8200, 2023: basic Life Cycle Model with Intangible Capital

José Víctor Ríos Rull (joint with Vincenzo Quadrini)

Penn 2023

The issue

- Large Increase in Intangible Capital vs Tangible Capital

The issue

- Large Increase in Intangible Capital vs Tangible Capital
- Intangible Capital is more mobile across countries and can evade capital taxation more than tangible Capital

The issue

- Large Increase in Intangible Capital vs Tangible Capital
- Intangible Capital is more mobile across countries and can evade capital taxation more than tangible Capital
- What are the implications for the determination of capital income tax rates across countries?

The issue

- Large Increase in Intangible Capital vs Tangible Capital
- Intangible Capital is more mobile across countries and can evade capital taxation more than tangible Capital
- What are the implications for the determination of capital income tax rates across countries?
- Is it good to coordinate across countries?

The issue

- Large Increase in Intangible Capital vs Tangible Capital
- Intangible Capital is more mobile across countries and can evade capital taxation more than tangible Capital
- What are the implications for the determination of capital income tax rates across countries?
- Is it good to coordinate across countries?
- Answer these questions without assuming commitment on the part of governments.

Model 1

- Households stay in country j like $u(c, h)$ and discount β

Model 1

- Households stay in country j like $u(c, h)$ and discount β
- Country j multinationals (owned by its citizens). Observable output and inputs.

$$
y^{j}=Q^{j}\left(m^{j, 1}, m^{j, 2}\right) \quad q^{j, i}=\frac{\partial Q^{j}\left(m^{j, 1}, m^{j, 2}\right)}{\partial m^{j, i}} .
$$

$m^{j, i}$ intermediate input from country $i \in\{1,2\}$ for $Q^{j}(.,$.$) HD1. Only trade is via m^{j, i}$

Model 1

- Households stay in country j like $u(c, h)$ and discount β
- Country j multinationals (owned by its citizens). Observable output and inputs.

$$
y^{j}=Q^{j}\left(m^{j, 1}, m^{j, 2}\right) \quad q^{j, i}=\frac{\partial Q^{j}\left(m^{j, 1}, m^{j, 2}\right)}{\partial m^{j, i}} .
$$

$m^{j, i}$ intermediate input from country $i \in\{1,2\}$ for $Q^{j}(.,$.$) HD1. Only trade is via m^{j, i}$

$$
m^{j, i}=F\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta} \ell_{j, i}^{1-\theta},
$$

k is tangible, x intangible capital, ℓ labor of multinational j in country n.

Model 1

- Households stay in country j like $u(c, h)$ and discount β
- Country j multinationals (owned by its citizens). Observable output and inputs.

$$
y^{j}=Q^{j}\left(m^{j, 1}, m^{j, 2}\right) \quad q^{j, i}=\frac{\partial Q^{j}\left(m^{j, 1}, m^{j, 2}\right)}{\partial m^{j, i}} .
$$

$m^{j, i}$ intermediate input from country $i \in\{1,2\}$ for $Q^{j}(.,$.$) HD1. Only trade is via m^{j, i}$

$$
m^{j, i}=F\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta} \ell_{j, i}^{1-\theta},
$$

k is tangible, x intangible capital, ℓ labor of multinational j in country n.

- Profits are country specific

$$
\pi^{j, i}=q^{j, i} F\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)-w^{i} \ell_{j, i}-\delta\left(k_{j, i}+x_{j, i}\right),
$$

Model 1

- Households stay in country j like $u(c, h)$ and discount β
- Country j multinationals (owned by its citizens). Observable output and inputs.

$$
y^{j}=Q^{j}\left(m^{j, 1}, m^{j, 2}\right) \quad q^{j, i}=\frac{\partial Q^{j}\left(m^{j, 1}, m^{j, 2}\right)}{\partial m^{j, i}} .
$$

$m^{j, i}$ intermediate input from country $i \in\{1,2\}$ for $Q^{j}(.,$.$) HD1. Only trade is via m^{j, i}$

$$
m^{j, i}=F\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta} \ell_{j, i}^{1-\theta},
$$

k is tangible, x intangible capital, ℓ labor of multinational j in country n.

- Profits are country specific

$$
\pi^{j, i}=q^{j, i} F\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)-w^{i} \ell_{j, i}-\delta\left(k_{j, i}+x_{j, i}\right),
$$

- Aggregate state is s. A j firm's state is $\left\{k_{j, 1}, k_{j, 2}, x_{j}\right\}$. Both capitals are different

Government

- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,

Government

- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{K, j}$, Taxes on capital income $\pi^{K, i, j}$, (intermediate output net of labor income)
- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{K, j}$, Taxes on capital income $\pi^{K, i, j}$, (intermediate output net of labor income)
- $\tau^{\ell, j}$, Taxes on Labor income where it is used $\pi^{j, i}$, (Capital income where produced)

Firm's Рroblem: State $\left\{k_{1}, k_{2}, x\right\}$

- Dynamic Problem

$$
\begin{aligned}
V^{j}\left(\mathbf{s}, k_{1}, k_{2}, x ; \Psi\right) & =\max _{i_{1}, i_{2}, n}\left\{d+\left(R^{j}\right)^{-1} V^{j}\left(\mathbf{s}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, x^{\prime} ; \Psi\right)\right\} \\
d= & \left(1-\tau_{j}^{A}\right)\left[\left(1-\tau_{1}^{K}\right) \pi^{j, 1}+\left(1-\tau_{2}^{K}\right) \pi^{j, 2}\right]-i_{1}-i_{2}-n, \\
k_{i}^{\prime} & =k_{i}+i_{i}, \quad i \in\{1,2\} \\
x^{\prime} & =(1-\delta) x+n, \\
\tau & =\Psi(\mathbf{s}), \\
\mathbf{s}^{\prime} & =\Phi(\mathbf{s} ; \Psi) .
\end{aligned}
$$

FOC

- Static part yields $q^{j, i} F_{\ell}\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)=w^{i}, \quad i \in\{1,2\}$ and

$$
\left[q^{j, 1} F_{x}\left(k_{j, 1}, x_{j, 1}, \ell_{j, 1}\right)-\delta\right]\left(1-\tau^{K, 1}\right)=\left[q^{j, 2} \quad F_{x}\left(k_{j, 2}, x_{j, 2}, \ell_{j, 2}\right)-\delta\right]\left(1-\tau^{K, 2}\right)
$$

FOC

- Static part yields $q^{j, i} F_{\ell}\left(k_{j, i}, x_{j, i}, \ell_{j, i}\right)=w^{i}, \quad i \in\{1,2\}$ and

$$
\left[q^{j, 1} \quad F_{x}\left(k_{j, 1}, x_{j, 1}, \ell_{j, 1}\right)-\delta\right]\left(1-\tau^{K, 1}\right)=\left[q^{j, 2} F_{x}\left(k_{j, 2}, x_{j, 2}, \ell_{j, 2}\right)-\delta\right]\left(1-\tau^{K, 2}\right) .
$$

- Dynamic FOCS

$$
\begin{aligned}
& {\left[1+\left(1-\tau_{j, t}^{A}\right)\left(1-\tau_{i, t}^{K}\right) \frac{\partial \pi^{j, i \prime}}{\partial k_{i}^{\prime}}\right]=R^{j},} \\
& {\left[1+\left(1-\tau_{j, t}^{A}\right)\left(1-\tau_{i, t}^{K}\right) \frac{\partial \pi^{j, i \prime}}{\partial x^{\prime}}\right]=R^{j},}
\end{aligned}
$$

with $i \in\{1,2\}$.

Households and Equilibrium

$$
\begin{aligned}
\Omega^{j}(\mathbf{s}, a ; \Psi) & =\max _{c, h, a^{\prime}}\left\{u(c, h)+\beta \Omega^{j}\left(\mathbf{s}^{\prime}, a^{\prime} ; \Psi\right)\right\} \quad \text { s.t. } \\
c & =\left(1-\tau^{L j}\right) w^{j} h+\left(d^{j}+p^{j}\right) a+T^{j}-p^{j} a^{\prime} \\
\tau & =\Psi(\mathbf{s}) \\
\mathbf{s}^{\prime} & =\Phi(\mathbf{s} ; \Psi)
\end{aligned}
$$

with FOCs

$$
\begin{aligned}
-u_{h}(c, h) & =w^{j}\left(1-\tau^{L j}\right) u_{c}(c, h) \\
u_{c}(c, h) p^{j} & =\beta u_{c}\left(c^{\prime}, h^{\prime}\right)\left(d^{j \prime}+p^{j \prime}\right)
\end{aligned}
$$

- State \mathbf{s} is capital in each country.
- Equilibrium is standard and generates $\mathbf{s}^{\prime}=G(\mathbf{s} ; \Psi)$, when $a^{j}=V^{j}\left(\mathbf{s} ;^{\prime} \Psi\right)$

The determination of policies: Arbitrary taxes today

- Governments play Nash with each other. Take as given future policy rules

The determination of policies: Arbitrary taxes today

- Governments play Nash with each other. Take as given future policy rules
- Need to define notion of one-period-only deviation to τ

$$
\begin{aligned}
\widehat{V}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau ; \Psi\right) & =\max _{i_{k}, i_{x}}\left\{d+\left(R^{j}(\mathbf{s}, \tau)\right)^{-1} V\left(\mathbf{s}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, x^{\prime} ; \Psi\right)\right\} \\
d & =\widehat{\pi}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau\right)-i_{1}-i_{2}-i_{x} \\
k_{i}^{\prime} & =(1-\delta) k_{i}+i_{i} \\
x^{\prime} & =(1-\delta) x+i_{x} \\
\mathbf{s}^{\prime} & =\widehat{\Phi}(\mathbf{s}, \tau ; \Psi) \\
\tau^{L} & =\widehat{\varphi}(\mathbf{s}, \tau ; \Psi)
\end{aligned}
$$

The determination of policies: Arbitrary taxes today

- Governments play Nash with each other. Take as given future policy rules
- Need to define notion of one-period-only deviation to τ

$$
\begin{aligned}
\widehat{V}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau ; \Psi\right) & =\max _{i_{k}, i_{x}}\left\{d+\left(R^{j}(\mathbf{s}, \tau)\right)^{-1} V\left(\mathbf{s}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, x^{\prime} ; \Psi\right)\right\} \\
d & =\widehat{\pi}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau\right)-i_{1}-i_{2}-i_{x}, \\
k_{i}^{\prime} & =(1-\delta) k_{i}+i_{i}, \\
x^{\prime} & =(1-\delta) x+i_{x}, \\
\mathbf{s}^{\prime} & =\widehat{\Phi}(\mathbf{s}, \tau ; \Psi), \\
\tau^{L} & =\widehat{\varphi}(\mathbf{s}, \tau ; \Psi) .
\end{aligned}
$$

- Households

$$
\begin{aligned}
\widehat{\Omega}_{j}(\mathbf{s}, a, \tau ; \Psi) & =\max _{c, h, a^{\prime}}\left\{u(c, h)+\beta \Omega_{j}\left(\mathbf{s}^{\prime}, a^{\prime} ; \Psi\right)\right\} \\
c & =\left(1-\tau_{j}^{L}\right) w_{j} h+\left(d_{j}+p_{j}\right) a+T_{j}-p_{j} a^{\prime} \\
\mathbf{s}^{\prime} & =\widehat{\Phi}(\mathbf{s}, \tau ; \Psi) \\
\tau^{L} & =\widehat{\varphi}(\mathbf{s}, \tau ; \Psi)
\end{aligned}
$$

The determination of policies: Arbitrary taxes today

- Governments play Nash with each other. Take as given future policy rules
- Need to define notion of one-period-only deviation to τ

$$
\begin{aligned}
\widehat{V}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau ; \Psi\right) & =\max _{i_{k}, i_{x}}\left\{d+\left(R^{j}(\mathbf{s}, \tau)\right)^{-1} V\left(\mathbf{s}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, x^{\prime} ; \Psi\right)\right\} \\
d & =\widehat{\pi}_{j}\left(\mathbf{s}, k_{1}, k_{2}, x, \tau\right)-i_{1}-i_{2}-i_{x}, \\
k_{i}^{\prime} & =(1-\delta) k_{i}+i_{i}, \\
x^{\prime} & =(1-\delta) x+i_{x}, \\
\mathbf{s}^{\prime} & =\widehat{\Phi}(\mathbf{s}, \tau ; \Psi), \\
\tau^{L} & =\widehat{\varphi}(\mathbf{s}, \tau ; \Psi) .
\end{aligned}
$$

- Households

$$
\begin{aligned}
\widehat{\Omega}_{j}(\mathbf{s}, a, \tau ; \Psi) & =\max _{c, h, a^{\prime}}\left\{u(c, h)+\beta \Omega_{j}\left(\mathbf{s}^{\prime}, a^{\prime} ; \Psi\right)\right\} \\
c & =\left(1-\tau_{j}^{L}\right) w_{j} h+\left(d_{j}+p_{j}\right) a+T_{j}-p_{j} a^{\prime} \\
\mathbf{s}^{\prime} & =\widehat{\Phi}(\mathbf{s}, \tau ; \Psi) \\
\tau^{L} & =\widehat{\varphi}(\mathbf{s}, \tau ; \Psi)
\end{aligned}
$$

- Yields equilibrium $\widehat{G}(\mathbf{s}, \tau ; \Psi)$

$$
\begin{aligned}
& \max _{\tau^{K, j}} \widehat{\Omega}^{j}\left(\mathbf{s}, 1, \tau_{1}, \tau_{2} ; \Psi\right) \text { s.t. } \\
& \tau^{K, 1}\left(\pi^{1,1}+\pi^{2,1}\right)+\tau^{A, 1}\left[\left(1-\tau^{K, 1}\right) \pi^{1,1}+\left(1-\tau^{K, 2}\right) \pi^{1,2}\right]+\tau^{L, 1} w^{1}\left(L_{1,1}+L_{2,1}\right)=T^{1}, \\
& \tau^{K, 2}\left(\pi^{1,2}+\pi^{2,2}\right)+\tau^{A, 2}\left[\left(1-\tau^{K, 1}\right) \pi^{2,1}+\left(1-\tau^{K, 2}\right) \pi^{2,2}\right]+\tau^{L, 2} w_{2}\left(L_{1,2}+L_{2,2}\right)=T^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \max _{\tau^{K, j}} \widehat{\Omega}^{j}\left(\mathbf{s}, 1, \tau_{1}, \tau_{2} ; \Psi\right) \quad \text { s.t. } \\
& \tau^{K, 1}\left(\pi^{1,1}+\pi^{2,1}\right)+\tau^{A, 1}\left[\left(1-\tau^{K, 1}\right) \pi^{1,1}+\left(1-\tau^{K, 2}\right) \pi^{1,2}\right]+\tau^{L, 1} w^{1}\left(L_{1,1}+L_{2,1}\right)=T^{1}, \\
& \tau^{K, 2}\left(\pi^{1,2}+\pi^{2,2}\right)+\tau^{A, 2}\left[\left(1-\tau^{K, 1}\right) \pi^{2,1}+\left(1-\tau^{K, 2}\right) \pi^{2,2}\right]+\tau^{L, 2} w_{2}\left(L_{1,2}+L_{2,2}\right)=T^{2} .
\end{aligned}
$$

- First Step is to get a Nash Equil of both Countries Policies.

$$
\begin{aligned}
& \max _{\tau^{K, j}} \widehat{\Omega}^{j}\left(\mathbf{s}, 1, \tau_{1}, \tau_{2} ; \Psi\right) \quad \text { s.t. } \\
& \tau^{K, 1}\left(\pi^{1,1}+\pi^{2,1}\right)+\tau^{A, 1}\left[\left(1-\tau^{K, 1}\right) \pi^{1,1}+\left(1-\tau^{K, 2}\right) \pi^{1,2}\right]+\tau^{L, 1} w^{1}\left(L_{1,1}+L_{2,1}\right)=T^{1}, \\
& \tau^{K, 2}\left(\pi^{1,2}+\pi^{2,2}\right)+\tau^{A, 2}\left[\left(1-\tau^{K, 1}\right) \pi^{2,1}+\left(1-\tau^{K, 2}\right) \pi^{2,2}\right]+\tau^{L, 2} w_{2}\left(L_{1,2}+L_{2,2}\right)=T^{2} .
\end{aligned}
$$

- First Step is to get a Nash Equil of both Countries Policies.
- Let them be $\tau=\psi(\mathbf{s}, \tau ; \Psi)$

$$
\begin{aligned}
& \max _{\tau^{K, j}} \widehat{\Omega}^{j}\left(\mathbf{s}, 1, \tau_{1}, \tau_{2} ; \Psi\right) \text { s.t. } \\
& \tau^{K, 1}\left(\pi^{1,1}+\pi^{2,1}\right)+\tau^{A, 1}\left[\left(1-\tau^{K, 1}\right) \pi^{1,1}+\left(1-\tau^{K, 2}\right) \pi^{1,2}\right]+\tau^{L, 1} w^{1}\left(L_{1,1}+L_{2,1}\right)=T^{1}, \\
& \tau^{K, 2}\left(\pi^{1,2}+\pi^{2,2}\right)+\tau^{A, 2}\left[\left(1-\tau^{K, 1}\right) \pi^{2,1}+\left(1-\tau^{K, 2}\right) \pi^{2,2}\right]+\tau^{L, 2} w_{2}\left(L_{1,2}+L_{2,2}\right)=T^{2} .
\end{aligned}
$$

- First Step is to get a Nash Equil of both Countries Policies.
- Let them be $\tau=\psi(\mathbf{s}, \tau ; \Psi)$
- The equilibrium time-consistent policy rule satisfies $\Psi(\mathbf{s})=\psi(\mathbf{s} ; \Psi)$.

Alternative Modelization

- Asset Holdings across Countries (same R

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival
- Sell Locally.

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival
- Sell Locally.
- Transfer Pricing not Perfectly Observable

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival
- Sell Locally.
- Transfer Pricing not Perfectly Observable
- Production of x Good has a positive Externality

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival
- Sell Locally.
- Transfer Pricing not Perfectly Observable
- Production of x Good has a positive Externality
- Legacy Investment makes it easier to post the factor in that country

Alternative Modelization

- Asset Holdings across Countries (same R
- Intangible Capital is not rival
- Sell Locally.
- Transfer Pricing not Perfectly Observable
- Production of x Good has a positive Externality
- Legacy Investment makes it easier to post the factor in that country
- No Notion of j-country firms

Model 2

- Country j, generic firm, note $x^{j, m}$ is non-rival. Output is

$$
y^{j, i}=F^{j}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta_{k}} \ell_{j, i}^{1-\theta_{\ell}},
$$

Model 2

- Country j, generic firm, note $x^{j, m}$ is non-rival. Output is

$$
y^{j, i}=F^{j}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta_{k}} \ell_{j, i}^{1-\theta_{\ell}},
$$

- Intangible Capital is home produced

$$
x^{j \prime}=(1-\delta) x^{j}+f^{j}\left(\ell_{j, x}\right)
$$

Model 2

- Country j, generic firm, note $x^{j, m}$ is non-rival. Output is

$$
y^{j, i}=F^{j}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta_{k}} \ell_{j, i}^{1-\theta_{\ell}},
$$

- Intangible Capital is home produced

$$
x^{j \prime}=(1-\delta) x^{j}+f^{j}\left(\ell_{j, x}\right)
$$

- There is an Armington (CES) aggregator for final output in

$$
Q^{j}=\left(Y^{j, 1}, Y^{j, 2}\right)
$$

Model 2

- Country j, generic firm, note $x^{j, m}$ is non-rival. Output is

$$
y^{j, i}=F^{j}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta_{k}} \ell_{j, i}^{1-\theta_{\ell}},
$$

- Intangible Capital is home produced

$$
x^{j}=(1-\delta) x^{j}+f^{j}\left(\ell_{j, x}\right)
$$

- There is an Armington (CES) aggregator for final output in

$$
Q^{j}=\left(Y^{j, 1}, Y^{j, 2}\right)
$$

- Profits in each country are allocated using transfer pricing. There are quadratic costs from deviating too much from standard accounting prices q^{*}

$$
\begin{aligned}
& \pi^{j, j}=p^{j} F^{j, j}\left(k_{j, j}, x_{j}, \ell_{j, j}\right)-w^{j} \ell_{j, j}-\delta k_{j, j}+q^{j} x_{j}-C\left(q^{j}-q^{*}, x_{j}\right) \\
& \pi^{j, i}=p^{j} F^{j, i}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)-w^{i} \ell_{j, i}-\delta k_{j, i}-q^{j} x_{j}
\end{aligned}
$$

Model 2

- Country j, generic firm, note $x^{j, m}$ is non-rival. Output is

$$
y^{j, i}=F^{j}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)=z\left(k_{j, i}^{\alpha} x_{j, i}^{1-\alpha}\right)^{\theta_{k}} \ell_{j, i}^{1-\theta_{\ell}},
$$

- Intangible Capital is home produced

$$
x^{j \prime}=(1-\delta) x^{j}+f^{j}\left(\ell_{j, x}\right)
$$

- There is an Armington (CES) aggregator for final output in

$$
Q^{j}=\left(Y^{j, 1}, Y^{j, 2}\right)
$$

- Profits in each country are allocated using transfer pricing. There are quadratic costs from deviating too much from standard accounting prices q^{*}

$$
\begin{aligned}
& \pi^{j, j}=p^{j} F^{j, j}\left(k_{j, j}, x_{j}, \ell_{j, j}\right)-w^{j} \ell_{j, j}-\delta k_{j, j}+q^{j} x_{j}-C\left(q^{j}-q^{*}, x_{j}\right) \\
& \pi^{j, i}=p^{j} F^{j, i}\left(k_{j, i}, x_{j}, \ell_{j, i}\right)-w^{i} \ell_{j, i}-\delta k_{j, i}-q^{j} x_{j}
\end{aligned}
$$

- Aggregate state is s. A j firm's state is $\left\{k_{j, 1}, k_{j, 2}, x_{j}\right\}$.

Government

- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{K, j}$, Taxes on capital income $\pi^{K, i, j}$, (intermediate output net of labor income)
- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{K, j}$, Taxes on capital income $\pi^{K, i, j}$, (intermediate output net of labor income)
- $\tau^{\ell, j}$, Taxes on Labor income where it is used $\pi^{j, i}$, (Capital income where produced)
- $\tau^{A, j}$, Taxes on Corporation's Headquarters residual income $\pi^{A, j}$,
- $\tau^{K, j}$, Taxes on capital income $\pi^{K, i, j}$, (intermediate output net of labor income)
- $\tau^{\ell, j}$, Taxes on Labor income where it is used $\pi^{j, i}$, (Capital income where produced)
- Added issue of how difficult is to set $q^{j, i}$. We will get to this later.

Firm's Рroblem: State $\left\{k_{1}, k_{2}, x\right\}$

- Static Problem involves choosing q^{j} and it is interconnected across countries. Let $\pi^{j, i}\left(\mathbf{s}, \ell_{j, i}, q^{j}\right)$ yield the static profits conditional on choices

Firm's Рroblem: State $\left\{k_{1}, k_{2}, x\right\}$

- Static Problem involves choosing q^{j} and it is interconnected across countries. Let $\pi^{j, i}\left(\mathbf{s}, \ell_{j, i}, q^{j}\right)$ yield the static profits conditional on choices
- Dynamic Problem

$$
\begin{aligned}
V^{j}\left(\mathbf{s}, k_{1}, k_{2}, x ; \Psi\right) & =\max _{\substack{\ell_{1}, \ell_{2}, q \\
i_{1}, i_{2}, \ell_{x}}}\left\{d+\left(R^{j}\right)^{-1} V^{j}\left(\mathbf{s}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, x^{\prime} ; \Psi\right)\right\} \quad \text { s.t. } \\
d & =\left(1-\tau_{j}^{A}\right)\left[\left(1-\tau_{1}^{K}\right) \pi^{j, 1}\left(\mathbf{s}, \ell_{1}, q^{j}\right)+\left(1-\tau_{2}^{K}\right) \pi^{j, 2}\left(\mathbf{s}, \ell_{2}, q^{j}\right)\right]-i_{1}-i_{2}-w^{j} \ell_{x}, \\
k_{i}^{\prime} & =k_{i}+i_{i}, \\
x^{\prime} & =(1-\delta) x+f\left(\ell_{x}\right), \\
\tau & =\Psi(\mathbf{s}) \\
\mathbf{s}^{\prime} & =\Phi(\mathbf{s} ; \Psi) .
\end{aligned}
$$

Firm's FOCs:

- Static

$$
\begin{aligned}
w^{i} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{i}^{K}\right) p^{j} F_{\ell}^{j, i} \\
w^{j} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{j}^{K}\right) p^{j} F_{\ell}^{j, j} \\
\left(1-\tau_{j}^{A}\right)\left(1-\tau_{i}^{K}\right) x_{j} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{j}^{K}\right)\left[x_{j}-C_{q}\right]
\end{aligned}
$$

Firm's FOCs:

- Static

$$
\begin{aligned}
w^{i} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{i}^{K}\right) p^{j} F_{\ell}^{j, i} \\
w^{j} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{j}^{K}\right) p^{j} F_{\ell}^{j, j} \\
\left(1-\tau_{j}^{A}\right)\left(1-\tau_{i}^{K}\right) x_{j} & =\left(1-\tau_{j}^{A}\right)\left(1-\tau_{j}^{K}\right)\left[x_{j}-C_{q}\right]
\end{aligned}
$$

- Dynamic FOCS

$$
\begin{aligned}
R^{\prime} & =\left[1+\left(1-\tau_{j}^{A \prime}\right)\left(1-\tau_{i}^{K \prime}\right) p^{j^{\prime}} F_{k_{i}^{\prime}}^{j, i}\right. \\
R^{\prime} & =\left[1+\left(1-\tau_{j}^{A \prime}\right)\left(1-\tau_{j}^{K \prime}\right) p^{j^{\prime}} F_{k_{j}^{\prime}}^{j, j}\right], \\
R^{\prime} & =1+\left(1-\tau_{j}^{A \prime}\right) p^{j^{\prime}}\left[\left(1-\tau_{i}^{K \prime}\right)\left(F_{x^{\prime}}^{j, i}-q^{j^{\prime}}\right) F_{x^{\prime}}^{j, i}+\left(1-\tau_{j}^{K \prime}\right)\left(F_{x^{\prime}}^{j, j}+q^{j^{\prime}}\right)\right],
\end{aligned}
$$

