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DIFFUSION APPROXIMATION OF NON-MARKOVIAN
PROCESSES

By M. FrRaNk NORMAN
University of Pennsylvania

General diffusion approximation theorems are-established for sequences

* of non-Markovian processes. These-theorems cover certain genetic models

previously considered by Watterson. It follows that Watterson’s conclu-

sions concerning these models are correct, even though there is a gap in
his proof.

1. Introduction. Let /= [dy» d,] be a closed bounded interval. For each
N = 1, let {X,”, n > 0} be a stochastic process in I, adapted to an increasing
sequence {% %, n = 0} of ¢-fields. The processes need not be Markavian. The
conditional moments of AX,¥ = XY, — X,¥ are supposed to satisfy conditions
of the form

EQAXY | F M) = tpa(X, ") + €f,,
(1) EQAX Y| &) = oy (X,7) + el
E(AX,"P| %)y = eb, ‘

where 7, > 0 and 7,, —» 0 as N — oo, and the error terms eY, are o(ry) in the

sense that, for any ¢ < co,

(2) T nctien E(l1) =0 as N— oo .
CLet X¥(f) = X[}, ,pplet0 <1, < 1, < - < 1y, and let = denote convergence in

distribution. Our main result, Theorem 1, gives conditions on a and & that

insure that (X7(1,), - - -, X¥(t)) = (X(1,), - - -, X(&)y as N — oo and X¥(0) = X(0),

where X(#) is a diffusion whose transition kernel, P(z; x, 4) = P(X(r) € A| X(0)= x),

satisfies the following conditions, which are analogous to (1):

V1 (y — 0P(z; x, dy) = ta(x} + ez, %),
3) 2y — 0P(z; x, dy) = tb(x} + ey, %),
; $71y — xPP(z; x, dy) = ez, x) .
Here the error terms e(r, x) are o(r) in the uniform sense:
4) . sup,.; |efr, )|/t - 0O as t—0.

Let Ci be the set of functions with j continuous derivatives throughout /. At
the boundaries 4, these derivatives are one-sided.

THEOREM 1. Suppose that a e C*, a(d)) = 0, and a(d,) < 0; and that b admits a
factorization b(x) = a(x)a,(x), where a, satisfies the following conditions: a ¢ C,
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6(d;) = 0, 6,(x) > 0 ford, < x < d,, p(x) = 64(x)[(64(X) + ¢,(x)) is non-decreasing -
fordy < x < dy; and; letting p(d;) = lim,_, p(x), pe C*. Then there is a unique
“transition ‘kernel P satisfying (3) and (4). If X*(0) = X(0) as N — oo, then
(X¥(t), - - X)) = (X(t,), - -+, X(te)) as N — oo.

Though the condition on b in Theorem 1 is undesirably complicated, it is not
very restrictive in applications. The condition implies that b ¢ C?, b(d,) = 0,
and b(x) > 0 for d, < x < d,. If, conversely, b is analytic throughout 7 with
b(d;) = 0 and b(x) > 0 onthe interior of /, the condition of Theorem 1 is satisfied.
For let j, be the order of the zero at d;. Then h(x) = b(x)(x — dy)~7o(d; — x)~#
is analytic and positive throughout /; so k(x)*e C®. Thus we can take g,(x) =
(x — dy)¥oh(x)t and o,(x) = (d, — x)#1h(x)}. In the genetic applications considered
in Section 4, 7 = [0, 1], a is a polynomial, and &(x) = ¢x(1 — x), where ¢ > 0.

Theorem 1 is an extension of Theorem 9.1.1 of [5] to non-Markovian processes.
The latter theorem includes the existence and uniqueness of P. It is noteworthy
that the uniformity condition (4) can be used in place of conventional boundary
conditions to determine P uniquely. The proof of Theorem 9.1.1 shows that the
-equation

T, f(x) = $ f()P(t; x, dy)
defines a strongly continuous conservative semigroup on C = C® (supremum
norm). Let I' be the generator of this semigroup, and let Z2(I') be the domain
of I'. Then T, is the unique strongly continuous conservative semigroup on C
for which 2(I') o C? and
‘ Tf(x) = a(x)f"(x) + 27'6(x)f"(x)
for fe C* and x e I ([5] page 150). In terms of the Feller boundary theory, exit-
boundaries are adhesive (I'f(d,) = 0 for fe &(I')) and regular boundaries are
reflecting ((d/dp)f(d,) = 0 for fe T), where dp(x) = e 2 dx and dB(xj =
2a(x)b(x)~* dx) ([5] page 148).

The possibility and desirability of extending Theotem 9.1.1 of [5] to non-
Markovian processes was suggested by art interesting paper of Watterson [6].
Watterson’s result is similar to the special case of Theorem 1 corresponding to
k=1, b(x) = cx(1 — x) and a(x) a third degree polynomial. Unfortunately,
there is a large gap in Watterson’s proof. Let Fy(x, n) = P(X,¥ < x) and
F(x, u) = P(X(u) £ x). The transition from A

limy ., §& e~ Fy(x, [N™u]) du = (" e=*"F(x, u) du
to o
(5) lim,_. Fy(x, [N™u]) = F(x, u)
at the bottom of page 950 of [6] cannot be justified by “the uniqueness theorem

for Laplace transforms.” (Watterson’s N™ corresponds to our r,~'.) Standard
continuity theorems ([3] page 433) yield, not (5), but the integrated version

lim,,_, {§ Fy(x, [N™u]ydu = {} F(x, u)du .
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Watterson’s paper is oriented toward applications to two genetic models, one
with overlapping generations, the other with non-overlapping generations. These
applications are described in detail in a later paper [7]. In Section 4 we will
show that these models fall within the scope of Theorem 1. Guess [4], using

Watterson’s result as a lemma, proved weak convergence of the distribution of
the process {X?(?), t = 0} for a class of models that includes the non-overlapping
generation model. Theorem 2 of Section 3 is a weak convergence theorem that
complements Theorem 1 and applies to both of the models con51dered by
Watterson.,

2. Proof of Theorem 1. We first show that, for n = m and fe C,
(6) E[JE(AX,)| 5 3) — Tipem f(Xn)l] ‘
< 25 ElE(@0(X50) | F75) — Teg,na(X)I]
where g; = T,_;,.f and N’s have been suppressed. Clearly

f(Xn) - T(n—m)z-f(Xm) = gn(Xu) - gm(Xm) = Z (g_1+1( +1) g.?(XJ)) y

Hence '

E(f(Xn)l m) - T(n 'm)rf(Xm) - Z;l 1ln E[gl+l(X +l) - g:(X)l‘grm]

_-= J:nE[E(gJ+1( +1)|*g”7—)"’g(X)| m]

Taking absolute values and expectations on both sides of this equality, and noting
that g, = T.g,,,, we obtain (6).

Let L be the subspace of C* consisting of those functions whose second deriva-
tives satisfy the Lipschitz condition

M(g") = sup,,, ~—-—'g"(’|‘) ]"y N < oo,
—-J
Forge L, let
llgll = 19| + 19”| + M(g") ,
where ||, is the supremum norm. Any function g in L possesses a Taylor
expansion
9(y) = 9(x) + (y = g'(x) + 27y — *)’¢"() + Ay — 'M(¢g").,

where |2| < 4. For the remainder in the first order Taylorfexpansion is

90) — 9(x) — 89'(x) = &* {5 (1 — 5)g"(x + s0) ds
= 2710%9"(x) 4+ 0* §5 (1 — s)(9"(x + s8) — g"'(x)) ds,
where § = y — x, and the last term on the right has absolute value at most

[0PM(g") §3 (1 — s)sds = 67'|8|°M(g") .

Hence, in view of (1),

E@(X;0) | F) = 9(X;) + 7Tg(X)) + Allgl| i lecsl
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where |4| < 1. By (3), T.g has a similar expansion, so

(M) E[E@X;) | -) — T:9(X)I] < llgll Zi-i[E(es,s) + sup.e;|eds, 0] -
The following lemma is a by-product of the proof of Theorem 9.1.1 (see [5]

(3.8) page 150). 'We shall have more to say about it at the end of the section.

Lemma 1. T, maps C* into L. Moreover, for any fe C® and K < oo,
SUP, g || T, f| < oo

Applying (7) tog,,, = T(,, . forfe C?, using Lemma 1 to estimate ||g,.4||,
and combining the result with (6), we obtain -

& ElE(fX, N2 = Toneme X))
' S K i l(n — mysup.e; ey, X)| + 257m E(lel;])]
for some constant K’, provided that (n — 1)z, < K.

. Suppose now that 0 < 5 <t and let n = [t/ry] and m = [s/z,]. As a con-
sequence of (2) and (4), the quantities on the right and left in (8) approach 0
as N— oco. But(n — m)r —t — sas N— oo, and, as noted in Section 1, the
semigroup T, on C is strongly continuous with respect to the supremum norm,
SO T(,,_m,,f(x) — T,_,f(x), uniformly over x, as N —» . Thus,
®) E[JE(AX(N]-Z7() — T XN — 0
as N — oo, where F¥(s) = S# ¥, Since C? is dense in C, (9) holds for all
feC. It follows from (9) that

E(f(X" (1) — E(T, f(XV(s)))
= E[E(f(X" (| Z() — T XY ()] = 0.
Taking s = 0, and noting that T, fe C, so that
- E(TAX7(0))) — E(T.f(X(0)))
: = E(f(X(1))) ,
we obtain E( f(X(1))) — E(f(X(*))) as N — co. _
Suppose, inductively, that (X¥(t), - - ., X¥(1,)) = (X(1,), - - -, X(t,)) for some
kz1l. If feCfor l Sigk 4+ Land0 S, <1, < -+ < 1y, then
E[TL fu XY ()] = E[Tia fd XY EDESen(X (1)) [ (10)]
= E[Hf:xfi(XN(ti))TzH.l_zkfk+1(XN(t}g))] + 3y,
where 4, — 0 by (9),
. — E[H?:lfi(X(ti))Ttk+1—tkfk+l(X(tk))] >
by the induction hypothesis,

= E[I17 fu(X(1))] -

Thus k in the induction hypothesis can be replaced by k& + 1, and the proof of
Theorem 1 is complete.
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Since the boundedness assertion of Lemma 1 is the key to the proof, it is
- worthwhile to review briefly how this boundedness was established in [5]. This
review also gives some insight concerning the origin of the assumption concern-
ing bin Theorem 1. Let V_f(x) = E(f(X;,,) | X,® = x) for the discrete parameter
Markov process X,° that moves from x to x + ra(x) + rlo,(x) with probability
P(x) = a(x)/(o4(x) + 0,(x)) and from x to x 4 ra(x) — rig,(x) with probability
1 — p(x). It-wasshown by direct calculation that thete is a constant y such that
V1l < e|if|| for >0, n = 0, and fe C* ([5] Lerhma 2. 2, page 142). But
V. — T,f uniformly as r — 0 and nr — ¢, and it follows that ||T, f]| < e™||f]|.
We remark that it would be desirable to have an alternative proof of Lemma 1
based on semigroup atid differefitial equation théory. For an illustration of such
methods in a similar context, see [2].

3. Weak convergence of the distributioir of X*(.). Forany K > 0, let D be
~ the space of real-valued functiors ot [0, K] tHat are right-continuous and have
left-hand limits. Let D, be equipped with the Skorohod J; topology ([1] Section
14), and let — dendte convergence in disttibution for rasidom elements of .D.

THEOREM 2. Suppose that the hypotheses of Theorem 1 hold, and that, in addi-
tion, there are cofistants G, stich that

(10) ; |EQAX,Y | F )| £ Gy
and
(1 Var (AX,¥|.%.,%) < Gz,

as., for N> landn = 0. Then, foranyl(>0 {X¥(1), t<K}=>[X(t) t < K}
as N — oo.

ProoF. According to Theorem 15.6 of [1]; it suiffices to stiow that there is a
constant H = H, such that -

E[(X™(r) — X¥(t)X(XV(t;) — X¥(1))'] < H(t, — 1,)°
forall0 <t <t <1t, < K. For this it is sisfficient that
(12) E[(X,Y — X, ¥Y| S ,¥] < H'(n — m)e
for0<m<n< Ky,

Following Guess ([4] page 294), we write

(13) X, — X, =XxunV,+ N W,
where
v, = BAX;|.5)
and
: W, =AX, — EAX;| 57).
By (10),
(14) (232 V) = Gi(n — my’c®

< G2K(n — m)z .
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By (11)

S a) = E(Var (AX; |L7“)|§‘ ) < Gyt
hence
(15) E(Z3zm Wil F a) = Lizn E(W | F0)

< Gy(n — me..
Combining (13), (14), and- (15) we obtain (12).

- 4. Two genetic models. The models considered by Watterson [7] are relevant
to a population of N diploid individuals. Of these, N, are males and N, are
females. The three genotypes, aa, aA, and AA have frequencies k, N, — k — [,
and / among males, and r,, N, — r — s, and s among females. The successive
" values of the vector (k, [, r, s) form a Markov process in both models. However,
interest centers on the average

X =27 4 45Nk — 1) + 4NN — 5)

of the relative frequen01es of the a gene in the two sexes, and the trajectory of
this variate is non-Markovian.

Variations in X are controlled by two mutation parameters, «, and a,, two
selection parameters, v, and v,, and a nonrandom-mating parameter f. The latter
is fixed as N — oo, but the former are assumed to be inversely proportional to
N; Na, = &, =z 0 and Ny, = 5, are constant. Moreover NN = r; > 0 is fixed.
- Let X7 be the value of X after n steps, and let %7, ” be the o-field generated by
the values of k, [, r, and s after j steps, j < n.

The significance of a single step is different in the two models. One is of the
Moran type, with overlapping generations. Each step of the process corresponds
~ to the death of a single individual and the birth of another. The other model
is of the Wright-Fisher type. Generations are non-overlapping and the entire
population  is replaced at each step of the process.. The step-size parameters
- for the overlapping and non-overlapping generation models are, respectively,
ty, = N?and t, = N.

In both models, the function a of Theorem 1 is

a(x) = &(1 — x) — ayx
— x(1 = D[ = N)x + f] + 2(1 — )1 = %) + [T} -
For the overlapping generation model,
b(x) = 47+ (L 4+ Nx( — %),

- while b(x) is half the quantity on the right for the other model. Lemmas 2 and
3 give estimates of the error terms e, in (1).

LEMMA 2. For the overlapping generation model,

E(le?,]) < et i + clem™ry
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fori=1and2,n20,andall N. Also
E(le}.)) < ctyt.

LemMma 3. For the non-overlapping generation model, |e¥ | < Gty a.s. fori = 1

‘and 2 and n =0, E(el.|) < ct,} for n =2, E(el,|) < cry? for n2 1, and

E(je},]) < ctyt for n = 0. In all cases these estimates hold uniformly over N.

These estimates can be obtained by lengthy but, for the most part, straight-
forward calculations, using the suggestions in [7]. It follows immediately from
these estimates that (2) is satisfied. Moreover it is very easy to show that (10)
and (11) hold. Thus Theorems 1 and 2 apply to both models. We conclude
that the gap in Watterson’s proof does not alter the correcthess of his conclusion
that diffusion approximation is applicable to these models. o
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