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This article provides new tools for the evaluation of dynamic stochastic general equilibrium (DSGE)
models and applies them to a large-scale new Keynesian model. We approximate the DSGE model by a
vector autoregression, and then systematically relax the implied cross-equation restrictions and document
how the model fit changes. We also compare the DSGE model’s impulse responses to structural shocks
with those obtained after relaxing its restrictions. We find that the degree of misspecification in this large-
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1. INTRODUCTION

Dynamic stochastic general equilibrium (DSGE) models are
not only attractive from a theoretical perspective, but also are
emerging as useful tools for forecasting and quantitative pol-
icy analysis in macroeconomics. Due to improved time series
fit, these models are gaining credibility in policy making insti-
tutions, such as central banks. Up until recently, DSGE mod-
els had the reputation of being unable to track macroeconomic
time series. In fact, an assessment of their forecasting perfor-
mance was typically considered futile (an exception being De-
Jong, Ingram, and Whiteman 2000). Apparent model misspeci-
fications were used as an argument in favor of informal calibra-
tion approaches to the evaluation of DSGE models along the
lines of work by Kydland and Prescott (1982). Subsequently,
researchers have developed econometric frameworks that for-
malize aspects of the calibration approach (see, e.g., Canova
1994; DeJong et al. 1996; Diebold, Ohanian, and Berkowitz
1998; Geweke 1999b; Schorfheide 2000; Dridi, Guay, and Re-
nault 2007). A common feature of many evaluation procedures
is that DSGE model predictions are either implicitly or explic-
itly compared with those from a reference model. Much of the
applied work related to monetary models has proceeded by,
for instance, assessing DSGE models based on discrepancies
between impulse response functions obtained from the DSGE
model and those obtained from the estimation of identified vec-
tor autoregressions (VARs). However, adopting Bayesian lan-
guage, such an evaluation is sensible only if the VAR attains
a higher posterior probability than the DSGE model, as was
pointed out by Schorfheide (2000).

Smets and Wouters (2003) developed a large-scale monetary
DSGE model in the new Keynesian tradition based on work by
Christiano, Eichenbaum, and Evans (2005) and estimated it on

Euro-area data. One of their remarkable empirical results was
that posterior odds favored their DSGE model relative to VARs
estimated with a fairly diffuse training sample prior. Previous
studies using more stylized DSGE models always found that
even simple VARs dominate DSGE models. On the method-
ological side, Smets and Wouters’ finding challenges the prac-
tice of assessing DSGE models based on their ability to repro-
duce VAR impulse response functions without carefully docu-
menting that the VAR indeed fits better than the DSGE model.
On the substantive side, it poses the question of whether re-
searchers now should be less concerned about misspecification
of DSGE models.

The contributions of this article are twofold, one method-
ological and the other substantive. First, we develop a set of
tools that is useful for assessing the time series fit of a DSGE
model. In particular, we systematically relax the implied cross-
coefficient restrictions of the DSGE model to obtain a VAR
specification that is guaranteed to fit better than the DSGE
model yet simultaneously stays as close as possible to the
DSGE restrictions. We use this specification as a benchmark
to characterize and understand the degree of misspecification
of the DSGE model. Second, we apply these tools to a variant
of the model of Smets and Wouters and document its fit and
forecasting performance based on postwar U.S. data. We find
that model misspecification remains a concern.

Our model evaluation approach is related to work on DSGE
model priors for VARs by Ingram and Whiteman (1994) and
Del Negro and Schorfheide (2004), as well as the idea of indi-
rect inference developed by Gourieroux, Monfort, and Renault
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(1993) and Smith (1993) and recently applied in a Bayesian
setting by Gallant and McCulloch (2004). We use the VAR as
an approximating model for the DSGE model and construct a
mapping from the DSGE model to the VAR parameters. This
mapping leads to a set of cross-coefficient restrictions for the
VAR. Deviations from these restrictions are interpreted as evi-
dence for DSGE model misspecification. In particular, we spec-
ify a prior distribution for deviations from the DSGE model re-
strictions. The prior tightness is scaled by a hyperparameter λ.
The values λ = ∞ and λ = 0 correspond to the two polar cases
in which the cross-coefficient restrictions are strictly enforced
and completely ignored (unrestricted VAR). The marginal like-
lihood function of λ ∈ (0,∞] provides an overall assessment of
the DSGE model restrictions that is more robust and informa-
tive than a comparison of the two polar cases, which is wide-
spread practice in literature.

We denote the peak of the marginal likelihood function as λ̂.
We have evidence of misspecification whenever the marginal
likelihood ratio of λ = λ̂ versus λ = ∞ indicates that model fit
improves substantially if the DSGE restrictions are relaxed. The
resulting VAR specification, which we label DSGE–VAR(λ̂),
can be used as a benchmark for evaluating the dynamics of
the DSGE model. We ask the question: In which dimension do
the impulse response functions change as we relax the cross-
coefficient restriction? To facilitate impulse response function
comparisons, we provide a coherent identification scheme for
the DSGE–VAR. By coherent, we mean that in the absence of
DSGE model misspecification and VAR approximation error,
the impulse responses of the DSGE model and DSGE–VAR
to all structural shocks would coincide. Thus, in constructing
a benchmark for the evaluation of the DSGE model, we are
trying to stay as close to the original specification as possi-
ble.

The empirical findings are as follows. The marginal likeli-
hood function of the hyperparameter λ has an inverse U-shape,
indicating that the fit of the AR system can be improved by
relaxing the DSGE model restrictions. The shape of the poste-
rior also implies that the restrictions should not be completely
ignored when constructing a benchmark for the model evalua-
tion, because VARs with very diffuse priors are clearly dom-
inated by the DSGE–VAR(λ̂). This finding is confirmed in
the pseudo–out-of-sample forecasting experiment. According
to a widely used multivariate forecast error statistic, the DSGE
model and the VAR with diffuse prior perform about equally
well in terms of one-step-ahead forecasts but are clearly worse
than the DSGE–VAR(λ̂).

Comparing impulse responses between the DSGE model and
the DSGE–VAR(λ̂), we find that the DSGE model misspeci-
fication does not translate into differences among impulse re-
sponse functions to technology or monetary policy shocks. The
latter result is important from a policy perspective, because
it confirms that despite its deficiencies, the predictions of the
effects of unanticipated changes in monetary policy derived
from the new Keynesian DSGE model are not contaminated by
its dynamic misspecification. However, responses to some of
the other shocks differ between the DSGE model and DSGE–
VAR(λ̂), particularly in the long run, suggesting that some low-
frequency implications of the model are at odds with the data.
We also use the DSGE–VAR framework to make comparisons

across DSGE model specifications. In particular, we consider a
version of the model without habit formation and another ver-
sion without price and wage indexation. We find that the evi-
dence from the DSGE–VAR analysis against the no-indexation
specification is not nearly as strong as the evidence against the
model without habit formation.

The article is organized as follows. Section 2 presents the
DSGE model, and Section 3 discusses the DSGE model eval-
uation framework. Section 4 describes the data, and Section 5
presents empirical results Section 6 concludes.

2. THE DYNAMIC STOCHASTIC GENERAL
EQUILIBRIUM MODEL

This section describes our DSGE model, which is a slightly
modified version of the DSGE model developed and estimated
for the Euro area by Smets and Wouters (2003). In particular,
we introduce stochastic trends into the model so that it can be
estimated with unfiltered time series observations. The DSGE
model is based on work of Christiano et al. (2005) and contains
numerous nominal and real frictions. To make this article self-
contained, we subsequently describe the structure of the model
economy and the decision problems of the agents in the econ-
omy.

2.1 Final Goods Producers

The final good, Yt, is a composite made of a continuum of
intermediate goods, Yt(i), indexed by i ∈ [0,1],

Yt =
[∫ 1

0
Yt(i)

1/(1+λf ,t) di

]1+λf ,t

, (1)

where λf ,t ∈ (0,∞) follows the exogenous process

lnλf ,t = (1 − ρλf ) lnλf + ρλf lnλf ,t−1 + σλ,f ελ,t, (2)

where ελ,t is an exogenous shock with unit variance that in equi-
librium affects the markup over marginal costs. The final goods
producers are perfectly competitive firms that buy intermediate
goods, combine them to get the final good Yt, and resell the final
good to consumers. The firms maximize profits,

PtYt −
∫

Pt(i)Yt(i)di,

subject to (1). Here Pt denotes the price of the final good and
Pt(i) is the price of intermediate good i. From their first-order
conditions and the zero-profit condition, we obtain that

Yt(i) =
(

Pt(i)

Pt

)−(1+λf ,t)/λf ,t

Yt and

(3)

Pt =
[∫ 1

0
Pt(i)

−1/λf ,t di

]−λf ,t

.

2.2 Intermediate Goods Producers

Good i is made using the technology

Yt(i) = max{Z1−α
t Kt(i)

αLt(i)
1−α − ZtF ,0}, (4)
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where the technology shock Zt (common across all firms) fol-
lows a unit root process and F represents fixed costs faced by
the firm. Based on preliminary estimation results, we decided
to set F = 0 in the empirical analysis. We define technology
growth, zt = log(Zt/Zt−1), and assume that zt follows the AR
process

zt = (1 − ρz)γ + ρzzt−1 + σzεz,t. (5)

All firms face the same prices for their labor and capital inputs.
Hence profit maximization implies that the capital-to-labor ra-
tio is the same for all firms,

Kt(i)

Lt(i)
= α

1 − α

Wt

Rk
t
, (6)

where Wt is the nominal wage and Rk
t is the rental rate of cap-

ital. Following Calvo (1983), we assume that in every period a
fraction of firms ζp is unable to reoptimize their prices Pt(i).
These firms adjust their prices mechanically according to

Pt(i) = (πt−1)
ιp(π∗)1−ιp , (7)

where πt = Pt/Pt−1, π∗ is the steady-state inflation rate of the
final good, and ι ∈ [0,1]. Those firms that are able to reoptimize
prices choose the price level P̃t(i) that solves

max
P̃t(i)

Et

[ ∞∑
s=0

ζ s
pβ

s�
p
t+s

(
P̃t(i)

(
s∏

l=1

π
ιp
t+l−1π

1−ιp∗

)
− MCt+s

)

× Yt+s(i)

]

s.t. Yt+s(i) =
(

P̃t(i)(
∏s

l=1 π
ιp
t+l−1π

1−ιp∗ )

Pt+s

)−(1+λf ,t)/λf ,t

Yt+s,

MCt+s = α−αW1−α
t+s Rk α

t+s

(1 − α)(1−α)Z1−α
t+s

, (8)

where βs�
p
t+s is today’s value of a future dollar for the con-

sumers and MCt reflects marginal costs. We consider only
the symmetric equilibrium at which all firms will choose the
same P̃t(i). Thus from (3), we obtain the following law of mo-
tion for the aggregate price level:

Pt = [
(1 − ζp)P̃

−1/λf ,t
t + ζp(π

ιp
t−1π

1−ιp∗ Pt−1)
−1/λf ,t

]−λf ,t . (9)

2.3 Labor Packers

There is a continuum of households, indexed by j ∈ [0,1],
each supplying a differentiated form of labor, L(j). The labor
packers are perfectly competitive firms that hire labor from the
households and combine it into labor services, Lt, that are of-
fered to the intermediate goods producers,

Lt =
[∫ 1

0
Lt(j)

1/(1+λw) di

]1+λw

, (10)

where λw ∈ (0,∞) is a fixed parameter. From first-order and
zero-profit conditions of the labor packers, we obtain the labor
demand function and an expression for the price of aggregated
labor services Lt,

Lt(j) =
(

Wt(j)

Wt

)−(1+λw)/λw

Lt (11a)

and

Wt =
[∫ 1

0
Wt(j)

−1/λw di

]−λw

. (11b)

2.4 Households

The objective function for household j is given by

Et

∞∑
s=0

βsbt+s

[
log(Ct+s(j)− hCt+s−1(j))− φt+s

1 + νl
Lt+s(j)

1+νl

+ χ

1 − νm

(
Mt+s(j)

Zt+sPt+s

)1−νm
]
, (12)

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) is
money holdings. A household’s preferences display habit per-
sistence. The preference shifters, φt, which affects the marginal
utility of leisure, and bt, which scales the overall period utility,
are exogenous processes common to all households that evolve
as

lnφt = (1 − ρφ) lnφ + ρφ lnφt−1 + σφεφ,t (13)

and

ln bt = ρb ln bt−1 + σbεb,t. (14)

Real money balances enter the utility function deflated by the
(stochastic) trend growth of the economy, so as to make real
money demand stationary.

The household’s budget constraint, written in nominal terms,
is given by

Pt+sCt+s(j)+ Pt+sIt+s(j)+ Bt+s(j)+ Mt+s(j)+ Tt+s(j)

≤ Rt+s−1Bt+s−1(j)+ Mt+s−1(j)+ At+s−1(j)

+�t+s + Wt+s(j)Lt+s(j)

+ (
Rk

t+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)
)
,

(15)

where It(j) is investment, Bt(j) represents holdings of gov-
ernment bonds, Tt(j) represents lump-sum taxes (or subsi-
dies), Rt is the gross nominal interest rate paid on government
bonds, At(j) is the net cash inflow from participating in state-
contingent securities, �t is the per capita profit that the house-
hold gets from owning firms (households pool their firm shares,
and they all receive the same profit), and Wt(j) is the nominal
wage earned by household j. The term within parentheses rep-
resents the return to owning K̄t(j) units of capital. Households
choose the utilization rate of their own capital, ut(j).

Households rent to firms in period t an amount of effective
capital equal to

Kt(j) = ut(j)K̄t−1(j), (16)

and receive Rk
t ut(j)K̄t−1(j) in return. However, they must pay

a cost of utilization in terms of the consumption good equal
to a(ut(j))K̄t−1(j). Households accumulate capital according to
the equation

K̄t(j) = (1 − δ)K̄t−1(j)+µt

(
1 − S

(
It(j)

It−1(j)

))
It(j), (17)
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where δ is the rate of depreciation and S(·) is the cost of ad-
justing investment, with S(eγ ) = 0 and S′′(·) > 0. The term µt
is a stochastic disturbance to the price of investment relative
to consumption (see Greenwood, Hercovitz, and Krusell 1998),
which follows the exogenous process

lnµt = (1 − ρµ) lnµ+ ρµ lnµt−1 + σµεµ,t. (18)

The households’ wage setting is subject to nominal rigidi-
ties as used by Calvo (1983). In each period, a fraction ζw of
households is unable to readjust wages. For these households,
the wage Wt(j) will increase at a geometrically weighted aver-
age of the steady-state rate increase in wages (equal to steady-
state inflation π∗ times the steady-state growth rate of the econ-
omy eγ ) and of last period’s inflation times last period’s pro-
ductivity (πt−1ezt−1 ). These weights are 1 − ιw and ιw. Those
households that are able to reoptimize their wage solve the
problem

max
W̃t(j)

Et

∞∑
s=0

ζ s
wβ

sbt+s

[
− φt+s

1 + νl
Lt+s(j)

1+νl

]

s.t. eq. (15) for s = 0, . . . ,∞, (11a), and (19)

Wt+s(j) =
(

s∏
l=1

(π∗eγ )1−ιw(πt+l−1ezt+l−1)ιw

)
W̃t(j).

We again consider only the symmetric equilibrium in which all
agents solving (19) will choose the same W̃t(j). From (11b), it
follows that

Wt = [
(1 − ζw)W̃

−1/λw
t

+ ζw
(
(π∗eγ )1−ιw(πt−1ezt−1)ιw Wt−1

)−1/λw
]−λw . (20)

Finally, we assume that there is a complete set of state con-
tingent securities in nominal terms, which implies that the La-
grange multiplier �

p
t (j) associated with (15) must be the same

for all households in all periods and across all states of nature.
This in turn implies that in equilibrium, households will make
the same choice of consumption, money demand, investment,
and capital utilization. Because the amount of leisure will differ
across households due to wage rigidity, separability between la-
bor and consumption in the utility function is key for this result.

2.5 Government Policies

The central bank follows a nominal interest rate rule by ad-
justing its instrument in response to deviations of inflation and
output from their respective target levels,

Rt

R∗ =
(

Rt−1

R∗

)ρR
[(

πt

π∗

)ψ1
(

Yt

Y∗
t

)ψ2
]1−ρR

eσRεR,t , (21)

where εR,t is the monetary policy shock, R∗ is the steady-
state nominal rate, Y∗

t is the target level of output, and the pa-
rameter ρR determines the degree of interest rate smoothing.
This specification of the Taylor rule is more standard than that
used by Smets and Wouters (2003), who introduced a time-
varying inflation objective that varies stochastically accord-
ing to a random walk. The random-walk inflation target may
help the model fit the medium- and long-frequency fluctua-
tions in inflation. In this article we are interested in assessing
the model’s fit of inflation without the extra help from the ex-
ogenous inflation target shocks. We set the target level of out-

put Y∗
t in (21) equal to the trend level of output Y∗

t = ZtY∗,
where Y∗ is the steady state of the model expressed in terms
of detrended variables. The central bank supplies the money
demanded by the household to support the desired nominal in-
terest rate. We also considered an alternative specification in
which the central bank targets the level of output that would
have prevailed in absence of nominal rigidities; unreported re-
sults indicate that this alternative specification leads to a deteri-
oration of fit.

The government budget constraint is of the form

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt, (22)

where Tt are total nominal lump-sum taxes (or subsidies), ag-
gregated across all households. Government spending is given
by

Gt = (1 − 1/gt)Yt, (23)

where gt follows the exogenous process

ln gt = (1 − ρg) ln g + ρg ln gt−1 + σgεg,t. (24)

2.6 Resource Constraint

The aggregate resource constraint

Ct + It + a(ut)K̄t−1 = 1

gt
Yt (25)

can be derived by integrating the budget constraint (15) across
households and combining it with the government budget con-
straint (22) and the zero profit conditions of both labor packers
and final good producers.

2.7 Model Solution

As in the work of Altig, Christiano, Eichenbaum, and Lindé
(2004) our model economy evolves along stochastic growth
path. Output Yt, consumption Ct, investment It, the real wage
Wt/Pt, physical capital K̄t, and effective capital Kt all grow at
the rate Zt. Nominal interest rates Rt, inflation πt, and hours
worked Lt are stationary. The model can be rewritten in terms of
detrended variables. We find the steady states for the detrended
variables and use the method of Sims (2002) to construct a log-
linear approximation of the model around the steady state. All
subsequent statements about the DSGE model are statements
about its log-linear approximation. We collect all of the DSGE
model parameters in the vector θ , stack the structural shocks
in the vector εt, and derive a state-space representation for the
n × 1 vector �yt,

�yt = [� ln Yt,� ln Ct,� ln It, ln Lt,� ln(Wt/Pt),πt,Rt]′,

where � denotes the temporal difference operator.
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3. DSGE–VARs AS TOOLS FOR
MODEL EVALUATION

In addition to the DSGE model, we consider a VAR specifi-
cation for yt. The VAR is written in vector error-correction form
as

�yt = �0 +�β(β
′yt−1)

+�1�yt−1 + · · · +�p�yt−p + ut. (26)

We assume that the vector of reduced-form innovations is
normally distributed conditional on past information, ut ∼
N (0,�u). The normality assumption is common in the likeli-
hood-based analysis of VARs, albeit mostly for convenience.
According to the DSGE model, the technology process Zt gen-
erates common trends in output, consumption, investment, and
real wages. We impose this common-trend structure on the VAR
by including the error-correction term

β ′yt−1 = [ln Ct−1 − ln Yt−1, ln It−1 − ln Yt−1,

ln(Wt−1/Pt−1)− ln Yt−1]′
on the right side of (26). We denote the dimension of �yt by n,
define the k × 1 vector xt = [1, (β ′yt−1)

′,�y′
t−1, . . . ,�y′

t−p]′,
and let � = [�0,�β,�1, . . . ,�p]′.

VARs are widely used in empirical macroeconomics and of-
ten serve as benchmarks for the evaluation of dynamic equilib-
rium economies. We borrow from the indirect inference litera-
ture (e.g., Gourieroux et al. 1993; Smith 1993) and use the VAR
as an approximating model for the DSGE model. We construct
a mapping from the DSGE model parameters to the VAR para-
meters. As is well known, the DSGE model leads to a restricted
VAR approximation. We interpret deviations of the VAR para-
meters from the cross-coefficient restrictions as DSGE model
misspecification. Although the approach described here is also
applicable if the DSGE model is solved with nonlinear tech-
niques, we use a log-linear approximation in our empirical
analysis, as discussed in Section 2.7.

So far, the VAR in (26) is written in reduced form. To obtain
a structural VAR, we express the one-step-ahead forecast errors
ut as a function of the shocks εt that appear in the DSGE model
described previously,

ut = �tr�εt, (27)

where �tr is the (unique) Cholesky decomposition of �u and �

is an orthonormal matrix. It is well known that � is not identifi-
able from the data, because the likelihood function of the VAR
depends only on the covariance matrix �u = �tr�

′
tr .

Broadly speaking, the goals of our analysis are to obtain es-
timates of the DSGE model and the VAR parameters, to as-
sess the magnitude of the DSGE model misspecification, and to
learn from the discrepancy between restricted and unrestricted
impulse response dynamics how to improve the specification
of the DSGE model. The analysis is conducted in a Bayesian
framework. Starting from a prior distribution for the DSGE
model parameters θ , we use the mapping from θ to the VAR
coefficients � and �u to obtain a prior for the VAR parameters.
Our prior is centered at the VAR approximation of the DSGE
model, which we denote by �∗(θ) and �∗

u (θ), but allows for
deviations from DSGE model restrictions to account for po-
tential misspecification. The precision of the prior is scaled by

a hyperparameter, λ. This hyperparameter generates a contin-
uum of models, which we call DSGE–VAR(λ), that essentially
has an unrestricted VAR at one extreme (λ is near 0) and the
VAR approximation of the DSGE model at the other extreme
(λ = ∞). (By “model,” we mean a joint probability distribution
for the data and parameters.)

To obtain a prior distribution for �, we define a function
�∗(θ) of the DSGE model parameters in Section 3.5. Roughly
speaking, this function has the following property: Combin-
ing �∗(θ) with the reduced-form VAR approximation of the
DSGE model results in a structural VAR that mimics the im-
pulse response dynamics of the DSGE model. Unlike for the
reduced-form VAR parameters, we do not allow � to deviate
from �∗(θ). Thus, conditional on the DSGE model parameters,
our prior for � degenerates to a point mass. This implies that
we take the DSGE model literally in the directions of the VAR
parameter space in which the data are uninformative.

Overall, we are constructing a joint prior distribution for the
VAR and DSGE model parameters that has the following hier-
archical structure:

p(θ,�,�u,�|λ) = p(θ)p(�,�u,�|θ,λ). (28)

This prior is combined with the VAR likelihood function
p(Y|�,�u) to obtain a joint posterior distribution

p(θ,�,�u,�|Y, λ) = p(Y|�,�u)p(θ)p(�,�u,�|θ,λ)
p(Y|λ) .

(29)

We specify a grid � = {l1, . . . , lq} for the hyperparameter λ.
If we assign prior probabilities πj,0 to the grid points lj, then
posterior odds are given by

πi,0

πj,0

p(Y|λ = li)

p(Y|λ = lj)
.

We use Markov chain Monte Carlo (MCMC) methods to con-
duct posterior inference. Rather than specify an explicit prior
distribution for λ, we simply interpret the marginal likelihood
function of λ, p(Y|λ), as an overall measure of fit and denote
its peak by λ̂. A large value of λ̂ and a likelihood ratio of λ = λ̂

versus λ = ∞ close to 1 is interpreted as evidence in favor of
the DSGE model restrictions. Impulse response comparisons of
DSGE–VAR(∞) and DSGE–VAR(λ̂) can generate insights into
the sources of DSGE model misspecification.

Our approach is related to recent work by Gallant and Mc-
Culloch (2004), who proposed a Bayesian framework for in-
direct inference. In their analysis, the approximating model is
mainly a device for obtaining a likelihood function in a setting
where it is computationally cumbersome to evaluate the under-
lying structural model. In our analysis we use the approximat-
ing model mainly as a tool to relax DSGE model restrictions
and obtain an empirical specification that fits well and can serve
as a benchmark for impulse response comparisons.

In the remainder of this section we define the VAR approx-
imation of the DSGE model at which our prior is centered
(Sec. 3.1), motivate the specification of the prior distribution
p(�,�,�|θ,λ) as a summary of beliefs about potential DSGE
model misspecification (Sec. 3.2), characterize the posterior
distribution of VAR and DSGE model parameters (Sec. 3.3), ex-
plore the properties of the marginal likelihood function p(Y|λ)
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(Sec. 3.4), and propose a mapping �∗(θ) to obtain identifi-
cation and enable construction of identified impulse responses
from the DSGE–VAR (Sec. 3.5). Because the likelihood func-
tion is invariant to �, the choice of �∗(θ) does not affect the
joint posterior distribution of θ , �, and �u. Therefore, we drop
� from the notation in Sections 3.1–3.4 and begin with the
analysis of the reduced-form specification.

3.1 Vector Autoregressive Approximation of the
Dynamic Stochastic General Equilibrium Model

Assuming that under the DSGE model, the distribution of xt

is stationary with a nonsingular covariance matrix (both condi-
tions are satisfied for the model specified in Sec. 2), we define
the moments �YY(θ) = E

D
θ [�yt�y′

t], �XX(θ) = E
D
θ [xtx′

t], and
�XY(θ) = E

D
θ [xt�y′

t] and use a population regression to obtain
the mapping from DSGE model to VAR parameters,

�∗(θ) = �−1
XX (θ)�XY(θ) and

(30)
�∗

u (θ) = �YY(θ)− �YX(θ)�
−1
XX (θ)�XY(θ).

Here �YX = �′
XY . We refer to �∗(θ) and �∗

u (θ) as restriction
functions used to center the prior distribution p(�,�u|θ,λ).

3.2 Misspecification and Bayesian Inference

If the VAR representation of �yt deviates from the restric-
tion functions �∗(θ) and �∗

u (θ), then the DSGE model is mis-
specified. A key step in our analysis is the formulation of a
prior distribution for the discrepancy between � and �∗(θ),
which we denote by ��. We use a prior with density decreasing
in ��, implying that large misspecifications have low probabil-
ities. This assumption reflects the belief that the DSGE model
provides a good (albeit not perfect) approximation of reality.
We use an information-theoretic metric to assess the magnitude
of ��. This metric allows us to develop a fairly general evalua-
tion procedure, subsequently keeping the computational burden
manageable.

To fix ideas, we begin by (a) ignoring the dependence of �∗
on θ and (b) imposing that �u = �∗

u . Suppose that we generate
a sample of λT observations from the DSGE model, collected
in the matrices Y∗ and X∗. Our prior for �� has the property
that its density is proportional to the expected likelihood ratio
of �∗ +�� versus �∗. The log-likelihood ratio is given by

ln

[L(�∗ +��,�∗
u |Y∗,X∗)

L(�∗,�∗
u |Y∗,X∗)

]

= −1

2
tr
[
�∗−1

u

(
��′X′∗X∗�� + 2�∗′X′∗X∗��

− 2(�∗ +��)′X′∗Y∗ + 2�∗′X′∗Y∗
)]
, (31)

where Y∗ denotes the λT × n matrix with rows y∗′
t and X∗ is

the λT × k matrix with rows x∗′
t . Taking expectations under the

distribution generated by the DSGE model yields

E
D
θ

[
ln

[L(�∗ +��,�∗
u |Y∗,X∗)

L(�∗,�∗
u |Y∗,X∗)

]]

= −1

2
tr
[
�∗−1

u (��′λT�XX�
�)

]
. (32)

Figure 1. Stylized View of DSGE Model Misspecification. Φ =
[φ1,φ2 ]′ can be interpreted as the VAR parameters, and Φ ′(θ ) is the
restriction function implied by the DSGE model.

We now choose a prior density that is proportional (∝) to the
expected likelihood ratio,

p(��|�∗
u ) ∝ exp

{
−1

2
tr
[
λT�∗−1

u (��′�XX�
�)

]}
. (33)

As the sample size λT increases, the prior places more mass
on misspecification matrices that are close to 0. A graphical
illustration is provided in Figure 1.

In the empirical application, we allow for uncertainty about
θ by specifying a prior with density p(θ) and take potential
misspecification of the covariance matrix �∗

u (θ) into account.
T will correspond to the size of the actual sample, and λ is a
hyperparameter that controls the expected magnitude of the de-
viations from the DSGE model restrictions. Conditional on θ ,
our prior for the VAR coefficients takes the form

�u|θ,λ ∼ IW(λT�∗
u (θ), λT − k),

(34)

�|�u, θ, λ ∼ N
(
�∗(θ), 1

λT
[�−1

u ⊗ �XX(θ)]−1
)
,

where IW denotes the inverted Wishart distribution. This prior
distribution is proper (i.e., has mass 1) provided that λT ≥ k+n.
Thus we restrict the domain of λ to the interval [(k + n)/T,∞].
The prior is identical to that used in earlier work (Del Negro and
Schorfheide 2004), but its motivation is different. The earlier
work focused on the improvement of VARs and emphasized
mixed estimation based on artificial data from a DSGE model
and actual data. In this article we ask the opposite question:
How can we relax DSGE model restrictions and evaluate the
extent of their misspecification?

3.3 Posterior Distributions

The posterior density is proportional to the product of the
prior density and the likelihood function. We factorize the pos-
terior into the conditional density of the VAR parameters given
the DSGE model parameters and the marginal density of the
DSGE model parameters,

p(�,�u, θ |Y, λ) = p(�,�u|Y, θ, λ)p(θ |Y, λ). (35)

The actual observations are collected in the matrices Y and X,
with the subscript λ indicating the dependence of the posterior
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on the hyperparameter. We use �̂XX , �̂XY , and �̂XX to denote the
sample autocovariances such as 1

T

∑
xtx′

t. It is straightforward
to show (e.g., Zellner 1971) that the posterior distribution of �
and � is also of the inverted Wishart–normal form,

�u|Y, θ, λ

∼ IW
(
T(λ+ 1)�̂u,b(θ),T(λ+ 1)− k

)
,

(36)
�|Y,�u, θ, λ

∼ N
(
�̂b(θ),�u ⊗ [T(λ�XX(θ)+ �̂XX)]−1),

where �̂b(θ) and �̂u,b(θ) are given by

�̂b(θ) = (λ�XX(θ)+ �̂XX)
−1(λ�XY(θ)+ �̂XY)

and

�̂u,b(θ) = 1

(λ+ 1)

[
(λ�YY(θ)+ �̂YY)− (λ�YX(θ)+ �̂YX)

× (λ�XX(θ)+ �̂XX)
−1(λ�XY(θ)+ �̂XY)

]
.

Thus the larger the weight λ of the prior, the closer the posterior
mean of the VAR parameters is to �∗(θ) and �∗

u (θ), the values
that respect the cross-equation restrictions of the DSGE model.
On the other hand, if λ equals the lower bound (n + k)/T , then
the posterior mean is close to the ordinary least squares (OLS)
estimate �̂−1

XX �̂XY . The formula for the marginal posterior den-
sity of θ and the description of a MCMC algorithm that gener-
ates draws from the joint posterior of �, �u, and θ have been
provided in earlier work (Del Negro and Schorfheide 2004),
where we also demonstrated (prop. 2) that under certain con-
ditions, the estimate of θ can be interpreted as the minimum
distance estimate obtained by projecting the VAR coefficient
estimates back onto the restriction functions �∗(θ) and �∗

u (θ).

3.4 The Marginal Likelihood Function of λ

We study the fit of the DSGE model by examining the mar-
ginal likelihood function of the hyperparameter λ, defined as

p(Y|λ) =
∫

p(Y|θ,�,�)p(θ,�,�|λ)d(θ,�,�). (37)

We use Geweke’s (1999a) modified harmonic mean estimator
to obtain a numerical approximation of the marginal likelihood
function based on the output of the MCMC computations. For
computational reasons, we consider only a finite set of values
� = {l1, . . . , lq}, where l1 = (n+k)/T and lq = ∞. If we assign
equal prior probabilities to the elements of �, then the poste-
rior probabilities for the hyperparameter are proportional to the
marginal likelihood. Thus we also refer to p(Y|λ) as the poste-
rior of λ and denote its mode by

λ̂ = arg max
λ∈�

p(Y|λ). (38)

It is common in the literature (e.g., Smets and Wouters 2003) to
use marginal data densities to document the fit of DSGE models
relative to VARs with diffuse priors. In our framework this ap-
proach corresponds (approximately) to comparing p(Y|λ) for
the extreme values of λ, that is, λ = ∞ (DSGE model) and
λ = (k + n)/T (VAR with a nearly flat prior). It is preferable to
report the entire marginal likelihood function p(Y|λ) rather than

just its endpoints. The function p(Y|λ) summarizes the time se-
ries evidence on model misspecification and documents by how
much the restrictions of the DSGE model must be relaxed to
balance in-sample fit and model complexity.

To illustrate the properties of the marginal likelihood func-
tion p(Y|λ), it is instructive to consider the following univariate
example. Suppose that the VAR takes the special form of an
AR(1) model,

yt = φyt−1 + ut, ut ∼ iidN (0,1), (39)

and the DSGE model restricts φ to be equal to φ∗. We denote
the DSGE model implied autocovariances of order 0 and 1 by
γ0 and γ1. Moreover, γ̂0 and γ̂1 are sample autocovariances
based on T observations. The prior in (34) simplifies to

φ ∼ N
(
φ∗, 1

λTγ0

)
. (40)

For this simple model, the marginal likelihood of λ takes the
form

ln p(Y|λ,φ∗) = −T

2
ln(2π)− T

2
σ̃ 2(λ,φ∗)− 1

2
c(λ,φ∗). (41)

The term σ̃ 2(λ,φ∗) measures the in-sample one-step-ahead
forecast error and can be written as

σ̃ 2(λ,φ∗) = γ̂0 + λγ0 − (γ̂1 + λγ1)
2

γ̂0 + λγ0
− λ

(
γ0 − γ 2

1

γ0

)
. (42)

It can be verified that as λ approaches 0, σ̃ 2(λ,φ∗) converges
to the OLS forecast error, whereas as λ −→ ∞, we obtain the
in-sample forecast error under the restriction φ = φ∗. Formally,

lim
λ−→0

σ̃ 2(λ,φ∗) = 1

T

∑
(yt − φ̂yt−1)

2 and

lim
λ−→∞ σ̃ 2(λ,φ∗) = 1

T

∑
(yt − φ∗yt−1)

2,

where φ̂ = γ̂1/γ̂0. Moreover, σ̃ 2(λ,φ∗) is monotonically in-
creasing in λ; that is, the larger the λ, the worse the in-sample
fit. The third term in (41) can be interpreted as a penalty for
model complexity and is of the form

c(λ,φ∗) = ln

(
1 + γ̂0

λγ0

)
. (43)

In the context of a standard regressor selection problem, model
complexity is tied to the number of included regressors, and the
penalty is an increasing function of the number of parameters
being estimated. In our setup, model complexity is a continu-
ous function of the hyperparameter λ. If λ = ∞, then there is
no parameter to estimate in the AR(1) example, and the com-
plexity (or, alternatively, the dimensionality) of the model is 0.
If λ = 0, then the autoregressive parameter is completely unre-
stricted, and the dimensionality is 1. Accordingly, the penalty
term (43) is monotonically decreasing in λ. As λ approaches 0
and the prior becomes more diffuse, the penalty diverges to in-
finity.

Several features of the marginal data density are notewor-
thy. First, the marginal likelihood function is monotonically de-
creasing, is increasing, or has an interior maximum. If an inte-
rior maximum exists, it is given by

λ̂ = γ0γ̂
2
0

T(γ̂0γ1 − γ0γ̂1)2 − γ 2
0 γ̂0

. (44)
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Thus if the sample autocovariances differ significantly from the
autocovariances derived under the restriction φ = φ∗, then the
marginal likelihood peaks at a small value of λ. As the dis-
crepancy between sample and DSGE model autocovariances
decreases, λ̂ increases, and the marginal likelihood will even-
tually attain its maximum at λ̂ = ∞.

Second, as λ approaches 0, the marginal log-likelihood func-
tion tends to minus infinity. In the context of high-dimensional
VARs this feature of the marginal likelihood function enforces
parsimony and prevents the use of overparameterized specifi-
cations that cannot be estimated precisely based on the fairly
small samples available to macroeconomists. In these cases,
a naive posterior odds comparison of VAR and DSGE model
based on the endpoints of the marginal likelihood function, cor-
responding to a VAR with diffuse prior (small λ) and a VAR
with DSGE model restrictions imposed, may not be very in-
formative, because it tends to favor the restricted specification.
This phenomenon arises more generally in Bayesian posterior
odds comparisons and is called Lindley’s paradox. Rather than
limiting the attention to extremes, our procedure creates a con-
tinuum of prior distributions and evaluates the marginal likeli-
hood function for a range of hyperparameter values. The mag-
nitudes of λ̂ and p(Y|λ = λ̂, φ∗)/p(Y|λ = ∞, φ∗) provide mea-
sures of overall fit of the DSGE model.

Third, consider the comparison of two models M1 and M2.
In the context of our univariate example, these models corre-
spond to different restrictions, say φ∗

(1) and φ∗
(2). In our empiri-

cal analysis we compare the marginal likelihood functions asso-
ciated with different DSGE model specifications. For small val-
ues of λ, the goodness-of-fit terms σ̃ 2(λ,φ∗

(1)) and σ̃ 2(λ,φ∗
(2))

are essentially identical, and differences in marginal likelihoods
are due to differences in the penalty terms. For large values of λ,
in contrast, penalty differentials are less important, and the mar-
ginal likelihood comparison is driven by the relative in-sample
fit of the two restricted specifications. If the autocovariances as-
sociated with M1 are closer to the sample autocovariances than
to the M2 autocovariances, then, according to (44), λ̂(1) tends
to be larger than λ̂(2).

3.5 Impulse Response Function Comparisons

The goal of our impulse response function comparisons is to
document in which dimensions the DSGE model dynamics are
(in)consistent with the data. An extensive literature evaluates
DSGE models by comparing their impulse responses to those
obtained from VARs (e.g., Cogley and Nason 1994; Rotemberg
and Woodford 1997; Schorfheide 2000; Boivin and Giannoni
2006; Christiano et al. 2005).

Impulse response comparisons face two challenges. First, for
the VAR to be a meaningful benchmark, it must attain a higher
posterior probability than the DSGE model. In a Bayesian
framework, the odds of a VAR versus the DSGE model are up-
dated by the ratio of marginal likelihoods for the two specifi-
cations. Marginal likelihood functions in turn measure the time
series fit of a model, adjusted for its complexity. Many authors
are using simple least squares techniques to estimate uncon-
strained, high-dimensional VAR systems. Due to their com-
plexity, these VARs typically attain much lower marginal like-
lihoods than DSGE models, and it would be incoherent from

a Bayesian perspective to use them as a benchmark for DSGE
model evaluations. From a frequentist perspective, the impre-
cise VAR coefficient estimates translate into impulse response
function estimates that in a mean squared error sense are worse
than the estimates obtained directly from the DSGE model.

Second, for the comparison to be insightful from an eco-
nomic perspective, the VAR must be expressed in terms of
structural shocks. It is typically difficult to find identification
schemes that are consistent with the DSGE model and simulta-
neously identify an entire vector of structural shocks in a high-
dimensional VAR.

In the DSGE–VAR procedure, the benchmark is given by
DSGE–VAR(λ̂), the model that attains the highest marginal
likelihood. Therefore, by construction, our procedure meets
the first challenge: the benchmark model attains a better fit—
penalized for model complexity to avoid overparameteriza-
tion—and tends to deliver more reliable impulse response es-
timates than the restrictive DSGE model. The spirit of our eval-
uation is to keep the autocovariance sequence associated with
the benchmark model as close as possible to the DSGE model
without sacrificing the ability to track the historical time series.
Next, we describe how the DSGE–VAR analysis can address
the second challenge, identification.

To compare impulse response functions, we need to charac-
terize the matrix � that appears in (27) and provides the link
between reduced-form and structural innovations in the VAR.
We follow our earlier work (Del Negro and Schorfheide 2004)
and construct a restriction function �∗(θ) as follows. The state-
space representation of the DSGE model is identified in the
sense that for each value of θ , there is a unique matrix A0(θ)

that determines the contemporaneous effect of εt on �yt. Using
a QR factorization of A0(θ), the initial response of �yt to the
structural shocks can be can be uniquely decomposed into(

∂�yt

∂ε′
t

)
DSGE

= A0(θ) = �∗
tr(θ)�

∗(θ), (45)

where �∗
tr(θ) is lower-triangular and �∗(θ) is orthonormal. Ac-

cording to (26), the initial impact of εt on the endogenous vari-
ables �yt in the VAR is given by(

∂�yt

∂ε′
t

)
VAR

= �tr�. (46)

To identify the DSGE–VAR, we maintain the triangularization
of its covariance matrix �u and replace the rotation � in (46)
with the function �∗(θ), which appears in (45).

Using the rotation matrix �∗(θ), we turn the reduced-form
DSGE–VAR into an identified DSGE–VAR. Conditional on θ ,
our prior for � takes the form of a point mass at �∗(θ). The
marginal distribution of � is updated indirectly, as we learn
about the DSGE model parameters θ from the data. Because
beliefs about the VAR parameters are centered around the re-
striction functions �∗(θ) and �∗

u (θ), our prior implies, roughly
speaking, that beliefs about impulse responses to structural
shocks are centered around the DSGE model responses, even
for small values of the hyperparameter λ. However, the smaller
the λ, the wider the probability intervals for the response func-
tions. Our approach differs from much of the empirical litera-
ture on identified VARs because it closely ties identification to
the underlying DSGE model. We do not view this feature as
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a shortcoming. Because the premise of our analysis is that the
DSGE model provides a good (albeit not perfect) approxima-
tion of reality, strong views about the identification of particular
structural shocks can and should be directly incorporated into
the underlying DSGE model.

Two pairwise comparisons of impulse responses are in-
teresting: (a) the DSGE model versus DSGE–VAR(∞) and
(b) DSGE–VAR(∞) versus DSGE–VAR(λ̂). In our application
we are working with a log-linearized DSGE model that can be
expressed a vector autoregressive moving average (VARMA).
The first comparison provides insight into the accuracy of the
VAR approximation, whereas the second comparison provides
insight into the dimensions in which the DSGE model is mis-
specified. If the DSGE model’s moving average (MA) polyno-
mial is noninvertible or has roots near the unit circle, then the
approximation by a finite-order VAR could be poor. In con-
trast, if the MA polynomial is well approximated by a few
AR terms, then our identification procedure for the DSGE–
VAR is able to recover the DSGE model responses associated
with the VARMA representation. Fernandez-Villaverde, Rubio-
Ramirez, and Sargent (2007) provided necessary and sufficient
conditions for the invertibility of the MA components of linear
state-space models. In our application we find that for parame-
ter values of θ near the posterior mode, the discrepancy between
DSGE and DSGE–VAR(∞) responses is fairly small, particu-
larly in the short run. However, as in the indirect inference lit-
erature, our analysis remains coherent and insightful even if the
VAR provides only an approximation to the underlying DSGE
model.

Comparing the DSGE–VAR(λ̂) and DSGE–VAR(∞) re-
sponses illustrates the discrepancy between the coefficient esti-
mates that optimally relax the DSGE model restrictions and the
restricted estimates. If the posterior estimates of the VAR para-
meters are close to the restriction functions �∗(θ) and �∗

u (θ),
then the DSGE–VAR(λ̂) and DSGE–VAR(∞) will be very sim-
ilar. If, on the other hand, the posterior estimates strongly devi-
ate from the restriction function, then the discrepancy between
the impulse responses potentially provides valuable insight into
how to improve the underlying DSGE model.

4. THE DATA

All data were obtained from Haver Analytics (Haver mne-
monics are in italics). Real output, consumption of nondurables
and services, and investment (defined as gross private domes-
tic investment plus consumption of durables) are obtained by
dividing the nominal series (GDP, C − CD, and I + CD) by
population 16 years and older (LN16N) and deflating using the
chained-price GDP deflator (JGDP). The real wage is com-
puted by dividing compensation of employees (YCOMP) by
total hours worked and the GDP deflator. Note that compen-
sation per hours includes wages as well as employer contribu-
tion; it accounts for both wage and salary workers and propri-
etors. Our measure of hours worked is computed by taking to-
tal hours worked reported in the National Income and Product
Accounts (NIPA), which is at an annual frequency, and inter-
polating it using growth rates computed from hours of all per-
sons in the nonfarm business sector (LXNFH). Our broad mea-
sure of hours worked is consistent with our definition of both
wages and output in the economy. We divide hours worked by
LN16N to convert them into per capita terms. We then take the

log of the series multiplied by 100, so that all figures can be
interpreted as percentage changes in hours worked. All growth
rates are computed using quarter-to-quarter log differences and
then multiplied by 100 to convert them into percentages. In-
flation rates are defined as log differences of the GDP deflator
and converted into annualized percentages. The nominal rate
corresponds to the effective Federal funds rate (FFED), also in
percent. Data are available for QIII:1954–QI:2004.

5. EMPIRICAL RESULTS

The empirical analysis is presented in four parts. The first
part reports on the prior and posterior distributions for the
DSGE model parameters. The second part discusses the evi-
dence of misspecification in the new Keynesian model. We cal-
culate marginal likelihood functions for the hyperparameter λ

and study the discrepancy in the impulse responses to mone-
tary and technology shocks between the DSGE–VAR(λ̂) and
the DSGE–VAR(∞). In the third part, we use the DSGE–VAR
framework for the comparison of different DSGE model spec-
ifications. We strip the baseline model of some of its frictions
(habit formation and price/wage indexation) and investigate to
what extent the time series fit suffers as a consequence. Finally,
we report some results on pseudo–out-of-sample forecasting
accuracy.

Unless noted otherwise, all results are based on 30 years
of observations (T = 120), starting in QII:1974 and ending in
QI:2004. We used the same sample size in the pseudo–out-of-
sample forecasting exercise. Beginning in QIII:1954, we con-
structed 58 rolling samples of 120 observations, estimate the
DSGE–VARs as well as the state-space representation of the
DSGE model for each sample, and compute forecast error sta-
tistics. All MCMC results are based on 110,000 draws from the
relevant posterior distribution, discarding the first 10,000. We
checked whether 110,000 draws were sufficient by repeating
the MCMC computations from overdispersed starting points,
verifying that we obtained the same results for parameter esti-
mates and log-marginal likelihood functions.

The lag length p of the DSGE–VAR is 4. To make the DSGE–
VAR estimates comparable to the estimates of the state-space
representation of the DSGE model, in both cases we used like-
lihood functions that condition on the four observations needed
to initialize lags in period t = 1 as well as on the cointegra-
tion vector β ′y0. Because DSGE–VAR(∞) is not equivalent to
the state-space representation of the DSGE model, we adopt
the convention that whenever we refer to the estimation of the
DSGE model, we mean its state-space representation.

5.1 Priors for the Dynamic Stochastic General
Equilibrium Parameters

Priors for the DSGE model parameters are provided in the
first four columns of Table 1. All intervals reported in the text
are 90% probability intervals. The priors for the degree of price
and wage stickiness, ζp and ζw, are both centered at .6, imply-
ing that firms and households reoptimize their prices and wages
on average every two-and-half quarters. The 90% interval is
very wide and encompasses findings in microlevel studies of
price adjustments, such as that of Bils and Klenow (2004). The
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Table 1. The DSGE Model Parameter Estimates

Prior DSGE–VECM(λ̂) posterior DSGE posterior

Distribution P(1) P(2) Interval Mean Interval Mean Interval

α B .33 .10 [.16, .49] .23 [.20, .26] .26 [.23, .29]
ζp B .60 .20 [.29, .93] .79 [.72, .86] .83 [.79, .87]
ιp B .50 .28 [.08, .95] .75 [.53, 1.00] .76 [.57, .97]
s′′ G 4.00 1.50 [1.60, 6.28] 4.57 [2.60, 6.61] 5.70 [3.34, 7.90]
h B .70 .05 [.62, .78] .75 [.70, .81] .81 [.77, .85]
a′ G .20 .10 [.05, .35] .27 [.10, .43] .19 [.07, .32]
νl G 2.00 .75 [.81, 3.15] 1.69 [.66, 2.74] 2.09 [.95, 3.19]
ζw B .60 .20 [.29, .94] .79 [.70, .87] .89 [.84, .93]
ιw B .50 .28 [.05, .93] .45 [.04, .80] .70 [.47, .96]
r∗ G 2.00 1.00 [.49, 3.49] 1.36 [.41, .28] 1.52 [.48, 2.50]
ψ1 G 1.50 .40 [.99, 2.09] 1.80 [1.42, 2.19] 2.21 [1.79, 2.63]
ψ2 G .20 .10 [.05, .35] .16 [.09, .22] .07 [.03, .10]
ρr B .50 .20 [.18, .83] .76 [.70, .83] .82 [.78, .86]
π∗ N 3.01 1.50 [.56, 5.46] 2.98 [.89, 5.19] 5.98 [4.61, 7.38]
γ G 2.00 1.00 [.46, 3.47] 1.08 [.39, 1.80] .94 [.40, 1.43]
λf G .15 .10 [.01, .29] .35 [.29, .42] .29 [.24, .34]
g∗ G .30 .10 [.14, .46] .19 [.13, .24] .23 [.20, .26]
Ladj N 252.0 10.0 [235.5, 268.4] 257.6 [244.3, 271.5] 245.2 [233.5, 255.3]
ρz B .20 .10 [.04, .35] .20 [.08, .32] .20 [.09, .31]
ρφ B .60 .20 [.29, .93] .38 [.20, .58] .25 [.11, .37]
ρλf

B .60 .20 [.28, .93] .11 [.03, .21] .12 [.02, .21]
ρµ B .80 .05 [.72, .88] .74 [.68, .81] .87 [.81, .94]
ρb B .60 .20 [.29, .93] .80 [.68, .92] .92 [.86, .97]
ρg B .80 .05 [.72, .88] .90 [.85, .96] .95 [.93, .97]
σz IG .75 2.00 [.31, 2.34] .57 [.48, .65] .82 [.72, .91]
σφ IG 4.00 2.00 [1.64, 12.57] 11.83 [4.41, 19.84] 40.54 [18.21, 64.09]
σλf

IG .75 2.00 [.31, 2.34] .21 [.18, .25] .24 [.21, .28]
σµ IG .75 2.00 [.30, 2.33] .55 [.43, .67] .66 [.54, .78]
σb IG .75 2.00 [.30, 2.33] .32 [.24, .41] .54 [.36, .71]
σg IG .75 2.00 [.31, 2.34] .30 [.26, .34] .38 [.34, .42]
σr IG .20 2.00 [.08, .62] .18 [.15, .21] .28 [.25, .31]

NOTE: See Section 2 for a definition of the DSGE model parameters, and Section 4 for a description of the data. B represents beta; G, gamma; IG, inverse gamma; and N , normal distribution.
P(1) and P(2) denote means and standard deviations for the B, G, and N distributions; s and ν do so for the IG distribution, where pIG (σ |ν, s) ∝ σ−ν−1e−νs2/2σ2

. The effective prior is truncated
at the boundary of the determinacy region, and the prior probability interval reflects this truncation. All probability intervals are 90% credible. The following parameters are fixed: δ = .025, λw = .3,
and F = 0. Estimation results are based on the sample period QII:1974–QI:2004.

priors for the degree of price and wage indexation, ιp and ιw,
are nearly uniform over the unit interval. The prior for the ad-
justment cost parameter s′′ is taken from Smets and Wouters
(2003) and is consistent with the values that Christiano et al.
(2005) used when matching DSGE impulse response functions
to consumption and investment, among other variables, to VAR
responses.

Our prior for the habit persistence parameter h is centered
at .7, which is the value used by Boldrin, Christiano, and Fisher
(2001). Those authors found that h = .7 enhances the ability of
a standard DSGE model to account for key asset market statis-
tics. The prior for a′ implies that in response to a 1% increase in
the return to capital, utilization rates rise by .1% to .3%. These
numbers are considerably smaller than that used by Christiano
et al. (2005). The 90% interval for the prior distribution on νl
implies that the Frisch labor supply elasticity lies between .3
and 1.3, reflecting the microlevel estimates at the lower end and
the estimates of Kimball and Shapiro (2003) and Chang and
Kim (2006) at the upper end.

We use a presample of observations from QI:1960–QI:1974
to choose the prior means for the parameters that determine
steady states. The prior mean for the technology growth rate
is 2% per year. The annualized steady-state inflation rate lies
between .5% and 5.5%, and the prior for the inverse of the
discount factor r∗ implies a growth-adjusted real interest rate
of 4% on average. The prior means for the capital share α,
the substitution parameter λf , and the steady-state government

share 1 − 1/g are chosen to capture the labor share of .57, the
investment-to-output ratio of .24, and the government share of
.21 in the presample. The distribution for ψ1 and ψ2 is approxi-
mately centered at Taylor’s (1993) values, whereas the smooth-
ing parameter lies in the range .18–.83.

Because we model the level of technology Zt as a unit root
process, the prior for ρz, which measures the serial correlation
of technology growth zt, is centered at .2. The priors for ρµ

(shocks to the capital accumulation equation) and ρg (gov-
ernment spending) are quite tight around .8 to prevent these
parameters from hitting the boundary. The priors for the re-
maining autocorrelation coefficients of the structural shocks—
ρφ (preferences of leisure), ρb (overall preference shifter), and
ρλf (price markup shocks)—are fairly diffuse and centered
around .6. Finally, the priors for the standard deviation para-
meters are chosen to obtain realistic magnitudes for the implied
volatility of the endogenous variables. Throughout the analy-
sis, we fix the capital depreciation rate δ = .025 and λw = .3.
The parameter λw affects the substitution elasticity between dif-
ferent types of labor. Unlike λf , it is not identifiable from the
steady-state relationships. We introduce a parameter, Ladj, that
captures the units of measured hours worked. In our model we
choose φ such that in steady state, each household supplies one
unit of labor. A prior for Ladj is chosen based on quarterly per
capita hours worked in the presample. We assume that the pa-
rameters are a priori independent. Although this assumption is
common in the literature, we make it mostly for convenience.
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5.2 Posteriors for the Dynamic Stochastic General
Equilibrium Parameters

The remaining columns of Table 1 report on the posterior
estimates of the DSGE model parameters for both the DSGE
model and the estimation of the DSGE–VAR(λ̂). As described
later in detail, for the sample beginning in QII:1974, the value
of λ̂ is 1.25. We start by focusing on the parameter estimates for
the state-space representation of the DSGE model. The com-
parison of the 90% coverage intervals suggests that likelihood
contains information about most of the parameters. Three ex-
ceptions are the parameters a′, νl, and ρz, for which prior and
posterior intervals roughly overlap. The parameter estimates
for the DSGE model are also generally in line with those of
Smets and Wouters (2005), which is not surprising because our
model specification and choice of prior are similar to theirs. In
particular, the model displays a relatively high degree of price
and wage stickiness, as measured by the probability that firms
(wage setters) cannot change their price (wage) in a given pe-
riod. The posterior means of ζp and ζw are .83 and .89. The
estimated degree of indexation is about .7 for both prices and
wages. For some of the structural shocks, notably φt and λf ,t,
the degree of persistence is not as high as that given by Smets
and Wouters (2005).

We now turn to the parameter estimates obtained from the
DSGE–VAR(λ̂). In earlier work (Del Negro and Schorfheide
2004) we showed that as the prior on the VAR parameters be-
comes more diffuse, information about the DSGE model para-
meters accumulates more slowly. In the limit, when λ = 0, the
DSGE–VAR(λ) likelihood contains no information about the
parameter vector θ , and the posterior will be identical to the
prior. Thus in general, we expect that for λ̂ < ∞, the DSGE–
VAR(λ̂) posteriors will be closer to the prior than the DSGE
model posterior. Table 1 confirms that for many of the parame-
ters (including the degree of price and wage stickiness, the pol-
icy parameters, and some of the autocorrelation coefficients),
the DSGE–VAR(λ̂) estimates indeed lie between the DSGE
posterior and the prior distribution. One exception are the stan-
dard deviations of the structural shocks, which are estimated
to be lower under DSGE–VAR(λ̂) than under the DSGE model
regardless of the prior.

5.3 Evidence of Misspecification in the New
Keynesian Model

Smets and Wouters (2003, table 2) found that for Euro-area
data, a large-scale new Keynesian DSGE models can attain a
larger marginal likelihood than VARs with training sample prior
and specific versions of the Minnesota prior. This result has had
a considerable impact on applied macroeconomists and policy-
makers, because it suggests that new Keynesian DSGE mod-
els have achieved a degree of sophistication that makes them
competitive with more densely parameterized models, such as
VARs. In this section we revisit the findings of Smets and
Wouters using the DSGE–VAR procedure. We make three dis-
tinct points based on marginal likelihood functions and impulse
response comparisons. First, the posterior odds of a DSGE
model versus a VAR with a fairly diffuse prior do not pro-
vide a particularly robust assessment of fit. Small changes in the
sample period can lead to reversals of the model ranking. The

DSGE–VAR analysis, on the other hand, is much less sensitive
to changes in the sample period. Second, there is strong evi-
dence of misspecification in the new Keynesian model, suggest-
ing that forecasts and policy recommendations obtained from
this class of models should be viewed with some degree of
skepticism. Finally, on the positive side, we find that accounting
for misspecification by optimally relaxing the DSGE model re-
strictions does not alter the responses to a monetary policy and
technology shocks in any significant way, either qualitatively
or quantitatively. Thus, despite its deficiencies, the new Key-
nesian DSGE model can indeed generate realistic predictions
of the effects of unanticipated changes in monetary policy and
technology shocks.

5.3.1 The Marginal Likelihood Function of λ. Figure 2
shows the logarithm of the marginal likelihood of DSGE–
VAR(λ) for different values of λ, as well as for the DSGE
model. The values of λ considered are .33 (the smallest λ value
for which we have a proper prior), .5, .75, 1, 1.25, 1.5, 2, 5,

(a)

(b)

Figure 2. Marginal Likelihood as a Function of λ. (a) 30-year sam-
ple: QII:1974–QI:2004. (b) 30-year sample: QII:1970–QI:2000. The two
panels depict the log-marginal likelihood function on the y-axis and
the corresponding value of λ, rescaled between via the transformation
λ/(1+λ), on the x-axis. The right endpoint depicts the log-marginal like-
lihood for the state-space representation of the DSGE model.
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and ∞. We rescale the x-axis according to x = λ/(1 + λ). Fig-
ure 2(a) depicts the marginal likelihood function for the 30-year
sample beginning in QII:1974, which is the sample used for
most of the subsequent analysis. Figure 2(b) is based on a
30-year sample starting 4 years earlier, in QII:1970.

The comparison between the two extremes—the VAR with
loose prior on the left side of the plot and the DSGE model
on the right side—leads to opposite conclusions depending on
the sample period. In the QII:1974–QI:2004 sample, the dif-
ference in log-marginal likelihoods between the DSGE model
and DSGE–VAR(.33) is 5, which translates into posterior odds
of roughly 150 to 1 in favor of the DSGE model. Conversely,
for the QII:1970–QI:2000 sample, the difference is −14, over-
whelmingly against the DSGE model. This result confirms
Sims’ (2003) conjecture that marginal likelihood comparisons
among far-apart models are not robust. The four years of dif-
ference between the two samples are very unlikely to contain
major shifts in the economy and thus should not cause a change
in the DSGE model’s assessment.

The lack of robustness in the comparison between the two
extremes contrasts with the robustness of the overall shape
of the marginal likelihood function. In both panels, this func-
tion has an inverted U-shape. The marginal likelihood increases
sharply as λ moves from .33 to .75, is roughly flat for values
between .75 and 1.25, and subsequently decreases, first grad-
ually and then more rapidly, as λ exceeds 1.5. The substan-
tial drop in marginal likelihood between DSGE–VAR(λ̂) and
DSGE–VAR(∞) is strong evidence of misspecification for the
new Keynesian model: As the prior tightly concentrates in the
neighborhood of the cross-equation restrictions imposed by the
DSGE model, the in-sample fit of the DSGE–VAR deteriorates.
Earlier (Del Negro and Schorfheide 2006) we showed that the
shape of the posterior distribution of λ is roughly the same for
all of the 58 30-year rolling samples considered in the forecast-
ing exercise in Section 5.4. Therefore, the evidence of misspec-
ification for the new Keynesian model is robust to the choice of
the sample.

This inverted-U shape with peaks between .75 and 1.25 con-
trasts with the pattern that we would expect were the data
generated by the DSGE model. The AR(1) example in Sec-
tion 3.4 suggests that if the sample autocovariances were close
to the population autocovariances implied by the DSGE model,
then the marginal likelihood function would peak at a much
larger value of λ and possibly be monotonically increasing.
This is confirmed by simulation results reported by An and
Schorfheide (2006), who generated observations from a small-
scale DSGE model and then calculated marginal likelihood
functions for λ that are indeed monotone in λ.

5.3.2 Impulse Response Function Comparisons. To gain
further insight into the misspecification of the DSGE model,
we proceed by comparing impulse responses from the DSGE–
VAR(∞) to our benchmark specification DSGE–VAR(λ̂). It
turns out that in our application, the approximation error of the
DSGE–VAR(∞) relative to the state-space representation of the
DSGE model is small (see the App.). Consequently, the impulse
responses from the DSGE–VAR(∞)—in particularly to a tech-
nology and a monetary policy shock—are very similar to those
from the DSGE model.

We subsequently focus on the impulse response functions
that have received the most attention in the literature: responses

to monetary policy and technology shocks. The full set of
49 response functions is given in the Appendix. Figure 3 de-
picts mean responses to one-standard-deviation shocks for the
DSGE–VAR(∞) (gray solid lines), the DSGE–VAR(λ̂) (dark
dashed–dotted lines), and 90% bands (dark dotted lines) for
DSGE–VAR(λ̂). The responses are computed based on the re-
spective posterior draws for the DSGE–VAR(∞) and DSGE–
VAR(λ̂).

Figure 3(a) shows that the impulse response functions with
respect to a monetary policy shock for DSGE–VAR(∞) match
those for DSGE–VAR(λ̂), not only qualitatively but also, by
and large, quantitatively. Both in the DSGE–VAR(∞) and in
the DSGE–VAR(λ̂) output, consumption, investment, and hours
display a hump-shaped response to the policy shock, although
quantitatively, the hump for investment is more pronounced in
the data than it is in the DSGE model. Unlike that of Christiano
et al. (2005), our DSGE model implies that monetary policy
shocks are observed contemporaneously. Yet, thanks to various
sources of inertia, including habit formation, the initial impact
of the shock on real variables is very small. The response of
inflation is the only dimension in which DSGE model and data
disagree; according to the DSGE–VAR(λ̂), it is more sluggish
than in the DSGE model. In summary, as reported by Christiano
et al. (2005), we find that the DSGE model’s impulse response
to a policy shock is in agreement with the data. On the one
hand, this finding may not be too surprising, given that this spe-
cific model was written with this purpose in mind. On the other
hand, unlike Christiano et al., we do not estimate the DSGE
model by minimizing the discrepancy between the DSGE and
the VAR’s impulse responses, and, moreover, we use a different
benchmark and identification procedure. Yet we find that their
result is robust.

Figure 3(a) shows that the responses to a technology shock
have similar shapes for the DSGE–VAR(∞) and DSGE–
VAR(λ̂), but they appear to be quantitatively different. The
technology shock seems to have a greater effect in the DSGE–
VAR(∞). The amplification is due to a larger estimate of the
shock standard deviation caused by poorer in-sample fit of the
DSGE–VAR(∞) relative to the DSGE–VAR(λ̂). The differ-
ences between the response functions disappear if the technol-
ogy shocks in the two models are renormalized to have the same
long-run effect on output.

According to the analysis of Altig et al. (2004), inflation in
the DSGE model essentially does not move in response to a
permanent technology shock. We find that it does. Moreover,
the inflation response is consistent with our benchmark impulse
response function obtained from the DSGE–VAR(λ̂). We con-
jecture that this difference is due to the estimation procedure
used. Altig et al. estimated their DSGE model by matching im-
pulse response functions. Technology shocks in their VAR are
identified through long-run restrictions which tend to be im-
precisely estimated; thus, when minimizing the discrepancy be-
tween VAR and DSGE responses, more weight is placed on the
responses to the monetary shocks. But, as Figure 3(a) shows,
in the data inflation reacts with a delay to the monetary shock;
therefore, a sluggish response of inflation is wired into their
estimates, translating into a sluggish response to a technol-
ogy shock as well. Our likelihood-based estimation implicitly
places more weight on reproducing the response of inflation to
a technology shock.
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(a)

(b)

Figure 3. Impulse Response Functions: DSGE–VAR(λ̂) versus DSGE–VAR(∞). (a) Monetary policy shocks. (b) Technology shocks. This figure
depicts posterior mean responses for the DSGE–VAR(∞) (gray solid lines) and the DSGE–VAR(λ̂) (dark dashed–dotted lines), and 90% bands
(dark dotted lines) for DSGE–VAR(λ̂). Y , C, I, and W denote the percentage quarterly growth rates in real output, consumption, investment, and
real wages. Inflation is annualized inflation. H is the log level of per-capita hours (times 100), and R is the Fed funds rate in percent. For Y , C, I,
and W , the impulse responses are cumulative.
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In conclusion, we find that the DSGE model’s misspecifi-
cation does not translate into impulse responses to monetary
policy or technology shocks differ greatly between the DSGE
model and the benchmark DSGE–VAR(λ̂). Many macroecono-
mists believe that these two shocks provide a very important
source of business cycle fluctuations. Our results suggests that
business cycle research has to a large extent been successful
in developing a model that can produce realistic responses to
these shocks; however, a nonnegligible fraction of fluctuations
is attributed to the remaining five shocks in the model. We doc-
ument in the Appendix that for some of the shocks, such as µt,
which affects the shadow price of installed capital, DSGE–
VAR(∞) and DSGE–VAR(λ̂) differ substantially, particularly
in the long run, suggesting that some low-frequency implica-
tions of the model are at odds with the data.

5.4 Comparing Dynamic Stochastic General
Equilibrium Model Specifications

The DSGE model used in this article is rich in terms of
nominal and real frictions. An important aspect of the empir-
ical analysis of Smets and Wouters (2003) and Christiano et al.
(2005) is assessing which of these frictions are important to fit
the data. Smets and Wouters (2003) used marginal likelihood
comparisons, eliminating one friction at a time and comput-
ing posterior odds relative to the baseline specification. Chris-
tiano et al. (2005) studied whether the impulse responses of a
model without a specific friction can match the VAR’s impulse
responses as well as the baseline model.

In this article we use DSGE–VARs to assess the importance
of two particular features of the DSGE model: price and wage
indexation and habit formation. We refer to the model without
wage and price indexation as the no indexation model and to the
model without habit formation as the no habit model, whereas
we call the standard DSGE model used up to now the baseline
model. We document that habit formation is important to fit the
data, whereas the evidence in favor of indexation is weak.

We compare the marginal likelihood of λ for the baseline
model with that of the two alternative specifications. Our ex-
ample given in Section 3.4 suggests that as the mismatch be-
tween sample autocovariances and population autocovariances
implied by the DSGE model increases, λ̂ decreases, and the
marginal likelihood function shifts downward. Therefore, we
can infer from the magnitude of the south–west shift in the mar-
ginal likelihood function the extent to which a specific friction
is useful in fitting the data.

We emphasized previously that in the absence of a more
elaborate DSGE model, a comparison of impulse responses be-
tween the DSGE–VAR(∞) and DSGE–VAR(λ̂) can generate
important insight into how to improve the model specification.
Using the hindsight from our analysis of the baseline model,
we subsequently examine whether such a comparison for the no
indexation and no habit models reveals the directions in which
these models need to be augmented.

5.4.1 Evidence From the Marginal Likelihood Functions.
Figure 4 resembles Figure 2(a), except that we overlay the mar-
ginal likelihood functions for the baseline (solid line), the no
indexation (dashed line), and the no habit (dashed–dotted line)
model. Smets and Wouters (2003) dogmatically enforced the

Figure 4. Marginal Likelihood as a Function of λ: Comparison Across
Models. See Figure 2 for an explanation.

cross-equation restrictions of the DSGE model specifications,
which leads to a comparison of the three marginal likelihood
values on the right edge of Figure 4. Both alternative specifica-
tions are strongly rejected in favor of the baseline, even though
the rejection for the no indexation is not as stark as that for the
no habit model.

The evidence contained in the overall posterior distribution
of λ against the no habit model is equally strong. Figure 4
shows that relative to the baseline model, the marginal likeli-
hood of λ shifts not only down, but also to the left. Translating
the marginal likelihood values into posterior probabilities, for
the no habit model there is very little probability mass associ-
ated with values of λ > 1. Conversely, the leftward shift for the
no indexation model is much less pronounced, and the marginal
likelihood remains fairly flat for values of λ between .75 and 2.

5.4.2 Evidence From Impulse Response Functions. Sup-
pose that all we have available is the no habit (no indexa-
tion) model. Can we see from the impulse response comparison
between the DSGE–VAR(∞) and DSGE–VAR(λ̂) that some
important feature is missing from the structural model? Fig-
ure 5 depicts the mean impulse responses to monetary pol-
icy [Fig. 5(a)] and technology shocks [Fig. 5(b)] for DSGE–
VAR(∞) (gray solid line) and DSGE–VAR(λ̂) (dark dash-and-
dotted lines), as well a the 90% bands (dark dotted lines) for
DSGE–VAR(λ̂). Figure 5 is obtained based on the no habit
model; therefore, the benchmark DSGE–VAR(λ̂) in Figure 5
differs from that in Figure 3 for two reasons. First, the value
of λ̂ is lower, as can be appreciated from Figure 4. Second, the
prior for the VAR coefficients is based on the no habit model as
opposed to the baseline model.

Comparing Figures 5 and 3 indicates that the initial responses
to a monetary policy shock of output, consumption, and hours
for the no habit DSGE model look very different from those of
the baseline DSGE model. All real variables, with the excep-
tion of investment and real wages, now display a strong initial
reaction to the monetary shock, which contrasts with the hump-
shaped responses in the DSGE–VAR(λ̂). Even if Figure 3 were
not available to the researcher, the comparison between the im-
pulse responses for λ = ∞ and λ = λ̂ in Figure 5 would reveal
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(a)

(b)

Figure 5. Impulse Response Functions for the no Habit Model: DSGE–VAR(λ̂) versus DSGE–VAR(∞). (a) Monetary policy shocks. (b) Technol-
ogy shocks. See Figure 3 for an explanation.
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that something is amiss in DSGE model without habit forma-
tion. A similar analysis applies to the responses to a technology
shock [Fig. 5(b)], where consumption reacts strongly on impact
according to DSGE–VAR(∞), compared with the more gradual
response in the DSGE–VAR(λ̂). Importantly, the benchmark re-
sponses in Figures 5 and 3 are similar, both qualitatively and
quantitatively, despite the fact that the underlying set of cross-
equation restrictions is different. Thus, even under no habit, the
DSGE–VAR(λ̂) provides a reasonable benchmark, although the
DSGE model misspecification is seemingly stronger than for
the baseline model.

Figure 6 shows the impulse responses for the no indexa-
tion model. Unlike Figure 5, Figure 6 shows no stark diver-
gence between DSGE–VAR(∞) and the benchmark, DSGE–
VAR(λ̂). Indeed, the impulse response functions in Figure 6 are
quite similar to those of Figures 3. The change in the cross-
equation restrictions does not seem to translate into an appre-
ciable change in the transmission mechanism of monetary pol-
icy and technology shocks. Perhaps the main difference con-
sists of the response of inflation to technology shocks, which is
somewhat hump-shaped in Figure 3 but not in Figure 6. Quan-
titatively, however, this difference does not amount to much,
because the hump is small.

In conclusion, the evidence from the DSGE–VAR proce-
dure against the no indexation model is not nearly as strong
as that against the no habit model. These findings suggest that
habit persistence in preferences substantially improves the fit
of the DSGE model. Thus those who believe that habit persis-
tence is not a “structural” feature may have to introduce alterna-
tive mechanisms that deliver similar effects. Simply eliminating
habit persistence comes at a cost in terms of fit. In contrast, the
evidence in favor of price and wage indexation is not nearly as
strong, despite the fact that the marginal likelihood comparison
between DSGE models (Fig. 4), if taken literally, rejects the no
indexation model in favor of the baseline model.

5.5 Pseudo–Out-of-Sample Forecast Accuracy

We now discuss the pseudo–out-sample fit of DSGE–
VAR(∞) and compare it with that of the DSGE–VAR(λ̂) and
an unrestricted VAR. The out-of-sample forecasting accuracy
is assessed based on a rolling sample starting in QIV:1985 and
ending in QI:2000, for a total of 58 periods. At each date of
the rolling sample, we use the previous 120 observations to
reestimate the models and the following eight quarters to as-
sess forecasting accuracy, which is measured by the root mean
squared error (RMSE) of the forecast. For the variables that en-
ter the VAR in growth rates (output, consumption, investment,
real wage) and inflation, we forecast cumulative changes. For
instance, the RMSE of inflation for eight-quarters-ahead fore-
casts measures the error in forecasting cumulative inflation over
the next 2 years (in essence, average inflation), as opposed to
quarter-to-quarter inflation in 2 years. The DSGE–VARs are
reestimated for each of the 58 samples. As discussed earlier,
the value of λ̂ hovers between .75 and 1.25.

Table 2 documents for each series and forecast horizon the
RMSE of the unrestricted VAR, as well as the percentage
improvement in forecasting accuracy (whenever positive) of
DSGE–VAR(λ̂) and DSGE–VAR(∞) relative to the VAR. The

last three rows of the table report the corresponding figures for
the multivariate statistic, a summary measure of joint forecast-
ing performance, which is computed as the converse of the log-
determinant of the variance–covariance matrix of forecast er-
rors, divided by 2 to convert from variance to standard error and
by the number of variables to obtain an average figure. The per-
centage improvement in the multivariate statistic across models
is computed by taking the difference multiplied by 100.

Table 2 shows that for the multivariate statistic, and for most
variables, DSGE–VAR(λ̂) improves over the VAR for all fore-
casting horizons. Short-run consumption forecasts and long-run
investment forecasts are exceptions. Interestingly, there seems
to be a trade-off between forecasting consumption and invest-
ment. This trade-off reflects the fact that all three models con-
sidered in Table 2 are error-correction models with the same
long-run cointegrating restrictions on output, consumption, in-
vestment, and real wages. These cointegrating restrictions are
at odds with the data. Thus accurate forecasts for some of these
variables result in inaccurate forecasts for others, given that not
all series grow proportionally in the long run as the model pre-
dicts. Another manifestation of this phenomenon is the fact that
DSGE–VAR(∞) outperforms the other two models in forecast-
ing the real wage in the long run, but performs very poorly in
forecasting both output and investment. In summary, the fact
that the DSGE model imposes these long-run cointegrating re-
strictions results in a serious limitation of its forecasting ability.
To the extent that DSGE–VAR inherits the same long-run re-
strictions, its accuracy suffers as well.

For the remaining variables, DSGE–VAR(λ̂) is roughly as
accurate as the unrestricted VAR in terms of hours per capita,
whereas DSGE–VAR(∞) is far worse, especially in the long
run. Conversely, DSGE–VAR(∞) performs well in terms of
the nominal variables, inflation, and interest rate. For inflation,
the forecasting accuracy of DSGE–VAR(∞) is inferior to that
of DSGE–VAR(λ̂), but far better than that of the unrestricted
VAR. For the nominal interest rate, DSGE–VAR(∞) outper-
forms DSGE–VAR(λ̂) for longer forecast horizons, whereas in
the short run, the two models have roughly the same forecasting
performance.

Extending the analysis of Section 5.4, we now discuss
the comparison of the out-of-sample forecasting performance
across models. Figure 7 shows the one-quarter-ahead percent-
age improvement in the multivariate forecast statistic relative
to the unrestricted VAR for the baseline (solid line), no indexa-
tion (dashed line), and the no habit (dash-and-dotted line) mod-
els, as a function of λ. Note that the benchmark used for the
computation of the percentage improvement—the unrestricted
VAR—is the same for all three models. Figure 7 focuses on
one-period-ahead forecasting accuracy to facilitate a compari-
son with the results in Figure 4, which were based on the mar-
ginal likelihood.

The results in Figure 7 agree in a number of dimensions with
those in Figure 4. The inverted-U shape that characterized the
posterior distribution of λ for each of the model in Figure 4
also describes the improvement in forecasting accuracy rela-
tive to the VAR. Results documented earlier (Del Negro and
Schorfheide 2006) showed that this inverted-U shape character-
izes the improvement in forecasting accuracy for all forecasting
horizons from one to eight quarters ahead. Relaxing, but not ig-
noring the cross-equation restrictions leads to an improvement
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(a)

(b)

Figure 6. Impulse Response Functions for the no Indexation Model: DSGE–VAR(λ̂) versus DSGE–VAR(∞). (a) Monetary policy shocks.
(b) Technology shocks. See Figure 3 for an explanation.
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Table 2. Pseudo–Out-of-Sample RMSEs: Percentage Improvement Relative to VAR

Forecast horizon

1 2 4 6 8

Y DSGE–VAR(λ̂) 16.3 14.1 12.5 13.5 13.6
DSGE–VAR(∞) .9 −17.6 −56.5 −82.5 −102.9

VAR, RMSE: .67 .97 1.68 2.38 2.98

C DSGE–VAR(λ̂) −6.8 −7.6 7.1 16.6 21.5
DSGE–VAR(∞) −15.7 −21.4 −.8 11.3 12.0

VAR, RMSE: .42 .62 1.06 1.56 2.03

I DSGE–VAR(λ̂) 17.8 8.0 −5.0 −11.5 −17.2
DSGE–VAR(∞) −4.2 −41.2 −101.0 −135.3 −157.8

VAR, RMSE: 2.67 3.98 6.59 9.14 11.45

H DSGE–VAR(λ̂) 10.0 10.9 −.6 −0 .7
DSGE–VAR(∞) −13.6 −37.9 −95.4 −116.5 −127.2

VAR, RMSE: .58 .92 1.56 2.26 2.88

W DSGE–VAR(λ̂) 8.2 11.7 11.1 14.9 18.4
DSGE–VAR(∞) 6.7 12.7 18.1 27.0 36.6

VAR, RMSE: .65 1.06 1.72 2.28 2.82

Inflation DSGE–VAR(λ̂) 10.7 10.9 22.9 31.0 36.6
DSGE–VAR(∞) 8.4 4.2 10.4 21.1 29.6

VAR, RMSE: .25 .47 .98 1.68 2.42

R DSGE–VAR(λ̂) 27.3 23.4 9.2 7.0 9.1
DSGE–VAR(∞) 27.7 17.8 3.2 8.2 17.1

VAR, RMSE: .68 1.14 1.63 2.11 2.64

Multivariate DSGE–VAR(λ̂) 11.0 8.8 6.1 9.4 9.4
statistic DSGE–VAR(∞) 3.8 −2.1 −6.9 −2.7 −.2

VAR, RMSE: .68 .23 −.18 −.47 −.65

NOTE: Results are based on 58 rolling samples of 120 observations. For each rolling sample, we estimate DSGE model and DSGE–VARs, compute λ̂, and calculate pseudo–out-of-sample
forecast errors for the subsequent eight periods. For each variable, the table reports RMSE of the forecast from the VAR and improvements in forecast accuracy obtained by the DSGE model
and the DSGE–VAR(λ̂). Improvements (positive entries) are measured by the percentage reduction in RMSE. The multivariate statistic is computed as the converse of the log-determinant of the
variance–covariance matrix of forecast errors divided by 2 to convert from variance to standard error and by the number of variables to obtain an average figure. Percentage improvements are
computed by taking the difference times 100. Y , C, I, and W denote the percentage quarterly growth rates in real output, consumption, investment, and real wages. H is the log level of per capita
hours (times 100), and R is the Fed funds rate in percent. For Y , C, I, W , and Inflation, the RMSE is computed using the cumulative forecast error over the relevant horizon. The forecast horizon is
measured in quarters.

Figure 7. One-Period-Ahead RMSE Summary: Model Comparison.
This figure depicts the improvement in the one-period-ahead multivari-
ate statistic relative to an unrestricted VAR as a function of λ for three
different models, the baseline model (solid line), the no indexation model
(dashed line), and the no habit model (dashed–dotted line). The multi-
variate statistic is computed as the converse of the log-determinant of
the variance–covariance matrix of forecast errors divided by 2 to convert
from variance to standard error and by the number of variables to obtain
an average figure. Percentage improvements are computed by taking
the difference times 100.

in fit and forecasting performance. Consistent with the overall
message from the previous section, the no indexation and the
baseline models perform roughly as well in terms of multivari-
ate statistic, whereas the forecasting accuracy worsens consid-
erably for the no habit model relative to the baseline model as
the DSGE prior becomes too tight.

6. CONCLUSION

Smets and Wouters (2003) showed that large-scale new Key-
nesian models with real and nominal rigidities can fit as well
as VARs estimated under diffuse priors, possibly better. This
result implies that these models are tools for quantitative analy-
sis by policy making institutions. In addition, it implies that
VARs estimated with simple least squares techniques or, from
a Bayesian perspective, estimated under a very diffuse prior
many not provide a reliable benchmark. This in turn suggests
that more elaborate tools for model evaluation are necessary.
Using techniques that we developed earlier (Del Negro and
Schorfheide 2004), we constructed a reliable benchmark by
systematically relaxing the restrictions that the DSGE model
poses on a VAR to optimize its fit measured by the marginal
likelihood function. We argued that comparing the impulse re-
sponse functions of the DSGE model’s and the benchmark’s can
shed light on the nature of the DSGE model’s misspecification.

Our substantive findings are as follows. First, the posterior
odds of a DSGE model versus a VAR with a fairly diffuse
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prior do not provide a particularly robust assessment of fit.
Small changes in the sample period can lead to reversals of the
model ranking. The DSGE–VAR analysis, on the other hand,
is much less sensitive to changes in the sample period. Second,
there is strong evidence of misspecification in the new Keyne-
sian model, suggesting that forecasts and policy recommenda-
tions obtained from this class of models should be viewed with
some degree of skepticism. Finally, on the positive side, we find
that accounting for misspecification by optimally relaxing the
DSGE model restrictions does not alter the responses to a mon-
etary policy and technology shocks in any significant way, both
qualitatively and quantitatively. Thus, despite its deficiencies,
the new Keynesian DSGE model indeed can generate realistic
predictions of the effects of unanticipated changes in monetary
policy and technology shocks.
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APPENDIX: THE FULL SET OF IMPULSE
RESPONSE FUNCTIONS

Figure A.1 shows the impulse responses of the endoge-
nous variables to one-standard-deviation shocks for the DSGE–
VAR(∞) (dotted lines) and the state-space representation of the

Figure A.1. Baseline Model Impulse Response Functions: DSGE Model versus DSGE–VAR(∞). This figure depicts the impulse responses of
the endogenous variables to one standard deviation shocks for the DSGE–VAR(∞) (dotted lines) and for the state-space representation of the
DSGE model (solid lines).
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Figure A.2. Baseline Model Impulse Response Functions: DSGE–VAR(λ̂) versus DSGE–VAR(∞). This figure depicts mean responses of the
endogenous variables to one standard deviation shocks for the DSGE–VAR(∞) (gray solid lines), the DSGE–VAR(λ̂) (dark dash-and-dotted lines),
and 90% bands (dark dotted lines) for DSGE–VAR(λ̂).

DSGE model (solid lines). Both impulse responses are com-
puted using the same set of DSGE model parameters, namely
the mean estimates for the DSGE model reported in Table 1.

Figure A.2 depicts mean responses of the endogenous vari-
ables to one-standard-deviation shocks for the DSGE–VAR(∞)
(gray solid lines), the DSGE–VAR(λ̂) (dark dashed–dotted
lines), and 90% bands (dark dotted lines) for DSGE–VAR(λ̂).

The impulse responses are computed with respect to the
following shocks: technology growth zt (tech), labor/leisure
preference (φ), capital adjustment (µ), intertemporal prefer-
ence (b), government spending (g), markup (λf ), and monetary
policy (money).

[Received February 2006. Revised August 2006.]
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Comment
Lawrence J. CHRISTIANO

Department of Economics, Northwestern University, Evanston, IL 60208, and National Bureau of
Economic Research (lchristiano@northwestern.edu)

1. INTRODUCTION

I am very grateful to have been given the opportunity to
discuss this important and influential article by Del Negro,
Schorfheide, Smets, and Wouters (DSSW hereinafter). It rep-
resents a notable step forward in the ongoing enterprise of in-
troducing Bayesian ideas into the analysis of macroeconomic
time series. As dynamic stochastic general equilibrium (DSGE)
models become more useful from an empirical standpoint, we
need increasingly sophisticated methods to diagnose how well
they fit. Because these developments in DSGE modeling are rel-
atively recent and have occurred rather suddenly, we are short
on diagnostic methods. The article’s main contribution is to
present and apply such a method, building on the work of Del
Negro and Schorfheide (2006).

I begin with a brief review of DSSW’s procedure. That pro-
cedure works with a “hybrid model” that is a combination of an
unrestricted vector autoregression (VAR) for the data and the
VAR implied by the econometrician’s DSGE model. The com-
bination is indexed by a scalar parameter, λ, where the hybrid
model reduces to the unrestricted VAR when λ is small and to
the DSGE model as λ → ∞. The best hybrid model is the one
associated with λ̂, the value of λ that results in the highest mar-
ginal likelihood for the data. If λ̂ is large, then the DSGE model
is a good one. If λ̂ is sufficiently small, then this is evidence that
the researcher needs to go back to the drawing board to improve
the DSGE model.

My comment focuses on two questions: (1) What is the ra-
tionale for using the marginal likelihood to assess alternative
values of λ?, and (2) What should the cutoff values of λ̂ be for

deciding whether a DSGE model is good or bad? After address-
ing these questions, I ask whether there are other procedures for
evaluating model fit. I turn to this question in the conclusion.

The two basic ingredients in the marginal likelihood are the
likelihood of the data, which is assumed to be normal, and the
priors over model parameters. In practice, the choices made
on both dimensions are controversial. Based on the skewness
and kurtosis properties of residuals in an estimated VAR, I find
strong evidence against the normality assumption. In addition,
the choice of priors is as heavily influenced by computational
tractability as by plausibility. The marginal likelihood is com-
pelling only to the extent that its two ingredients are com-
pelling.

I report the results of computational experiments with simple
examples that suggest that the magnitude of deviation from nor-
mality, which is statistically very significant, is not large enough
to distort the DSSW analysis. Regarding the choice of priors,
in my comment I merely question the appropriateness of the
DSSW priors. I suggest a way to construct an alternative set of
priors that may better capture a researcher’s actual priors over
VAR parameters. However, it is beyond the scope of this com-
ment to investigate whether a DSSW-style analysis is robust to
such an alternative specification of priors.

Next, I turn to the question of how large is a “large” and
how small is “small” in the case of λ̂. I construct two Monte
Carlo experiments in which artificial data are generated by a
DSGE model and the econometrician correctly specifies the
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model. This allows me to assess how small λ̂ must be for the
econometrician to conclude that something is wrong with the
DSGE model. Not surprisingly, I find that the answer depends
on two things: (1) the details of the DSGE model and (2) the
number of free parameters in the unrestricted VAR relative to
the number of free parameters in the DSGE model. This sug-
gests that the DSSW method could be made even more useful
if explicit guidance could be provided to link the lower cutoff
value of λ̂ to the model used in the analysis and to the num-
ber of degrees of freedom. I also construct a Monte Carlo ex-
periment in which the econometrician’s DSGE model is mis-
specified. The DSSW method is shown to have power in that it
discovers with very high probability that the DSGE model is a
poor one. All of the experiments suggest one simple improve-
ment to the DSSW method that would help it better identify
weaknesses in model fit. In addition to reporting λ̂ itself, there
should be an analysis of the rate at which the marginal likeli-
hood declines for λ > λ̂. The experiments suggest that such a
measure would help sharply differentiate between good-fitting
and bad-fitting DSGE models. On the whole, the Monte Carlo
experiments support DSSW’s conclusion that there is informa-
tion about model fit in their method.

DSSW argue that the best hybrid model that emerges from
their analysis is of independent interest. The idea is that it can
serve as a basis for thinking about how to improve the DSGE
model in cases where λ̂ is small. This is possible, though I am
skeptical. As emphasized by DSSW, the marginal likelihood pe-
nalizes models with a large number of free parameters. In prac-
tice, the parameters of the hybrid model are those of the unre-
stricted VAR, modified to resemble those implied by the DSGE
model. Such a hybrid model can lead to improvement in the
marginal likelihood simply because the DSGE model has sub-
stantially fewer free parameters, not because the hybrid model
is necessarily closer to the “true” reduced form in a sense rele-
vant to the economic analyst. Nonetheless, it is possible to eval-
uate the DSSW idea that the hybrid model is useful for identi-
fying directions for improvement in the DSGE model by con-
structing the type of experiments analyzed in this comment. In
such an experiment, the econometrician would be modeled as
analyzing artificial data generated from a wrong model and use
the hybrid model to identify directions for improvement.

The following section briefly reviews the DSSW procedure.
Section 3 evaluates the marginal likelihood as a measure of
model fit. Section 4 investigates how the magnitude of λ̂ should
be interpreted. The final section concludes.

2. THE DSSW PROCEDURE

Let the constants and the parameters on the lag coefficients
in the VAR representation of the data, Y, be denoted by �. Let
the variance–covariance matrix of the one-step-ahead forecast
errors in this VAR be denoted by �. The mapping from the
DSGE model parameters, θ, to the VAR representation of Y is
denoted by �(θ) and �(θ). DSSW assume that the data have a
normal distribution, so that the likelihood of the data is a func-
tion only of � and �,

L(Y|�,�).

Evaluating the marginal likelihood requires integration over the
model parameters. One possibility for doing this is to replace

Figure 1. Priors Over VAR Parameters.

� and � by �(θ) and �(θ) and specify a prior over θ. But
this does not serve DSSW’s purpose, because this presumes
that the DSGE model is true and that the only thing not known
about it is the values of θ. In their assessment of the fit of the
DSGE model, DSSW wanted to be open to the possibility that
the model does not fit well. To see how DSSW proceeded, con-
sider Figure 1. On the horizontal axis are the VAR parameters,
reduced to a single dimension for the sake of the discussion. In
the middle of the horizontal axis are the values of the VAR pa-
rameters implied by the DSGE model, with parameter values θ.
If the DSGE model were true, then the prior over � and � con-
ditional on θ would be a single spike above 0 on the horizontal
axis. But this would defeat a basic objective of DSSW, which
is to evaluate the fit of the DSGE model and in particular to
entertain the possibility that the fit of the DSGE model is poor.
For this reason, DSSW construct a prior distribution on � and
� that assigns a positive probability to the state of the world in
which the DSGE model is false. Conditional on a value for θ,

the prior has mode �(θ),�(θ) and is denoted by

P(�,�|θ,λ),
where the value of the scalar, λ, controls how quickly the prior
drops to zero (see Fig. 1). As λ goes to infinity, the prior con-
verges to a single spike over �(θ) and �(θ) and corresponds to
the case in which the DSGE model is believed to be true. With
small values of λ, the prior becomes increasingly diffuse, and
a sufficiently small value of λ captures the view that the DSGE
model provides very little prior information on � and �. The
marginal likelihood of the data, conditional on the priors and on
a value for λ, is denoted by L(Y, λ), which is defined as

L(Y, λ) =
∫
θ

∫
(�,�)

L(Y|�,�)P(�,�|θ,λ)P(θ)d(�,�)dθ.

The DSSW procedure computes λ̂ as the solution to

λ̂ = arg max
λ≥0

L(Y, λ). (1)

In principle, evaluating L(Y, λ) requires solving a massive
numerical integration problem. For example, suppose that we
had an m = 10 variable VAR with four lags and a constant term
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in each equation, so that k = 41. Then the number of elements
in � would be 410, and the number of elements in � would be
55. In this case the parameters � and � alone contribute 465 di-
mensions to the integration problem, whereas the parameters θ ,
contribute another 30–40 dimensions. Numerical integration in
such a high-dimensional space, although not impossible, would
be a major impediment to implementing the DSSW procedure.
To avoid this, DSSW specify P(�,�|θ,λ) to be conjugate with
the normal likelihood; that is, P(�,�|θ,λ) is the product of
the inverse-Wishart density for � and the multivariate normal
density for � conditional on �. The scalar, λ, controls how
tightly concentrated this density is about �(θ),�(θ). With this
specification of the prior, the product,∫

(�,�)

L(Y|�,�)P(�,�|θ,λ)d(�,�),

can be evaluated analytically for given values of θ and λ.

With this dramatic reduction in the dimension of the integration
problem, evaluating L(Y, λ) becomes computationally feasible.
Nevertheless, the computational problem is quite cumbersome,
however, so that in practice the maximization problem in (1)
must be limited to a coarse grid of λ’s.

For a specific value of λ, the mode of the posterior distribu-
tion of � and � is DSSW’s hybrid VAR. Thus a side product
of the calculations is a “best” hybrid parameterization. If that
parameterization is far from the DSGE model (i.e., λ̂ is small),
this is an indication that the DSGE model fits poorly. If the hy-
brid parameterization corresponds closely to that implied by the
DSGE model (i.e., λ̂ is large), this is an indicator of good fit.

3. THE DSSW STRATEGY: A PRIORI
CONSIDERATIONS

In this section I raise some questions about the a priori ap-
peal of using the marginal likelihood to evaluate model fit. That
the strategy in principle has some appeal is suggested by the
fact that we use it in ordinary day-to-day conversation. For ex-
ample, in a discussion about the reason that one’s car will not
start or about the solution to a murder mystery, the hypothesis
that best explains the pertinent facts commands the most at-
tention. However, although in principle the marginal likelihood
may seem an attractive way to select among models, in prac-
tice significant compromises must be made for the approach to
be tractable. This is a shortcoming of the strategy, because the
impact of these compromises on the outcome of the analysis is
hard to judge. I now review these considerations by examining
the two basic ingredients in constructing the marginal likeli-
hood: the likelihood function and the priors.

DSSW follow convention in specifying the likelihood func-
tion of the data to be normal. I investigated the plausibility of
this specification by fitting a four-lag, seven-variable VAR us-
ing monthly U.S. data for the period 1955Q4–2006Q1. The fol-
lowing variables are used:

yt = [log Ct/Yt, log It/Yt, inflationt,

log Yt/Lt − log Wt/Pt,Rt, log Lt,GDP growtht].
Here Ct denotes real per capita nondurables and services con-
sumption Yt denotes real, per capita GDP; Lt denotes per capita
hours worked, inflation denotes inflation in the personal con-
sumption expenditure index, Wt/Pt denotes real labor compen-
sation for the whole economy (e.g., farmers and government
included), Rt denotes federal funds rate, and It denotes real per
capita gross private domestic investment plus household pur-
chases of durable goods. All real variables were obtained by
deflating by the GDP chain price index. Skewness and kurto-
sis statistics were computed for each of the seven VAR dis-
turbances and their p value were computed relative to the null
hypothesis that the underlying disturbances are normal. The p
values were computed by (1) simulating 1,000 artificial datasets
using the fitted VAR and drawing the disturbances, ut, from
the multivariate normal distribution with mean 0 and variance–
covariance matrix equal to its estimated sample analog and
(2) computing the percentage of times that the empirically es-
timated statistic is exceeded by its analog computed across the
artificial samples. The results are reported in Table 1. The kur-
tosis statistics are particularly large, and all kurtosis statistics
but the one on the disturbance in the inflation equation have p
values <.01. The kurtosis statistic on the interest rate has a p
value of 0 after rounding. The kurtosis statistic on GDP growth
is also particularly large, with a p value of .02. The skewness
statistic on the interest rate and on inflation are both very large,
with p values <.01. We can conclude that the evidence against
the normality assumption is substantial.

Next, consider the priors over the VAR parameters. In prac-
tice, it is difficult to deviate from the usual normal/Wishart as-
sumption. This is because doing so results in a prior that is not
conjugate with the normal distribution, which then forces one
to confront the formidable numerical integration problem dis-
cussed in the previous section. But for the DSSW strategy to be
compelling requires that we accept the normal/Wishart speci-
fication as a reasonable specification of one’s priors over VAR
parameters. DSSW do take some steps in the direction of a de-
fense. They show that under their assumptions, the height of the
prior in Figure 1 is inversely proportional to how surprised one
expects to be at VAR parameterizations different from �(θ),

Table 1. Empirical Skewness and Kurtosis Statistics, and Corresponding p Values

Kurtosis Skewness

Disturbance Statistic, s Pr(s > s|normal) Statistic, s Pr(s > s|normal)

logCt/Yt 1.40 .18% −.17 84.64%
logIt/Yt 1.59 .12% .07 33.04%
PCE inflationt .79 2.00% .41 .68%
logYt/lt − log Wt/Pt 1.04 .66% .39 1.22%
Rt 11.01 0% 1.62 0%
loglt 1.27 .40% .11 26.46%
GDP growtht 1.85 .02% −.02 55.00%
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�(θ). The surprise is measured by the expected drop in the like-
lihood, conditional on the DSGE model and on θ.

The DSSW defense of their specification of the prior over the
VAR parameters may have some appeal. Perhaps it is consistent
with the notion that in case one’s most preferred DSGE model is
wrong, the most likely alternative is somewhere nearby. How-
ever, for this type of argument to rationalize the type of nor-
mal/Wishart prior distribution used here would seem to require
an extraordinary coincidence. One could assess how well the
normal/Wishart represents a researcher’s priors over VAR para-
meters by the following exercise. Assign a set of probabilities to
a range of models and a subprobability distribution over the pa-
rameters of each model, conditional on that model being true.
This specification of model priors induces a prior distribution
over VAR parameters. If each DSGE model were not too sim-
ilar, then it seems safe to speculate that these priors over VAR
parameters would have a very different shape—possibly with
multiple local peaks—than what we see in Figure 1.

In sum, using the marginal likelihood to assess the plausi-
bility of alternative hypotheses requires a number of detailed
assumptions. The normality assumption on the likelihood func-
tion seems to be outright inconsistent with the data. The pri-
mary advantage of the prior distribution over VAR parameters
seems to lie with computational tractability. Using the marginal
likelihood to select models has some a priori appeal. But this
appeal rests on two propositions: that the right likelihood is
used and that the prior distribution corresponds to the priors
held by actual researchers. Evidence has been presented that
the first proposition is false; the second proposition remains to
be established.

4. THE DSSW STRATEGY: HOW IT
WORKS IN PRACTICE

DSSW do not provide guidance on how exactly λ̂ should be
used to evaluate model fit. How big should λ̂ be for one to feel
comfortable about a DSGE model? How small does λ̂ have to
be to justify going back to the drawing board to redesign the
model? DSSW present a value of λ̂ in the region of .75 and 1.5.
Does this mean that the model fits well, or poorly, or something
in between?

To shed light on these questions, I implemented Monte Carlo
experiments using artificial datasets of 200 observations gen-
erated using three DSGE models. One DSGE model, which
I call the RBC model, is the Long–Plosser real business cycle
model. The other two DSGE models are different versions of
the Clarida, Gali, and Gertler (2000) (CGG) sticky price model
(CGG1 and CGG2) (see also Gali, Lopez-Salido, and Valles
2003). Three experiments were done. The first two use RBC
and CGG1. In these experiments, the econometrician computes
λ̂ knowing the true model, although not the values of some of
its parameters. These experiments provide a sense of the sort
of λ̂’s to expect when the right model is in hand. In the third
experiment, the true model is CGG2, but the econometrician
mistakenly believes that the true model is a version of the RBC
model. This experiment provides a sense of the type of λ̂’s to
expect when the econometrician’s model is wrong. Section 4.1
describes the technical aspects of the data-generating mecha-
nisms and experiments. (This could be skipped in a quick read.)
Section 4.2 summarizes the Monte Carlo results.

4.1 The Experiments

To help economize on computer time, each Monte Carlo ex-
periment is designed so that the mapping from the DSGE model
parameters estimated by the econometrician to a VAR represen-
tation for the data �(θ) and �(θ) is trivial. Multiple artificial
datasets of length 200 observations are generated from a spe-
cific true DSGE model, and the λ̂ that solves (1) is computed
in each dataset. In each dataset, the integral in L(Y, λ) is com-
puted using Geweke’s (1999) modified harmonic mean method
and 100,000 Markov chain Monte Carlo (MCMC) trials. The
procedure was tuned so that the acceptance rate in the MCMC
trials averaged approximately 30%. Del Negro and Schorfheide
kindly supplied their MATLAB code for the calculations.

As an additional step to keep the required computer time
down, the maximization in (1) is restricted to the following set
of possible values of λ:

.11 .25 .43 .67 1.00
1.5 2.33 4.00 9.00 ∞.

When transformed into λ/(1 + λ), this corresponds to the 10
equally spaced grid points, .1, .2, . . . ,1.0. The quantity λ/(1 +
λ) is of interest because it corresponds to the relative weight
assigned in the hybrid model to the DSGE model.

The RBC Model. The preferences, technology, and shocks
in the Long–Plosser model are as follows:

E0

∞∑
t=0

β t
[

log Ct − exp(τt)

1 +ψ
l1+ψ
t

]
,

Ct + Kt+1 ≤ Kα
t (exp(zt)lt)(1−α) = Yt,

and

τt, zt: iid mean-0 random variables, variance σ 2
τ and σ 2

z ,

where Ct denotes consumption, lt denotes labor, Kt+1 denotes
capital, zt is a technology shock, and τt is a preference shock.
I set α = 1/3 and β = .99. The parameters estimated by the
econometrician are θ = (ψ,σ 2

τ , σ
2
z ), the true values of which

are (1, .022, .022). The econometrician’s prior distribution for
each parameter is inverted gamma, with mode equal to the cor-
responding true value. Specifically, denote the inverted gamma
density for the random variable, x, by f (x). Then

f (x) = ζ α

�(α)
x−α−1 exp

(
−ζ

x

)
,

where � is a gamma function. I assume that α = 10 and that ζ is
determined by the assumption on the mode of the distribution.

Artificial datasets on kt+1 = log(Kt+1) and log(Yt/lt) are
generated by the RBC model and provided to the econometri-
cian, whose mapping from θ to a VAR representation is defined
by(

kt+1
log(Yt/lt)

)
=

(
γk

γa

)
+

[
α 0
α 0

](
kt

log(Yt−1/lt−1)

)

+
(
(1 − α)(zt − 1

1+ψ
τt)

(1 − α)zt + α
1+ψ

τt

)
,

where

γk = 1 − α

1 +ψ
log

(
1 − α

1 − βα

)
+ logβα
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and

γa = − α

1 +ψ
log

(
1 − α

1 − βα

)
.

This VAR representation can be derived from the well-known
fact that the solution to this model is given by Kt+1 = βαYt.

The CGG1 Model. In the CGG model, the equilibrium al-
locations under a specific monetary policy rule (the “equi-
librium”) are expressed as a deviation from the best equilib-
rium achievable when the monetary policy rule is dropped (the
“Ramsey equilibrium,” or “natural equilibrium”). In the Ram-
sey equilibrium inflation, πt, is always 0, and the nominal rate
of interest is given by

rr∗
t = log

1

β
+ ρ�at + 1 − ζ

1 + ϕ
τt, (2)

where β is the discount rate of the representative household
(see App. A for the specification of preferences and technology
underlying this economy). The equilibrium conditions are

βEtπt+1 + κxt − πt = 0 (Calvo pricing equation), (3)

−[rt − Etπt+1 − rr∗
t ] + Etxt+1 − xt = 0

(intertemporal Euler equation), (4)

and

ut + φππt − rt = 0 (monetary policy rule), (5)

where rt is the equilibrium nominal rate of interest and xt ≡
yt − y∗

t is the deviation of equilibrium output, yt, from Ramsey
equilibrium output, y∗

t . In addition,

κ = (1 − ξp)(1 − βξp)(1 + ϕ)

ξp
,

where ξp is the probability that an intermediate goods producer
is not able to reoptimize its price in any given period. The mon-
etary policy shock ut, the growth rate of technology �at, and
a labor preference shock τt are assumed to have the following
scalar first-order autoregressive representations:

ut = δut−1 + ηt,

�at = ρ�at−1 + εt,

and

τt = ζ τt−1 + ετt .

In these expressions the innovations are iid and have variances
σ 2
η , σ 2

ε , and σ 2
ετ . I adopt the following model parameterization:

φπ = 1.5, β = .99, ϕ = 1, ρ = .2,

ξp = .75, δ = .2, ζ = .5, λf = 1.25,

ση = .005, σε = .01, σετ = .006.

To solve this model, first write the four equilibrium condi-
tions, (2), (3), (4), and (5) in matrix form:

Et[α0zt+1 + α1zt + β0st+1 + β1st] = 0,

where

zt =



πt

xt

rt − log(1/β)
rr∗

t − log(1/β)


 , st =

(
�at

ut

τt

)
,

st = Pst−1 + εt,

and α0, α1, β0, β1, and P are functions of the model parameters.
Then the solution is

zt = Bst,

where the 4 × 3 matrix B uniquely solves the following linear
system of equations:

(β0 + α0B)P + β1 + α1B = 0.

The vector of DSGE model parameters, θ, estimated by the
econometrician has eight dimensions and is composed of ϕ,

ξp, and the two parameters associated with each of the three
shocks. In the case of each element of θ , the prior is an inverted-
gamma distribution with mode equal to the true value of the
parameter and standard deviation equal to the true value of the
parameter, divided by 2. The econometrician estimates a three-
variable VAR using data on xt, πt, and rt. Appendix B verifies
that with this DSGE, the data satisfy a first-order VAR.

The CGG2 Model. In this version of the CGG model, I re-
place the technology shock process by the following stationary
representation:

at = ρat−1 + εt,

where ρ = .95 and all other parameters are as in the CGG1
model. With this change, the equilibrium condition for the
Ramsey rate of interest, (2), is replaced by

rr∗
t = log

1

β
+ (1 − ρ)at + 1 − ζ

1 + ϕ
τt,

and the log of the Ramsey level of output satisfies

y∗
t = γ + at − 1

1 + ϕ
τt, γ = − logλf

1 + ϕ
. (6)

Here λf (= 1.25) is a parameter that controls the elasticity of
demand for intermediate goods and corresponds to the markup
earned in steady state by monopolists in the model. Equilibrium
output, Yt, is obtained as

log Yt = xt + y∗
t ,

and equilibrium employment, lt, is obtained from

log lt = log Yt − at

= xt + γ − 1

1 + ϕ
τt.

Artificial data on log Yt and log lt are generated using CGG2
and provided to the econometrician, who mistakenly assumes
that the data were generated by a version of the RBC model. In
this version, the preference shock has a first-order autocorrela-
tion structure

τt = ρτ τt−1 + ετ,t,

where ρτ = .9 and Eε2
τ,t = σ 2

ετ
. The first-order bivariate VAR

representation that the econometrician (falsely) deduces for the
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data is(
log Yt

log lt

)
=

(
γY

γl

)
+

[
α (1 − α)ρτ

0 ρτ

](
log Yt−1
log lt−1

)

+
(
(1 − α)(zt − 1

1+ψ
ετ,t)

− 1
1+ψ

ετ,t

)
,

where

γY = α log(αβ)+ (1 − α)
1 − ρτ

1 +ψ
log

(
1 − α

1 − βα

)

and

γl = 1 − ρτ

1 +ψ
log

(
1 − α

1 − βα

)
.

To derive the first row of this representation, first note that the
log of the production function is

log Yt = 1

3
kt + 2

3
(zt + log(lt)).

Then use the solution of the model to express kt as a function of
log Yt−1 and to express log(lt) as a function ετt and log(lt−1).

The DSGE model parameters estimated by the econometri-
cian are θ = (ψ,σz, σετ ). It is assumed that the econometri-
cian uses an inverted gamma prior on each of the three para-
meters with mode (1, .02, .02) and standard deviation equal to
the mode, divided by 7.

4.2 The Results

This section presents results of the Monte Carlo experi-
ments described earlier. Consider first the results when the data-
generating mechanism is RBC and the DSSW method is imple-
mented with a bivariate unrestricted VAR that has 1 lag; see
RBC (lag 1) in Table 2. In this case the unrestricted model has
nine free parameters (six parameters associated � and three
with �), whereas the econometrician’s DSGE model has three
free parameters. Note that even though the econometrician has
the true model in hand, a substantial fraction (6%) of artificial
datasets result in a λ̂ that assigns a relative weight of 1/2 or
less to the DSGE model. The reason why λ̂ sometimes pro-
vides evidence against the DSGE model when it is true is that
there is a positive probability of datasets in which the unre-
stricted VAR fits better than the true VAR. To see this, consider
the likelihood ratio statistic formed from twice the difference

Figure 2. Realization of log-Marginal Likelihood, RBC (lag 1).

of the log-likelihood associated with the estimated unrestricted
VAR and the log-likelihood associated with the true VAR im-
plied by the DSGE. Asymptotically, this is a realization from a
chi-squared distribution with 9 degrees of freedom. The average
value of this statistic over all datasets with the indicated value
of λ̂ is reported in the row beneath the results for RBC (lag 1).
Note how these likelihood ratio statistics tend to be higher in
datasets associated with a low λ̂. With some exceptions, this
general pattern is also a feature of the CGG1 experiment. The
exceptions may reflect Monte Carlo sampling uncertainty.

Two features of the log-marginal likelihood in the RBC
(lag 1) results are worth emphasizing. One is illustrated in Fig-
ure 2. This shows a type of shape that occurs a nontrivial frac-
tion of times in data generated by RBC (lag 1). In these cases
the log-marginal likelihood is concave over most values of λ

and then rises sharply for λ near ∞. The abrupt change in the
behavior of the log-marginal likelihood for large values of λ

seems puzzling. A consequence of this shape is that results are
sensitive to the specification of the set of λ’s over which the
maximization in (1) is done. For example, if the upper bound
is λ = 200 rather than λ = ∞, then the percentage of artificial

Table 2. Cumulative Distribution of λ̂

λ̂/(1 + λ̂)

Experiment .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

RBC (lag 1) 0 0 .5 2.5 6.0 10.0 15.0 20.5 26.5 100
Likelihood ratio NA NA 18 21.4 17.3 16.2 14.4 13.3 13.0 8.8
RBC (lag 4) 0 0 0 0 0 0 0 0 .5 100
Likelihood ratio NA NA NA NA NA NA NA NA 27.5 22.5
CGG1 (lag 1) .5 1.0 1.0 1.0 1.5 4.0 11.0 24.5 53.0 100
Likelihood ratio 14.3 12.5 12.5 12.5 15.2 20.7 21.7 18.9 16.9 15.3
CGG1 (lag 4) 0 0 0 0 0 2.0 9.5 23.5 50.5 100
Likelihood ratio NA NA NA NA NA 70.5 59.4 54.3 49.1 45.1
CGG2 100 100 100 100 100 100 100 100 100 100

NOTE: Entries indicate the percentage out of 200 simulations that λ̂ is less than or equal to value indicated in column head. (lag x): x indicates the number of lags in the unrestricted VAR. Likelihood
ratio represents the average likelihood ratio (LR) statistic over all artificial datasets having λ̂ indicated in the column head, where LR is twice the difference of log-likelihood of unrestricted VAR
versus log likelihood of true VAR. NA means not applicable, because there were no λ̂’s in this entry.
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Figure 3. Realization of log-Marginal Likelihood, RBC (lag 1).

datasets with λ̂/(1 + λ̂) ≤ .9 is 64%, rather than the 26.5% re-
ported in Table 1. In the calculations for the oral presentation of
this comment, the upper bound on λ was λ = 5, and the reported
frequency of small λ̂’s was even greater. To see this, note from
Figure 2 that λ̂ is .43 if the upper bound on the λ’s considered
in the maximization in (1) is 9, and λ̂ = ∞ if the upper bound
on is ∞. The puzzling shape of the log-marginal likelihood in
the case of RBC (lag 1) was not observed in the other Monte
Carlo experiments.

A second notable feature of the log-marginal likelihood cor-
responding to RBC (lag 1) is that it exhibits very little variation
across different values of λ. For example, the average difference
between the log-marginal likelihood at the smallest value of λ

and that associated with λ̂ is only 7.7, which is considerably
smaller than that reported in the empirical example presented
in DSSW. This finding is illustrated in Figure 3, which displays
the log-marginal likelihood associated with a different artificial
dataset from the one underlying Figure 2. It bears emphasis that
the log-likelihoods in Figures 2 and 3 are chosen for illustrative
purposes. Both are atypical, in that they imply very low values
of λ̂.

The lack of variation in the log-marginal likelihood moti-
vated me to consider an unrestricted VAR with additional lags.
The results are reported in Table 2, in the row labeled “RBC (lag
4).” In this case λ̂ = ∞ in almost all of the artificial datasets. In
addition, the mean difference of the log-marginal likelihood at
the lowest value of λ and at λ̂ is now 32.4. This degree of vari-
ation in the log-marginal likelihood is similar to that reported
by DSSW. In RBC (lag 4), the number of free parameters in the
unrestricted VAR jumps to 21, versus the 3 free parameters in
the econometrician’s DSGE model. As emphasized by DSSW,
the log-marginal likelihood assigns a substantial penalty to free
parameters, which is manifest here in the form of a sharp pref-
erence in favor of the DSGE model over the unrestricted VAR.

Now consider the CGG1 experiment with 1 lag. In this case
the VAR has 3 variables, and so the number of unrestricted para-
meters is 18, compared with the 8 free parameters of the econo-
metrician’s DSGE model. In this experiment, small λ̂’s are still

possible, although this is less likely than it is in the case of RBC
(lag 1). Thus in 4% of the datasets, the relative weight assigned
to the DSGE model is 60% or less in the case of CGG1 (lag 1),
versus 10% for RBC (lag 1). Presumably, the improved perfor-
mance of the DSSW method reflects the greater number of pa-
rameters in the unrestricted VAR in the CGG (lag 1) experiment
than in the RBC (lag 1) experiment.

In CGG1 (lag 1), the average difference between the log-
marginal likelihood at the lowest value of λ and at λ̂ is 16.6,
which is smaller than the value given for the empirical exam-
ple reported by DSSW. This led me to consider the case with
4 lags in the unrestricted VAR, raising the number of free pa-
rameters from 18 to 45, while the number of free parameters
in the DSGE model remains at 8. As in the case of the RBC
model, the frequency of low values of λ̂ declines, although less
dramatically than we saw in RBC (lag 4). In particular, 9.5%
of the λ̂’s assign a weight of 70% or less to the DSGE model
in CGG1 (lag 4) versus 0% for RBC (lag 4). In CGG1 (lag 4),
the average difference between the log-marginal likelihood at
the lowest value of λ and at λ̂ is 35.4, which is closer to the
empirical example of DSSW.

In the lag 4 versions of both RBC and CGG1, there is a sub-
stantial difference between the log-marginal likelihood at the
lowest value of λ and at λ = λ̂, as found by DSSW. However,
in my examples there is relatively less difference between the
log-marginal likelihood at λ = λ̂ and at λ = ∞. For example,
in CGG2 the mean decline in the log-marginal likelihood from
λ = λ̂ to λ = ∞ when λ̂ < ∞ is slightly less than unity. This
is substantially smaller than the sharp drop in the log-marginal
likelihood reported by DSSW.

My next experiment, CGG2, investigates the behavior of
λ̂ and the log-marginal likelihood when the econometrician’s
DSGE model is false by construction. In this case, the data
are generated by a version of the CGG model, but the econo-
metrician’s DSGE model is a version of the RBC model. The
unrestricted VAR is estimated with one lag. Because two vari-
ables are included in the analysis, the unrestricted VAR has
nine free parameters. The econometrician’s DSGE model has
three free parameters. The results for this experiment are dra-
matic. In each artificial dataset, λ̂ is the lowest value of λ. Thus
DSSW’s method correctly reveals, with probability 1, that the
DSGE model is misspecified. Moreover, the slope of the log-
marginal likelihood is very steep, with the difference between
the log-marginal likelihood at the lowest and highest values of
λ being on the order of 300–500. I presume that the finding that
the unrestricted VAR is always the best model in this experi-
ment is an artifact of the specification that it has only one lag.
If more lags had been permitted in the unrestricted VAR, then λ̂

would have exceeded the lowest value of λ at least occasionally.
The features of this example that I expect to be robust are that
λ̂ is substantially less than infinity, and that the log-marginal
likelihood declines steeply for λ > λ̂.

Of the examples considered, the only one that can repli-
cate DSSW’s finding that the log-marginal likelihood declines
steeply for λ > λ̂ is the one in which the econometrician’s
model is false. The two examples in which the econometri-
cian’s DSGE model is true do occasionally produce a λ̂ sub-
stantially less than infinity. However, it is rare for the slope of
the log-marginal likelihood to be steeply negative for λ > λ̂.
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These findings suggest that the DSSW method would have even
greater power to identify evidence against DSGE models if the
method formally integrated the slope of the log-marginal likeli-
hood for λ > λ̂ into the diagnostic procedure.

Finally, recall the empirical evidence of leptokurtosis re-
ported in the previous section. In principle, using the normal
likelihood in Bayesian analysis entails specification error. To in-
vestigate whether this error distorts the DSSW analysis, I redid
the RBC experiment using disturbances that exhibit the amount
of kurtosis observed in the data. My results were essentially
unchanged from what is reported in Table 2, consistent with
the proposition that the amount of leptokurtosis observed in the
data is not sufficient to distort Bayesian analyses that use the
normal likelihood. Of course, these findings (like all other find-
ings in Table 2) are only indicative and need to be substantiated
by similar additional experiments.

5. CONCLUSION

DSSW have provided a valuable service in describing and
implementing a measure of fit for DSGE models. The Monte
Carlo evidence presented in this comment suggests four ways in
which DSSW’s measure of fit could be made even more useful:

1. It would be useful if a lower cutoff value of λ̂ were pro-
vided, such that for smaller λ̂, the researcher knows with
high probability, there is a problem with the DSGE model.
The Monte Carlo experiments in my comment suggest
that such a cutoff would be a function of, among other
things, the difference between the number of free para-
meters in the unrestricted VAR and in the DSGE model.

2. The rate at which the marginal likelihood declines for
λ > λ̂ should be formally integrated into the DSSW pro-
cedure. The Monte Carlo experiments suggest that a steep
rate of decline is a reliable signal that the econometri-
cian’s DSGE model fits poorly. This rate of decline can
be measured in various ways. One way would be to report
Bayesian probability intervals for λ.

3. In the absence of a stronger defense for the priors used
in the DSSW analysis, it would be useful to have evi-
dence that results based on the DSSW priors are robust
to plausible alternatives. A practical impediment to eval-
uating robustness is that priors that deviate from DSSW’s
are unlikely to have convenient conjugacy properties. As a
result, the numerical integration problem in (1) would be
computationally very burdensome in practical situations.
Nonetheless, robustness could be studied in the type of
simple examples considered in my comment, where com-
putational limitations are less binding.

4. I have provided evidence that the DSSW results are robust
to the kind of evidence against normality observed in the
data. A more systematic investigation of robustness would
be useful.

DSSW compare their procedure with alternative measures of
model fit based on out-of-sample forecasting performance. Fur-
ther comparisons of this type would be of interest. Measures of
out-of-sample forecasting performance appear to offer at least
four advantages over the DSSW method:

1. The computational burden is minimal compared with the
substantial resources required to evaluate (1).

2. Computational tractability limits the range of model
comparisons that can be done with the DSSW method,
whereas there is no limit to the models that can be com-
pared under out-of-sample forecasting criteria. For exam-
ple, the forecasting performance of the DSGE model can
be compared with that of a Bayesian VAR, as done by In-
gram and Whiteman (1994). In practice, Bayesian VARs
are more useful for forecasting than unrestricted VARs
because of parameter parsimony. Alternatively, DSSW’s
hybrid model under alternative specification of λ could be
compared with a Bayesian VAR under the out-of-sample
forecasting criterion.

3. Classical sampling theory offers some assistance in de-
termining whether differences in the out-of-sample root
mean squared error (RMSE) performance of alternative
models are statistically significant (see, e.g., Christiano
1989, app. D). This contrasts with the DSSW method, in
which a small λ̂ suggests the presence of evidence against
a DSGE model, but there is no guidance as yet on how
small such a λ̂ must be (see item 1 in the previous list).

4. The out-of-sample forecast performance criterion is trans-
parent and is of obvious interest to everyone. In contrast,
for the marginal likelihood to be compelling, one must
first confront several difficult—and in some cases, possi-
bly unresolvable—questions. What likelihood is appropri-
ate for the data? Are the researcher’s priors faithfully cap-
tured by the choice of prior distribution? Implicit in the
DSSW procedure is the assumption that one prior is suit-
able for everyone. But why should researchers with dif-
ferent backgrounds and experiences use the same prior?

DSSW show that an out-of-sample forecast RMSE criterion
produces fit results similar to what the DSSW procedure pro-
duces. In view of the advantages of the out-of-sample forecast-
ing approach, DSSW’s findings would appear to be a powerful
argument in its favor.
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APPENDIX A: PREFERENCES AND TECHNOLOGY
UNDERLYING THE CLARIDA–GALI–GERTLER MODEL

Although the preferences and technology underlying the
CGG model are well known, we include them here for com-
pleteness. In particular, the representative household’s prefer-
ences are

E0

∞∑
t=0

β t
(

log Ct − exp(τt)
l1+ϕ
t

1 + ϕ

)
, ϕ > 0,
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where Ct and lt denote consumption and employment and τt is
a labor supply shock. A budget constraint allows the household
to finance consumption by participating in a competitive labor
market and by participating in a loan market in which the log of
the gross nominal rate of interest is rt. In equilibrium, the loan
market must clear with zero trade.

Final output is produced by competitive firms using interme-
diate intputs, Yt(i), i ∈ (0,1), using the following technology:

Yt =
(∫ 1

0
Yt(i)

1/λf di

)λf

, λf ≥ 1.

The technology for producing Yt(i) is

Yt(i) = Atlt(i), at = log(At),

where lt(i) is employment by the ith intermediate good pro-
ducer. This producer, subject to Calvo sticky price frictions,
is able to reoptimize its price with probability 1 − ξp. With
the complementary probability, the intermediate good producer
cannot change its price. In steady state, equilibrium inflation is
zero, Yt = Ct, and lt = ∫ 1

0 lt(i)di. In the text, �at denotes the
first difference of at.

APPENDIX B: FIRST–ORDER VECTOR
AUTOREGRESSION REPRESENTATION

OF THE CGG1 MODEL

Let z̃t denote the 3 × 1 vector composed of the first three
elements of zt, and let B̃ denote the first three rows of B, so that

B̃ is a square matrix. B is invertible in the numerical examples
that I considered. The solution for z̃t is written z̃t = B̃st, or

B̃−1z̃t = st.

Then multiply on the left by the matrix lag operator, I − PL, to
obtain

(I − PL)B̃−1z̃t = εt

or

B̃−1z̃t = PB̃−1z̃t−1 + εt.

Multiply on the left by B̃ to obtain the first-order VAR repre-
sentation for z̃t,

z̃t = B̃PB̃−1z̃t−1 + B̃εt.

Then �(θ) is constructed from B̃PB̃−1, and �(θ) corresponds
to B̃VB̃′, where V is the variance–covariance matrix of εt. This
establishes that the variables in the CGG1 model has a first-
order VAR representation.
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Comment
A. Ronald GALLANT

Duke University, Fuqua School of Business, Durham, NC 27708 (arg@duke.edu)

My overall impression is that this is an important and very
well-written article. It establishes a standard that future em-
pirical work in macroeconomics should meet to be taken se-
riously by the scientific community. The empirical results are
relevant and persuasive: (1) Dynamic stochastic general equi-
librium (DSGE) models fit the data about as well as feasi-
ble reduced-form models, (2) DSGE models are as reliable for
some policy purposes as feasible reduced-form models (e.g.,
monetary policy), and (3) some neo-Keynesian features are es-
sential to fit the data (e.g., habit persistence).

The fundamental problem that this article addresses is that
macroeconomic data are sparse. It is difficult to make progress
in empirical work without serious use of prior information. This
fact compels the use of Bayesian methods. Two works that
drive this point home are those of Bansal, Gallant, and Tauchen
(2004) and Gallant and McCulloch (2005). In the former, one is
compelled to use relatively low-quality dividend data and make
a counterfactual assumption that the data are conditionally ho-
moscedastic to estimate the parameters of two general equilib-
rium models. In the latter, the use of prior information allows

dividends to be treated as unobserved and the conditional het-
eroscedasticity of the data to be incorporated into the analysis.
The statistical methods used in these two works are, loosely
speaking, the frequentist and Bayesian nonlinear analogs of the
methods advocated in the present article.

There are five key ingredients to the methodology advocated
in this article: (1) an auxiliary model, which is a vector autore-
gression (VAR); (2) a structural model, which is a DSGE; (3) a
prior that forces the auxiliary model to mimic the structural
model for large values of a hyperparameter λ and which pro-
duces a model that is a blend of the two for smaller λ; (4) pos-
terior probabilities of model plausibility indexed by λ; and, to
my mind the most important, (5) model adequacy expressed in
terms of a posteriori values of relevant functionals of the model
indexed by λ (e.g., impulse response curves). This last feature
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allows us to deal with the admitted fact that the models in-
volved are approximations and yet assess their adequacy and
usefulness in terms relevant to the underlying scientific disci-
pline rather then dismiss them out of hand by failure to ade-
quately approximate some aspect of the data that is effectively
irrelevant to the scientific discipline.

As stated earlier, my overall impression is that the article is
important and very well written, that it establishes a standard
for empirical work in macroeconomics to be taken seriously
by the scientific community, and that the empirical results are
relevant and persuasive. Nonetheless, a discussant’s job is to
quibble. When evaluating the quibbles that follow, the reader
should bear in mind that a response by the authors, although
feasible, would entail substantial additional computational ef-
fort, because the quibbles essentially advocate the use of non-
linear methods instead of linear methods.

The auxiliary model, the VAR, is conditionally homoscedas-
tic. For the data used here, this is counterfactual. The data are
conditionally heteroscedastic. This fact was documented by, for
instance, Bansal and Lundblad (2002). The bias caused by ig-
noring conditional heterogeneity can be large in the sorts of
models considered in this article, as documented by Gallant and
McCulloch (2005). The variance mismatch shown in table 1
suggests that the DSGE can generate conditional heteroscedas-
ticity, and thus it should be matched to an auxiliary model that
can also accomplish this so that the DSGE is allowed to track
this important feature of the data. It is in fact practicable us-
ing parallel equipment to compute the binding function from a
DSGE to a seminonparametric auxiliary model with a condi-
tionally heteroscedastic variance function (Gallant and McCul-
loch 2005).

The DSGE is not actually solved, but rather the solution is
approximated by a log-linear function whose coefficients are
nonlinear functions of model parameters. What passes for the
DSGE model is actually the driving processes passed through a
filter. How accurate is this approximation? Probably reasonably
accurate for reasonable values of θ . But MCMC subjects the
DSGE to unreasonable values of θ . It is worth pointing out that
there is a Bayesian method analogous to generalized method
of moments that avoids the need to solve the model and also

can handle high-dimensional observations (Gallant and Hong
2006). But probably if that method were used here, then some
parameters of the DSGE would not be identified by the data
used here.

Bayesian inference is subjective; therefore, the authors have
an absolute right to their own choice of prior. This is nonnego-
tiable. The author’s prior does appear to have some congruency
and computational advantages. Nonetheless, it is customary for
discussants of Bayesian applications to criticize the prior, and
I do not want to break with tradition. At first glance, the treat-
ment of the scale parameter of the prior appears to be absurd be-
cause of the way in which λ enters it. It takes about four pages
of discussion to convince the reader that the prior is not absurd.
A simple discrepancy prior stated as λ times some norm of the
difference between the location and scale given by the bind-
ing function and the location and scale of the auxiliary model
would be understood instantly. A simple discrepancy prior can
be made scale-invariant and is practicable (Gallant and McCul-
loch 2005).

To close, let me repeat that this is an important article that
establishes a standard that empirical work in macroeconomics
must meet to be taken seriously by those who work at some
distance from that field.
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Comment
Christopher A. SIMS

Department of Economics, Princeton University, Princeton, NJ 08544 (sims@princeton.edu)

1. WHY THIS APPROACH HAS BEEN SUCCESSFUL

This paper sets out to blend the advantages of VAR models,
which forecast well, with those of dynamic stochastic general
equilibrium (DSGE) models, which have fewer free parameters,
allow prior information to be brought to bear more directly, and
can be used for counterfactual policy simulations. They do this
by modeling the data as a VAR—that is, without the tight para-

metric restrictions implied by a DSGE—but using a DSGE, and
prior beliefs about the parameters of the DSGE, to generate a
prior distribution for the parameters of the VAR. This approach
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was originated by Del Negro and Schorfheide, though it had
precedents in earlier work they cite.

The most widely used priors for VARs (with a prior, a VAR
becomes a BVAR, or Bayesian VAR) are variants on the Min-
nesota prior. We need not provide the details of that prior here.
What is important about it is that it expresses beliefs only about
the lengths of lags and degrees of persistence implied by the
model; it treats all variables symmetrically and thus incorpo-
rates no behavioral interpretations of parameters or equations.
Macroeconomists have views on how variables are related and
how their properties differ, however. These views are most eas-
ily expressed as views about behavioral parameters in DSGE
models. Thus the Del Negro–Schorfheide (DS) approach is ap-
pealing.

Another approach is that originated by the other two co-
authors, Smets and Wouters, who use relatively richly parame-
terized DSGEs, together with priors on the parameters, to ar-
rive at a DSGE model that fits and forecasts relatively well. The
DS approach is probably the right one, though, for situations
where the model is to be used in forecasting and policy analy-
sis. This is in part because VAR models fit better than DSGEs
when they are applied to real data (not to processed data that
have had trend removed by filtering or regression). But more
importantly, aggregate DSGE models are story-telling devices,
not hard scientific theories. We know that there is no aggregate
capital stock and no aggregate consumption good. We know
that the real economy has a rich array of financial markets that
we do not include in our DSGE models. These and many other
simplifications that go into the construction of aggregate behav-
ioral models do not prevent them from helping us think about
the way the economy works, but it does not make sense to re-
quire that these models match in fine detail the dynamic behav-
ior of the accounting constructs and proxy variables that make
up our data. When we do so, we find ourselves adding to the
DSGE mechanisms for friction and inertia, or ad hoc “mea-
surement error,” with little empirical foundation or even intu-
itive plausibility. Making forecasts, policy projections, and (es-
pecially) welfare evaluations of policies with these models as if
their behavioral interpretation were exactly correct is a mistake.

The fact that their approach generates a prior for a VAR and
not a DSGE model fit to the data was at the forefront in earlier
work by Del Negro and Schorfheide. The present articles ex-
position emphasizes the DSGE, but a careful reading makes it
clear that the setup is still the same; the DSGE is a mechanism
for generating a prior, not a model of the data.

Another approach has been to use VARs as a standard of
comparison for DSGEs, with Bayesian posterior odds ratios or
pseudo–out-of-sample forecasting performance used to check
whether the DSGE is close to matching the fit of a BVAR or
VAR. Although such comparisons are helpful, they can be hard
to interpret. The methdology assumes that the models being
considered are an exhaustive list of possible true models, when
in fact they are usually representative points in a continuum of
possible models. Furthermore, this approach leaves us with two
extreme models: a BVAR with no substantive information in-
corporated in it and a DSGE with tight and unbelievable para-
metric restrictions. The DS approach blends substantive prior
information from the DSGE with the VAR model, introducing a
continuous paramater to control the weight on the DSGE prior.
This is more realistic and more easily interpreted.

2. IMPROVEMENTS I: A PROPER SYMMETRIC
PRIOR ON THE VECTOR AUTOREGRESSION

Although this article emphasizes the possibility of using the
weight parameter λ as an indicator of the reliability of the
DSGE, the DS methods in their current form cannot give a
clear indication that the DSGE is useless, even if it is in fact
useless. In models with more than two or three variables, un-
restricted VARs—which is what emerge from estimation with
a flat prior—generally forecast very badly. These models have
many free parameters, and estimating them all at once with-
out restrictions induces sampling error that makes forecast er-
rors large. BVAR’s produce better results by introducing a
prior favoring persistence, weak cross-variable connections,
and smaller coefficients on more distant lags. The DS approach
does not make any use of such symmetric, economics-free pri-
ors. The only way to bring in prior information of any kind is
by putting some weight on the DSGE. But we know that with
a flat prior a VAR will not fit well. What we would really like
to know is whether the DSGE’s behaviorally-based priors are
helping beyond what could be achieved with symmetric priors.

The procedure could easily be improved by using of a proper
but “economics-free” prior on the VAR (e.g. some version of
the “Minnnesota prior”). This would make monotonicity of the
marginal on λ with the peak at the VAR a realistic possibility,
and thereby let us see whether the economics in the DSGE, as
opposed to its serial correlation, prove helpful.

3. IMPROVEMENTS II: LESS AD HOCKERY IN
IDENTIFYING THE STRUCTURAL VAR

The DS setup includes a reduced-form VAR and also a struc-
tural VAR, related to each other in the usual way. In the struc-
tural VAR, the disturbances are interpreted behaviorally. Most
importantly, there is one shock or set of shocks interpreted as
stochastic shifts in policy behavior, which correspond to equa-
tions that describe policy behavior. The interpretation of these
structural shocks is the same as that of corresponding shocks
in the DSGE model. Thus in the structural VAR, it is possible
to carry out counterfactual policy projections, holding policy
variables on a given path and projecting other variables condi-
tional on the policy actions required to produce that path for
the policy variables. The DS notation for these two models
is

RF : y = �(L)y + u, var(u) = �u,

SVAR : C(L)y = ε, var(ε) = I,

Connection : A0A′
0 = �u, A−1

0 · (I −�(L)) = C(L).

The reduced-form and structural VARs are connected through
the foregoing relation between A0 and �u. The DSGE implies
a matrix A0(θ) that connects the DSGEs implied reduced-form
VAR to its implied SVAR. We could imagine generating a prior
on the SVAR, conditional on the DSGE parameters θ , by gener-
ating a prior conditional on θ on the reduced-form coefficients
� as DS do, and then asserting dogmatically that in the SVAR,
A0 = A0(θ). But this is unappealing, because there seems to
be no good reason to treat A0 = C−1

0 as deterministic con-
ditional on θ when Cs for s > 0 are all treated as uncertain
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conditional on θ . This would amount to completely trusting
the DSGE assertions about contemporaneous relations among
variables, while treating its assertions about lagged effects as
uncertain.

So DS do something else: treat A0 as random conditional on
θ . They apply a QR transformation to A0(θ), expressing it as

A0(θ) = �∗
tr(θ)�(θ),

where �∗
tr(θ) is triangular and �(θ) is orthonormal. They then

write the SVAR A0 as

A0 = �tr�(θ), where �tr = chol(�u). (∗)

[Here chol(X) is the Choleski factor of X.] In other words,
the “rotation” matrix � is treated as nonstochastic, conditional
on θ , whereas the lower triangular part of the QR decomposi-
tion is treated as a priori random, with its distribution derived
from their prior on the reduced form. Conditional on θ , a re-
alization of the prior distribution for the SVAR is obtained by
first obtaining a draw of the reduced-form parameters (includ-
ing �u), calculating the QR decomposition of A0(θ), then ap-
plying (∗).

But although this method does make A0 random conditional
on θ , it treats the identifying restrictions embodied in the A0(θ)

matrix as stochastic only sometimes. If it happens that A0(θ) is
triangular, for example, then the � matrix is the identity and the
SVAR is identified using exactly the restrictions that deliver tri-
angularity of A0. But if A0(θ) is triangular only after a reorder-
ing of the variable list, then the SVAR generated by the DS prior
conditional on θ will not exactly satisfy the reordered triangu-
larity restrictions. This means that identifying restrictions from
the DSGE may or may not be applied deterministically. The QR
decomposition, on which the DS procedure is based, gives re-
sults that depend on the ordering of the variables, which is the
source of this somewhat arbitrary behavior.

This could be fixed, though at some cost in complexity of the
procedure.

4. IMPROVEMENTS III: MORE EMPHASIS ON
LOW FREQUENCIES

The use of DSGEs as “core” models, insulated from the
data, by central bank modelers suggests a lack of confidence
in “statistical models” at low frequencies, but also lack of con-
fidence in the high-frequency behavior of DSGEs. This is quite
explicit in the Bank of England’s monograph rationalizing its
recently developed BEQM model, and is also present in the
Fed’s FRBUS and the Bank of Canada’s QPM, on which quite
a few other central bank models have been based. One of the
primary objections to the new “DSGEs that fit” is that to fit
well, they need to be equipped with many sources of inertia and
friction that seem arbitrary (i.e., more uncertain a priori than is
acknowledged by the model), yet may have important implica-
tions for evaluating policy.

The DS procedure does use cointegrating restrictions from
the DSGE (nonstochastically), but otherwise it mimics infor-
mation from a modest-sized sample. Such a prior inherently is
more informative about short-run than long-run behavior. This
also could be fixed. We could use dummy observations in the
style of the Minnesota prior, centering on the DSGE-implied
VAR coefficients but making beliefs tighter at low frequencies
than at high frequencies.

5. CONCLUSION

The DS approach is already practically useful and appears to
be the most promising direction to follow in developing mod-
els that combine accurate probability modeling of the behav-
ior of economic time series with insights from stochastic gen-
eral equilibrium models. Of course the approach requires both
a good time series model and a good DSGE to work with, so
there is plenty of room for further research into both of these
topics as well as into improving the DS methodology itself.
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Comment
Jon FAUST

Economics Dept., Johns Hopkins University, Baltimore, MD 21218 (faustj@jhu.edu)

At one point more than 3 decades ago, there was something
of a consensus among macroeconomists regarding a large-scale
model of business cycles. One version of such a model, built in
an impressive joint effort of academicians and the Federal Re-
serve, was beginning to play an important role in policy analysis
at the Fed. In the 1970s, this consensus evaporated, as bad eco-
nomic outcomes and apparent policy mistakes were associated
with a breakdown in model performance.

While we continue to apportion blame for these events, three
critiques of model failure are important. For concreteness, and

without abusing historical accuracy too much, I call these the
Lucas (1976), Sims (1980), and Hendry (1985) critiques. The
Lucas critique revealed deep difficulties in the very nature of
policy analysis; the Sims and Hendry critiques were more about
practical standards of good practice in model building. Sims
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(1980) argued that we had no basis for believing the assump-
tions used to identify the models; arbitrary identifying assump-
tions lead to arbitrary answers and unreliable policy analysis.
Sims took pains to demonstrate that this critique has full force
even if the models seemed to “fit.” For example, he reminded
us that false restrictions can improve forecasting performance.
Hendry argued that the models simply did not fit. The models
showed a glaring inability to account for arguably important
features of their estimation samples.

Something of a new consensus on large-scale macromod-
eling is emerging; a wide range academics and central bank
economists are once again jointly building large-scale macro-
models, and central banks are beginning to use these models
in policy analysis. This is a very good development. These
models—like the models of the last consensus—embed great
advances over what came before. I have argued more fully else-
where (Faust 2005) that these models have an important posi-
tive role to play in policy analysis.

Still, as a central banker, I am concerned. Setting aside the
vexatious Lucas critique, how can we be confident that we
are not repeating the more mundane mistakes highlighted by
Hendry and Sims?

The excellent article by Del Negro, Schorfheide, Smets, and
Wouters provides a unified framework for answering this ques-
tion. The marginal likelihood of the hyperparameter, λ, pro-
vides one answer to Hendry in the form of a metric for assessing
the distance between the reduced form of the models and the
data. The impulse response comparisons give a partial response
to Sims, shedding light on the degree to which the deviation
between model and data casts doubt on the model’s account
of causal structure. Neither the desirability nor the possibility
of handling these issues in a unified framework has ever been
doubted, but practical implementation of such a framework has
largely eluded model builders up to now. The demonstration in
this article is a very positive contribution.

Still, even armed with these new tools, as a central banker,
I am concerned. My Hendry-style reservations are easiest to
describe. The DSGE models have implications for many more
variables than are used in the empirical analysis. In particular,
the models have predictions for the entire term structure of in-
terest rates, yet only short-term interest rates are used in the
empirical analysis. The expectations theory of the term struc-
ture holds (or almost holds) in the models, and this theory is
known to be grossly inconsistent with the data—especially the
U.S. data. To put it most contentiously, we have discovered one
way to “fit” the dynamics of the quantity of investment: move
the long-term interest rate in arbitrary, counterfactual ways. We
may echo Hendry in stating that these models show a glaring
inability to account for arguably important aspects of the data.
The point is as mundane as it was in the 1970s—ignore incon-
venient features of the data at your peril.

There is a simple lesson here from the methodological per-
spective of the article. All macromodels are simplifications and
ultimately wrong. The article embeds our wrong model in a
more general one, allowing us to ask “How wrong is it?” and “In
what dimensions is it wrong?” In practice, such tools will be of
little value unless we avoid arbitrary and unmotivated zero–one
decisions about which empirical facts to allow into the analysis.

Of course, we cannot solve all problems at once. If we begin
the analysis with too many empirical implications, then the ap-
proach can become computationally infeasible or the results can
become messy and difficult to assess. The Bayesian framework
provides a nice piecemeal alternative: Start with a “core” set
of observable implications as in the article; obtain the posterior
for θ ; then evaluate how the posterior changes, say, if we add
various additional variables one-by-one. Some such exercise is
clearly needed.

Protection against the Sims critique is more tricky. First, we
must remember that, although “fit” might be necessary for a
good policy analysis model, it is not sufficient. As a profes-
sion, we have groped about in the class of friction-laden DSGE
models to prove the existence of a model that fits macro dy-
namics. The tools described in this article can help us evaluate
existence claims. To answer Sims (and Koopmans), we need to
prove uniqueness; we must rule out that there are other models
in this class with similar fit but different causal structure. Sims
(2001) and others (Faust 2005; Leeper 2005) have argued that
uniqueness here is a wide-open question.

The tools described in this article play no direct role in prov-
ing uniqueness, but the impulse response comparisons shed
some light on whether the inadequacies in fit call into question
the substance of the causal mechanism of the model. This is the
one area in which I disagree a bit with the authors. The goal of
the article is to compare the impulse responses implied by some
DSGE model parameter, θ , to those implied by a reduced-form
VAR that cannot be exactly matched by any DSGE model pa-
rameter. Of course, we have an identification problem here—
which identification of the VAR should we choose for the com-
parison? The authors choose the identification by taking the �

implied by θ from the DSGE model and applying it to the re-
duced form VAR. The article argues that “this implies that we
take the DSGE model literally in the directions of the VAR pa-
rameter space in which the data are uninformative” (p. 127).

This argument is incomplete; there are arbitrarily many ways
to “take the DSGE model literally.” Because the VAR and θ are
literally inconsistent, to take certain features literally, we must
relax others. Which features to maintain and which to drop is
a substantive choice. The authors take literally certain aspects
of contemporaneous interactions under θ . Instead, they could
have, for example, chosen to take θ ’s implications literally, say,
for long-run neutrality of certain shocks. Once again, we con-
front Sims’ warning against arbitrary restrictions.

Although the choice of identification in the article is arbi-
trary, the framework of the article provides a nice starting point
for a more substantive analysis. We take seriously the fact that
the model is ultimately wrong and want to know whether it is
wrong in dimensions that matter most to us. We should state
a substantive prior over implications of θ that we expect to
hold—even in the “true” model, which differs from that of θ .
Such features might include, for example, certain long-run im-
plications or Euler equation restrictions.

My suggestions regarding the Sims and Hendry critiques
bear a close family resemblance. Regarding the Hendry cri-
tique, I said that we should avoid arbitrary zero–one choices
about which data implication to expose the model to. Regard-
ing the Sims critique, I am saying we should avoid arbitrary
dogmatic choices about which implications of the model to take
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literally in evaluating the causal interpretation of a more general
model.

When we work with wrong models, we must make astute
choices about which features of the data we hope to match, as
well as about which theoretical implications of the model that
we wish to take seriously (versus take to be uninteresting arti-
facts of our idealization). Perhaps the key practical problem in
a large modeling effort is that these choices can become opaque
and difficult to inspect. In one view, Sims and Hendry argued
that the failures of the last consensus models were due to insuf-
ficient vigilance regarding these choices.

As a central banker, I find that this article makes me opti-
mistic about the new consensus models. To be sure, we cur-
rently have at best a poor response to the Hendry and Sims
critiques as applied to the new models. But the unified frame-
work presented in this article illuminates a route to replacing
formerly opaque and dogmatic choices with explicit and nu-
anced choices about which bits of data and theory we take seri-
ously. To paraphrase Sims (1980), a long road remains to be
traveled here. The opportunities for progress look to be im-
mense.

Note. This work was completed while the author was an
economist in the International Finance Division at the Federal
Reserve Board. The views in this article are solely the respon-
sibility of the author and should not be interpreted as reflecting
the views of the Board of Governors of the Federal Reserve
System or other members of its staff.
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Lutz KILIAN

Department of Economics, University of Michigan, Ann Arbor, MI 48109 (lkilian@umich.edu)

1. INTRODUCTION

Empirical adaptations of the Keynesian model date back
to the early days of econometrics. The traditional partial-
equilibrium Keynesian model was devoid of dynamics. It took
partial adjustment and adaptive expectations models to make
these inherently static models suitable for econometric analysis.
The resulting highly restrictive dynamics of this first generation
of Keynesian empirical models were economically implausible,
especially from a general equilibrium standpoint, contributing
to the demise of these models in the 1980s (see Sims 1980).

The second generation of Keynesian empirical models, ex-
emplified by Galí (1992), embedded the Keynesian model in a
structural vector autoregression (VAR). Restrictions implied by
the static partial equilibrium Keynesian model were imposed in
modeling the contemporaneous interaction of the shocks. To-
gether with long-run neutrality restrictions on the effect of de-
mand shocks on the level of output, these restrictions served to
identify the structural parameters, while the lag structure of the
model was left unconstrained. Although this structural VAR ap-
proach dispensed with the strong restrictions on the dynamics
implied by partial adjustment and adaptive expectations mod-
els, it remained suspect because of the built-in partial equilib-
rium assumptions and lack of microfoundations.

As empirical representations of traditional Keynesian models
evolved in the 1980s and 1990s, dissatisfaction with the theoret-
ical underpinnings of the traditional Keynesian model led to the

development of the class of New Keynesian models. The latter
models are microfounded dynamic stochastic general equilib-
rium (DSGE) models. Apart from offering more credible iden-
tifying assumptions, these DSGE models imply cross-equation
restrictions that may improve the efficiency of VAR model es-
timates compared with traditional Keynesian VAR models. The
authors’ chief contribution is to provide a coherent economet-
ric framework for evaluating the fit of this third generation of
Keynesian empirical models from a Bayesian standpoint.

2. ECONOMETRIC FRAMEWORK

The central idea of the article is to approximate the DSGE
model by a VAR and to document how the model fit changes
as we relax the cross-equation restrictions implied by the the-
oretical model. The premise is that we start with the modal
belief that a given DSGE model is accurate, but allow for the
possibility that our prior beliefs may be wrong. Prior beliefs
about the accuracy of the DSGE model have implications for
the values of the approximating VAR model parameters. Let
the hyperparameter λ be the precision of a zero mean prior dis-
tribution over the deviations of the (nearly) unrestricted VAR
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parameters from the restricted VAR parameters implied by the
DSGE model. DSGE–VAR(λ|p) defines a continuum of mod-
els indexed by λ conditional on the lag order p of the approx-
imating VAR model. At one extreme, we have the unrestricted
VAR(p) model, which coincides with DSGE–VAR(0|p); at the
other extreme is the (approximate) VAR representation of the
DSGE model, denoted by DSGE–VAR(∞|p).

The marginal likelihood of λ is interpreted as a measure of
in-sample fit with a built-in penalty for model complexity that
depends on λ. The lower λ, the higher the complexity of the
model (because there are more “degrees of freedom” in fitting
the data). DSGE–VAR(λ̂|p) denotes the model evaluated at the
peak of the marginal likelihood of λ, corresponding to the de-
gree of model complexity favored by the data.

The log-linearized DSGE model has a state-space form that
can be expressed as a VARMA model in the observables, which
in turn can be approximated by a finite-order VAR model un-
der weak conditions. The authors first verify that the impulse
responses obtained from the exact DSGE–VARMA model are
well approximated by the finite-order DSGE–VAR(∞|4) model
approximation. They then compare the impulse responses of the
approximate DSGE–VAR(λ̂|4) and DSGE–VAR(∞|4) models
in an effort to generate insight into the sources of DSGE model
misspecification. Although a lag order of p = 4 may be rea-
sonable in this example, more discussion of the principles un-
derlying the selection of p would be useful. Should we select
the lag order to minimize the discrepancy between the DSGE–
VARMA model and the DSGE–VAR(λ̂|p) model for given sam-
ple size or by other means? Does the subsequent analysis re-
main credible if for a given dataset, no good approximation can
be achieved for any p?

3. WHAT MAKES THE NEW KEYNESIAN
MODEL FIT?

DSGE models contain endogenous propagation mechanisms
that convert unobservable exogenous shocks into observable
data for macroeconomic aggregates. Ideally, we would like
these propagation mechanisms to explain all of the persistence
and co-movement in the U.S. data. These mechanisms are typi-
cally weak, however. Unless the underlying exogenous driving
processes are highly persistent, the dynamics of the simulated
model data do not match the dynamics of the U.S. data very
well. This problem is not specific to the New Keynesian model.
The same problem arises in New Classical models. If we restrict
the productivity shock in a standard RBC model to white noise,
for example, the dynamics of the model are clearly at odds with
the data.

The weakness of the propagation mechanism would not be a
problem if economic theory were not quiet on the sources and
nature of the exogenous shocks in the model. In practice, the
number, type, and nature of the exogenous driving processes
derive not from theory, but rather from the ingenuity of the
empirical researcher. Just as the partial adjustment and adap-
tive expectation specifications in large-scale econometric mod-
els were not part of the original theoretical design, these shock
processes are not part of the original theoretical model. Thus,
in evaluating the fit of the New Keynesian model, the authors
are not evaluating the model per se, but rather are evaluating the

model in conjunction with ad hoc assumptions about the shock
processes.

The authors’ approach is to include six exogenous driving
processes used in the previous literature: a technology shock,
a shock to capital accumulation, government spending shocks,
shocks to preference for leisure, an overall preference shock,
and shocks to price markups. Some obvious questions are:
(1) Were it not for the fact that we feel compelled to justify
the use of a large-dimensional VAR model, would we ever have
thought of adding all these shock processes?; (2) Holding fixed
the dimensionality of the VAR model, could we have selected
other shock processes instead that would have been equally rea-
sonable?; and (3) How important is the AR(1) structure chosen
for the shock processes in the article? Clearly, alternative spec-
ifications will alter the VARMA model structure that the VAR
model is designed to approximate.

The consequences of the researcher getting the nature of the
exogenous driving processes in the model wrong are of obvious
concern. Specifically, the concern is that the apparent fit of the
New Keynesian model may have more to do with the inclusion
of suitable exogenous driving processes than with the realism
of the model structure itself. What does the proposed methodol-
ogy tell us, for example, when in reality there is no exogenous
preference-for-leisure shock but the model allows for such a
shock? What happens when we get the number of exogenous
shocks right but the type of shocks wrong? What happens when
the researcher allows for a highly persistent government spend-
ing shock process in a model with weak propagation mecha-
nisms, but in reality that government spending shock process is
not persistent? Will the measure of fit favor an incorrect model
merely because it gives the model much more flexibility in fit-
ting the data? What if technology follows a random walk, but
the variability of technology innovations is much smaller in re-
ality than the model allows for? Would a misspecified model
simply inflate the variance of the technology shock to achieve
a better fit? This is a concern, given the evidence reported by
Basu (1996) that measured Solow residuals may reflect shifts
in factor utilization and increasing returns to scale, along with
exogenous changes in technology. It would be interesting to ex-
plore these issues.

In addition, one would want to be able to compare formally
alternative models with the same economic structure, except for
differences in the nature of the exogenous driving processes.
There is a close link, however, between the number of exoge-
nous driving processes and the dimensionality of the approxi-
mating VAR model. Moreover, the rank structure of the VAR
model will depend on the nature of the underlying exogenous
shocks. In this sense, alternative models are no longer nested,
and how to compare them and it is not obvious how to compare
them.

Another concern is that many of the model features as well
as priors seem to have been obtained based on previous studies
of essentially the same dataset. Clearly, we have learned a lot
in recent years about what works (e.g., habit persistence) and
what does not work when fitting the data. This introduces an
element of data mining and blurs the distinction between priors
and posteriors. Is it surprising that the New Keynesian model as
specified in this article appears to fit the data, given that many
of its features have been developed to fit this very dataset? Even
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the real-time forecasting exercise does little to allay these con-
cerns, because the model has been specified with knowledge of
previous studies that used the entire dataset.

4. HOW REALISTIC IS THE NEW
KEYNESIAN MODEL?

An important part of the appeal of the New Keynesian model
studied by the authors is that the DSGE–VAR(λ̂|4) impulse re-
sponses are “realistic.” By this, the authors mean that relaxing
the restrictions implied by the DSGE–VAR(∞|4)—which is es-
sentially the DSGE–VARMA model in this example—in favor
of the DSGE–VAR(λ̂|4) model does not alter significantly the
responses to an unanticipated monetary policy shock.

Realism here is judged only through the prism of a specific
economic model structure, the premise being that the DSGE–
VAR(λ̂|4) model is realistic. The problem with this approach
to measuring realism is that the underlying DSGE model may
very well be false. Although the comparison between DSGE–
VAR(∞|4) and DSGE–VAR(λ̂|4) model responses is informa-
tive about the realism of the prior mean of the values of the
model parameters chosen for this specific DSGE model, it is not
necessarily informative about the realism of the DSGE model
structure itself.

The traditional approach to judging the realism of a DSGE
model is to compare the time series properties of data gener-
ated from the DGSE model with those obtained from a reduced-
form representation of the U.S. data. One method is to com-
pare cross-autocorrelation matrices, as in the RBC literature;
another is to focus on reduced-form impulse response analy-
sis from unrestricted approximating VAR models, on multivari-
ate spectral representations of the data (see Diebold, Ohanian,
and Berkowitz 1998) or on statistical measures of co-movement
(see Den Haan 2000). Such VAR (or VARMA) comparisons
still implicitly invoke the assumption that there are at least as
many shocks in the DSGE model as in the VAR model. If
we are unsure of the number of exogenous driving processes,
and are unwilling to make ad hoc assumptions about “stochas-
tic noise” or measurement error (as in Rotemberg and Wood-
ford 1997), the only remaining avenue is to focus on statistics
that can be computed based on univariate representations of the
data. An example of this approach is the analysis of univariate
predictability measures presented by Diebold and Kilian (2001)
and Inoue and Kilian (2002).

The problem with using reduced-form VAR evidence as the
benchmark, as the authors point out, is that the unrestricted
VAR model or DSGE–VAR(0|4) model is dominated in terms
of its time series fit by the DSGE–VAR(λ̂|4) model. The authors
present evidence that imposing some DSGE structure improves
the in-sample fit of the VAR model, even when there is strong
evidence that the DSGE–VAR(∞|4) model is misspecified. Un-
like the evaluation of the realism of the DSGE–VAR(∞|4)
model relative to the DSGE–VAR(λ̂|4) model, which is lim-
ited to a comparison of specific identified impulse responses of
interest to economists, the evidence that the DSGE–VAR(λ̂|4)
model is more realistic than the DSGE–VAR(0|4) model is
based on a comparison of their respective marginal likelihoods.
The authors interpret this finding as evidence that the DSGE–
VAR(0|4) model should be discarded as a benchmark in favor
of the VAR(λ̂|4) model.

As this discussion illustrates, there is a certain asymmetry
in the way in which the authors judge the realism of alterna-
tive models. Judged by the marginal likelihood, the DSGE–
VAR(λ̂|4) model dominates not only the DSGE–VAR(0|4)
model, but also the DSGE–VAR(∞|4) model (see fig. 2 in the
article). Rather than discard the DSGE–VAR(∞|4) model as
they did with the DSGE–VAR(0|4) model, the authors resur-
rect the DSGE–VAR(∞|4) for all practical purposes by appeal-
ing to the similarity of its responses to monetary policy shocks
to those from the DSGE–VAR(λ̂|4). By the same token, they
could have compared selected reduced-form statistics based on
the DSGE–VAR(λ̂|4) and DSGE–VAR(0|4) models to argue
that the formal rejection of the DSGE–VAR(0|4) model perhaps
does not mean that the model does not provide a good bench-
mark for all practical purposes. At least they do not provide
evidence to the contrary.

If we accept the marginal likelihood of the model as the met-
ric for model comparisons, then the unrestricted VAR model
ceases to be the relevant benchmark for model comparisons.
What then is the relevant benchmark for comparing alternative
models? The authors’ view that the reduced-form properties
of the DSGE–VAR(λ̂|4) model are a more suitable benchmark
than those of the DSGE–VAR(0|4) model seems compelling,
as far as this article is concerned, but one would not expect this
particular DSGE model to be the only DSGE model that helps
improve the fit of the unrestricted VAR model or even the model
that improves it the most. Improved fit may be implied by any
number of potentially nonnested DSGE model structures rela-
tive to the approximating VAR model appropriate for that spe-
cific DSGE model. Thus the relevant comparison for finding a
new benchmark for the literature seems to be across alternative
DSGE–VAR(λ̂|p) models with different VAR dimensions, vari-
ables, and lag structures. It is not clear from the article how to
conduct such a comparison of the realism of alternative models
or what is the correct metric for evaluating alternative DSGE–
VAR(λ̂|p) models. Clearly, the λ metric is specific to a given
DSGE model and cannot be used to compare alternative DSGE
models except when one model nests the other, as in the ex-
amples involving habit formation and price and wage indexing
provided by the authors.

5. ON THE FORECASTING ABILITY OF
THE NEW KEYNESIAN MODEL

The article also investigates the forecasting ability of the New
Keynesian model at horizons of up to 2 years. The question
of forecasting ability is of interest primarily to central bankers
and those who seek to understand monetary policy decisions.
The forecasting problem faced by central bankers differs from
the forecasting problem typically studied by academics. The
difference is that central bankers want not only accurate fore-
casting models (as measured by, e.g., the out-of-sample predic-
tion mean squared error), but also forecasting models that lend
themselves to economic interpretation or story telling. This fact
helps explain why large-scale macroeconometric models have
survived at central banks long after their credibility has been
undermined in academic circles. The New Keynesian model
studied by the authors is intended to provide an alternative to
large-scale models derived from traditional Keynesian partial
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equilibrium models. Its attractiveness is that it retains the eco-
nomic interpretability of traditional econometric models, while
being more microfounded, general equilibrium, and tractable.
Of course, ease of interpretation may come at a price in terms
of out-of-sample forecast accuracy.

The authors show that the DSGE–VAR(λ̂|4) model is about
as accurate as or even more accurate than the unrestricted
VAR(4) model in forecasting from rolling regressions, whereas
the DSGE–VAR(∞|4) model is distinctly less accurate in some
cases. Although the unrestricted VAR model may seem to be
a natural benchmark in this context, it is something of a straw
man in that in practice no one would rely on unrestricted VAR
models for forecasting macroeconomic aggregates. Within the
class of linear reduced-form models, more realistic competitors
would include Bayesian VAR models developed for forecast-
ing, forecasts from single-equation models based on shrinkage
estimators, factor model forecasts, and forecast combination
methods for large cross-sections of time series data. It is less
than obvious that the DSGE–VAR(∞|4) model would remain
competitive with the latter forecasting models.

There is another key difference between forecasting exercises
conducted by central bankers and forecasting exercises studied
by most academics, however, suggesting that the latter compar-
ison would not be the right comparison either. Central bankers
invariably are interested in forecasting macroeconomic aggre-
gates, such as inflation or output growth conditional on a pre-
specified path of interest rates. Such conditional forecasts re-
quire a structural model (see Waggoner and Zha 1999). None
of the standard methods of forecasting through forecast combi-
nation or shrinkage allows the imposition of an exogenous path

of the interest rate in prediction. Thus the most relevant com-
parison of the forecasting ability of the New Keynesian model
would be against suitable alternative structural models, given
the same path of the interest rate.

6. CONCLUSION

The improvement of structural time series models for macro-
economic policy analysis is a central task if time series analy-
sis is to retain its importance for economic policy making. The
authors are to be commended for having taken on this task. Al-
though I have focused on potential weaknesses in the article,
as befits a discussant, this criticism should not obscure the fact
that the analysis in this article is impressive and likely to frame
the discussion of structural model evaluation for years to come.

ADDITIONAL REFERENCES

Basu, S. (1996), “Procyclical Productivity: Increasing Returns or Cyclical Uti-
lization?” Quarterly Journal of Economics, 111, 719–751.

Den Haan, W. J. (2000), “The Co-Movement Between Output and Prices,” Jour-
nal of Monetary Economics, 46, 3–30.

Diebold, F. X., and Kilian, L. (2001), “Measuring Predictability: Theory
and Macroeconomic Applications,” Journal of Applied Econometrics, 16,
657–669.

Galí, J. (1992), “How Well Does the IS–LM Model Fit Postwar U.S. Data?”
Quarterly Journal of Economics, 107, 709–738.

Inoue, A., and Kilian, L. (2002), “Bootstrapping Smooth Functions of Slope Pa-
rameters and Innovation Variances in VAR(∞) Models,” International Eco-
nomic Review, 43, 309–332.

Sims, C. A. (1980), “Macroeconomics and Reality,” Econometrica, 48, 1–48.
Waggoner, D. F., and Zha, T. (1999), “Conditional Forecasts in Dynamic Mul-

tivariate Models,” Review of Economics and Statistics, 81, 639–651.

Rejoinder

Marco Del NEGRO
Federal Reserve Bank of Atlanta, Atlanta, GA 30309 (marcodelnegro@frbatlanta.org)

Frank SCHORFHEIDE
Department of Economics, University of Pennsylvania, Philadelphia, PA 19104 (schorf@ssc.upenn.edu)

Frank SMETS
European Central Bank, D-60311 Frankfurt, Germany (Frank.Smets@ecb.int)

Rafael WOUTERS
National Bank of Belgium, B-1000 Bruxelles, Belgium (Rafael.Wouters@nbb.be)

We would like to thank all of the discussants for their stim-
ulating comments. The comments contain many useful sugges-
tions on how to extend and improve our framework for eval-
uation, forecasting, and policy analysis with dynamic stochas-
tic general equilibrium (DSGE) models. Taken as a whole, the
comments outline an entire research agenda, and as Jon Faust
puts it: “The opportunities for progress look to be immense.”
In this rejoinder we briefly revisit some of the issues that were
raised.

1. IDENTIFICATION

Several commentators either implicitly or explicitly raised
the issue of identification. There are two dimensions to the
identification problems. The first dimension has to do with
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observational equivalence of different DSGE models, whereas
the second dimension is related to the identification of struc-
tural shocks in the DSGE–vector autoregression (DSGE–VAR)
model. We begin with the broader question of observational
equivalence.

1.1 Observational Equivalence

Are there other DSGE models with similar fits but differ-
ent causal structures (Faust)? This is a key question in the re-
search agenda. Many central banks around the world are cur-
rently building and estimating DSGE models for use in pol-
icy analysis. These models often share the same features and—
when estimated with Bayesian methods—similar priors for the
deep parameters. Yet there may exist other DSGE models that
are (almost) observationally equivalent (i.e., they fit the data
just as well) but have very different policy implications, for in-
stance, models in which nominal rigidities play a less important
role. A related question is: Does the apparent fit of the DSGE
model have more to do with the inclusion of suitable exogenous
driving processes than with the realism of the model structure
itself (Lutz Kilian)? The following simple example shows that
the two questions are related. Consider the following two one-
equation models:

M1 : yt = 1

α
Et[yt+1] + ut,

ut = ρ1ut−1 + εt, εt ∼ iidN (0, σ 2)

and

M2 : yt = 1

α
Et[yt+1] + ρ2yt−1 + ut,

ut = εt, εt ∼ iidN (0, σ 2).

Focusing on parameters that lead to a unique stable rational
expectations solution, it can be verified that both models are
observationally equivalent. The exogenous propagation mech-
anism in M1 and the endogenous propagation mechanism
of M2 lead to identical AR(1) reduced-form dynamics. How-
ever, changes in α have different effects on the law of motion
for yt in the two specifications.

If we apply DSGE–VAR approach to model M1 only, then
we are essentially assessing the fit of an (restricted) AR(1)
model relative to a more general autoregressive specification.
Such an analysis does not generate a warning flag that the data
could have been generated from M2 instead of M1. How-
ever, if we were to apply the DSGE–VAR analysis to both M1
and M2, then (under commensurable prior distributions for the
two models) the marginal likelihood functions p(λ|Y,Mi) for
the two models would be the same, indicating observational
equivalence.

The DSGE–VAR procedure in its current state allows for
only local departures from the DSGE model under consider-
ation. As such, it does not help uncover structural forms that
are radically different. The important task of contemplating al-
ternative models—and of setting up the estimation in such a
way that these alternatives are given a fair chance—is left to the
modeler. Again, this is a key issue for central banks, because
these alternative may have very different policy implications.
Once alternative DSGE models have been set up, one can think
of generalizing the DSGE–VAR procedure to allow priors from
these different models. We have not yet explored this route.

1.2 Identification in the DSGE–VAR

With respect to the second aspect of identification (i.e., iden-
tification of structural shocks in the DSGE–VAR), Faust, Kil-
ian, and Chris Sims voice some well-taken concerns. Our ap-
proach essentially amounts to asking whether we can construct
a structural VAR that fits better than the underlying DSGE
model yet inherits most of the structural dynamic responses
from the DSGE model. Again, it is important to keep in mind
that an affirmative answer does not solve the uniqueness prob-
lem posed in Faust’s comment. However, at a minimum we
now have a structural VAR with impulse responses that we
can interpret in the context of a general equilibrium macro
model. If the data are generated by the DSGE models, then
our identification scheme ensures that the impulse responses
of the DSGE–VAR(λ̂) and the DSGE–VAR(∞) are (in large
samples) identical. Moreover, if the state-space representation
of the DSGE model is well approximated by a finite-order VAR
(as we document in fig. A.1), then our identification ensures that
the DSGE–VAR(λ̂) essentially recovers true shocks driving the
DSGE model. If, on the other hand, the responses of DSGE–
VAR(λ̂) and DSGE–VAR(∞) do not line up, then we can po-
tentially learn from the discrepancies how to modify the DSGE
model to improve its fit.

Sims points out that our identification scheme for the DSGE–
VAR is potentially sensitive to the ordering of variables. Note,
however, that this sensitivity is quite different from the tradi-
tional problem of ordering variables in VARs that are identified
based on an recursive identification scheme. Consider the fol-
lowing example. Suppose that

A0(θ) =
[

a11(θ) 0
a21(θ) a22(θ)

]
.

Our procedure implies that �∗(θ) = I for all θ . Thus the
DSGE–VAR inherits the property that the first variable, say y1,t,
does not respond to the second shock, say ε2,t. By reversing
the order of the endogenous variables, we obtain the following
DSGE–VAR response:

∂y1,t

∂ε2,t
= −�tr

21 sin[tan−1(−a22/a21)]

+�tr
22 cos[tan−1(−a22/a21)],

which is 0 only if −a22/a11 = �tr
22/�

tr
21. Here �tr is the lower-

triangular matrix obtained from the Cholesky decomposition
of �, where � is the innovation covariance matrix of the VAR
after reordering.

Although we have not explored the sensitivity to reordering
of the impulse responses reported in the article, we would ex-
pect the effects to be small, at least for moderate and large val-
ues of λ. Moreover, if the DSGE model implies zero restric-
tions on matrix A0(θ) that one also would like to impose on the
DSGE–VAR, when the endogenous variables should be sorted
accordingly.

To the extent that �tr(λ̂) is close to �tr(∞), our proce-
dure implicitly matches short-run responses of DSGE model
and DSGE–VAR, which is undesirable if one believes that the
DSGE models miss some of the short-run adjustment dynam-
ics. More generally, given the premise that the DSGE model is
potentially misspecified, it might be desirable to consider ran-
dom perturbations of the �∗(θ) matrix as suggested by Sims
and Faust. We plan to address these issues in future research.
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2. IGNORING IMPORTANT ASPECTS OF THE DATA
AND THE MODEL

Several comments fall into this category. As pointed out by
Larry Christiano and Ron Gallant, nonnormality of error terms
as well as heteroscedasticity are of concern ex post. Our distri-
butional assumptions are driven mostly by computational con-
venience. A conjugate normal–inverse-Wishart prior combined
with a Gaussian VAR likelihood function lets us easily integrate
out the VAR parameters and construct a marginal posterior dis-
tribution for the DSGE model parameters. The downside of
this simplification is that outliers might have a strong influence
on parameter estimates and marginal likelihood values. In this
respect, the simulations reported by Christiano are encourag-
ing. Although heteroscedasticity is not as pronounced in quar-
terly macroeconomic data observations as it is in the financial
datasets studied by Gallant, two features of the macroeconomic
data certainly deserve more careful attention: (1) the inability of
constant-parameter interest rate rules to fit the Volcker disinfla-
tion episode and (2) the overall reducted volatility in the macro
aggregates in the mid-1980s, often termed the “great” moder-
ation. Modeling these aspects of the data more carefully and
reexamining the marginal likelihood functions is an extension
certainly worth pursuing.

Faust points toward the more general problem of completely
ignoring certain observations, such as the yield curve. He raises
a key question for the current generation of DSGE model
builders at central banks: Should central banks try to build a
“catholic” model, that is, a model that tries to describe “all”
of the macroeconomic data and thus is very large, or should
they build different (smaller) models aimed at addressing differ-
ent issues? Again, the DSGE–VAR offers no help when facing
these broad questions.

Although our framework is ideal for controlling the rela-
tive weight placed on economic theory, in its current form,
it is not suited for controlling the relative weight of particu-
lar observations in the estimation and would certainly require
substantial modification to do so. One interpretation of the
DSGE–VAR framework, stressed in earlier work (Del Negro
and Schorfheide 2004), is that of mixed estimation; that is, the
VAR is estimated based on the actual data and artificial data
generated from the theoretical model. In the current implemen-
tation we use only a single hyperparameter, λ, that controls the
relative number of actual and artificial observations. By intro-
ducing additional hyperparameters, one could essentially create
more sophisticated weighting schemes for the artificial obser-
vations. Although we have not yet explored placing different
weight on different series (e.g., weighting quantities differently
than asset prices), ongoing research (by Del Negro, Diebold,
and Schorfheide) is taking Fourier transformations of the artifi-
cial observations and reweighings them according to frequency,
following up on Improvement III suggested by Sims.

Gallant stresses that we work with a linearized approxima-
tion of the DSGE model. We do this mostly for computational
convenience. It would be relatively straightforward to replace
the linear solution technique with, say, a higher-order perturba-
tion method, retaining the linear structure of the VAR, or the
auxiliary model in the language of indirect inference. However,
a more interesting extension would be to make the VAR nonlin-
ear as well, by, for instance, introducing time-varying parame-
ters. Again, this extension is left for future research.

3. MARGINAL LIKELIHOOD OF λ

We are very grateful to Christiano for conducting extensive
simulation exercises and illustrating the sampling properties of
the marginal likelihood function of λ as well as its peak λ̂. For
the AR(1) example in Section 3.4 of our article, we can ac-
tually calculate the sampling distribution of λ̂ analytically. For
simplicity, we assume that the DSGE model implies that φ∗ = 0
and that the misspecification of the DSGE model is small in the
sense that the data-generating process is given by

yt = (φ∗ + φ̃�T−1/2)yt−1 + ut.

As T −→ ∞, the sampling distribution of λ̂ converges to

λ̂ �⇒



1

(φ̃� +Z)2 − 1
if (φ̃� +Z)2 > 1

∞ otherwise,

where Z ∼ N (0,1). Note that as the misspecification φ̃� ap-
proaches 0, the probability of obtaining λ = ∞ increases, al-
though it does not converge to 1 even for φ̃� = 0. In contrast,
for large values of φ̃�, the probability of λ̂ = ∞ is small in
large samples. The qualitative implications of this simple ex-
ample coincide with the simulation results obtained from the
much more sophisticated and realistic setup studied by Chris-
tiano.

Interestingly, in the AR(1) example, λ̂ is simply a monotone
transformation of the likelihood ratio statistic, LRT , for a test of
φ̃� = 0 that converges in distribution to

LRT �⇒ (φ̃� +Z)2.

Thus a 5% critical value of 3.84 for the likelihood ratio statistic
LRt translates into a critical value of .35 for λ̂. However, the
goal of our article is not to develop a classical test of the hy-
pothesis that the DSGE model restrictions are satisfied; instead,
we stress the Bayesian interpretation of the marginal likelihood
function p(λ|Y), which does not require any cutoff or critical
values.

We agree that it is important to study the entire shape of
the marginal likelihood function ln p(Y|λ) (as we do in figs. 2
and 4) rather than simply report the peak λ̂. Again, a look at the
simple example can be instructive. It can be verified that

ln

[
p(Y|λ = λ̂, φ∗ = 0)

p(Y|λ = ∞, φ∗ = 0)

]

�⇒



1
2

[
((φ̃� +Z)2 − 1)− ln(φ̃� +Z)2

]
if (φ̃� +Z)2 > 1

0 otherwise.

Suppose that φ̃� = 0. Even if λ̂ is as low as .35, the odds of λ =
λ̂ versus λ = ∞ are only exp(.75) ≈ 2.1, because x2 −1 ≈ ln x2

for small values of x2. As the misspecification φ̃� increases,
the average gap between the marginal likelihood function at its
peak and at λ = ∞ also increases. These simple analytical cal-
culations are qualitatively in line with the simulation evidence
provided by Christiano.

Both Christiano and Kilian raise the issue of lag length selec-
tion, which we did not address formally in our article. There are
two dimensions to the choice of lags. The first dimension is the
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fit of the resulting empirical specification, that is, the DSGE–
VAR(λ̂). A fairly natural procedure would be to determine the
lag length based on the marginal likelihoods associated with
DSGE–VAR(λ̂|p) for p = 1, . . . ,pmax (using Kilian’s notation)
and then condition on the resulting p̂. Alternatively, the mar-
ginal likelihoods in figures 2 and 4 could be drawn as functions
of both λ and p, or the lag length parameter p could be inte-
grated out conditional on each λ. As Christiano’s simulations
confirm, the benefit gained from shrinking toward the theoreti-
cal model increases with the more free parameters included in
VAR. The second dimension of the lag length choice is related
to the accuracy of the VAR(p) approximation of the state-space
representation of the DSGE model. We view this consideration
as secondary. As in an indirect inference framework, there is no
need for the auxiliary model to nest the underlying theoretical
model. Having said this, a more accurate the VAR approxima-
tion certainly makes it easier to deduce from the gap between
the DSGE–VAR(λ̂) and DSGE–VAR(∞) responses how best to
modify the underlying DSGE model.

4. FORECAST EVALUATION

Christiano argues in his comments in favor of pseudo–out-of-
sample forecast error statistics, such as root mean squared er-
rors or the log determinant of the forecast error covariance ma-
trix. While we certainly see value in these statistics we would
like to clarify the relationship between marginal likelihoods
and forecast error statistics. Define Yt−1 = [y1, . . . , yt−1]. We
rewrite the marginal likelihood function as

ln p(Y|λ) =
T∑

t=1

ln

[∫
p(yt|Yt−1,�,�)

× p(�,�, θ |Yt−1, λ)d(�,�, θ)

]
. (∗)

Under a Gaussian likelihood

p(yt|Yt−1,�,�) ∝ |�| exp

{
−1

2
tr[�−1(y′

t − x′
t�)′(y′

t − x′
t�)]

}

and the marginal likelihood has indeed the flavor of a one-step-
ahead pseudo–out-of-sample forecast error statistic. If outliers
are a concern, then for the same reason that the Gaussian like-
lihood should be replaced by, say, a t likelihood, the squared

error statistics, say e2, should be replaced by something that is
robust to outliers, such as ln(1 + e2).

By default, the summation in (∗) starts at t = 1, which makes
the marginal likelihood sensitive to the choice of prior. Al-
though for large values of t, the posterior distribution of the
parameters p(�,�, θ |y1, . . . , yt−1, λ) is heavily influenced by
the sample information, this is not the case for small values of
t. For instance, as λ → 0, the density∫

p(y1|�,�)p(�,�, θ |λ)d(�,�, θ)

becomes increasingly smaller for any fixed value of y1, which
heavily penalizes an unrestricted VAR. This penalty could be
reduced by starting the summation in (∗) for t = T∗ instead of
t = 1, which is an important difference between marginal like-
lihood and pseudo–out-of-sample forecast error comparisons.
A similar robustification could be attained either by replac-
ing the marginal likelihood p(Y|λ) with a predictive likelihood
p(Y|λ)/p(y1, . . . , yT∗ |λ), or, as suggested by Sims, by adding a
Minnesota-style prior to the DSGE model prior such that the
overall prior remains proper even if λ = 0. In any case, our ar-
ticle reports both marginal likelihoods, as well as pseudo–out-
of-sample forecast error statistics as a function of λ.

Kilian points out that the unrestricted VAR in our forecast
error comparison is somewhat of a straw man and that we are
excluding many well-established benchmark forecasting mod-
els that dominate an unrestricted VAR. In the interest of space,
we decided not to include a more comprehensive forecast evalu-
ation in the article. Some of the comparisons were provided (al-
beit for a smaller DSGE model) in earlier work (Del Negro and
Schorfheide 2004), where we found that the DSGE–VAR fore-
casts are comparable to forecasts with a Bayesian VAR based
on a Minnesota prior. As the impulse response analysis shows,
the attractive feature of the DSGE–VAR is that its dynamics
closely mimic those of a fully specified DSGE model, and thus
the forecasts become interpretable in the context of modern
macroeconomic theory.

5. CONCLUSION

In closing, we would again like to thank all of the commenta-
tors for their stimulating and constructive remarks. We hope to
be able to address many of their suggestions in future research,
and invite others to take part in this research agenda.




