Wealth, Wages, and Employment

Still Preliminary

Per Krusell	Jinfeng Luo	José-Víctor Ríos-Rull	Cesar Urquizo
LiES	Lingnan	Penn, UCL, CAERP	Penn

Search and Matching
in Labor, Monetary and Financial Economics
Conference, San Jose
March 8 and 9, 2024

Introduction

- We want to analyze fluctuations in gross employment flows.

Introduction

- We want to analyze fluctuations in gross employment flows.
- They are informative over wage rigidity.
- We want to analyze fluctuations in gross employment flows.
- They are informative over wage rigidity.
- In an environment where the joint distribution of employment, wages, and wealth, is determined and where
- We want to analyze fluctuations in gross employment flows.
- They are informative over wage rigidity.
- In an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.

Introduction

- We want to analyze fluctuations in gross employment flows.
- They are informative over wage rigidity.
- In an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch.

Introduction

- We want to analyze fluctuations in gross employment flows.
- They are informative over wage rigidity.
- In an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch.
- The economy aggregates into a modern economy (total wealth, labor shares, consumption/investment ratios)

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).
- Related Lise (2013), Hornstein, Krusell, and Violante (2011), Krusell, Mukoyama, and Şahin (2010), Ravn and Sterk (2016, 2017), Den Haan, Rendahl, and Riegler (2015).

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).
- Related Lise (2013), Hornstein, Krusell, and Violante (2011), Krusell, Mukoyama, and Şahin (2010), Ravn and Sterk (2016, 2017), Den Haan, Rendahl, and Riegler (2015).
- Especially Eeckhout and Sepahsalari (2024), Chaumont and Shi (2022), Griffy (2021).

A Brief Look At Data: Relevant Volatility Properties in U.S.

Mean	St Dev Relt	Correl	
Perc	to Output	w Output	Source

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean	St Dev Relt Perc	Correl to Output			
w Output					Source	Average Wage
:---						

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	
Source				
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Monthly FMP (J2J)	2.43	2.44	.81	Qiu (2022)

FMP: Fujita et al. (2024).

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Monthly FMP (J2J)	2.43	2.44	.81	Qiu (2022)
Monthly FF (J2J)	2.13	2.96	.79	Qiu (2022)

FMP: Fujita et al. (2024).
FF: Fallick and Fleischman (2004).

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Monthly FMP (J2J)	2.43	2.44	.81	Qiu (2022)
Monthly FF (J2J)	2.13	2.96	.79	Qiu (2022)
Monthly MAR (J2J)	2.23	2.85	.80	Qiu (2022)

FMP: Fujita et al. (2024).
FF: Fallick and Fleischman (2004).
MAR: Missing at Random. This is without adjustment.

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Heefke et al. (2013) Unemployment $4-6$
4.84	-0.85	Campolmi and Gnocchi (2016)		
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Monthly FMP (J2J)	2.43	2.44	.81	Qiu (2022)
Monthly FF (J2J)	2.13	2.96	.79	Qiu (2022)
Monthly MAR (J2J)	2.23	2.85	.80	Qiu (2022)
Consumption	75	0.78	0.86	NIPA

FMP: Fujita et al. (2024).
FF: Fallick and Fleischman (2004).
MAR: Missing at Random. This is without adjustment.

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnochi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Monthly FMP (J2J)	2.43	2.44	.81	Qiu (2022)
Monthly FF (J2J)	2.13	2.96	.79	Qiu (2022)
Monthly MAR (J2J)	2.23	2.85	.80	Qiu (2022)
Consumption	75	0.78	0.86	NIPA
Investment	25	4.88	0.90	NIPA

FMP: Fujita et al. (2024).
FF: Fallick and Fleischman (2004).
MAR: Missing at Random. This is without adjustment.

A Brief Look At Data: U.S. Job Flows (Source Qiu (2022))

Mean	St Dev Relt	Correl
Perc	to Output	w Output Source

A Brief Look At Data: U.S. Job Flows (Source Qiu (2022))

	Mean	St Dev Relt Perc	Correl to Output			
w Output					Source	Average Wage
:---						

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	
	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
Average Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	
	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
Average Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	
	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
Average Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean	St Dev Relt to Output	Correl w Output	
	Perc	Source		
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Wages of Hired OE		1.68	.44	Qiu (2022)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Wages of Hired OE		1.68	.44	Qiu (2022)
Wages of Hired UE		1.98	.33	Qiu (2022)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	
	-	$0.44-0.84$	Source	
Average Wage	-	$0.68-1.09$	$0.79-0.37$	Haefke et al. (2013)
New Wage		1.68	.44	Haefke et al. (2013)
Wages of Hired OE		1.98	.33	Qiu (2022)
Wages of Hired UE		1.42	.49	Qiu (2022)

A Brief Look Аt Data: U.S. Job Flows (Source Qiu (2022))

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Wages of Hired OE		1.68	.44	Qiu (2022)
Wages of Hired UE		1.98	.33	Qiu (2022)
Wages of Hired JJ		1.42	.49	Qiu (2022)
Wages of HiredStayer		0.07	.04	Qiu (2022)

(1) Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.
(1) Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search

Ingredients of the Model

© Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit

Ingredients of the Model

© Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit
- Workers On the job search

Ingredients of the Model

© Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit
- Workers On the job search
(2) We want to control:

Ingredients of the Model

© Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit
- Workers On the job search
(2) We want to control:
- Correlation between wages and wealth when hired

Ingredients of the Model

(1) Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit
- Workers On the job search
(2) We want to control:
- Correlation between wages and wealth when hired
- Wage Dispersion so range of wages is not cycle dependent

Ingredients of the Model

© Take a basic Aiyagari (1994) model and make the job a choice with frictions: Trade-off between likelyhood and wages informed by wealth.

- Workers Search
- Workers Quit
- Workers On the job search
(2) We want to control:
- Correlation between wages and wealth when hired
- Wage Dispersion so range of wages is not cycle dependent
(3) Need to add two-sided noise (EVS) to generate useful wage dispersion and turnover.

Build the Theory Sequentially

(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2024): Not a lot of wage dispersion. Not a lot of job creation in expansions.

Build the Theory Sequentially

(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2024): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits and On the Job Search Extreme value Shocks to the taste of quitting/searching/neither (Similar but not the same as in Chaumont and Shi (2022), not Block Recursive).

Build the Theory Sequentially

(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2024): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits and On the Job Search Extreme value Shocks to the taste of quitting/searching/neither (Similar but not the same as in Chaumont and Shi (2022), not Block Recursive).
(3) Add Aiming Application Shocks. Add EVS to the Utility of where to apply. Weakens the correlation between wages and wealth when hired.

Build the Theory Sequentially

(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2024): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits and On the Job Search Extreme value Shocks to the taste of quitting/searching/neither (Similar but not the same as in Chaumont and Shi (2022), not Block Recursive).
(3) Add Aiming Application Shocks. Add EVS to the Utility of where to apply. Weakens the correlation between wages and wealth when hired.
(4) Add Manager Posting Shocks. Gives full Support to Wages even in Business Cycles (again EVS).

1- Simplest version (Exogenous Quits \& No Noise): Сompetitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).

1- Simplest version (Exogenous Quits \& No Noise): Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.

1- Simplest version (Exogenous Quits \& No Noise): Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.

1- Simplest version (Exogenous Quits \& No Noise): Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.
- If unemployed, workers produce b and search in some market $\{w, \theta\}$.

1- Simplest version (Exogenous Quits \& No Noise): Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.
- If unemployed, workers produce b and search in some market $\{w, \theta\}$.
- General equilibrium: Workers own firms.

Order of Events of 1: Exog Quits

(1) Households enter the period with or without a job: $\{e, u\}$.

Order of Events of 1: Exog Quits

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production, payment of dividends and wages \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.

Order of Events of 1: Exog Quits

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production, payment of dividends and wages \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.

Order of Events of 1: Exog Quits

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production, payment of dividends and wages \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.
(4) Search: Firms and the unemployed choose wage w and tightness θ.

Order of Events of 1: Exog Quits

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production, payment of dividends and wages \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.
(4) Search: Firms and the unemployed choose wage w and tightness θ.
(5) Job Matching : $M(V, U)$: Some vacancies meet some unemployed job searchers. A match becomes operational the following period. Job finding and job filling rates $\psi^{h}(\theta)=\frac{M(V, U)}{U}, \psi^{f}(\theta)=\frac{M(V, U)}{V}$.

Household Problem

- Individual state: wealth and wage

Household Problem

- Individual state: wealth and wage
- If employed: (a, w)

Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)

Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)
- Problem of the employed: (Standard)

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime}} u(c)+\beta\left[(1-\delta) V^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w, \quad a \geq 0
\end{aligned}
$$

Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)
- Problem of the employed: (Standard)

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime}} u(c)+\beta\left[(1-\delta) V^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w, \quad a \geq 0
\end{aligned}
$$

- Problem of the unemployed: Choose which wage to look for

$$
\begin{aligned}
V^{u}(a)= & \max _{c, a^{\prime}, w} u(c)+\beta\left\{\psi^{h}[\theta(w)] V^{e}\left(a^{\prime}, w\right)+\left[1-\psi^{h}[\theta(w)]\right] V^{u}\left(a^{\prime}\right)\right\} \\
\text { s.t. } & c+a^{\prime}=a(1+r)+b, \quad a \geq 0
\end{aligned}
$$

$\theta(w)$ is an equilibrium object

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.

CHARACTERIZATION OF A WORKER'S DECISIONS

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.
- From wage applicants $\max _{w} \psi^{h}[\theta(w)]\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]$ so

$$
\psi^{h}[\theta(w)] V_{w}^{e}\left(a^{\prime}, w\right)=\psi_{\theta}^{h}[\theta(w)] \theta_{w}(w)\left[V^{u}\left(a^{\prime}\right)-V^{e}\left(a^{\prime}, w\right)\right]
$$

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.
- From wage applicants $\max _{w} \psi^{h}[\theta(w)]\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]$ so

$$
\psi^{h}[\theta(w)] V_{w}^{e}\left(a^{\prime}, w\right)=\psi_{\theta}^{h}[\theta(w)] \theta_{w}(w)\left[V^{u}\left(a^{\prime}\right)-V^{e}\left(a^{\prime}, w\right)\right]
$$

- Up to a certain level of wealth, richer households apply to higher wages. After that, it seems not. Consistent with theory

Firms Post vacancies at different wages $\mathcal{\&}$ filling probabilities

- Value of a job with wage w : uses constant \bar{k} capital that depreciates

$$
\Omega(w)=z-\bar{k} \delta_{k}-w+\frac{1-\delta}{1+r} \Omega(w)
$$

Firms Post vacancies at different wages \& filling probabilities

- Value of a job with wage w : uses constant \bar{k} capital that depreciates

$$
\Omega(w)=z-\bar{k} \delta_{k}-w+\frac{1-\delta}{1+r} \Omega(w)
$$

- Affine in $w: \quad \Omega(w)=\left(z-\bar{k} \delta_{k}-w\right) \frac{1+r}{r+\delta}$

Block Recursivity Applies (firms can be ignorant of Eq)

Firms Post vacancies at different wages \mathcal{G} filling probabilities

- Value of a job with wage w : uses constant \bar{k} capital that depreciates

$$
\Omega(w)=z-\bar{k} \delta_{k}-w+\frac{1-\delta}{1+r} \Omega(w)
$$

- Affine in $w: \quad \Omega(w)=\left(z-\bar{k} \delta_{k}-w\right) \frac{1+r}{r+\delta}$

Block Recursivity Applies (firms can be ignorant of Eq)

- Value of creating a firm includes posting a vacancy: $\psi^{f}[\theta(w)] \Omega(w)$

Firms Post vacancies at different wages \& filling probabilities

- Value of a job with wage w : uses constant \bar{k} capital that depreciates

$$
\Omega(w)=z-\bar{k} \delta_{k}-w+\frac{1-\delta}{1+r} \Omega(w)
$$

- Affine in $w: \quad \Omega(w)=\left(z-\bar{k} \delta_{k}-w\right) \frac{1+r}{r+\delta}$

Block Recursivity Applies (firms can be ignorant of Eq)

- Value of creating a firm includes posting a vacancy: $\psi^{f}[\theta(w)] \Omega(w)$
- Free entry condition requires that for all offered wages

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\psi^{f}[\theta(w)]\right] \frac{\bar{k}\left(1-\delta_{k}\right)}{1+r},
$$

Basic Model: Stationary Equilibrium

- A stationary equilibrium is functions $\left\{V^{e}, V^{u}, \Omega, g \prime^{e}, g \prime^{\prime}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.

Basic Model: Stationary Equilibrium

- A stationary equilibrium is functions $\left\{V^{e}, V^{u}, \Omega, g \prime^{e}, g \prime^{\prime}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g \prime^{e}, g \prime^{u}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.

Basic Model: Stationary Equilibrium

- A stationary equilibrium is functions $\left\{V^{e}, V^{u}, \Omega, g \prime^{e}, g \prime^{u}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g \prime^{e}, g \prime^{u}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.
(2) Zero profit condition holds for active markets

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}, \quad \forall w \text { that are offered }
$$

Basic Model: Stationary Equilibrium

- A stationary equilibrium is functions $\left\{V^{e}, V^{u}, \Omega, g \prime^{e}, g \prime^{u}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g \prime^{e}, g \prime^{u}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.
(2) Zero profit condition holds for active markets

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}, \quad \forall w \text { that are offered }
$$

(3) An interest rate r clears the asset market

$$
\int a d x=\int \Omega(w) d x
$$

Worker's wage application decision

Worker's saving decision

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with w. $\widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{5}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

5 Search : Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

5 Search : Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

2: Add On the Job Search and Quits: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{5}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

5 Search : Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(7) Match

On the Job Search and Quits: Household Probl

- After saving, the employed choose whether to search, quit or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}\right\} d F^{\epsilon}
$$

On the Job Search and Quits: Household Probl

- After saving, the employed choose whether to search, quit or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}\right\} d F^{\epsilon}
$$

- Searching

$$
V^{s}\left(a^{\prime}, w\right)=\max _{w^{\prime}}\left\{\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)\right\}-\bar{u}^{s}
$$

On the Job Search and Quits: Household Probl

- After saving, the employed choose whether to search, quit or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}\right\} d F^{\epsilon}
$$

- Searching

$$
V^{s}\left(a^{\prime}, w\right)=\max _{w^{\prime}}\left\{\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)\right\}-\bar{u}^{s}
$$

- Quitting

$$
\begin{aligned}
V^{u}(a) & =\max _{c, a^{\prime}, w} u(c)+\beta\left\{\psi^{h}[\theta(w)] V^{e}\left(a^{\prime}, w\right)+\left[1-\psi^{h}[\theta(w)]\right] V^{u}\left(a^{\prime}\right)\right\} \\
\text { s.t. } & c+a^{\prime}=a(1+r)+b, \quad a \geq 0
\end{aligned}
$$

On the Job Search and Quits: Household Probl

- After saving, the employed choose whether to search, quit or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}\right\} d F^{\epsilon}
$$

- Searching

$$
V^{s}\left(a^{\prime}, w\right)=\max _{w^{\prime}}\left\{\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)\right\}-\bar{u}^{s}
$$

- Quitting

$$
\begin{aligned}
V^{u}(a) & =\max _{c, a^{\prime}, w} u(c)+\beta\left\{\psi^{h}[\theta(w)] V^{e}\left(a^{\prime}, w\right)+\left[1-\psi^{h}[\theta(w)]\right] V^{u}\left(a^{\prime}\right)\right\} \\
\text { s.t. } & c+a^{\prime}=a(1+r)+b, \quad a \geq 0
\end{aligned}
$$

- Neither is just

$$
V^{e}\left(a^{\prime}, w\right)
$$

On the Job Search: Household choices

- Employed Households solve

$$
V^{e}(a, w)=\max _{a^{\prime} \geq 0} u\left[a(1+r)+w-a^{\prime}\right]+\beta\left[\delta V^{u}\left(a^{\prime}\right)+(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)\right]
$$

On the Job Search: Household choices

- Employed Households solve

$$
V^{e}(a, w)=\max _{a^{\prime} \geq 0} u\left[a(1+r)+w-a^{\prime}\right]+\beta\left[\delta V^{u}\left(a^{\prime}\right)+(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)\right]
$$

- The solution involves probabilities of quitting and of searching

$$
\begin{aligned}
q\left(a^{\prime}, w\right) & =\frac{1}{1+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]\right)+\exp \left(\alpha\left[V^{s}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)+\mu^{s}\right]\right)}, \\
s\left(a^{\prime}, w\right) & =\frac{1}{1+\exp \left(\alpha\left[V^{u}\left(a^{\prime}\right)-V^{s}\left(a^{\prime}, w\right)\right]\right)+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{s}\left(a^{\prime}, w\right)-\mu^{s}\right]\right)}
\end{aligned}
$$

$\mu^{s}<0$ is the mode of the shock ϵ^{s} which reflects the search cost.

OJS Quitting Probabilities, Various wealths \& Wage Density

- The rich pursue often other activities (leisure?)

the Job Search Model: Value of the Firm depends on tenure

- The value of the firm is

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

the Job Search Model: Value of the Firm depends on tenure

- The value of the firm is

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Where the probability of keeping a worker after j periods is

$$
\begin{aligned}
& \ell^{j}(w)=1-\int h(w ; a) q\left[g^{e, j}(a, w), w\right] d x^{u}(a)- \\
& \quad \int h(w ; a) s\left[w ; g^{e, j}(a, w)\right]\left[\int \hat{h}\left[\widetilde{w} ; g^{e, j}(a, w), w\right] \xi \phi^{h}(\widetilde{w}) d(\widetilde{w})\right] d x^{u}(a)
\end{aligned}
$$

the Job Search Model: Value of the Firm depends on tenure

- The value of the firm is

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Where the probability of keeping a worker after j periods is

$$
\begin{aligned}
& \ell^{j}(w)=1-\int h(w ; a) q\left[g^{e, j}(a, w), w\right] d x^{u}(a)- \\
& \quad \int h(w ; a) s\left[w ; g^{e, j}(a, w)\right]\left[\int \hat{h}\left[\widetilde{w} ; g^{e, j}(a, w), w\right] \xi \phi^{h}(\widetilde{w}) d(\widetilde{w})\right] d x^{u}(a)
\end{aligned}
$$

- Without knowing the wealth of the worker it is Not block recursive but Q^{0} and Q^{1} are sufficient. (No need to index contracts by wealth (as in Chaumont and Shi (2022).)

Wage Dispersion

- This Model has the potential to get more wage dispersion (and efficiency wages due to lower turnover)

Wage Dispersion

- This Model has the potential to get more wage dispersion (and efficiency wages due to lower turnover)
- Conditional on wealth higher wages lead to less quitting. So firms are willing to pay more to keep workers longer

Wage Dispersion

- This Model has the potential to get more wage dispersion (and efficiency wages due to lower turnover)
- Conditional on wealth higher wages lead to less quitting. So firms are willing to pay more to keep workers longer
- However higher wages only go to richer people which makes them prone to quit and not worry about higher wages: Wealth trumps wages as a discriminating device.

Wage Dispersion

- This Model has the potential to get more wage dispersion (and efficiency wages due to lower turnover)
- Conditional on wealth higher wages lead to less quitting. So firms are willing to pay more to keep workers longer
- However higher wages only go to richer people which makes them prone to quit and not worry about higher wages: Wealth trumps wages as a discriminating device.
- So we want to reduce the correlation on wages and wealth when hired.

3 and 4: Market Arriving Shocks

- The Model as is very delicate.

3 and 4: Market Arriving Shocks

- The Model as is very delicate.
- Specific markets appear and disappear very easily.

3 and 4: Market Arriving Shocks

- The Model as is very delicate.
- Specific markets appear and disappear very easily.
- Particular bad for Business Cycles Analysis

3 and 4: Market Arriving Shocks

- The Model as is very delicate.
- Specific markets appear and disappear very easily.
- Particular bad for Business Cycles Analysis
- We add smoothing shocks on both sides. Agents do not end in the market they hoped for (EVS that smooth out where to go to while still mostly going to the best markets)
- The Model as is very delicate.
- Specific markets appear and disappear very easily.
- Particular bad for Business Cycles Analysis
- We add smoothing shocks on both sides. Agents do not end in the market they hoped for (EVS that smooth out where to go to while still mostly going to the best markets)
(1) Aiming Application shocks for workers:
- The Model as is very delicate.
- Specific markets appear and disappear very easily.
- Particular bad for Business Cycles Analysis
- We add smoothing shocks on both sides. Agents do not end in the market they hoped for (EVS that smooth out where to go to while still mostly going to the best markets)
(1) Aiming Application shocks for workers:
(2) Manager Posting shocks that make them offer all possible salaries. (Zero Profit Condition Still holds.)
- The Model as is very delicate.
- Specific markets appear and disappear very easily.
- Particular bad for Business Cycles Analysis
- We add smoothing shocks on both sides. Agents do not end in the market they hoped for (EVS that smooth out where to go to while still mostly going to the best markets)
(1) Aiming Application shocks for workers:
(2) Manager Posting shocks that make them offer all possible salaries. (Zero Profit Condition Still holds.)
- Still agents will mostly the "right" wages (controlling the variance).

3 and 4: Market Aiming Application Shocks: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.

3 and 4: Market Aiming Application Shocks: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :

3 and 4: Market Aiming Application Shocks: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side

3 and 4: Market Aiming Application Shocks: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{v}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

3 and 4: Market Aiming Application Shocks: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search:
(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{5}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search:

- Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.
(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
© Search :
- Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.
- Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{\omega^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
© Search :
- Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.
- Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{\omega^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation Only from Firms' side
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
© Search :
- Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.
- Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{\omega^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(7) Match

3: Aiming Application Shocks: Household Probl

- The unemployed after saving solve and yield logit choice density of wage for wealth choice a^{\prime} :

$$
\begin{aligned}
\widehat{V}^{u}\left(a^{\prime}\right) & =\left\{\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{u}\left(w^{\prime} ; a^{\prime}\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

and $V^{u}(a)=\max _{a^{\prime}} u\left[a(1+r)+b-a^{\prime}\right]+\beta \widehat{V}^{u}\left(a^{\prime}\right)$

3: Aiming Application Shocks: Household Probl

- The unemployed after saving solve and yield logit choice density of wage for wealth choice a^{\prime} :

$$
\begin{aligned}
\widehat{V}^{u}\left(a^{\prime}\right) & =\left\{\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{u}\left(w^{\prime} ; a^{\prime}\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

and $V^{u}(a)=\max _{a^{\prime}} u\left[a(1+r)+b-a^{\prime}\right]+\beta \widehat{V}^{u}\left(a^{\prime}\right)$

- For searchers we get

$$
\begin{aligned}
V^{s}\left(a^{\prime}, w\right) & =\left\{\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{s}\left(w^{\prime} ; a^{\prime}, w\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

3: Aiming Application Shocks: Household Probl

- The unemployed after saving solve and yield logit choice density of wage for wealth choice a^{\prime} :

$$
\begin{aligned}
\widehat{V}^{u}\left(a^{\prime}\right) & =\left\{\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{u}\left(w^{\prime} ; a^{\prime}\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

and $V^{u}(a)=\max _{a^{\prime}} u\left[a(1+r)+b-a^{\prime}\right]+\beta \widehat{V}^{u}\left(a^{\prime}\right)$

- For searchers we get

$$
\begin{aligned}
V^{s}\left(a^{\prime}, w\right) & =\left\{\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{s}\left(w^{\prime} ; a^{\prime}, w\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

- The rest is the same.

4: Manager Vacancy Posting Shocks

- The value of a firm with newly hired worker at w is as before

$$
\Omega^{0}(w)=\left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w)
$$

where
and $\quad Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right]$,
$Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right]$.

4: Manager Vacancy Posting Shocks

- The value of a firm with newly hired worker at w is as before

$$
\begin{aligned}
& \qquad \Omega^{\mathbf{0}}(w)=\left(z-w-\delta^{k} k\right) Q^{\mathbf{1}}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w) \\
& \text { where } \\
& \text { and } \quad Q^{\mathbf{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{\mathbf{1}+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right]} \begin{array}{l}
Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{\mathbf{1 + \tau}}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-\mathbf{1}} \ell^{i}(w)\right)\right] .
\end{array}
\end{aligned}
$$

- Managers get Gumbel shocks η^{w} to expected profits at w which yields

$$
\begin{aligned}
\widehat{\Omega} & =\left\{\int \max _{w}\left[\psi^{f}(w) \Omega^{0}(w)+\left[1-\psi^{f}(w)\right](w)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{s}\left(w^{\prime} ; a^{\prime}, w\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

4: Manager Vacancy Posting Shocks

- The value of a firm with newly hired worker at w is as before

$$
\begin{aligned}
& \qquad \Omega^{\mathbf{0}}(w)=\left(z-w-\delta^{k} k\right) Q^{\mathbf{1}}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w) \\
& \text { where } \\
& \text { and } \\
& \qquad \begin{array}{l}
Q^{\mathbf{1}}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{\mathbf{1}+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right] \\
Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{array}
\end{aligned}
$$

- Managers get Gumbel shocks η^{w} to expected profits at w which yields

$$
\begin{aligned}
\widehat{\Omega} & =\left\{\int \max _{w}\left[\psi^{f}(w) \Omega^{0}(w)+\left[1-\psi^{f}(w)\right](w)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{s}\left(w^{\prime} ; a^{\prime}, w\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

- This gives the probabilities of where to post

4: Manager Vacancy Posting Shocks

- The value of a firm with newly hired worker at w is as before

$$
\begin{array}{ll}
\begin{array}{ll}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
\text { where } \\
\text { and } \quad & Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{array} .
\end{array}
$$

- Managers get Gumbel shocks η^{w} to expected profits at w which yields

$$
\begin{aligned}
\hat{\Omega} & =\left\{\int \max _{w}\left[\psi^{f}(w) \Omega^{0}(w)+\left[1-\psi^{f}(w)\right](w)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}\right\} \\
h^{s}\left(w^{\prime} ; a^{\prime}, w\right) & =\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
\end{aligned}
$$

- This gives the probabilities of where to post
- Prospective entrants understand the incompetence of their managers:

$$
\bar{c}+\bar{k}=\frac{\widehat{\Omega}}{1+r}
$$

- When we discretize the set of wages, solving the zero profit condition requires solving a system of equations:

Managers posting choices that in turn have to be consistent with the numbers of entrants.

A little Detail on Computation (ensures the zero profit condition holds)

- When we discretize the set of wages, solving the zero profit condition requires solving a system of equations:
(1) Entering Firms expect 0 profits:

$$
(1+r) k+\bar{c}=\sum_{j} \Pi_{j}\left[\psi^{f}\left(w^{j}\right) \Omega\left(w^{j}\right)+\left(1-\psi^{f}\left(w^{j}\right)\right) \Omega\right] .
$$

Managers posting choices that in turn have to be consistent with the numbers of entrants.

A little Detail on Computation (ENSURES the zero profit condition holds)

- When we discretize the set of wages, solving the zero profit condition requires solving a system of equations:
(1) Entering Firms expect 0 profits:

$$
(1+r) k+\bar{c}=\sum_{j} \Pi_{j}\left[\psi^{f}\left(w^{j}\right) \Omega\left(w^{j}\right)+\left(1-\psi^{f}\left(w^{j}\right)\right) \Omega\right] .
$$

(2) Mass of Idle firms o and new firms x satisfy:

$$
o=\sum_{j} \Pi^{j}\left\{\left(1-\psi^{f}\left(w_{j}\right)\right)\left(\left(1-\delta^{f}\right)\left[o+\sum_{\ell} e^{\ell} \int_{a} q\left(a, w^{\ell}\right) d F(a)\right]+x\right)\right\}
$$

Managers posting choices that in turn have to be consistent with the numbers of entrants.

A little Detail on Computation (ENSURES THE ZERO PROFIT CONDITION hOLDS)

- When we discretize the set of wages, solving the zero profit condition requires solving a system of equations:
(1) Entering Firms expect 0 profits:

$$
(1+r) k+\bar{c}=\sum_{j} \Pi_{j}\left[\psi^{f}\left(w^{j}\right) \Omega\left(w^{j}\right)+\left(1-\psi^{f}\left(w^{j}\right)\right) \Omega\right] .
$$

(2) Mass of Idle firms o and new firms x satisfy:

$$
o=\sum_{j} \Pi^{j}\left\{\left(1-\psi^{f}\left(w_{j}\right)\right)\left(\left(1-\delta^{f}\right)\left[o+\sum_{\ell} e^{\ell} \int_{a} q\left(a, w^{\ell}\right) d F(a)\right]+x\right)\right\} .
$$

(3) Matching probability j is determined as a function of vacancies and unemployed:

$$
\psi^{f}\left(w_{j}\right)=\frac{u^{j}}{\left\{\left(\omega^{j}\right)^{\eta}+\left[(o+x) \Pi^{j}\right]^{\eta}\right\}^{1 / \eta}} j=1, \ldots, J .
$$

Managers posting choices that in turn have to be consistent with the numbers of entrants.

A little Detail on Computation (ENSURES THE ZERO PROFIT CONDITION hOLDS)

- When we discretize the set of wages, solving the zero profit condition requires solving a system of equations:
(1) Entering Firms expect 0 profits:

$$
(1+r) k+\bar{c}=\sum_{j} \Pi_{j}\left[\psi^{f}\left(w^{j}\right) \Omega\left(w^{j}\right)+\left(1-\psi^{f}\left(w^{j}\right)\right) \Omega\right] .
$$

(2) Mass of Idle firms O and new firms x satisfy:

$$
o=\sum_{j} \Pi^{j}\left\{\left(1-\psi^{f}\left(w_{j}\right)\right)\left(\left(1-\delta^{f}\right)\left[o+\sum_{\ell} e^{\ell} \int_{a} q\left(a, w^{\ell}\right) d F(a)\right]+x\right)\right\} .
$$

(3) Matching probability j is determined as a function of vacancies and unemployed:

$$
\psi^{f}\left(w_{j}\right)=\frac{u^{j}}{\left\{\left(u^{j}\right)^{\eta}+\left[(o+x) \Pi^{j}\right]^{\eta}\right\}^{1 / \eta}} j=1, \ldots, J .
$$

(4) Probability of managers posting a vacancy in market j :

$$
\Pi^{j}=\frac{1}{1+\sum_{k \neq j} \exp \left\{\alpha_{F}\left[\Omega^{0}\left(w_{k}\right)-\Omega^{0}\left(w_{j}\right)\right]\right\}} j=1, \ldots, J .
$$

Managers posting choices that in turn have to be consistent with the numbers of entrants.

Preliminary Quantitative Findings

Plan II: Study Fluctuation Properties Related to Wage Rigidity

- Outside Steady State Employers commit to a wage schedule

$$
w(z)=\phi z w
$$

Plan II: Study Fluctuation Properties Related to Wage Rigidity

- Outside Steady State Employers commit to a wage schedule

$$
w(z)=\phi z w
$$

- We estimate the value of ϕ off the Business cycle Properties.

Steady State Allocations in Yeariy Units: Endog Quits \& OJS

Interest rate	$3 . \%$
Output	1.000
Avg consumption	.733
Avg wage (also labor share)	.700
Nonmployment	.145
Avg New Wage from Unemployment	.662
Avg New Wage	.668
Avg wealth	3.401
Monthly Quits Prob	.019
Monthly Job Losing Prob	.003
Wage of newly hired unemp	.619
Coeff Var Consumption	.123
Coeff Var Wage	.067
Coeff Var Wealth	1.004
Mean-min consumption	2.024
Mean-min wage	1.250
Monthly U-E transition	.133
Monthly J2J Moves	.002
Vacancies	0.826

Aggregate Fluctuations (untrustworthy as of now)

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.
- By aiming at the Job to Job Volatility we can estimate the degree of wage rigidity φ^{z}

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.
- By aiming at the Job to Job Volatility we can estimate the degree of wage rigidity φ^{z}
- We use the Boppart et al. (2018) way of solving aggregates (switching to Auclert et al. (2021))

Baseline: IRF to z shock: Typical Response when wages sufficiently flexi-

 BLE

Figure 1: Wages

Figure 2: Unemployment Rate

- Obviously New wages move more than average wages
- Some response of unemployment

Baseline: IRF то z shock

Figure 3: J2J transitions

Figure 4: J2J search \& JFP

- Too much responsive j 2 j transitions
- Due to improved job finding probabilities, not more searchers
- 1st order data moments are from standard database: CPS, JOLTS, LEHD and NIPA.
- 2nd order data moments are from Haefke et al. (2013), Campolmi and Gnocchi (2016), Brown et al. (2017) and Fujita and Nakajima (2016).

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption
- Wages

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption
- Wages
- Obvious Extension is to consider variations on the quality of the match which is what may trigger workers to switch jobs which may make it more procyclical

Conclusions

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption
- Wages
- Obvious Extension is to consider variations on the quality of the match which is what may trigger workers to switch jobs which may make it more procyclical
- Helps to stay out of the bargaining undisciplined obsession.

Aiyagari, S. R. (1994): "Uninsured Idiosyncratic Risk and Aggregate Saving," Quarterly Journal of Economics, 109, 659-684.
Andolfatto, D. (1996): "Business Cycles and Labor-Market Search," American Economic Review, 86(1), 112-132.
Auclert, A., B. Bardóczy, M. Rognlie, and L. Straub (2021): "Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models," Econometrica, 89, 2375-2408.
Boppart, T., P. Krusell, and K. Mitman (2018): "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," Journal of Economic Dynamics and Control, 89, 68-92.
Brown, A. J., B. Kohlbrecher, C. Merkl, and D. J. Snower (2017): "The effects of productivity and benefits on unemployment: Breaking the link," Tech. rep., GLO Discussion Paper.
-_ (2021): "The effects of productivity and benefits on unemployment: Breaking the link," Economic Modelling, 94, 967-980.
Campolmi, A. and S. Gnocchi (2016): "Labor market participation, unemployment and monetary policy," Journal of Monetary Economics, 79, 17-29.
Chaumont, G. and S. Shi (2022): "Wealth Accumulation, On-the-Job Search and Inequality," Journal of Monetary Economics.
Den Haan, W., P. Rendahl, and M. Riegler (2015): "Unemployment (Fears) and Deflationary Spirals," CEPR Discussion Papers 10814, C.E.P.R. Discussion Papers.
Eeckhout, J. and A. Sepahsalari (2024): "The Effect of Wealth on Worker Productivity," Review of Economic Studies, forthcoming.
Fallick, B. and C. A. Fleischman (2004): "Employer-to-employer flows in the U.S. labor market: the complete picture of gross worker flows," Finance and Economics Discussion Series 2004-34, Board of Governors of the Federal Reserve System (U.S.).
Fujita, S., G. Moscarini, and F. Postel-Vinay (2024): "Measuring Employer-to-Employer Reallocation," American Economic Journal: Macroeconomics (forthcoming).
Fujita, S. and M. Nakajima (2016): "Worker flows and job flows: A quantitative investigation," Review of Economic Dynamics, 22, 1-20.
Griffy, B. S. (2021): "Search And The Sources Of Life-Cycle Inequality," International Economic Review, 62, 1321-1362.
Haefke, C., M. Sonntag, and T. Van Rens (2013): "Wage rigidity and job creation," Journal of Monetary Economics, 60, 887-899.
Hornstein, A., P. Krusell, and G. Violante (2011): "Frictional Wage Dispersion in Search Models: A Quantitative Assessment," American Economic Review, 101, 2873-2898.
Krusell, P., T. Mukoyama, and A. Şahin (2010): "Labour-Market Matching with Precautionary Savings and Aggregate Fluctuations," Review of Economic Studies, 77, 1477-1507.
Lise, J. (2013): "On-the-Job Search and Precautionary Savings," The Review of Economic Studies, 80, 1086-1113.
Merz, M. (1995): "Search in the Labor Market and the Real Business Cycle," Journal of Monetary Economics, 36,

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.
- Getting the right relative volatility of old and new wages and the amount of job-to-job moves and quits provides a way to measure wage rigidity.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.
- Getting the right relative volatility of old and new wages and the amount of job-to-job moves and quits provides a way to measure wage rigidity.
- With partial wage rigidity the model fares reasonably well with the data. A few things still to improve. (Excessive Job-to-JOB transitions)

How important are Wage posting Errors?

Profit loss as fraction of monthly wage

High Wages are Hard to Quit

Distribution of Wages

Various Properties of Labor Market

Wage App Dist

$\Psi f(\mathrm{w})$

Mass of entering Firms

Wage App Dist

PsiH11

Mass of entering Firms (Employed)

Various Other Properties

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
© Firms Get Profitability Shocks that determine their survival.

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
© Firms Get Profitability Shocks that determine their survival.
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival.
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search : Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.

Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival.
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search: Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.

Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

5: Firms Destruction Shocks: Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
© Firms Get Profitability Shocks that determine their survival.
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search : Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type.

Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(7) Match

Firms Profitability Shock: Instead of exogenous Destruction

- Each firm has a firm profitability shock ζ, say normally distributed. To survive, $\Omega^{j}(w) \geq \zeta$ which happens with probability

$$
F^{\zeta}\left(\Omega^{j}(w)-z\right)
$$

Firms Profitability Shock: Instead of exogenous Destruction

- Each firm has a firm profitability shock ζ, say normally distributed. To survive, $\Omega^{j}(w) \geq \zeta$ which happens with probability

$$
F^{\zeta}\left(\Omega^{j}(w)-z\right)
$$

- We do not have here a serious microfoundation of what this shock is. It can be thouhght of related to depreciation, but it is important that the probability of destruction increases with the wage.

Firms Profitability Shock: Instead of exogenous Destruction

- Each firm has a firm profitability shock ζ, say normally distributed. To survive, $\Omega^{j}(w) \geq \zeta$ which happens with probability

$$
F^{\zeta}\left(\Omega^{j}(w)-z\right)
$$

- We do not have here a serious microfoundation of what this shock is. It can be thouhght of related to depreciation, but it is important that the probability of destruction increases with the wage.
- The measure of firms destroyed add their capital to the amount depreciated.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or
(4) Quitting? Searching? Neither?: Only for the Employed who draw shocks. Those who quit become u, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or
(4) Quitting? Searching? Neither?: Only for the Employed who draw shocks. Those who quit become u, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
© Those that do not have a job decide whether to search for a job or not.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or
(4) Quitting? Searching? Neither?: Only for the Employed who draw shocks. Those who quit become u, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Those that do not have a job decide whether to search for a job or not.
(6) Search : Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type. Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or
(4) Quitting? Searching? Neither?: Only for the Employed who draw shocks. Those who quit become u, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Those that do not have a job decide whether to search for a job or not.
(6) Search : Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type. Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(7) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

6: Outside the Labor Force Time-line

(1) Workers start period with or without a job: $V^{e}(a, w), V^{u}(a)$. Firms start as $\Omega^{j}(w), \Omega$.
(2) Production payment of dividends and wages \& Consumption and investment:
(3) Firms Get Profitability Shocks that determine their survival. $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or
(4) Quitting? Searching? Neither?: Only for the Employed who draw shocks. Those who quit become u, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Those that do not have a job decide whether to search for a job or not.
(6) Search : Job searchers assess the value of applying to each market $\theta\left(w^{\prime}\right)$. Apply Gumbel Shocks to the Utility of each market, which yields the probabilty of applying to each job for each worker type. Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise u^{\prime}.
(7) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(8) Match

Outside the Labor Force Model: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production payment of dividends and wages \& Consumption :
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Only for the Employed
(5) In the beginning of the period non Workers get a shock to the utility of either searching or not searching. They then choose whether to sit out and not search or to search. It is an extreme value shock. Workers get a utility injection equal to the expected utility of the maximum of those two shocks to get no bias in the value of working versus not. There may also be a Markov chain for workers that determines the value of b. High b are likely to be outside the labor force for periods on end.

6 Search
(7) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

8 Match

Steady State Parameterization: Period is half a quarter

Definition
Value in Yearly Units

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.48

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.48
σ	risk aversion	2

Steady State Parameterization: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.48
σ	risk aversion	2
Matching function	$m=\chi u^{\eta} v^{1-\eta}$, OJS	$\chi=0.3$
		$\eta=0.5$

Productivity Shock Rep Agent "Sort" of Closed Economy ($\rho=0.95$)

	$\rho^{w}=0$	$\rho^{w}=0.95$
	Relative Standard Deviation	
GDP	1	1
Average wage	0.047	0.656
New wage	1.045	0.216
Nonemployment	0.883	0.91
Unemployment	0.173	0.162
Quits	0.448	0.76
OJS moves	0.329	0.195
Consumption (per E)	0.177	0.131
Consumption (total)	0.308	0.262
Investment (total)	1.098	2.645
Vacancy (total)	0.904	1.802

