The Gender Pay Gap: Micro Sources and Macro Consequences

Morchio and Moser (2022)

Presented by Young, University of Pennsylvania

February 27, 2023

- Literature on gender pay gaps across countries: USA: Blau and Kahn (2017), Denmark: Kleven, Landais, and Sogaard (2019)
- Does the observed gender pay gap reflect
 - gender-specific preferences over jobs or
 - barriers in the labor market?
- Worker side:
 - Higher WTP for jobs with amenities by women (Wiswall and Zafar. 2019)
 - Ability heterogeneity (Kleven, Landais, and Sogaard, 2017)
- Firm side:
 - Gender-specific value added (taste-based discrimination) (Becker, 1971)
 - Gender-specific comparative adavantages (statistical discrimination) (Arrow, 1971)
 - Productivity heterogeneity (Burdett and Mortensen, 1998)

Contribution

Introduction

- This paper: provides a tractable GE model with
 - Employer productivity differences (Burdett and Mortensen, 1998)
 - Gender-specific compensating differentials (Goldin, 2014)
 - Statistical discrimination based on expected employment transitions (Arrow, 1971)
 - Taste-based discrimination (Becker, 1971)

Provides:

- Equilibrium wage equation with log-decomposition of worker component + gender-specific employer component
- Recovered employers' preferences over gender
- Dispersion in amenities between men and women

Counterfactual analysis:

- Compensating differentials explain 18% of gender pay gap.
- Output and welfare gains of 3% in gender-neutral world.

Model

- 1 Introduction
- 2 Model
- 3 Equilibrium and Counterfactuals
- 4 Takeaways

Model

Need the following ingredients:

- Some employees prefer works that do not pay higher.
 - → Workers value amenities in addition to pay. Lamadon, Mogstad, and Setlzer (2019)
- Differences in pay and amenities across employers.
 - → Frictional labor market with job search. Sebastian and Porzio (2019)
- Gender differences in pay, preference for amenities, and employment within a firm.
 - → Gender-specific wages, amenities, and job vacancies.

Worker: Job Search

While employed, workers receive the following flow utility:

$$x = \underbrace{w}_{wage} + \underbrace{\pi}_{amenity}$$

- Workers differ by group g ∈ {M, F} with different
 - Ability $a \in [\underline{a}, \overline{a}]$ with measure $\mu_{a,g}$
 - Flow utilities while unemployed $b_{a,g}$
 - Job arrival rates $\lambda_{a,g}^U$ (unemployed), $\lambda_{a,g}^E$ (employed)
 - Mandatory job offer arrival rates $\lambda_{a,\sigma}^{G}$ for both states
 - Unempolyment rates $\delta_{a,g}$
 - Job offers $F_{a,g}(x)$, endogenously determined by firms

Worker: Value Functions

• The value of an employed worker of type (a, g) in a job with flow utility x and discount rate ρ is then:

$$\rho S_{a,g}(x) = x + \lambda_{a,g}^{E} \int_{x' \ge x} \left[S_{a,g}(x') - S_{a,g}(x) \right] dF_{a,g}(x')$$

$$+ \lambda_{a,g}^{G} \int_{x'} \left[S_{a,g}(x') - S_{a,g}(x) \right] dF_{a,g}(x')$$

$$+ \delta_{a,g} \left[W_{a,g} - S_{a,g}(x) \right].$$

Likewise, the value of an unemployed worker is:

$$\begin{split} \rho W_{a,g} = & b_{a,g} + \\ & \left(\lambda_{a,g}^{\textit{U}} + \lambda_{a,g}^{\textit{G}} \right) \, \int_{\textbf{x}} \max \left\{ \textit{S}_{a,g} \left(x' \right) - W_{a,g}, 0 \right\} d\textit{F}_{a,g} \left(x' \right). \end{split}$$

Firm: Profits

- Firms deliver value to workers by $w_{a,g}$ and $\pi_{a,g}$
 - Assume the cost of producing amenities differs: c^π_{a,g} (π_{a,g})
 The cost of posting job vacancy also differs: c^ν_{a,g} (v_{a,g})
- Production technology is linear:

$$\left(p,\left\{l_{a,g}\right\}_{a,g}\right)=p\sum_{g=M,F}\int_{a}al_{a,g}da.$$

- Allow gender wedge (Becker, 1971): $z_{a.g} = \mathbf{1}[g = F]z_a$
- Hence the value for firm $\theta = (p, \{z_a\}_a, \{c_{a,e}^{v,0}\}_{a,e}, \{c_{a,e}^{\pi,0}\}_{a,e})$ is

$$\rho\Pi(\theta) = \max_{\{w,\pi,v\}} \sum_{g=M,F} \int_{a} \underbrace{\left[pa - w_{a,g} - c_{a,g}^{\pi}(\pi_{a,g}) - z_{a,g}\right]}_{\text{per-worker profit}} \underbrace{\left[pa - w_{a,g} - c_{a,g}^{\pi}(\pi_{a,g}) - z_{a,g}\right]}_{\text{per-worker profit}} I_{a,g}(w_{a,g}, \pi_{a,g}, v_{a,g})$$

$$\underbrace{- c_{a,g}^{v}(v_{a,g})}_{\text{iob post cost}} da$$

Matching

Cobb-Douglas matching function:

$$M\left(u_{g,a},V_{g,a}\right) = \chi_{a,g}\underbrace{\left[\mu_{a,g}\left[u_{a,g} + s_{a,g}^{E}\left(1 - u_{a,g}\right) + s_{a,g}^{G}\right]\right]}^{1-\alpha}\underbrace{V_{g,a}^{\alpha}}_{\text{vacancies}}$$

Firm job-filling rates:

$$q_{a,g} = \chi \left(\frac{\mu_{a,g} \left[u_{a,g} + s_{a,g} \left(1 - u_{a,g} \right) + s_{a,g}^{G} \right]}{V_{a,g}} \right)^{1-\alpha}$$

Worker job-finding rates:

$$\lambda_{a,g}^{U} = \chi \left[V_{a,g} / \left(u_{a,g} + s_{a,g} \left(1 - u_{a,g} \right) + s_{a,g}^{G} \right)^{\alpha} \right]$$

$$\lambda_{a,g}^{E} = s_{a,g}^{E} \lambda_{a,g}^{U}, \lambda_{a,g}^{G} = s_{a,g}^{G} \lambda_{a,g}^{U}$$

• $s_{a,g}^E$, $s_{a,g}^G$: relative hazards of regular/mandatory on-the-job offers.

Data

- Relação Anual de Informações Sociais (RAIS)
 - Establishment-level linked employer-employee data for all tax-registered firms
 - Data from 2007 to 2014 (due to recession in 2014)
 - Contains details on reasons/lengths of worker absences
- Focus on formal sectors with at least 10 employees
- Workers between the ages of 18 and 54, at least 1 hr/wk

Equilibrium Wage

Equilibrium wages can be written as

$$\ln w_{a,g} = \underbrace{\log a}_{\text{"worker } FE"} + \underbrace{\log(p - z_g - \text{constant }_g)}_{\text{"gender-firm } FE"},$$

- where constant_g depends on gender-specific amenity cost
- Discrimination (z) & prod. differences (a) survive with frictions.
- Even if $z_g = 0$, may pay women less due to compensating differential for amenities

Sources of the Gender Wage Gap

Table 11. Equilibrium decomposition of gender pay gap

	Baseline		Counterfactuals		
Gender differences in	(0)	(1)	(2)	(3)	(4)
amenities	\checkmark		\checkmark	\checkmark	
employer wedges	✓	\checkmark		\checkmark	
vacancy posting costs	✓	✓	✓		
Gender pay gap	0.074	0.061	0.020	0.018	0.000
between employers	0.055	0.056	0.047	0.016	0.000
within employers	0.018	0.005	-0.026	0.002	0.000
Output	1.000	1.001	1.012	1.033	1.035
Worker welfare	0.000	0.004	0.015	-0.004	0.027
from payroll for women	0.000	0.010	0.026	0.019	0.029
from amenity value for women	0.000	-0.006	-0.010	-0.022	-0.002
Payroll-equivalent welfare change	0.000	0.005	0.019	-0.004	0.033
Employer welfare	1.000	0.997	1.011	0.986	1.039
from profits	1.004	1.002	1.011	1.039	1.039
from wedges	-0.004	-0.006	0.000	-0.053	0.000
Total employment for men	0.757	0.757	0.757	0.757	0.757
Total employment for women	0.760	0.759	0.762	0.760	0.757

Sources of the Gender Wage Gap

- Roles of amenities, employer wedges, recruiting costs.
- Amenities explain 18% (1.3 log points) of gender pay gap.
- Both output and welfare gains from gender-neutral world

Employer-Level Equal-Pay Policy

	Baseline	Equal-pay policy	Equal-hiring policy	Equal-amenity policy	
	(0)	(1)	(2)	(3)	
Gender pay gap	0.074	0.057	0.049	0.125	
between employers	0.055	0.057	0.002	0.138	
within employers	0.018	0.000	0.047	-0.013	
Output	1.000	1.000	0.979	1.000	
Worker welfare	0.000	0.001	-0.038	0.000	

- Equal-pay policy: constrain firms to set $w_{a,M} = w_{a,F}$
- Equal-hiring policy is most distortionary.

Takeaways

A tractable GE model with gender-specific compensating differentials and search from linked employee-employer data.

- Compensating differentials explain 18% of gender pay gap.
- Output & welfare gains of 3 4% in gender-neutral world.
- Equal-pay (/-hiring/-amenities) policies mostly ineffective by GE forces, once worker abilities are taken into account.