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AN ERGODIC THEOREM FOR EVOLUTION
IN A RANDOM ENVIRONMENT
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Abstract

Let w;, wi; and w, be the fitnesses of genotypes A, A, A, A, and A,A; in an
infinite diploid population, and let p, be the A, gene frequency in the nth
generation. If fitness varies independently from generation to generation, then
p~ is a Markov process with a continuum of states. If E[In(w,/w..)] <O for
i = 1,2, then there is a unique stationary probability, and the distribution of p,
converges to it as n — .

GENETIC MODELS; RANDOM ENVIRONMENTS; MARKOV PROCESSES; ERGODIC
THEORY

1. Introduction

Consider an infinite monoecious diploid population with two alleles, A, and
A,, at some locus and A; gene frequency p. in the nth generation. If mating is
random, and the genotypes A:A;, A1A;and A,A, have fitnesses w,, wy; and w,,
then p, satisfies the classical difference equation

PaWi+ PugaWi2
Pawi+2p.g. Wi+ qaws

pn+l =

(g = 1—p). We shall assume, throughout the paper, that all fitnesses are strictly
positive, and 0 < p, < 1. Without loss of generality, we take w;, = 1.

The trajectory of p, when fitness is constant over time is well understood (see,
for example, Ewens (1969)). Recently, several investigators have attempted to
model random temporal variation in the environment by introducing random
fitnesses wy, and w,,. We mention the work of Gillespie (1973), to whom we owe
our interest in this subject, and a paper of Karlin and Lieberman (1974), which
contributes a variety of new results and reviews a number of earlier studies. The
main thrust of this work is that random variation in fitness greatly enhances the
ability of this model to interpret polymorphism.

Having determined that w, = (w.., w,,) is to be regarded as a stochastic
process, it remains to specify its properties. A rather natural assumption is
stationarity, but we shall impose the stronger condition that the random vectors
w,., n =0, are independent and identically distributed (and independent of po).
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Their common distribution is denoted II (II(A) = P(w, € A)). The dependence
between w,, and w,, is unrestricted. It is assumed that, for some ¢ >0,

m E (exp (e |In wy, [)) < o0, i=1,2.

This is certainly true if w;, is bounded away from 0 and .

The assumption that the random vectors w, are independent and identically
distributed implies that {p., n = 0} is a Markov process in (0, 1) with stationary
transition probabilities. Let #(po) be the distribution of po, and let = denote
convergence in distribution. The purpose of this paper is to prove the following
ergodic theorem.

Theorem. If E(Inw,,)<0 and E(In w,,)<0, then {p., n =0} has a unique
stationary distribution, u. For any ¥(po), p, = 1 as n —> .

Gillespie (1973) made the fundamental observation that the behaviour of p,
near 1 (0) hinges on the sign of E(In w;,) (E(In w;,)). Clearly E(In w;,) <0 is not
inconsistent with E(w;,) > 1. Thus both conditions E(In w;,) < 0 of the theorem
can be satisfied, so that a polymorphism is maintained, even though E(w,)>1
and E(w,,) < 1, a situation which would produce fixation of A, in the absence of
environmental variation. Karlin and Lieberman (1974) indicate that convergence
of ¥£(p,) is a very general phenomenon, even for dependent fitness processes
{w., n Z 0}, but they give no proofs.

2. Two lemmas

Let X, be the Markov process X. =In(p./q.), with state space R =
{—=,%). We begin the proof with two lemmas.

Lemma 1. For any A with | A | sufficiently small, and any initial state x € R,
the sequence {E.(exp (AX.)), n =0} is bounded.

This implies that {#(X. | X, = x), n =0} is tight, and
E, (liminfexp(AX,)) <o,

by Fatou’s lemma. (We write lim inf a, instead of lim inf,_..a..) Consequently,

) liminf X, <o
and
3) limsup X, > —

almost surely (a.s.). Thus we can see already that fixation of either allele has
probability 0. The proof of Lemma 1 for A >0 depends only on (1) and
E(In wy,) <0, hence (2) holds under these conditions. Lamperti’s ((1960),
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Theorem 3.1) methods can be adapted to show that (2) holds even when
E(In wy,) =0, provided that var (In w;,)>0 and |In w;, | = K for some constant

Kandi=1,2.
For x € R =[—®, x|, let
- - M)
@ 3(x) = 5(x, w) = In (B2 4),

where x =1In(p/q). Then
AX, = X1 — Xn = S(Xn, wn)a
P(AX.E€B|X, =x)=1(8(x)€ B),

and

® E(fAX)[ X, =)= [ £(5(x w)iw)

for x € R.

Proof of Lemma 1. For fixed w, 8(x, w) is monotonic in x, with §(—o, w) =
—In w, and 8()=In w,, hence

6) |8(x, w)|=max{Inw,|, |Inw:|}

In view of (5),

) E(e*™™ X, =x)=K,

where K = [fe*"™ITI(dw)+ [e*"™"4I(dw) is finite by (1). Also (5), (6) and the
dominated convergence theorem imply

8) EQAX,. | X.=x)—a

as x = o, where a = fIn w,II(dw) <0.

The remainder of the proof for A > 0, which we now present, depends only on
(7) and (8), hence does not require [In w,II(dw) < 0. The proof for A <0 is
similar, and does not require fln w,II(dw)<0.

Taylor expansion yields e” =1+ y+27'y% ", where 0=b =1, hence, for
A <eg,

E(e*** | X,=x)=1+AE(AX,|X.=x)
® ‘
+ 27N E((AX, e | X, = x).
In view of (8), there is a constant, k, such that E(AX, | X, = x)=27"a for x Z k.
Moreover,

27HAX )= (e — A ) e TIRN,
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so it follows from (7) that the last term on the right in (9) is at most A*(e — A)°K.
Therefore

E(e;\AX’|

X.=x)=14+2"ar + A% (e —A)°K
(10)

= )

for x = k. Since a <0, thereisan ¢’ € (0, ] such that0 < a, <1forO< A <e'.
It follows from (10) that

E(e™™ | X, = x)= ane™
for x = k. As a consequence of (7),
E(e™+| X, = x)= Ke™
= Ke™
_ for x =k, hence
E(e* | X, = x)= axe™ + Ke**
for all x € R. Therefore
E. (e )= a,E. (e™") + Ke™,
and thus, by induction,
E.(e)=aje™ +(1—a ) 'Ke™.
This completes the proof.
For x € R, let
P'(x)=TI(6(x)>0) and P (x)=II(6(x)<0).

Lemma 2. If c€(—»,©], and P"(x)>0 for all x €(—o,c), then
limsupX.2c¢ as. If cE[—»,x), and P (x})>0 for all x €(c,»), then
liminf X, =c a.s.

The first statement of Lemma 2 can be rephrased as follows. If P(X,.1>
x| X, =x)>0forall x € (—»,c),then P(X, > x i.0.)=1forall x €E(—,c).

Proof. We bégin by showing that, for any y ER and y €ER,
(11) liminf,_, [I(8(x)>y)Z(6(y)> y),

i.e., [I(8(x)>v) is a lower semicontinuous function of x € R. Let x(u)=1 if
u>+vy and y(u)=0if u = 4. Since 8(x, w) is continuous in x for each w, y is
continuous except at vy, and x(y)=0, it follows that y(8(x,w)) is lower
semicontinuous in x. But
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(3(x)> v)= | x(60s w)I(aw),

so (11) follows from Fatou’s lemma.

The two statements of Lemma 2 are symmetric, so we consider only the first.
Let y €(—,c) be given. Since P*(y)>0, there is a y = vy, >0 such that
b =T(8(y)>v)>0. Since II(6(x) > ) is a lower semicontinuous function of x,
there is an n=m,€(0,v/2) such that MG(x)>vy)=b/2 if xE€L =
(y—my+n).Now X, €I and AX, >y imply X,.,>y + 7, so

P(X,ci>y+n|X,)zb/2

for X, € I,. 1t follows (see Theorem 9.5.2 of Chung (1974)) that
[X. € Lio]-[X.>y+nio.]
has probability 0. But lim sup X, € I, implies this event, so
P (limsup X, € I,)=0.

According to the Lindelof theorem, there is a countable set, S, such that
\UJ,esl, D (=, c). Hence

P(—o<limsup X, <c)=0.

In view of (3), the proof of Lemma 2 is complete.

The remainder of the proof of the ergodic theorem involves consideration of
two cases.

Case 1. JP*(x)>O for all x ER, or P7(x)>0 for all x € R.
Case 2 is the residual case.

In view of Lemma 2, limsup X, =« a.s. or liminf X, = — a.s. in Case 1. This
case is treated in Section 3. The remaining sections treat Case 2. It will emerge
that, in this case, both lim sup X, and lim inf X, are finite a.s.

3. Case 1

Since the [two possibilities under this case are symmetrical, it suffices to
consider the|first, P*(x)>0 for all x € R. By Lemma 2, lim sup X, =« as.
Consequently, for any y € R, the random variable N defined by

N=min{n=0: X, =y}

is finite a.s.
Let U be |the transition operator of the process {X.},
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Uf(x)= E(f (Xu+1)| X = x)
(12)
= f flx + 8(x, w)Il(dw),

for f bounded and measurable on R. Its iterates, U*, satisfy

U*f(X.) = E(f (Xasi) | %2)

a.s., where %, is the o-field generated by X, - - -, X,. Differentiating (4) with
respect to x € R, we obtain the important equality

’ — Pq(WIWZ_ 1)
(13) Y= wit @) @watp)’
Hence
. _ pq
a4) e P T
> —1.

Consequently, x + 8(x, w) is an increasing function of x for every w. It follows
from (12) that U maps non -decreasing functions into non-decreasing functions, as
does U*.
Suppose, henceforth, that f is bounded, non-negative and non-decreasing.
Since f=0,
E(f(X.)ZE(f(X,), N=n)

(E(Y,A)=E(YL,), where I, is the indicator of A)

2 E(f(X.), N=})

3

I

J

L E(E(f(X.), N=|%))

It

3

L E(E(f(X.)| %), N=1)

1

J

3

, E(U"f(X), N =)

J

2 E(U™Mf(Xx), N = j)

E(U"™f(Xx), N=n)
= E(U"M(y), N=n),

since Xy Z y. Fatou’s lemma and N <« a.s. then yield
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@15) liminf E(f (X,)) = liminf U"f(y).

This holds for every y € R. Note that the quantity on the right is a non-
decreasing function of y. Let

U=f = lim,.lim inf,_..U"f(y).
It follows from (15) that
(16) liminf E(f(X.))= U~f.

This is valid for any £(Xo), and U~f does not depend on £(Xo).
For any n =z k =0,

E(f(X.))= E(U“f(X.-«))
= E(Uf(Xu-t), Xu-k = y)
+ E(U*f(Xa-i), Xk >y)

= U (y)+IfIIM(y),
where | f|| = sup.er|f(x)| and

M(y)= S;EP(X,- >y).
It follows that
limsup E(f(X,))= U“f(y)+||fl|M(y)
for all k =0, so
17) limsup E(f (X)) = liminf U"f(y)+[|f|M(y).

Suppose now that X, = x a.s., for some constant x. Letting y — « in (17) and
noting that M(y)—0 as a consequence of Lemma 1, we obtain

limsup E.(f(X.))= U*f.

In combination with (16), this yields
(8) lim E.(f (X)) = U"f

for all x € R and all bounded, non-negative, non-decreasing f.

Since {£(X. | Xo=0), n = 0} is tight, there is a subsequence that converges to
a probability v. By (18), with x =0, U”f = [fdv if f is bounded, continuous,
non-negative, and non-decreasing. If probabilities v; and v, satisfy [fdv, = [fdv,
for all such functions, then v, = v,. Hence (18) and tightness of {£(X. | Xo = x),
n =0} imply that X, = v for all initial states x (Breiman (1968), Corollary
8.16), hence for all initial distributions £(X,).
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If f is bounded and continuous, Uf is too, hence

E(f (X.1)) = EQUf(X.))
—>f Ufdv

as n —>®. But E(f(X..1))— [ fdv, so f Ufdv = [ fdv for all bounded continu-
ous f. This implies that v is stationary. If v’ is any stationary distribution, take
F(X,) = v’ and note that »' = #(X,) > v, as n =, so v'= v. Thus v is the
unique stationary distribution of {X., n =0}. Our results for X, translate
immediately into comparable results for p..

4. Case 2, preliminaries

Note first that P*(—)=1I(—Inw,>0)>0, since E(Inw,)<0. Since P* is
lower semicontinuous, P*(x)> 0 for x in some neighbourhood of —«. On the
other hand, in Case 2, P*(x) =0 for some x € R, hence

a” =sup{y: P"(x)>0 for all x <y}
is finite, as is

a” =inf{y: P (x)>0 for all x > y}.

We say that A implies B as. if P(A — B)=0.

Lemma 3. P*(a™)=0,(—x,a") is stochastically closed, and X, < a™ implies
limsup X, = a™ a.s. Similarly, P (a”)=0, {a”, =) is stochastically closed, and
Xo>a” implies liminf X, = a” a.s. Finally, a " =a".

Proof. There is a sequence x; such that x; Za”, P*(x;)=0, and x; > a™ as
j— . But P" is lower semicontinuous, so P*(a”) =0, or 8(a”, w) = 0 for almost
all w. Thus a"+8(a*,w)=a" as. But x+68(x,w) is a strictly increasing
function of x, so, for almost all w, x + 8§(x,w)<a™ for all x <a”. Hence
P(X,.n<a"|X.=x)=1for x <a®, and (—®,a") is stochastically closed. It
follows that X, < a” implies lim sup X, =a™ a.s. But P*(x)>0 for x <a”, so
lim sup X, = a” a.s. by Lemma 2. Thus X, < a* implies lim sup X, = a* a.s. The
assertions concerning a~ hold by symmetry.

Since P"(a*)=0 and P (a”)=0, we have 6(a",w)=0 and 8§(a ", w)=0 for
almost all w. Suppose that a* < a~. In view of (13), we must have w,w,=1 a.s.,
hence In w;+Inw,=0 as.,, and E(Inw,)+ E(Inwz)=0. This, however, is
inconsistent with our assumption that both of these expectations are strictly
negative. Consequently a” = a~. This concludes the proof of Lemma 3.

We shall distinguish two subcases of Case 2.
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Case 2a. a*>a
Case 2b. a*=a”

These are considered in the two subsequent sections. Let I =[a~,a”]. It follows
from Lemma 3 that (— o, a"] and [a~, =) are stochastically closed, hence their
intersection, I, is too. Moreover, in Case 2a, the lemma implies that X, € I for
some n, thus for all sufficiently large n, a.s. In Case 2b, I reduces to a single
point, a, and we shall see that lim._..X, = a a.s. Hence, in either case, the
limiting distribution of X, is concentrated on I.

5. Case 2a

Since 8(a™)=0 and 8(a”)=0 a.s., (13) shows that w,w,=1 a.s. Moreover
wiw,=1 as. is inconsistent with E(lnw;,)<0, i=1,2, so II(8'(x)<0)=
w,w.<1)>0. Since —1<8(x)=0, we have 0<1+68'(x)=1. If f' is
bounded, then

(d/dx)f(x +8(x)) = f(x +8(x))(1+8'(x))

is bounded, so differentiation and integration can be interchanged in (12)
yielding

(Ufy(x)= ff’(x +8(x)(1+ 8'(x))dII.

Let || f || = supxe:| f(x)|, where I =[a~, a*]. As noted previously, I is stochas-
tically closed, hence

il (i+ [ocoam)
for x €1, and
WA=l fl,

where
@ = maxyer (1+f5'(x)dn).

By induction,

I fyll=a|lf Il
But [6'(x) dII is continuous and strictly negative on the compact interval I, so
a <1, and |[(U"f)||—0 as n—>». Now sup.c; Uf(x)=sup.e:f(x), so, by
induction, s. =sup.e;U"f(x) is a non-increasing sequence. Similarly, i, =
inf,c; U"f(x) is non-decreasing. But
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e —in = (a” = a )| (UfY s

so s, and i, converge to the same limit, which we denote U~f. Since, for each
x € I, U"f(x) and U™f are in [i,, s.], we see that | U"f — U”f|| >0 as n — .

Suppose now that £(X,) is unrestricted. By Lemma 3, X, € I for some n a.s.,
so N =min{n: X, € I} is finite a.s. As in our treatment of Case 1,

E(f(X.)=EU"™(Xn), N=n)+ E(f(X,), N>n).
Since Xw € I, the first term on the right converges to U”f as n — . The second
term converges to 0. Hence E(f(X,))— U~f, for any £(X,) and bounded

function f with bounded derivative. The assertions of the theorem follow easily
from this.

6. Case 2b

It suffices to show that X, — a a.s., where a is the common value of ¢* and
a”. The asymptotic behavior of p, in this case was described by Karlin and
Lieberman (1974).

We can, without loss of generality, assume that X, = x, a.s. and x, < a. Let

Y. =Y. (a)= —(a—X.),

where 0 < a <1 will be determined subsequently. According to Lemma 3, lim
sup Y, =0 a.s. We shall show that

19) E(AY.(a)| Y. (e)=y)=0,

if y <0 is sufficiently close to 0. Lamperti’s (1960) Theorem 2.2 then yields
limY,=0 or lim X, =a as. (Lamperti’s assumption that the process is
non-negative is unnecessary.) Thus it remains only to establish (19).

If Y.,=y=—(a—x) then

AY,/|ly|l=1-(1+AX.(x —a)™")~
(The quantity 1 + AX,.(x — a) is a.s. positive.) Hence it is sufficient to show that

(20) f(l+6(x)(x—a)“)“dﬂ§l

for x < a sufficiently large. Since P*(a)=0 and P (a)=0, we have 8(a,w)=0
for almost all w. Hence

8(x)(x—a)”’ éztelgb"(y)

= max{w,w,— 1,0}
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by (13), and the integrand in (20) is bounded by exp (a|ln w,w.|), which is
integrable for @ = ¢/2. Thus the dominated convergence theorem implies that
the integral in (20) converges to g(a) = f(1+ 8’(a))*d1l as x 1 a. Consequently,
we need only show that g(a) < 1 for some a. Granting, for the moment, that

2n g(a)'* —exp [f ln(1+5’(a))dH]
as @ | 0, it remains only to prove that
22) d=f1n(1+5'(a))dn<o.

Let { =¢(w)=In(1+ 8'(a, w)). To establish (21), we must show that (g(a)—
Da'— f7dll as @ | 0, or

(23) lian (e“‘—l)a“dH=f§dH.
all

The integrand in (23) equals ¢ fie“*du, which clearly decreases to ¢ as a | 0.

Moreover, the integral in (23) exists for @ = ¢/2. Hence (23) follows from the

monotone convergence theorem.

We shall now complete the proof by establishing (22). In view of (4), 6(a) =0
a.s. implies that (w, — 1)p = (w,— 1)q a.s. (where a =1In(p/q)). Let this quantity
be denoted z, so that w, = 1+ (z/p)and w, = 1+ (z/q) a.s. Substituting into (13),
we see that

z

8’(a)=z+1

or

w—1 w,—1

(24) S(a):w1+r=w2+s

a.s., where r = q/p and s = p/q. If u >0 and x is sufficiently large that (e* —1)
(e*+u)y'> -1, Jet

fu(x)=In[1+(e* = 1)(e* +u)].
By (24),

d =ff,(1n wl)dH=ffs(ln w,) dll

(In w; and In w, belong a.s. to the domains of definition of f, and f, respectively,
as a consequence of (14)). It is easy to show that fi(x)>0and fu(x)<0ifu =1,
i.e., f. is increasing and concave on its domain if 4 = 1. Hence, ifr =gq/p =1,
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d :ff,(ln wl)dH<f,<fln wldH>

by Jensen’s inequality,

<£0)
=0.

A similar calculation using f. shows that d < 0if s = p/q = 1. Thus (22) is valid in
any case, and the proof of the ergodic theorem is complete.
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