model

Shock Distribution

Q Statistics Reject H0 at
95% ?

Q Statistics Reject H0 at
95% ?

Species 1 4.27E-11 NO 1.57E-11 NO
Species 2 2.28E-08 NO 9.56E-10 NO
Species 3 4.46E-08 NO 8.23E-08 NO
Species 4 3.44E-08 NO 2.75E-10 NO
Species 5 1.32E-08 NO 1.63E-09 NO
Species 6 3.86E-09 NO 1.26E-08 NO
Species 7 3.49E-09 NO 2.98E-10 NO
Species 8 1.96E-09 NO 2.95E-08 NO
Species 9 1.32E-09 NO 1.12E-08 NO
Species 10 3.37E-09 NO 2.35E-10 NO
Species 11 3.12E-12 NO 7.61E-10 NO
Species 12 4.72E-08 NO 1.68E-08 NO

N(0,0.1)

Species 13 5.12E-08 NO 2.18E-09 NO
Species 1 1.06E-08 NO 1.27E-08 NO
Species 2 8.61E-08 NO 1.50E-07 NO
Species 3 4.73E-08 NO 3.52E-10 NO
Species 4 6.24E-07 NO 1.83E-06 NO
Species 5 1.78E-07 NO 6.71E-07 NO
Species 6 1.16E-07 NO 2.11E-08 NO
Species 7 3.19E-07 NO 4.32E-07 NO
Species 8 1.34E-07 NO 8.13E-09 NO
Species 9 5.11E-07 NO 3.48E-11 NO
Species 10 2.92E-07 NO 1.12E-07 NO
Species 11 7.34E-08 NO 5.92E-08 NO
Species 12 5.19E-08 NO 2.48E-08 NO

N(0,0.3)

Species 13 9.42E-09 NO 1.71E-07 NO
Species 1 9.96E-07 NO 2.70E-06 NO
Species 2 2.81E-09 NO 1.84E-06 NO
Species 3 2.75E-06 NO 9.32E-06 NO
Species 4 5.31E-06 NO 1.37E-05 NO
Species 5 2.86E-08 NO 4.20E-16 NO
Species 6 2.49E-08 NO 1.25E-16 NO
Species 7 1.94E-09 NO 1.30E-06 NO
Species 8 3.72E-09 NO 5.45E-14 NO
Species 9 5.73E-07 NO 5.04E-07 NO
Species 10 1.45E-06 NO 4.88E-07 NO
Species 11 2.80E-07 NO 8.91E-19 NO
Species 12 1.97E-07 NO 5.66E-08 NO

N(0,0.5)

Species 13 1.43E-06 NO 1.65E-12 NO

Note: The critical value of
2 (1) at p=0.05 is 3.84.
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Table 9b: Q-test for single species (L=3)

Model

Linear Model Quadratic Model

Shock Distribution

Q Statistics Reject H0 at
95% ?

Q Statistics Reject H0 at
95% ?

Species 1 1.67E-03 NO 9.03E-04 NO
Species 2 8.01E-04 NO 9.51E-05 NO
Species 3 1.37E-04 NO 6.05E-05 NO
Species 4 1.21E-04 NO 2.23E-05 NO
Species 5 4.62E-04 NO 8.97E-04 NO
Species 6 4.99E-04 NO 4.77E-04 NO
Species 7 5.93E-04 NO 2.92E-04 NO
Species 8 4.12E-03 NO 1.46E-03 NO
Species 9 6.88E-04 NO 4.81E-05 NO
Species 10 5.57E-04 NO 1.58E-03 NO
Species 11 2.32E-03 NO 1.78E-04 NO
Species 12 1.33E-03 NO 2.73E-03 NO

N(0,0.1)

Species 13 1.27E-04 NO 2.09E-04 NO
Species 1 2.79E-03 NO 1.21E-03 NO
Species 2 2.26E-04 NO 9.67E-04 NO
Species 3 2.31E-04 NO 2.17E-04 NO
Species 4 1.26E-04 NO 2.86E-04 NO
Species 5 4.53E-04 NO 5.34E-04 NO
Species 6 1.95E-04 NO 5.63E-04 NO
Species 7 8.54E-04 NO 1.12E-03 NO
Species 8 3.66E-04 NO 3.73E-05 NO
Species 9 1.44E-04 NO 3.74E-04 NO
Species 10 4.17E-05 NO 3.74E-03 NO
Species 11 3.14E-03 NO 1.52E-03 NO
Species 12 1.63E-04 NO 9.26E-04 NO

N(0,0.3)

Species 13 7.02E-04 NO 1.35E-05 NO
Species 1 1.28E-03 NO 1.11E-03 NO
Species 2 2.41E-03 NO 2.25E-04 NO
Species 3 6.13E-05 NO 4.44E-04 NO
Species 4 1.58E-03 NO 9.50E-04 NO
Species 5 3.54E-04 NO 2.11E-12 NO
Species 6 1.46E-04 NO 1.48E-12 NO
Species 7 5.53E-04 NO 1.83E-04 NO
Species 8 2.35E-04 NO 1.10E-09 NO
Species 9 5.14E-04 NO 1.23E-03 NO
Species 10 4.48E-04 NO 9.67E-04 NO
Species 11 2.69E-04 NO 7.91E-12 NO
Species 12 8.11E-04 NO 2.80E-04 NO

N(0,0.5)

Species 13 9.41E-04 NO 2.29E-04 NO

Note: The critical value of
2 (3) at p=0.05 is 7.81.
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Table 9c: Q-test for single species (L=5)

Model

Linear Model Quadratic Model

Shock Distribution

Q Statistics Reject H0 at
95% ?

Q Statistics Reject H0 at
95% ?

Species 1 9.78E-04 NO 1.61E-03 NO
Species 2 2.07E-03 NO 2.45E-03 NO
Species 3 4.55E-03 NO 9.54E-04 NO
Species 4 2.06E-03 NO 1.82E-03 NO
Species 5 7.18E-03 NO 2.25E-04 NO
Species 6 1.96E-03 NO 1.39E-03 NO
Species 7 1.94E-03 NO 1.54E-03 NO
Species 8 9.46E-04 NO 4.68E-03 NO
Species 9 1.42E-03 NO 3.09E-03 NO
Species 10 3.39E-04 NO 3.56E-03 NO
Species 11 1.58E-03 NO 1.01E-03 NO
Species 12 2.87E-03 NO 3.08E-03 NO

N(0,0.1)

Species 13 2.30E-03 NO 3.85E-03 NO
Species 1 9.15E-04 NO 2.49E-03 NO
Species 2 3.52E-03 NO 1.26E-03 NO
Species 3 1.48E-03 NO 2.75E-03 NO
Species 4 3.56E-03 NO 2.78E-03 NO
Species 5 1.03E-03 NO 3.27E-03 NO
Species 6 1.14E-03 NO 1.79E-03 NO
Species 7 2.77E-03 NO 2.81E-03 NO
Species 8 1.74E-03 NO 4.24E-03 NO
Species 9 1.08E-03 NO 3.89E-03 NO
Species 10 7.89E-04 NO 9.59E-04 NO
Species 11 3.83E-03 NO 3.49E-03 NO
Species 12 1.51E-03 NO 7.48E-03 NO

N(0,0.3)

Species 13 5.22E-03 NO 1.48E-03 NO
Species 1 3.28E-03 NO 2.27E-03 NO
Species 2 1.72E-03 NO 2.99E-03 NO
Species 3 3.31E-03 NO 3.47E-03 NO
Species 4 2.30E-03 NO 1.31E-03 NO
Species 5 1.59E-03 NO -3.20E-03 NO
Species 6 1.21E-03 NO -2.12E-02 NO
Species 7 8.56E-04 NO 4.16E-03 NO
Species 8 4.84E-04 NO 4.15E-04 NO
Species 9 6.33E-04 NO 2.07E-03 NO
Species 10 1.81E-03 NO 1.09E-03 NO
Species 11 1.76E-03 NO 1.79E-02 NO
Species 12 2.71E-03 NO 2.21E-03 NO

N(0,0.5)

Species 13 2.14E-03 NO 2.11E-03 NO

Note: The critical value of
2 (5) at p=0.05 is 11.07.
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Table 9d: Q-test for single species (L=10)

Model

Linear Model Quadratic Model

Shock Distribution

Q Statistics Reject H0 at
95% ?

Q Statistics Reject H0 at
95% ?

Species 1 0.03 NO 0.03 NO
Species 2 0.01 NO 0.01 NO
Species 3 0.02 NO 0.02 NO
Species 4 0.01 NO 0.02 NO
Species 5 0.03 NO 0.03 NO
Species 6 0.01 NO 0.01 NO
Species 7 0.02 NO 0.02 NO
Species 8 0.01 NO 0.01 NO
Species 9 0.02 NO 0.02 NO
Species 10 0.02 NO 0.01 NO
Species 11 0.01 NO 0.01 NO
Species 12 0.02 NO 0.03 NO

N(0,0.1)

Species 13 0.02 NO 0.02 NO
Species 1 0.01 NO 0.01 NO
Species 2 0.02 NO 0.02 NO
Species 3 0.01 NO 0.01 NO
Species 4 0.03 NO 0.02 NO
Species 5 0.02 NO 0.01 NO
Species 6 0.02 NO 0.01 NO
Species 7 0.02 NO 0.01 NO
Species 8 0.01 NO 0.01 NO
Species 9 0.01 NO 0.01 NO
Species 10 0.02 NO 0.01 NO
Species 11 0.03 NO 0.01 NO
Species 12 0.01 NO 0.01 NO

N(0,0.3)

Species 13 0.02 NO 0.02 NO
Species 1 0.04 NO 1.05 NO
Species 2 0.06 NO 1.02 NO
Species 3 0.02 NO 0.21 NO
Species 4 0.07 NO 1.04 NO
Species 5 0.02 NO 0.96 NO
Species 6 0.06 NO 0.98 NO
Species 7 0.02 NO 0.02 NO
Species 8 0.06 NO 1.18 NO
Species 9 0.05 NO 1.03 NO
Species 10 0.05 NO 1.03 NO
Species 11 0.03 NO 0.99 NO
Species 12 0.03 NO 1.01 NO

N(0,0.5)

Species 13 0.05 NO 1.04 NO

Note: The critical value of
2 (10) at p=0.05 is 18.30.
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Appendix 13

Table 10: The R-GEEM Matrix –Quadratic Model
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Appendix 14

Table 11: The R-GEEM Matrix Used in the Optimization Problem
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Appendix 15

Table 12: Engenvalues of the R-GEEM Matrix –Linear Model
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Appendix 16

The Estimation of Harvest Functions
David Finnoff

Let:

i
t = annual harvesting profits for )}13(),4({ speciescodspeciespollocki 

i
tN = populations

i
th = annual harvests

i
te = harvesting effort

p i = price of harvested fish
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For pollock, the application is to the “catcher processor”(CP) Bering Sea and

Aleutian Island (BSAI) Walleye (Alaska) pollock (Theragra chalcogramma) fishery.

The CP fleet consists of factory trawler vessels that both catch and process pollock.

The fishery has been limited to domestic vessels and heavily regulated under the

Eastern Bering Sea/Aleutian Island (BSAI) Fishery Management Plan (FMP) since

1991. The FMP regulates the fishery through total allowable catches, variable season

lengths, permits and limited entry, gear restrictions, area restrictions, bycatch limits
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and rates, and allocations (Witherell, 2001).

Complicating the use of data from this fleet are the consequences of regulatory

change in the fishery. Since 1999 the American Fisheries Act (AFA) has limited

pollock fishery access to designated vessels and processors (and has included a

buyout of some vessels) in order to eliminate the race for fish. These regulatory

changes make the standard bioeconomic use of a single measure of effort problematic.

For simplicity we define effort by the number of vessels participating in the fishery.

In the period preceding the initiation of the AFA capacity limitation program, this

single measure of effort can be expected to be a reasonable proxy. But, following

the AFA this measure is fixed by regulation, perhaps losing its explanatory power.

This makes only years of data before 1999 appropriate for use in the estimation.

The data for annual harvests h4t as given by the fleet’s pollock catch in metric

tons, harvesting effort
4
te as given by the number of vessels in the fleet each year, and

the prices per metric ton for pollock pt come from the National Marine Fisheries

Service (NMFS), the Alaska Department of Fish and Game (ADFG), and the U.S.

Coast Guard (USCG) compiled by Terry Hiatt at the Alaska Fisheries Science Center.

The harvest function was estimated using a logarithmic transformation and OLS.

Although only 5 years of data were available at the time of estimation the model

displays a high goodness of fit with an R2 of 0.96 and estimates of the parameters as

given below (with standard errors in parentheses):

Each of the estimated parameters of the harvest function is significantly different

than zero above the 0.1 level of significance.

The price of harvested pollock p4 was estimated from a regression of observed

harvests on exvessel value (for the period of data used in the harvest function

estimation). In this we assume revenues are generated only from sales and therefore
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we forced the intercepts through zero. With all values converted to be in terms of

2000 dollars, the price of pollock was estimated to be p4 = $614 per ton, with

standard error of 33.9414, or significant at better than the 0.001 level (with an R2 =

0.99). Cost of effort c4 was similarly estimated from the rent exhaustion condition

of the open access structure of the fishery over the data’s time series. All costs are

assumed to be attributable to the measure of effort and again we force the intercept

through zero. The cost of pollock effort was estimated (in 2000 dollars) to be c4 =

$7,368,806 with standard error of 310342, and again significant at better than the

0.001 level (with an R2 = 0.99).

Table 14: Parameters in the Pollock Harvest Function

Parameter Estimate P-value
q4 4574.616

(0.9512)
0.0125

a4 0.2245
(0.0740)

0.0937

b4 0.2494
(0.0638)

0.0597

An identical procedure was followed for Pacific cod. To estimate the cod

harvest function, we used a time series (1992-2000) of Eastern Bering Sea (EBS)

catcher processor harvests, effort (given by the number of catcher processors

processing Pacific cod) and cod biomass estimates gathered from Northern

Economics Inc. and EDAW (2001), Northern Economics (2001) and National Marine

Fisheries Service (2003). OLS regression of the logarithmically transformed data

provided a high goodness of fit with an R2=0.91 and coefficient estimates as given

below (with standard errors in parentheses):

While only the estimate of a13 is significantly different than zero above the 0.05

level of significance, given the lack of available data the estimated coefficients are

employed in the simulations.
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Table 15: Parameters in the Cod Harvest Function

Parameter Estimate P-value
q13 4.2370

(5.7146)
0.8090

a13 0.6888
(0.2441)

0.0303

b13 0.4506
(0.4670)

0.3718

The price of cod p13 was estimated as for pollock from a regression of observed

harvests on exvessel values. All values were expressed in 2000 dollars with price

estimated to be p13 = $489 per ton, with standard error of 55.5308, or significant at

better than the 0.001 level (with an R2 = 0.91). Cost of effort c13 was estimated

from the rent exhaustion condition of the open access structure of the fishery over the

data’s time series. The cost of cod harvesting effort was estimated (in 2000 dollars)

to be c13 = $316,843 with standard error of 33363, and again significant at better than

the 0.001 level (with an R2 = 0.92).

In the simulations all monetary values were converted to be in terms of millions

of 2000 dollars.
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Appendix 17

Figure 14a: Comparative Simulations of the Pollock Price
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Figure 14b: Comparative Simulations of the Pollock Price (first 10 periods)
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Appendix 18

Figure 15a: Comparative Simulations of the Cod Price
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Figure 15b: Comparative Simulations of the Cod Price (first 10 harvesting periods)
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Appendix 19

Figure 16a: Comparative Simulations of the Pollock Cost
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Figure 16b: Comparative Simulations of the Pollock Cost (first 10 periods)

3.00E+05

3.50E+05

4.00E+05

4.50E+05

4 5 6 7 8 9 10 11 12 13
Time period

P
ol
lo

c
k

H
a
rv

es
ts

in
M

et
ric

T
on

s

Benchmark model

Low Pollock Cost

High Pollock Cost

1.04E+04

1.06E+04

1.08E+04

1.10E+04

1.12E+04

1.14E+04

4 5 6 7 8 9 10 11 12 13
Time period

C
o
d

H
ar

ve
st

s
in

M
et

ric
T
on

s

5.73

5.76

5.79

5.82

5.85

5.88

4 5 6 7 8 9 10 11 12 13
Time period

P
ol

lo
c
k

D
e
ns

ity

2.11

2.13

2.15

2.17

2.19

2.21

4 5 6 7 8 9 10 11 12 13
Time period

C
od

D
en

si
ty



133

Appendix 20

Figure 17a: Comparative Simulations of the Cod Cost
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Figure 17b: Comparative Simulations of the Cod Cost (first 10 periods)
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Appendix 21

Figure 18a: Comparative Simulations of the Minimum Safety Values of Sea Lion
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Figure 18b: Comparative Simulations of the Minimum Safety Values of Sea Lion (first 10 periods)
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