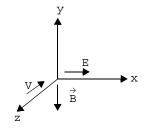
Physics 151


Prof. Thom son's Section

Solutions to Quiz on Ch 32 April 18, 2005

1. (a)
$$f = \frac{C}{\lambda} = \frac{3 \times 10^8}{435 \times 10^{-9}} = 6.90 \times 10^{14} \text{ Hz}$$

(b) B =
$$\frac{E}{C}$$
 = $\frac{2,70 \times 10^{-3}}{3 \times 10^{8}}$ = 9.00×10^{-12} T

(c)
$$\overrightarrow{E}(z, t) = E_{max} \hat{i} \cos(kz + \omega t)$$

 $\overrightarrow{B}(z, t) = B_{max} (-\hat{j}) \cos(kz + \omega t)$

$$k = 2\pi/\lambda$$
 $B_{max} = B$ from part (b) = $9.00 \times 10^{-12} T$

$$k = 1.44 \times 10^{7} \text{m}^{-1}$$
 $E_{\text{max}} = 2.70 \times 10^{-3} \text{ V/m}$

$$\omega = 2\pi f$$

$$\omega = 4.34 \times 10^{15} \text{ rad/s}$$
 Direction of motion given by $\overrightarrow{E} \times \overrightarrow{B}$

2.
$$\lambda = \frac{C}{f} = \frac{3 \times 10^8}{750 \times 10^6} = 0 \text{ am}$$

N odes in electric field occur at conducting planes and at $\lambda/2$ = 0.2m intervals. $\stackrel{\rightarrow}{E}$ is zero here.

Could place particle at 20 cm , 40 cm , 60 cm between planes and it would remain at rest since $\dot{E} = 0$, and particle is not moving, so force from magnetic field $\dot{f} = \dot{q}\dot{v} \times \dot{B}$ would be zero.