Quiz for March 18 ${ }^{\text {th }}$ 2005 - Physics 151-001 - Prof. Thomson

(2 pts)

1) An electron in the beam of a TV picture tube moves with velocity $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.180 m . What is the magnitude of the magnetic field?
$\mathrm{F}=\mathrm{qvB}=\mathrm{mv}^{2} / \mathrm{R}$
Magnitude: $B=9.48 \times 10^{-4} \mathrm{~T}$
2) Two long straight parallel wires 10.0 cm apart carry equal 5.00 A currents in the same direction.
b. Find the magnitude and direction of the magnetic field at a point P1 midway between the wires.

At midway point between wires, by symmetry, field from wire 1 exactly cancels field from wire 2. only. Now, draw on the diagram the magnetic field lines from the current flowing in wire 2. Use arrows to indicate the direction of the magnetic field.

c. Find the magnitude and direction of the magnetic field at a point P2 25.0 cm to the right of P 1 .

$$
\begin{aligned}
& B_{\text {Total }}=\frac{\mu_{0} I}{2 \pi r_{1}}+\frac{\mu_{0} I}{2 \pi r_{2}} \text { where } r_{1}=25.0+5.0=30.0 \mathrm{~cm} \\
& B_{\text {Total }}=\frac{\mu_{0} I}{2 \pi}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \text { where } r_{2}=25.0-5.0=20.0 \mathrm{~cm} \\
& B_{\text {Total }}=\frac{4 \pi \times 10^{-7} \times 5.00}{2 \pi}\left(\frac{1}{0.3}+\frac{1}{0.2}\right)
\end{aligned}
$$

Magnitude: $\mathrm{B}=8.33 \times 10-6 \mathrm{~T}$
Direction: Straight up
d. What is the force per unit length on a third wire at point P 2 carrying current 5.00 A in the same direction as the first two wires?
$\vec{F}=\vec{L} x \vec{B}$

Magnitude: $\mathrm{F} / \mathrm{L}=4.16 \times 10-5 \mathrm{~N}$
Direction: Attractive, to the left.

$$
\frac{F}{L}=I B=5.00 \times 8.33 \times 10^{-6}
$$

