Physics 151

Prof.Thom son's Section

Solutions to Quiz on Ch 32
A pril18,2005

1. (a) $\mathrm{f}=\frac{\mathrm{C}}{\lambda}=\frac{3 \times 10^{8}}{435 \times 10^{-9}}=6.90 \times 10^{14} \mathrm{~Hz}$
(b) $B=\frac{\mathrm{E}}{\mathrm{C}}=\frac{2,70 \times 10^{-3}}{3 \times 10^{8}}=9.00 \times 10^{-12} \mathrm{~T}$
(c) $\vec{E}(z t)=E_{\text {max }} \hat{i} \cos (k z+\omega t)$

$$
\vec{B}(z, t)=B_{\max }(-\hat{j}) \cos (k z+\omega t)
$$

$\mathrm{k}=2 \pi / \lambda \quad \mathrm{B}_{\text {max }}=\mathrm{B}$ from part (b) $=9.00 \times 10^{-12} \mathrm{~T}$
$\mathrm{k}=1.44 \times 10^{7} \mathrm{~m}^{-1} \quad \mathrm{E}_{\text {max }}=2.70 \times 10^{-3} \mathrm{~V} / \mathrm{m}$
$\omega=2 \pi f$
$\omega=4.34 \times 10^{15} \mathrm{rad} / \mathrm{s} \quad$ D irection of otion given by $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$
$\therefore \quad \vec{B}$ points in -ve y direction
2. $\lambda=\frac{\mathrm{C}}{\mathrm{f}}=\frac{3 \times 10^{8}}{750 \times 10^{6}}=0 . \underline{\underline{4 m}}$

N odes in electric field occuratconducting planes and at $\lambda / 2=02 \mathrm{~m}$ intervals.
\vec{E} is zero here.

Could place particle at $20 \mathrm{~cm}, 40 \mathrm{~cm}, 60 \mathrm{~cm}$ betw een planes and itw ould rem ain at rest since $\vec{E}=0$, and particle is notm oving, so force from magnetic field $\vec{f}=q \vec{v} \times \vec{B}$ w ould be zero.

