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1 Introduction

In the standard neoclassical model, output is a function of inputs such as labor and capital. There is no

explicit role for demand because potential consumers are always available and Walrasian prices adjust so

that all produced goods become used. In reality, customers and producers must meet in order for the

produced good to be consumed, so value added depends on how well they are matched. As an example,

consider a restaurant. According to the neoclassical view, the value added of a restaurant should be a

function of its inputs (employees, tables, etc.), irrespective of the number of patrons and how hungry

they are. Moreover, the restaurant owner would set prices so that all tables were in use. However, actual

production takes place only when customers show up. The more customers demand the restaurant’s

meals, the larger the value added will be. The idea that the demand for goods plays a direct role extends

to many forms of production: dentists need patients, car dealers need shoppers, all producers need buyers.

This paper provides a theory where search for goods —which we, with some abuse of terminology,

refer to as demand— has a productive role. The starting point is that customers search for producers,

and a standard matching friction prevents Walrasian market clearing in the sense that all potential pro-

ductive capacity necessarily translates into actual value added.1 Allowing an explicit role for demand has

implications for business cycle analysis, especially for our understanding of the driving forces of business

cycles. In our model, changes in search effort affect output even if conventional inputs remain constant.

Demand shocks therefore influence the measured aggregate TFP. This paper quantifies how important

this mechanism is for aggregate fluctuations, relative to more standard business-cycle shocks.

Our study is motivated by the empirical observation that search effort for goods is highly procyclical.

This property can be illustrated by looking at the average time households spend shopping for goods and

services. While search effort is a broader concept than just time spent shopping, we believe this measure

is informative about the true search effort for goods. Figure 1 plots the cyclical component of shopping

time using annual data from the American Time Use Survey (ATUS). The correlations of shopping time

with GDP and the Solow residual are 0.56 and 0.52, respectively.2

We pose a model of competitive search in the market for goods. Firms post prices and customers

trade off good prices versus congestion when searching for goods. In equilibrium, firms charge higher

prices in markets where they have a lower chance of realizing a sale, and it is easier for customers to

find goods. Search effort is determined by a familiar condition: the marginal rate of substitution between

search costs and consumption (i.e., the ratio of the marginal disutility of search to the marginal utility

1The National Income and Product Accounts (NIPA) measures value added only when goods are purchased. Indeed, a
lost opportunity, such as an empty seat on a bus, is not value-added. In the neoclassical model, value added is the price
times the quantity of goods and services, consistent with NIPA.

2Procyclical search effort is in line with the findings of Petrosky-Nadeau et al. (2016). They use cross-state and individual
regressions analysis to argue that the decline in aggregate shopping time during the Great Recession reflects that consumer
search in the goods market is procyclical.
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Figure 1: Shopping Time versus GDP and TFP
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Note: The figure plots average shopping time for the working-age population (25-59) against GDP and the Solow residual. All series
are linearly detrended. Shopping time is measured as average time spent shopping for goods, professional and personal care services,
and household services, plus travel time associated with this shopping. Data source: American Time Use Survey (ATUS) and NIPA.

of consumption) must equal the marginal transformation of search, i.e., the marginal increase in the

probability that a match will occur when search effort is increased marginally.

We embed this search friction in an otherwise standard stochastic neoclassical growth model. On the

one hand, the search friction is a source of shocks which we interpret as a particular implementation of the

demand shocks. On the other hand, it is a mechanism that amplifies more traditional shocks. To assess

the role of the search friction for business cycles and TFP, we model search shocks as a preference shock

to shopping effort.3 The model also includes shocks that are more standard in the business cycle literature

such as a shock to the marginal rate of substitution (MRS) between consumption and leisure, a standard

economy-wide technology shock, and an investment-specific productivity shock (see e.g., Justiniano et al.

(2010) and references therein).

The model is estimated using Bayesian estimation techniques targeting time series for output, labor

productivity, investment, the relative price of investment goods, and a measure of aggregate shopping

effort (time spent shopping). This allows us to quantify the contribution of each shock to the variance

of aggregate variables. The Bayesian estimation chooses shocks to maximize the probability of observing

the realized aggregate time series. One of our main findings is that it is necessary to attribute a large role

to demand shocks in order to match the data: preference shock to shopping accounts for between 39%

and 60% of the variance of the Solow residual and output and up to half the variance of consumption.

The endogenous search amplifies the effect of the true technology shocks and the labor preference shock

because it is optimal to search more when output is larger. This in turn generates procyclical search effort

and contributes to procyclical productivity.

We compare our implementation of demand shocks – i.e., search-effort preference shocks – to more

3We take a broad view of shocks to the disutility of search effort. For example, these shocks could alternatively be
interpreted as a shock to the search efficiency.
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traditional implementations of demand shocks. We find that incorporating our search shock in the model

allows us to fit U.S. data substantially better than alternative formulations based on more traditional

demand shocks. In particular, the likelihood of the various models suggest that there is decisive evidence

against models that replace our search shock with a discount factor shock or a preference shock to the

marginal utility of consumption.

The business-cycle literature has emphasized a different mechanism for how fluctuations in demand

transmits to productivity, namely varying capacity utilization (cf. Corrado and Mattey (1997)). Under

this view, NIPA mismeasures factor inputs because it ignores variations in the intensity of factor use. A

demand shock will be accommodated by producers via an increase in the intensity of use of available

factors of production. This results in an increase of measured TFP, inducing procyclical TFP (cf. Basu

(1996)). This begs the question of whether the significant role our estimation assigns to demand shocks

through shopping utility preference shocks is simply a stand-in for varying capacity utilization. To address

this issue, we extend our benchmark model to allow for variable capacity utilization of capital along

the lines of Christiano et al. (2005). We find that the quantitative role of the shopping preference

shocks is robust to this extension in the sense that our search/demand shocks continue to account for

a large share of the aggregate fluctuations. In a version of the model allowing shocks to both capacity

utilization and shopping effort, and where we target empirical measurements of both shopping time (from

ATUS) and capacity utilization (from the Board of Governors) in the Bayesian estimation, we find that

our shopping friction shocks are orders of magnitude more important than standard capacity utilization

shocks in accounting for aggregate fluctuations. We interpret this result as evidence that our search-based

mechanism is quantitatively relevant for the propagation of US business cycles, while varying capacity

utilization is less relevant. This suggests that the potential effect of demand shocks on TFP might stem

through a mechanism of product market frictions and endogenous variation in search effort rather than a

mechanism of varying intensity in the use of capital.

As a robustness exercise we relax the assumption of just-in-time production in line with the restaurant

example above. If firms could store produced goods as inventories, then demand shocks might —ceteris

paribus—matter less for business cycles. To address this issue, we extend the baseline model to incorporate

storable goods. Our main results hold up: demand shocks continue to be a major driving force for

consumption, TFP, and GDP, even when goods can be stored. This is because storable goods represents

a relatively small share of aggregate output.

Summing up, we see our paper as an implementation of Keynes’ central idea that shocks to demand

can give rise to business cycle fluctuations. This is done by extending a standard neoclassical framework

with a search friction for goods. The role of demand is intrinsic to the process of production and is

not arbitrarily imposed: markets clear, and no agent has incentives to deviate. There is a long tradition

of attributing a role for demand in business cycle analysis, starting with Keynes’ seminal contributions.

However, in none of the earlier approaches, demand had a direct productive role. Michaillat and Saez
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(2015) also study a model with product-market frictions. They show that when prices and wages are

predetermined (i.e., exogenous), aggregate demand can increase output and employment. They abstract

from a mechanism that can determine search intensity and their equilibrium is inefficient. In a flexible-

price version of their model, the allocation is efficient and aggregate demand has no effect on output

and employment. In contrast, our dynamic model is embedded in a standard dynamic business cycle

framework, it assumes flexible prices, and poses a theory of determination of search effort that yields a

unique and efficient equilibrium as in Moen (1997). We pursue neither the fixed-price tradition of the New

Keynesian literature nor the coordination-problem tradition that sees a recession as a bad outcome within

environments susceptible to multiple equilibria. Instead, we follow a tradition where a fall in demand

generates a recession via the infra-utilization of productive capacity.

Our model allows us to study the propagation of various preference and technology shocks in the

presence of frictions in the matching between buyers and sellers of goods and services, and quantify

the potential role this friction plays for understanding business cycles. We view it as a virtue that

demand fluctuations show up as fluctuations in measured TFP in our model. Our starting point is that

the measured aggregate TFP – the Solow residual – does indeed fluctuate and that these fluctuations

are strongly positively correlated with GDP and shopping time both at high and low frequencies (see

Figure 1). Gaĺı (1999) and others have challenged the role of TFP fluctuations, identifying true TFP

shocks as permanent shocks to measured TFP and assigning non-permanent shocks to demand shocks.

Our model provides a theory for endogenous TFP fluctuations without the need to rule out transitory

true TFP shocks. We find that, across specifications, our estimated model assigns about equal roles for

demand shocks and technology shocks in accounting for GDP and measured TFP.

Our paper is also related to Petrosky-Nadeau and Wasmer (2015). They also model costly search

for goods in final goods markets, although their focus is on how this search interacts with search in the

labor market and influences the business cycle properties of the model. In particular, they do not focus

on aggregate demand effects. Rudanko and Gourio (2014) study a business cycle model with a search

friction in the market for consumption goods. Firms form long-lasting relationships with customers, and

the authors focus on the role of customers as capital. Our contribution is also related to several papers

emphasizing the effects of search frictions in shaping TFP (Alessandria (2005), Faig and Jerez (2005),

and Lagos (2006)), although none of these focus on business cycles.

Some papers examine, as we do, how demand changes affect productivity and capacity utilization,

although through very different mechanisms. In Fagnart et al. (1999), monopolistic firms with putty-clay

technology are subject to idiosyncratic demand shocks, which causes fluctuations in capacity utilization.

In Floetotto and Jaimovich (2008), changes in the number of firms cause changes in markups and, hence,

changes in the measured Solow residual. Swanson (2006) shows that government expenditure shocks can

increase aggregate output, consumption, and investment in a model with heterogeneous sectors. Finally,

a number of papers build directly on our approach of consumption demand shocks in models with a search
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friction in product markets, including Huo and Ŕıos-Rull (2020), Petrosky-Nadeau and Wasmer (2015),

Duras (2015, 2016), Bai and Ŕıos-Rull (2015), Qiu and Ŕıos-Rull (2022), and a variety of papers studying

price dispersion using versions of the Burdett and Judd (1983) structure (see for instance Nord (2022)

and references therein).

The paper is organized as follows. Section 2 lays out the main mechanism in a tractable economy

where we show how preference shocks that increases demand are partially accommodated by an increase

in productivity via more search. The full production economy is presented in Section 3. We then map the

model to data in Section 4. Section 5 estimates the model and derive the main results. Section 6 extends

the model to allow for varying capacity utilization of capital and storable goods. Section 7 concludes.

Appendices A to G provide proofs, computational and data details, and some additional tables and figures.

2 Competitive search for goods in a tractable setting

We start our analysis of goods search and the business cycle by laying out our main argument in a simple

and transparent version of our model. We first study a static endowment economy with competitive

search for goods and then extend it to a dynamic production environment with shocks.

Consider a static economy where a measure one of identical households have preferences u (c , d) over

consumption c and search effort d . There is a continuum of suppliers with measure T = 1 owned by the

households. Each supplier is endowed with z units of the consumption good. A standard search friction

makes it difficult for consumers to find suppliers and the household makes search effort d ∈ [0, 1] to

overcome this friction.

Following Moen (1997), we assume a competitive search protocol where households search in markets

indexed by price and market tightness. The measure of matches is given by the matching function

M (D,T ) → [0,T ). M is constant returns to scale and increasing, strictly concave in both arguments,

and satisfies the Inada conditions. Market tightness q is defined as search effort per supplier, q = D/T ,

where D is search effort and T is the measure of suppliers in the specific market. The rate at which

shoppers finds suppliers is then M/D ≡ Ψd(q) and the probability that a supplier is matched is M/T ≡
ΨT (q) = q ·Ψd(q). Once a match is formed, goods are traded at the posted price p per unit. The real

quantity of consumption goods purchased by the household is c = dΨd(q)z .
4

Consider first the problem of a household who has an endowment y and who shops at a market

offering a pair (p̂, q̂). The budget constraint for this household is given by

p̂ d Ψd(q̂) z ≤ y . (1)

4The underlying assumption is that households are large and the search efforts of its members eliminate any idiosyncratic
uncertainty in the measure of matches obtained.
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Using the budget constraint (1), search effort d can be expressed as d = y/ [p̂Ψd(q̂)z ]. Moreover, given

expenditure y and price p̂, the the real consumption purchased is c = y/p̂ in equilibrium.5 Given the

expressions for c and d , the indirect utility V̂ (y , p̂, q̂) is defined as

V̂ (y , p̂, q̂) ≡ u

(
y

p̂
,

y

p̂Ψd(q̂)z

)
. (2)

Let V (y) be the indirect utility for the household once it has incorporated the optimal market choice. V

is determined by the best market; V (y) = max(p,q)∈Φ V̂ (y , p, q), where Φ is the set of available markets

in equilibrium, yet to be determined.

Consider now the problem for the suppliers. Each supplier offers a market bundle (p̂, q̂). To attract

shoppers, it must offer bundles no worse than the most attractive one available to shoppers. Let Y

denote the endowment of the representative household. The firm’s objective is to maximize profits,

max {p̂ΨT (q̂)z}, subject to the participation constraint for shoppers, i.e., subject to (p̂, q̂) satisfying

V̂ (Y , p̂, q̂) ≥ V (Y ). (3)

The solution to the firm’s problem is characterized by the following first-order condition6

−
∂u
∂d
∂u
∂c

= z
∂ΨT (q)

∂q
. (4)

A competitive search equilibrium is defined by indirect utility functions (V , V̂ ), individual decision

rules (c , d), aggregate allocations (D,C ,Y ), and a set of markets Φ = {(pj , qj)}j∈J so that (i) the

individual decision rules and value functions solve the household’s problems of choosing the best market

and maximizing u subject to Equation (1); (ii) for every active market j ∈ J, the price and market tightness

(pj , qj) ∈ Φ satisfy the firms’ first-order condition (4); (iii) the household endowment Y equals aggregate

profits, and (iv) individual decisions and market tightness are consistent with aggregate allocations.

For convenience, we let the consumption good be the numéraire good. The competitive search

equilibrium and its efficiency properties can be characterized by the following proposition.

Proposition 1. There exists a unique competitive search equilibrium with a unique active market featuring

p = 1 and q = D. Equilibrium allocations are given by C = Y = z ·ΨT (D), where the aggregate search

D is determined by the functional equation

−∂u (z ΨT (D),D) /∂D

∂u (z ΨT (D),D) /∂C
= z

∂ΨT (D)

∂D
. (5)

5We focus on economies where the disutility of search effort is sufficiently low that the entire budget is spent in equilibrium.
6To see this, take first-order conditions w.r.t. p̂ and q̂ in the constrained supplier problem and exploit that ΨT (q) =

q ·Ψd(q).
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The competitive equilibrium is efficient.

The proof follows from the first-order condition (4) and the equilibrium conditions. The efficiency

result follows from considering the planning problem maxC ,D {u(C ,D)} subject to the aggregate resource

constraint C = z ΨT (D). The solution to equation (5) solves this planning problem, which establishes

efficiency. See Appendix A for details.

Intuitively, the equilibrium condition (5) states that the marginal rate of substitution between shopping

and consumption equals the marginal rate of transformation of shopping, i.e., the marginal increase in

the probability that the suppliers are matched times the amount of goods per supplier. The reason why

there can only be one active market in equilibrium is that households are identical and the equilibrium is

unique. It follows that the set of available markets Φ is a singleton.

In this economy, potential output is z whereas the realized output is smaller than z . Some units are

not found, and hence some potential output is lost due to insufficient search. Nevertheless, the economy

is efficient: finding additional goods is not worth the additional search effort. Total factor productivity

(TFP) is a function of both search effort D and z , TFP ≡ z ΨT (D), and will respond to changes in

preferences.

Note that we measure realized consumption consistently with the way value added is measured in

NIPA: a lost opportunity does not contribute to value added and it is only when it is purchased that

potential production translates into consumption. In our model, search effort can be interpreted as an

input to production. Note that when constructing measures for factor inputs in NIPA, the national

statistical offices do not include search effort as an input. The reason why fluctuations in search can give

rise to fluctuations in measured TFP is precisely because we (mis-)measure inputs in the same way as in

NIPA. Indeed, if search were properly accounted for as an input factor, TFP would be given by z .

2.1 Introducing shocks and dynamics

We now analyze how shocks to preferences —which we interpret as demand shocks— affect the allocations

in economies with search for goods. To this end, we extend the static endowment economy above to a

dynamic production economy that features preference shocks and endogenous labor supply. This simple

economy will illustrate how preference shocks that affect the disutility of search will have qualitatively

similar effects as a standard productivity shock, generating joint comovements between consumption,

labor supply, savings, and productivity. As we shall see, this form of demand shock is qualitatively

different from more traditional sources of demand shocks that affect consumption and labor supply.

Consumption goods are produced by a unit measure of firms. Each firm resides in a location, equivalent

to a supplier in the section above. Firms transform labor input n into the consumption good via a

production function f = z nα, where z is a true productivity shock.
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Households search for suppliers and trade with the firms they find. Let the number of matches between

suppliers and consumers be given by a Cobb-Douglas matching function

M = µ Dφ T 1−φ, (6)

where φ is a matching technology parameter and µ is a parameter capturing search efficiency. This implies

Ψd(q) = µ qφ−1 and ΨT (q) = µ qφ.

The definition of a competitive search equilibrium is similar to the definition in the endowment model

above, with two differences. First, the market for labor must clear. Second, since production is endoge-

nous, the competitive search equilibrium requires indexing goods markets not only by price and market

tightness (p, q) but also by the quantity of the good offered for sale by the firm, F . In Appendix B

we show that with endogenous production optimality requires that markets are indexed by the triplet

(p, q,F ) of price, market tightness, and the quantity of the good produced. We conjecture that this

property applies to all competitive search models where consumers search for firms and firms can decide

the magnitude of the available goods.

Since households are identical and firms are identical, there will be only one active market where firms

offer goods for sale and where households search for goods. This market has T = 1 and M = µ Dφ

number of matches between firms and consumers. Equilibrium also requires that all firms offer the same

number of goods for sale, F = z Nα, where N is aggregate labor supply and F is potential output. The

aggregate value added is therefore

Y = µ z Dφ Nα, (7)

Let A ≡ Y /Nα = µ z Dφ denote what the measured TFP would be when search effort is being ignored

as a factor input. We impose φ + α ≤ 1, which ensures that aggregate production does not feature

increasing returns to scale.

To study dynamics, we assume there are two periods and that goods that have been found can

be saved until (or borrowed from) the next period at zero interest. In this section, we abstract from

productive capital. Given the storage technology, consumption is

c = Y − s (8)

c ′ = Y ′ + s,

where s is goods in storage and the notation x ′ denotes the second-period variable x . A representative

household has time-additive preferences over consumption, search, and labor supply. The discounted
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utility is

V = u (c , d , n; θ) + β u
(
c ′, d ′, n′; θ′

)
, (9)

where the period felicity function is of the type introduced by Greenwood et al. (1988) (GHH preferences)

and given by

u (c, d , n; θ) =
1

1− γ

(
θc c − θd

d1+1/η

1 + 1/η
− θn

n1+1/ν

1 + 1/ν

)1−γ

, (10)

and θ ≡ {θc , θd , θn} is a vector of preference shifters. The aim of this section is to understand how

preference shocks to β and θ propagate in the economy. The GHH preferences allow us to derive sharp

implications for how various shocks affect household choices. Moreover, as we shall see in Section 4.1.1,

these preferences are also consistent with household-level micro data on search behavior.

The competitive equilibrium is efficient (see Appendix B). We derive the equilibrium allocation by

solving a planning problem maximizing (9) subject to equations (7)-(8). Let x∗ denote the equilibrium

allocation when all preference shifters are equal to unity (β = 1 and θi = θ′i = 1 for i ∈ {c , d , n}) and

let the notation x̂ denote the log deviation from x∗, i.e., x̂ ≡ ln x − ln x∗. We summarize the competitive

equilibrium allocation in the following proposition.

Proposition 2. The equilibrium allocation is given by

ξ1 · d̂ =

(
1

ν
+ 1

)
ln z − α ln

(
θn
θc

)
−
(
1

ν
+ 1− α

)
ln

(
θd
θc

)
(11)

ξ1 · n̂ =

(
1

η
+ 1

)
ln z −

(
1

η
+ 1− φ

)
ln

(
θn
θc

)
− φ ln

(
θd
θc

)
(12)

ξ1 · ŷ =

(
1

η
+ 1

)(
1

ν
+ 1

)
ln z −

(
1

η
+ 1

)
α ln

(
θn
θc

)
−
(
1

ν
+ 1

)
φ ln

(
θd
θc

)
(13)

ξ1 · Â =

(
1

η
+ 1

)(
1

ν
+ 1− α

)
ln z − φα ln

(
θn
θc

)
− φ

(
1

ν
+ 1− α

)
ln

(
θd
θc

)
, (14)

where ξ1 ≡ (1/η + 1− φ) /ν+(1/η + 1) (1− α)−φ > 0. Moreover, savings and consumption are given

by

s =

(
θ′c
θc

) 1−γ
γ
β

1
γ ξ2

1 +
(
θ′c
θc

) 1−γ
γ
β

1
γ

· y − ξ2

1 +
(
θ′c
θc

) 1−γ
γ
β

1
γ

· y ′ (15)

c =

 ξ2

1 +
(
θ′c
θc

) 1−γ
γ
β

1
γ

+ 1− ξ2

 · y +
ξ2

1 +
(
θ′c
θc

) 1−γ
γ
β

1
γ

· y ′, (16)
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where ξ2 ≡ 1− φη/ (1 + η)− αν/ (1 + ν) and ξ2 ∈ (0, 1).

Proposition 2, proved in Appendix B, shows how the various shocks propagate in the economy.

Consider first the search shock θd . A lower disutility of search leads the household to search more.

This increases labor productivity and induces a larger n and a larger y . Moreover, a larger search effort

increases the measured TFP A and the aggregate labor productivity y/n. The household distributes the

increase in income y on both c and c ′, where the larger c ′ comes about through increased savings s.

Thus, a negative θd shock will simultaneously increase output y , consumption c , labor supply n, savings

s, the TFP A, labor productivity y/n, and search d . These comovements are qualitatively similar to the

patterns in the data, where consumption, labor supply, output, investment, labor productivity, shopping

time, and TFP are strongly positively correlated.

Consider now a shock to the discount factor β, i.e., a standard demand shock. A lower β will increase

c and lower s and c ′. However, due to the GHH preference assumption, this change has no effect on d

and n. It follows that a β shock generates negative comovement between consumption and savings and

zero correlation between consumption and the other variables (y , n, d , and z).

Next, consider another standard preference shock, the labor supply shock θn. A fall in the disutility

of work induces more labor supply. This makes it more attractive to search, which in turn increases

d and A. The resulting increase in output induces increases in c and s. Thus, a negative θn shock

will simultaneously increase labor supply n, output y , consumption c , savings s, search d , and TFP A.

However, it will decrease the aggregate labor productivity y/n. The reason is that the decreasing return to

labor supply associated with the decrease in n outweighs the increase in A stemming from the increase in

d . This result is guaranteed by the assumption of non-increasing return to scale, φ+α ≤ 1. We conclude

that θn can generate positive comovements in (n, y , c, s,A) but implies countercyclical labor productivity.

Moreover, note that endogenous search effort contributes to positive co-movements between labor supply

and TFP. Any exogenous shocks that increase the search effort d will increase both the measured TFP

and, in turn, the labor supply (since the return to working is higher).

Finally, consider the shock θc . Note that this shock can be replicated by a suitable adjustment of the

triplet (β, θd , θn). A positive shock to θc can therefore be interpreted as a combination of a proportional

decrease in θd and θn and a change in β. An increase in θc will therefore increase search d , labor supply n,

and output y . Thus, the consumption shock will imply that more output is squeezed out of the economy,

even when controlling for the labor input. However, the effect of θc on labor productivity, consumption,

and savings are ambiguous and depends on parameters. See Appendix B for details.

We conclude that the preference shocks θd , θn, and β can all induce an increase in current con-

sumption and can therefore be interpreted as different types of demand shocks. However, the shocks

differ in the comovements they induce across variables in the economy. In particular, the search shock θd
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causes dynamics reminiscent of a standard TFP shock in real business-cycle models which create positive

comovements between all variables.

2.1.1 A precursor of amplification

One insight from Proposition 2 is that the presence of endogenous search effort affects how the economy

responds to all shocks, including shocks other than θd . The reason why endogenous search effort influences

the propagation of for example a larger true productivity shock z or a larger willingness to work is that

these (non-search) shocks make it optimal to simultaneously increase search effort d in order to capture

the larger return to search effort. This in turn increases the measured TFP and output, see equations

(11)-(14). In this sense, the presence of search effort amplifies the effects of the non-search shocks. In

fact, the proposition shows that all shocks move output and search effort in the same qualitative direction.

This implies that all shocks, including technology shocks, cause search effort to be procyclical. We view

this as an attractive feature of our model in light of the fact that an empirical proxy measure for search

effort – shopping time – is strongly procyclical (cf. Figure 1). Since search determines market tightness,

this implies that market tightness is also procyclical, even conditional on the θd shock.7

To see this amplification effect, consider a slight rewriting of the expression for measured TFP in

equation (14),

Â = ẑ + X
1 + ν

ν︸ ︷︷ ︸
amplification of z

ẑ − Xα︸︷︷︸
ampl. of θn

θ̂n − X

(
1 + ν

ν
− α

)
︸ ︷︷ ︸

ampl. of θd

θ̂d + X
1 + ν

ν︸ ︷︷ ︸
ampl. of θc

θ̂c . (17)

where X ≡ ηφ
(
1+ν
ν (1 + η(1− φ))− (1 + η)α

)
≥ 0. Naturally, in the absence of endogenous search or

search frictions, i.e., with η = 0 or φ = 0, all the amplification terms disappear. In this case, the elasticity

EA,z of measured TFP to an increase in true productivity is unity and the corresponding elasticities to any

of the preference shocks are zero. In the presence of search frictions (η > 0 and φ > 0), the elasticity

EA,z becomes larger than unity, amplifying the propagation of the true TFP shock. This amplification

extends to labor supply. As explained above, a decrease in θn that increases n makes it optimal to also

increase search effort d . When everybody exerts more search effort, the TFP increases, inducing a further

bump in output.

We conclude that search effort amplifies the response of TFP, labor supply, and GDP to technology

shocks and preference shocks relative to a model without search effort. Absent variable search effort, the

only mechanism for generating movements in measured TFP is true productivity shocks. It follows that

the endogenous search effort will amplify the variance of measured TFP. Therefore, the search model will

7The mechanism in Michaillat and Saez (2015) is qualitatively different. There, all shocks except for the demand shock
cause negative correlation between market tightness and output. Therefore, their model will by construction assign a large
role to demand shocks.
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require a lower variance of true productivity shocks to generate a certain volatility of TFP. We will later

quantify these effects in the estimated model.

2.1.2 A precursor of identification

In the quantitative sections below we estimate versions of this model, simultaneously incorporating shocks

to both θd and z . This requires a discussion of identification. We pursue two different ways to identify

these processes.

Note first that when considering standard aggregate data on labor supply, output, consumption, and

savings, fluctuations in search effort are observationally equivalent to fluctuations in true productivity

z . To see this, note that a marginal increase in z has the same effect on the allocation (n, y , c, s) as

a decrease of size (1 + 1/η)/φ in θd . However, this equivalence does not extend to search effort d in

the sense that z and θd have very different impacts on d . This can be seen by comparing the loadings

on z and θd in equation (11) versus equations (12)-(14). This has implications for identification when

estimating the model: if we had direct observations of search effort, it would be straightforward to identify

θd and z using observations of (n, y , c , s) and d for the current period. This will be our first identification

strategy when we pursue a Bayesian estimation exercise in Section 5.1.

In the analysis above, we model the search shock as a preference shock θd that affects search effort.

However, one might expect product-market frictions to matter also though variations in the search process

itself, summarized by the search efficiency parameter µ. As it turns out, in our model a shock to search

efficiency has an equivalence with θd similar to the equivalence between θd and z . Namely, in equilibrium,

a shock to µ has the same effects on c , s, n, y , and A as that of θd (but different implications for search

effort d). It follows that up to observations of labor supply, output, consumption, and savings, a shock to

search disutility θd could be interpreted as a shock to search efficiency. This observation has implications

for how to interpret the shock θd in the quantitative analysis below. In particular, the θd shock captures

broader aspects of the product market frictions than just the disutility of search effort. This insight

suggests that it would be useful to also estimate the model without using direct observations on d . We

therefore lay out an alternative identification strategy that does not rely on observing d . The crux is to

make additional assumptions on the time-series properties of θd and z . In particular, we assume that

ln θd and ln z follow independent AR(1) processes with persistence ρd and ρz , respectively. Since current

consumption c and savings s react to changes in next-period output y ′ through the Euler equation, the

magnitude of these changes identify z and θd , provided that ρz > ρd . This will constitute our second

identification strategy in Section 5.1.
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3 The stochastic growth model version of the economy

We embed the matching frictions in product markets into an otherwise standard growth model suitable

for quantitative business cycle analysis. There are two sectors, one for consumption goods and one for

investment goods. Both sectors have matching frictions. Production uses capital and labor as inputs.

We start by describing technology and preferences. We then analyze the problems faced by households

and firms, and study price determination in the presence of the search friction.

3.1 Technology and Markets

There is a unit measure of firms in the economy, measure Tc of consumption firms and Ti of investment

firms, Tc + Ti = 1. Each firm resides in a location, equivalent to a supplier in Section 2. Consumption

firms have a technology for transforming capital k and labor n into the consumption good via a standard

production function zf (k, n), where f is differentiable and strictly concave. Investment firms are subject

to an additional aggregate investment shock zI . Their production function is zI zf (k, n). For convenience

we index the shocks by subscripts c and i , respectively: zc ≡ z and zi ≡ z zI

Both consumption and investment goods are subject to search frictions with competitive search proto-

cols. The matching technology for shoppers and firms is given by equation (6). The aggregate state vector

is Λ ≡ (θ,Z ,K ), comprising a vector of preference shocks θ, a vector of technology shocks Z = (zc , zi ),

and a vector of capital stocks K = (Kc ,Ki ) installed in consumption and investment firms, respectively.

To simplify the description of equilibrium we formulate the problem so that all dynamic choices are made

by the household: it chooses how much capital to accumulate of each type.

3.2 Households

Households have GHH preferences over (c, d , n) as in equation (10), where d = dc + di . A household

owns kc and ki units of capital installed in consumption- and investment-firms, respectively. They also

receive the net profits from the firm as dividends. The household’s state vector includes the aggregate

state Λ and individual capital holdings (kc , ki ).

Households take aggregate variables as given, including prices, market tightness, and quantity given

by the triplets (pc , qc ,Fc) and (pi , qi ,Fi ) in the active consumption-good and investment-good market,

respectively, the rental rates on capital invested in consumption- and investment-producing firms, Rc

and Ri , respectively, aggregate dividends π, the wage W , and the laws of motion of aggregate capital

K ′
c = Gc(Λ) and K ′

i = Gi (Λ). These aggregate equilibrium objects are functions of the state vector Λ.

We denote by V (Λ, kc , ki ) the value of a representative household and by V̂ c
(
Λ, kc , ki , p̂c , q̂c , F̂c

)
the value that it would obtain if it went shopping in a (p̂c , q̂c , F̂c) market for the consumption good and

13



V̂ i
(
Λ, kc , ki , p̂i , q̂i , F̂i

)
the value for shopping in a (p̂i , q̂i , F̂i ) market for the investment good. Specifically,

households in market (p̂, q̂, F̂ ) = {(p̂c , q̂c , F̂c), (p̂i , q̂i , F̂i )} choose consumption c , shopping efforts dc and

di , labor supply n, and future capital k ′c and k ′i so as to maximize

V̂
(
Λ, kc , ki , p̂, q̂, F̂

)
= max

dc ,di ,n,c,k ′
c ,k

′
i

u (c , dc + di , n; θ) + β E
{
V
(
Λ′, k ′c , k

′
i

) ∣∣ Λ}, (18)

subject to the shopping constraints, the budget constraint, the capital accumulation, and the aggregate

laws of motion of capital,

c = dc Ψd ,c [q̂c ] F̂c , (19)

i = di Ψd ,i [q̂i ] F̂i , (20)

p̂c c + p̂i i = π + kc Rc(Λ) + ki Ri (Λ) + n W (Λ), (21)

i = k ′c + k ′i − (1− δ) (ki + kc) , (22)

K ′
c = Gc(Λ), K ′

i = Gi (Λ). (23)

The value function V is determined by the best market;

V (Λ, kc , ki ) = max(p,q,F )∈Φ V̂ (Λ, kc , ki , p, q,F ), where (p, q,F ) = {(pc , qc ,Fc), (pi , qi ,Fi )} and Φ is the

set of available markets.

3.3 Firms

Representative firms rent capital and hire labor in spot markets. Given the state of the economy Λ, a firm

in sector j ∈ {c , i} makes two choices: how much labor and sector-specific capital to rent for producing

output, and what market bundle (pj , qj ,Fj) to offer.8 The problem for the firm is

πj(Λ) = max
k,n,p̂j ,q̂j ,F̂j

p̂j F̂j ΨT ,j (q̂j) − W (Λ) n − Rj (Λ) k, (24)

subject to V̂
(
Λ,K , p−j , q−j ,F−j , p̂j , q̂j , F̂j

)
≥ V (Λ,K ) ,

zj f (k , n) ≥ F̂j .

The firm’s problem (24) is static in the sense that current decisions do not influence the future value of

the firm, and future variables do not matter for the firm’s current problem. This determines the dividends

πj , the factor demands nfj and k fj , and the triplet (pj , qj ,Fj), all expressed as functions of Λ.

8We abstract from firms’ effort to overcome the search friction. We focus on one-sided search effort by the consumers
because this search effort is not measured in NIPA and therefore contribute to mismeasurement of aggregate TFP. Incorpo-
rating firms’ search effort to our model would not contribute to this mismeasurement because firms’ efforts to overcome the
matching frictions require inputs that are measured in NIPA. Therefore, the contribution of this effort to output is already
taken into account.
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3.4 Equilibrium

The competitive search equilibrium of the production economy consists of value functions and decision

rules for the households {V , V̂ , c , dc , di , n, k
′
c , k

′
i }, all expressed as functions of the individual state (Λ, k),

and for the firm, {nfc , nfi , k fc , k fi }, and a set of aggregate allocations {C ,Dc ,Di , I ,N,Nc ,Ni ,K
′
c ,K

′
i },

prices {W ,Rc ,Ri , pc , pi}, market tightness qc , qi , production capacity Fc , Fi , dividends π, and profits

πi ,πc , where all aggregate variables are expressed as functions of Λ, such that

1. The consumption good is the numéraire, pc = 1.

2. The decision rules c (Λ, kc , ki ) , d (Λ, kc , ki ) , n (Λ, kc , ki ) , k
′
c (Λ, kc , ki ) , k

′
i (Λ, kc , ki ), and the asso-

ciated value functions V̂ (Λ, kc , ki , p, q,F ) and V (Λ, kc , ki ) solve the household problem (18-23),

taking as given prices {W ,Rc ,Ri} and dividend income π. Moreover,

V (Λ,Kc ,Ki ) = V̂ (Λ,Kc ,Ki , 1, qc(Λ),Fc(Λ), pi (Λ), qi (Λ),Fi (Λ)).

3. The triplet (pj(Λ), qj(Λ), Fj(Λ)), factor demands nfj (Λ) and k fj (Λ), and profit πj(Λ) solve the

problem (24) of producers in sector j ∈ {c, i}, taking as given {W ,Rj ,V , V̂ }, where Fj (Λ) =

zj f (k
f
j (Λ), n

f
j (Λ)).

4. Individual decision rules are consistent with aggregates Tck
f
c (Λ) = Kc , Tik

f
i (Λ) = Ki , C (Λ) =

c (Λ,K ), Dc (Λ) = dc (Λ,K ), Di (Λ) = di (Λ,K ), N (Λ) = n (Λ,K ), Tcn
f
c (Λ) = Nc(Λ), and

Tin
f
i (Λ) = Ni (Λ).

5. Market clearing conditions are satisfied,

C (Λ) = Tc ΨT ,c(qc(Λ)) Fc (Λ) , qc(Λ) = Dc(Λ)/Tc ,

I (Λ) = Ti ΨT ,i (qi (Λ)) Fi (Λ) , qi (Λ) = Di (Λ)/Ti ,

I (Λ) = Gc (Λ) + Gi (Λ)− (1− δ) (Kc + Ki ) ,

N (Λ) = Ni (Λ) + Nc(Λ), π(Λ) = Tiπi (Λ) + Tcπc(Λ).

6. Aggregate laws of motion of capital are consistent with individual behavior, K ′
c = Gc (Λ) = k ′c (Λ,K )

and K ′
i = Gi (Λ) = k ′i (Λ,K ).

As we show in Appendix C, the welfare theorems apply so the competitive equilibrium is efficient. It

is therefore convenient to solve for the equilibrium using a standard social planner approach where the

planner faces the same search friction in the consumption and investment markets. Given an aggregate
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state variable Λ, the social planner’s problem is

W (Λ) = max
Dc ,Di ,Nc ,Ni ,K ′

c ,K
′
i

{
u

(
Dc Ψd ,c [Dc ] zc f

(
Kc

Tc
,
Nc

Tc

)
,Dc + Di ,Nc + Ni , θ

)
+ β E

{
W
(
Λ′) ∣∣ Λ}}

(25)

subject to Di Ψd ,i [Di ]zi f

(
Ki

Ti
,
Ni

Ti

)
= K ′

c + K ′
i − (1− δ) (Kc + Ki ) and Λ′ =

(
θ′,Z ′,K ′

c ,K
′
i

)
,

We define K f
j ≡ Kj/Tj and N f

j ≡ Nj/Tj for j ∈ {c , i}. The first-order conditions yield four optimality

conditions (see Appendix C for derivations). The first is an intra-temporal first-order condition equating

the marginal cost and the marginal gain of consumption search. Equation (26) equates the marginal rate

of substitution between search and consumption to the marginal rate of transformation, i.e., the marginal

increase in aggregate consumption from searching slightly harder,

−
∂u
∂D
∂u
∂C

=
∂M [Dc ,Tc ]

∂Dc
zc f

(
K f
c ,N

f
c

)
(26)

This corresponds to the optimality condition (5) in the endowment economy with the only difference that

capacity, zc f
(
K f
c ,N

f
c

)
, is now endogenous. The equivalent equilibrium condition for investment goods is

− ∂u
∂D /

∂u
∂C = ∂M[Di ,Ti ]

∂Di
pizi f

(
K f
i ,N

f
i

)
, where pi is the implied relative price of investment goods (in terms

of found consumption goods)., Given the equilibrium allocations it is straightforward to back out the pi

that obtains in a decentralized competitive equilibrium,

pi =
ΨT ,c(Dc)

ΨT ,i (Di )

zc∂f
(
K f
c ,N

f
c

)
/∂N f

c

zi∂f
(
K f
i ,N

f
i

)
/∂N f

i

. (27)

The investment price is declining in the investment technology shock zi since higher investment produc-

tivity increases investment production and lowers the relative value of investment goods. Similarly, pi is

increasing in relative tightness of the consumption market ΨT ,c(Dc)/ΨT ,i (Di ) and, hence, search effort

in consumption good. The reason is that higher Dc lowers the relative price of consumption.

The second optimality condition is a standard intra-temporal first-order condition for labor supply,

equating the marginal utility cost of working one additional hour to the marginal utility gain of the

increased consumption production due to the additional hours worked,

−
∂u
∂N
∂u
∂C

= ΨT ,c [Dc ] zc
∂f
(
K f
c ,N

f
c

)
∂N f

c

. (28)
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The third optimality condition equalizes the marginal gain of investing in each sector,

0 = E

{
∂u

∂C ′

(
Ψ′

T ,iz
′
i

∂f
(
K f ′
i ,N f ′

i

)
∂K f ′

i

−Ψ′
T ,cz

′
c

∂f
(
K f ′
c ,N f ′

c

)
∂K f ′

c

) ∣∣∣∣∣ Λ
}
. (29)

Finally, the planner program implies a standard Euler equation in terms of found goods,

pi
∂u

∂C
= β E

{
∂u

∂C ′ p
′
i

(
Ψ′

T ,iz
′
i

∂f
(
K f ′
i ,N f ′

i

)
∂K f ′

i

+ 1− δ

) ∣∣∣∣∣ Λ
}
. (30)

The left-hand side is the utility cost of producing one more unit of the investment good. The right-hand

side is the equivalent next-period utility gain of a marginal increase in K f ′
i taking into consideration future

matching frictions. Note that the Euler equation (30) is similar to the standard Euler equation but it

incorporates the probability of matching a customer in the marginal return of capital.

4 Mapping the Model to Data

We now choose functional forms for preferences and technology. We maintain the GHH formulation of

preferences as in equation (10). This rules out wealth effects in search efforts and ensures that the model

generates a procyclical search effort, in line with the empirical evidence on shopping time documented

by Petrosky-Nadeau et al. (2016). We first abstract from consumption shocks θc . We set the weight on

labor supply to χθn, where θn = 1 in steady state and the parameter χ determines average hours worked.

The remaining preference parameters are the elasticity of shopping effort with respect to variation in the

return to search η, the discount rate β, the inverse of the intertemporal elasticity of substitution, γ, and

the Frisch elasticity of labor supply ν.

Firms have decreasing returns to scale. This is a natural assumption in a model with frictions in the

matching between consumers and firms.9 The production function is Cobb-Douglas, f (k , n) = kαk nαn .

4.1 Calibration

We calibrate some parameters here and estimate the rest of the model in Section 5. As far as possible, our

calibration targets the steady state, with parameter values that are standard in business cycle research.

For the parameters specific to our search economy, we exploit cross-sectional data. Table 1 reports the

calibration targets and the parameters most closely associated with each target. The targets are defined

in yearly terms even though the model period is a quarter.

The first group of parameters are set exogenously: the intertemporal elasticity of substitution is 1 and

9Note that if production were constant return to scale in capital and labor, the search friction would become irrelevant
as one firm would produce all goods and all search would focus on finding the firm with available goods.
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Table 1: Calibration Targets, Implied Aggregates, and (Quarterly) Parameter Values

Targets Value Parameter Calibration

First Group: Parameters Set Exogenously

Risk aversion 1 γ 1
Real interest rate 4% β 0.997
Average growth rate 3% ḡ 0.74%
Frisch elasticity 0.72 ν 0.72

Second Group: Normalizations

Steady-state output 1 E (z) 1.22
Relative price of investment 1 E (zi ) 1.00
Fraction of time spent working 30% χ 7.99
Capacity utilization 81% µ 0.86
Consumption share of output 0.80 Tc 0.80

Third Group: Standard Targets

Investment share of output 0.20 δ 1.08%
Physical capital to output ratio 2.75 αk 0.23
Labor share of output 0.67 αn 0.45

Fourth Group: Targets Specific to This Economy

Ratio cross-sectional st. dev. of goods prices
to st.dev. of cons. expenditure 28.6% φ 0.32
Shopping time expenditure elasticity 7.5% η 0.20
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the rate of return is 4 percent. We set the Frisch elasticity to 0.72 based on Heathcote et al. (2010),

who take into account the response of hours worked for both men and women in a model with joint labor

supply decisions.

The second group of parameters are normalizations that are immaterial to the cyclical behavior of the

economy. We target values that have a direct interpretation. The average adult works about 1600 hours

per year, so 30% of available time is spent working. Moreover, the share of potential goods that are found

is set equal to the average capital utilization in the Capacity Utilization series published by the Board

of Governors (81%). In the model this is captured by the search efficiency parameter µ. The measure

of firms in each sector, Tc and Ti , is calibrated to match the share of consumption and investment,

respectively.

The third group of parameters are determined simultaneously through specified steady-state targets.

The physical capital to output ratio, the investment share of output, and the labor share allow us to

identify the depreciation rate and the capital share and labor shares αk and αn, respectively. In particular,

the quarterly capital depreciation rate δ is set to 1.08%, pinned down by the annual investment-output

ratio of 20% and annual growth rate of 3%. A capital-output ratio of 2.75 then generates a capital share

parameter αk = 0.23. Finally, note that setting αn = 0.67 ∗ (1 − φ) ensures that the labor share target

is met, given a value of φ. See Appendix D for derivations of the expressions for αk and αn.

4.1.1 Identifying the Search Friction with Cross-sectional Data

The fourth group of calibration targets concerns the magnitude of the search friction and how willing

households are to vary their search effort. Kaplan and Menzio (2016) argue that the search friction

for goods is manifest in the fact that there is a cross-sectional dispersion of prices for identical goods.

The price dispersion is therefore a useful moment to identify the search-related parameters of our model.

Moreover, search effort for households with different levels of expenditure is informative about the elasticity

of search effort.

The representative-agent version of our economy does not feature any dispersion in neither prices

nor search effort. However, a version of our model with cross-sectional heterogeneity in consumption

expenditure generates such price dispersion in a very a natural way. In particular, if expenditure were

unevenly distributed across households, our search model would induce endogenous dispersion in prices

and search effort. This insight allows us to use US micro data on shopping time, consumption expenditure,

and prices to discipline the parameters specific to our shopping theory, namely the weight of shopping in

the matching function, φ, and the elasticity of shopping effort η.

To study the cross-sectional implications of our search model, consider a version of our economy

where there are J types of households. The types differ in their consumption expenditure, denoted yj .
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The search equilibrium can be characterized as follows (proof in Appendix D.1.)

Proposition 3. The competitive equilibrium in the stochastic growth model with cross-sectional hetero-

geneity is a vector of prices and allocations where all firms offer the same capacity F and the posted price

of the consumption good in the market targeting type j households is

pj =
C 1−φ

F
· (yj)φ (Dj)

−φ , (31)

where C is aggregate real consumption. The real consumption of type j households is cj = Dφ
j (yj/C )1−φ F .

The measure of firms selling to type j households is equal to the households’ expenditure share, Tj =

sjyj/C, where sj denotes the measure of type j households. Finally, the search effort is given by the

solution to the first-order condition

−∂u
∂d

= φ (Dj)
φ−1 (yj)

1−φ ∂u

∂c
F . (32)

The equilibrium price relationship in equation (31) has the attractive feature that it is consistent with

cross-sectional micro evidence on prices, search effort, and expenditure. First, prices are falling in search

effort Dj . Sorensen (2000) documents that more search effort is associated with lower prices in retail

markets for prescription drugs. Second, prices are increasing in expenditure yj . Using product-level data

from the Kielts-Nielsen Consumer Panel, Aguiar and Hurst (2007) and Nord (2022) document that rich

households pay more for goods than poor households.

Evaluating the first-order condition (32) using the GHH preferences implies that the shopping effort

for type j households is given by

ln(Dj) =
1− φ

1− φ+ 1/η
ln(yj) +

1

1− φ+ 1/η
ln

(
φF

θn
θd

)
. (33)

Substitute this expression for Dj in equation (31) in log form and take the standard deviation on each

side of the equation. This yields an expression linking the search parameters to empirical moments:

m ≡
std (log (pj))

std (log (yj))
=

φ

η(1− φ) + 1
. (34)

Thus, our first source of identification for the parameters φ and η is through the dispersion of prices for

identical goods, relative to the dispersion of expenditures across households. Note that this calibration

target does not require that we have direct measurements of search effort. Kaplan and Menzio (2016)

estimate that the cross-sectional standard deviation of household price indexes is 15% when using data

from the Kielts-Nielsen Consumer Panel Data and standardized bar codes to identify goods. With a

standard deviation of log consumption expenditures on services and non-durables of 0.524 (cf. Heathcote

20



et al. (2020)), the ratio m takes the value m = 0.286.

For the second source of identification the parameters φ and η we rely on direct measurements of

search effort Dj . Take the difference of logs in equation (33) to obtain an expression for how search effort

varies across households with different spending levels;

∆ log (Dj) =
η (1− φ)

η (1− φ) + 1
∆ log (yj) . (35)

We assume that the time spent shopping is a good stand-in for actual search effort.10 Note first that

search effort in equation (35) is positively related to expenditure. This property, which is due to the

lack on income effects under GHH preferences, is consistent with the empirical evidence on shopping

time in the cross section from ATUS: Petrosky-Nadeau et al. (2016) documents that shopping time is

increasing in household income when controlling for observable household characteristics. For example,

households with income between $100,000 and $150,000 spend 3.6 minutes more on shopping per day

than households with income between $25,000 and $50,000 (controlling for households’ demographic

characteristics, labor force status, and state and time fixed effects). With an average of 42 minutes

shopping per day, this difference amounts to 3.6/42 = 8.6% of average shopping time. The expenditures

of the $100,000-$150,000 group is approximately twice as large as that of the $25,000-$50,000 group.

This implies an elasticity ∆ log (Dj) /∆ log (yj) ≈ 0.12. Equations (34)-(35) then imply φ = 0.32 and

η = 0.20.

5 Quantitative results

The main purpose of our quantitative exercise is to assess the role of search-related demand shocks in

accounting for aggregate fluctuations in the U.S. (Section 5.1). To this end we estimate the model with

Bayesian methods using two different sets of data—one with a narrow view of search effort utilizing data

on shopping time as a direct measure of search effort and one with a broader view of search effort where

we do not target shopping time data.

5.1 Estimating the model with U.S. data

We estimate the model using U.S. aggregate data. We consider four types of shocks, two preference

shocks and two technology shocks. The preference shocks are the disutility to shopping θdt and the

disutility to work θnt . We explore alternative preference shock specifications in Section 5.1.3. We assume

that the neutral technology shock is a shock to the trend of z , whose growth rate follows an AR(1)

10We acknowledge that actual search effort is a broader concept than just the time spent shopping. Since the parameters
φ and η are specific to our search economy and crucial for our quantitative exercise, we consider also alternative parameter-
izations where we estimate φ as part of the Bayesian estimation, without relying on direct observations of search effort and
shopping time data.
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process. Let gt = zt/zt−1 be the growth rate of the technology,

log gt = (1− ρg ) log ḡ + ρg log gt−1 + σgεgt , εgt ∼ N(0, 1).

There is also a standard investment-specific technology shock zI , implying that TFP for consumption and

investment (zc = z and zi = z zI ) are correlated. The investment-specific shock zI follows an AR(1)

process with persistence ρi and standard deviation of innovation σi . We assume that all four shocks

follow AR(1) processes with respective persistence {ρd , ρn, ρg , ρi}. The innovations to the shocks are

independent and normally distributed with standard deviations denoted by {σd ,σn,σg ,σi}. To ensure

stationarity of the problem when the economy is growing and preferences are GHH, we do a standard

adjustment of the preference weights, making them proportional to zt−1. Preferences are then,

ut(ct , nt , dt ; θdt , θnt) =
1

1− γ

(
ct − θdtzt−1

d1+1/η

1 + 1/η
− θntzt−1 χ

n1+
1
ν

1 + 1
ν

)1−γ

.

Summing up, we assume that aggregate TFP is a random walk while the preference shocks and zI

are stationary. We estimate jointly the autocorrelations {ρd , ρn, ρg , ρi} and the standard deviation of

innovations {σd , σn, σg , σi} using Bayesian methods. In line with standard practice in the business-cycle

literature, we estimate the model in growth rates.

We use four data series in the estimation. Three of these—common for all estimations—are output

growth, investment growth, and labor productivity growth. These are based on real data from the National

Income and Product Accounts at a quarterly frequency. Since our model is a closed economy without a

government sector, we measure investment as private investment and construct output from the sum of

private consumption and private investment. Labor productivity is the ratio of our measure of output to

total working hours.

For the fourth data series, recall from Section 2.1.2 that the model can be identified in two ways

– either by targeting direct observations of search efforts or by making assumptions about time-series

properties of shocks to z and θd .

Our first estimated benchmark model pursues the direct-observation identification scheme, relying

on ATUS time-use data on shopping time as a direct measure of search effort. These data provide

annual survey data on shopping time from 2003 to 2019. We measure shopping time as the average

time spent shopping for goods, professional and personal care services, and household services, plus the

travel time associated with this shopping. Appendix E describes the shopping time data and documents

that alternative assumptions about how to measure ATUS shopping time yield very similar dynamics (cf.

Appendix Figure 2). In particular, we show that our shopping time measure is robust to excluding travel

time and, following the measurement proposed by Petrosky-Nadeau et al. (2016), excluding time used
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for shopping for gas and groceries. To handle the different frequency on annual shopping time data and

quarterly NIPA data, we apply a mixed frequency approach (see Schorfheide et al. (2018) for details).

For the second estimated benchmark model we drop shopping time as an empirical target. This

is motivated by two concerns with using shopping time as a proxy for d . First, true search effort for

goods is broader than simply the time used shopping. Second, our theory of search frictions encompasses

shocks and fluctuations beyond what is captured by search effort. Recall that in the tractable model in

Section 2, shocks to θd are equivalent to shocks to match efficiency µ. This property extends to the

production economy. θd should therefore be expected to capture also variations in match efficiency. To

allow such broader interpretation of search shocks and capture aspects of the search friction and search

effort beyond what is manifested in shopping time, we consider an alternative estimation procedure where

we drop shopping time as a direct measure of search and replace this series with the quarterly series on

the quality-adjusted price of investment goods from Ŕıos-Rull et al. (2012), updated to 2019Q4.11 We

choose this series because it is closely tied to the investment-specific technology shock zI . We then rely

on the time-series identification of shocks to θd .

5.1.1 Bayesian estimation with data on shopping time

Table 2 lays out the estimation of the benchmark model. The upper panel shows the priors and posteriors

for all shock parameters. We assume that autocorrelations follow a Beta distribution and that standard

deviation of innovations follow an inverse Gamma distribution. We assume an initial prior of equal

autocorrelation and equal volatility for the shocks zI , θd , and θn and let the estimation tell us which one

is more persistent. The estimated autocorrelation of θn is close to unity while θd is less persistent.

The main exercise of our estimated model is to quantify the role of search-related demand shocks

with the use of a standard variance decomposition, reported in the lower panel of Table 2. The preference

shock to the disutility of search, θd , is a major driver of GDP and TFP, accounting for 39% of the

variance of GDP and TFP. Moreover, search shocks also matter for consumption, accounting for 29% of

the variance of C . The shock to θn is the main driver of labor dynamics but it accounts for just 12% of

the fluctuations in GDP.

Note that while the previous business cycle literature has often treated fluctuations in the relative

investment price Pi as reflecting investment-specific technology shocks (cf. Greenwood et al. (1997)), we

find that θd accounts for 20% of the variance in the relative price of investment goods. Finally, recall the

result from Section 2.1.1 that the contribution of search to aggregate fluctuations is not limited to the

direct effect through θd but include also the amplification of the non-search shocks. We defer quantifying

this contribution to Section 5.2 below.

11Ŕıos-Rull et al. (2012) construct this investment-price series as a Tornquist aggregate of the price index of quality-adjusted
equipment investment and the price index of structures investment.
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Table 2: Bayesian Estimation: Benchmark Model, Mixed Frequency with
Shopping Data

Priors and Posteriors for the Shock Parameters likelihood = 603.7

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.90 0.05 0.866 [0.789, 0.942]

ρg Beta 0.10 0.05 0.211 [0.064, 0.354]

ρi Beta 0.90 0.05 0.881 [0.800, 0.995]

ρn Beta 0.90 0.05 0.969 [0.947, 0.992]

σd Inv Gamma 0.01 Inf 0.097 [0.081, 0.114]

σg Inv Gamma 0.01 Inf 0.008 [0.006, 0.009]

σi Inv Gamma 0.01 Inf 0.012 [0.009, 0.014]

σn Inv Gamma 0.01 Inf 0.016 [0.014, 0.018]

Variance Decomp
θd g zI θn

Y 38.60 44.21 5.47 11.71
Y /N 23.40 40.67 6.92 29.01
Investment 21.32 11.33 62.12 5.23
Pi 19.66 6.14 70.30 3.89
TFP 39.09 48.43 8.73 3.75
Consumption 28.50 41.19 20.82 9.49
Labor 10.34 23.34 0.57 65.75
Shopping 88.86 1.17 9.69 0.28

The estimation targets the data series of quarterly
GDP growth, labor productivity growth, investment
growth, and annual shopping time. U.S. data, 2003
to 2019.
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5.1.2 Bayesian estimation without shopping-time data

Table 3 reports the estimation results for the benchmark model when replacing the annual shopping data

series with the quarterly relative price of investment series. The four quarterly data series used in this

estimation are GDP, labor productivity, investment, and relative price of investment from 1967 to 2019,

i.e., for the longest possible time span. Note that the assumption that z is a random walk guarantees

that TFP is more persistent than preference shocks. This in turn ensures identification of θd and z .

Table 3: Bayesian Estimation: Benchmark Model with Pi , no shopping data

Priors and Posteriors for the Shock Parameters likelihood = 2405.0

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.900 0.05 0.9269 [0.9139, 0.9379]

ρg Beta 0.100 0.05 0.6026 [0.5973, 0.6066]

ρi Beta 0.900 0.05 0.9542 [0.9473, 0.9624]

ρn Beta 0.900 0.05 0.9985 [0.9973, 0.9997]

σd Inv Gamma 0.010 Inf 0.2399 [0.2204, 0.2578]

σg Inv Gamma 0.010 Inf 0.0107 [0.0098, 0.0116]

σi Inv Gamma 0.010 Inf 0.0143 [0.0131, 0.0154]

σn Inv Gamma 0.010 Inf 0.0167 [0.0153, 0.0179]

Variance Decomp
θd g zI θn

Y 65.99 28.18 2.17 3.66
Y /N 41.84 45.83 3.03 9.31
Investment 54.91 9.02 34.56 1.51
Pi 47.62 0.09 51.63 0.66
TFP 57.92 38.03 3.02 1.02
Consumption 53.66 35.10 7.49 3.74
Labor 36.69 19.70 0.39 43.22
Shopping 96.74 1.33 1.92 0.01

The estimation targets the data series of quarterly
GDP growth, labor productivity growth, investment
growth, and relative price of investment data, 1967
to 2019.

In this case, the preference shock to the disutility of search θd is the main driver of business cycles,

accounting for around 60% of the variance of GDP and TFP and more than half the variance of consump-

tion. For comparison, this is a larger contribution —for every variable—than that of the two technology

shocks z and zI combined.
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The Bayesian estimation procedure chooses shocks so as to maximize the probability of the observed

aggregate time series. We conclude that to match the data it is necessary to attribute a significant role

to θd . This holds true regardless of whether we assume that search effort is narrowly defined as shopping

time or whether we allow a broader notion of search effort.

5.1.3 Search shocks versus more traditional Keynesian demand shocks

The preference shock θd is a key innovation of our paper relative to the business-cycle literature. The

previous literature has emphasized more traditional “Keynesian” demand shocks as the source of demand

shocks. For example, Michaillat and Saez (2015) argue that discount-factor demand shocks are needed

to account for the aggregate data in a fixed-price model with product-market frictions. This begs the

question whether our θd shock could be replaced by more traditional demand shocks.

To address this question, we estimate a range of models with alternative preference shock structures

involving either a θd shock, a β discount factor shock, or a consumption weight shock θc (as in equation

10). All models include the labor shock θn and technology shocks {z , zI}. Moreover, all alternative models

have the same calibrated parameters and priors with the same standard deviation and autoregressive

parameters as the benchmark economies.

Table 4 reports the results. Consider first models targeting shopping time (rows 1-6). The log

likelihood falls sharply when we replace a shock to θd with shock to θc or β (compare rows 1 and 4 with

rows 2, 3, 5, and 6). The log Bayes factors suggests that there is decisive evidence against the models

replacing θd with a shock to θc or β (Kass and Raftery (1995)).

The reason why the β model performs so poorly is that a β shock does not affect the trade-off

between search effort and labor supply (see Proposition 2). The model therefore struggles with generating

fluctuations in shopping time separately from movements in labor supply. The reason why the θc model

has low likelihood is that the quantitative effects of θc and θn are very similar – both shocks induce

small effects on search effort d and large effects on labor supply n.12 To generate an increase in labor

productivity, this model requires a combination of a large increase in θc combined with a contractive

shock θn to counteract the large increase in n generated by θc . Since the Bayesian estimation assumes

that all shocks are i.i.d., the likelihood of the implied sequence of θc and θn shocks is low.

To illustrate the poor fit of the models without a θd shock, consider the volatility of aggregates at the

estimated parameter values. Models without a θd shock have a volatility of labor supply growth which is

an order of magnitude larger than in the data. Moreover, as we anticipated in Section 2, shocks to θc

generate negative correlation between output growth and labor productivity growth.

12The reason is that the search elasticity η is small compared to the Frisch elasticity ν. At the calibrated parameters,
shocks to θc and θn that would increase output by 1% would increase N by 1.7% and 2.1%, respectively. However, the
shocks would increase measured TFP by just 0.2% and 0.05%, respectively.
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Table 4: Robustness: alternative preference shocks

LML ∆LML std(θd) std(θn) std(θc) std(β) std(n̂) corr(ŷ , ŷ − n̂)

Use shopping time data 2003-2019

GHH preferences
(1) θd benchmark 603.7 -25.5 0.097 0.016 - - 1.05 0.51
(2) θc 487.8 -141.4 - 0.089 0.086 - 7.05 -0.92
(3) β 78.9 -550.3 - 0.090 - 0.024 7.26 0.86

Additively separable preferences
(4) θd 629.2 0 0.104 0.014 - - 0.84 0.60
(5) θc 470.9 -158.3 - 0.096 0.100 - 5.05 -0.83
(6) β 223.3 -405.9 - 0.081 - 0.027 7.68 0.34

Drop shopping time data, 1967-2019

GHH preferences
(7) θd benchmark 2405.0 -196.2 0.240 0.017 - - 1.34 0.80
(8) θc 2257.3 -343.9 - 0.058 0.017 - 5.16 -0.84
(9) β 2510.3 -90.9 - 0.017 - 0.001 1.07 0.32

Additively separable preferences
(10) θd 2601.2 0 0.141 0.018 - - 0.91 0.64
(11) θc 2513.0 -88.2 - 0.020 0.019 - 1.24 0.27
(12) β 2562.2 -39.0 - 0.017 - 0.001 1.06 0.35

U.S. data, 2003-2019 quarterly 0.65 0.57

The table documents the estimation results for alternative specifications of preference shocks. LML denotes the log
marginal likelihood and ∆LML denotes the log marginal likelihood differentials (or log Bayes factors). For each data set,
∆LML is calculated relative to the specification with the highest marginal likelihood. Rows (1) and (7) refer to the two
benchmark economies with a θd shock (cf. Tables 2-3).
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Consider now models that do not target shopping time data (rows 7-12). In this case, the case for our

benchmark GHH model is more mixed as the models with additively separable preferences are significantly

better than the benchmark GHH model. However, the main point holds true even for this data set: the

model in row 10, with a θd shock and additively separable preferences, clearly outperforms all models

with shocks to β or θc .
13

We conclude that models containing our benchmark preference shock θd offer a substantially better

fit than alternative models replacing θd with traditional demand shocks in the form of preference shock

to β or θc .

5.1.4 Further robustness analysis

Table 5 documents a range of sensitivity analyses with the aim of establishing that the quantitative

importance of the θd shocks is robust to a alternative specifications and data. The first six rows document

robustness analyses for models targeting aggregate shopping time data. The last four rows refer to

estimations that do not target shopping time data. The rows (1) and (6) restate the results from the

benchmark model (cf. Tables 2-3).

The search-specific parameters φ and η are important for our quantitative exercise. Rows (2) and

(3) of Table 5 consider estimations where we drop the calibration target based on cross-sectional data

on search effort, i.e., the requirement that the model capture the cross-sectional variation in shopping

time across households (equation 35). We maintain, however, the price dispersion target of equation

(34). Row (2) considers a calibration where we simply set the search elasticity η equal to the labor supply

elasticity ν. The results point to a slightly larger role for θd shocks in accounting for fluctuations in GDP

and TFP. Relative to the benchmark calibration (row 1), the main difference is that the volatility of θd is

substantially smaller when η is large.

The third row considers an estimation where we impose the price dispersion target and estimate η

as part of the Bayesian estimation. The resulting elasticities φ and η are slightly smaller than in the

benchmark, and the contribution of θd to output and TFP is approximately unchanged.14

The fourth row assumes that there is no search friction for investment goods and households search

only for consumption goods. This economy has a somewhat smaller role for θd , accounting for around

one quarter of the variance of GDP and TFP. Unsurprisingly, preference shocks to search effort matter

13The model with additively separable preferences outperforms the benchmark GHH model even when we target shopping
time, see rows 1 versus 4. We nevertheless prefer the GHH model because of its analytical tractability (see Section 2) and
because this model is able to match cross-sectional data for households’ shopping time (see Section 4.1.1).

14We could in principle ignore all cross-sectional evidence on prices and shopping time and estimate both the elasticity
parameters (φ, η) as part of the Bayesian estimation. However, we find that the parameter φ is not well identified by the
aggregate data. In particular, the resulting estimates of φ vary widely across data sets, ranging from 0.09 to 0.44 depending
on whether we include or omit shopping time data. This would involve large differences in the scope of the search friction
relative to the benchmark calibration, making the economies less comparable.
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Table 5: Further robustness analysis

φ η LML std(θd) Var Decomp Y Var Decomp TFP
θd g zI θd g zI

Use shopping time data 03-19, mixed frequency
(1) Benchmark: impose (34)-(35) 0.32 0.20 603.7 0.097 38.60 44.21 5.48 39.09 48.43 8.74
(2) Alternative: η = ν & (34) 0.41 0.72 588.2 0.034 40.09 47.30 3.86 42.17 48.73 6.38
(3) Impose only eq. (34) 0.31 0.10 604.9 0.213 42.32 41.42 5.07 43.15 45.09 8.15
(4) Search only for C & (34)-(35) 0.32 0.20 609.3 0.096 28.04 40.45 20.70 23.44 42.65 30.98
(5) Estimation in levels & (34)-(35) 0.32 0.20 594.4 0.120 33.44 57.51 5.68 33.28 57.21 8.45
(6) Separable pref. & (34)-(35) 0.32 0.20 629.2 0.104 41.28 26.54 24.84 45.76 43.08 8.99

Drop shopping time data, 1967-2019, quarterly, GHH(c,d,n)
(7) Benchmark: impose (34)-(35) 0.32 0.20 2405.0 0.240 65.99 28.18 2.17 57.92 38.03 3.02
(8) Alternative: η = ν & (34) 0.41 0.72 2349.1 0.084 64.91 31.51 1.19 58.96 38.66 1.72
(9) Impose only eq. (34) 0.30 0.07 2410.9 0.682 67.60 26.25 2.36 59.13 36.49 3.32

Drop shopping time data, 2003-2019 quarterly, GHH(c,d,n)
(10) Benchmark: impose (34)-(35) 0.32 0.20 767.7 0.207 69.86 25.90 1.84 62.04 34.66 2.62

The table documents the estimation results for under alternative calibrations and data choices. All estimations target the quarterly
U.S. data series of GDP growth, labor productivity growth, and investment growth. In addition, rows (1)-(6) target aggregate ATUS
shopping time, while rows (7)-(10) target the real price of investment goods. LML denotes the log marginal likelihood and The
benchmark model (rows 1 and 8) has GHH(c,d,n) preferences and uses the benchmark calibration in Table 1, imposing conditions
(34)-(35). Row (2) uses the alternative calibration in Table 1, assuming η = ν and imposing eq. (34). Row (3) imposes only eq. (34)
and estimates φ. Row (4) assumes there is a search friction only for consumption goods. Row (5) estimates the benchmark model in
levels (as opposed to growth rates), Row (6) assumes additively separable preferences. Rows (7)-(9) correspond to rows (1)-(3), using
investment price data instead of the series for shopping time. Row (10) is the same as row (7) but uses a shorter time sample.
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less when search frictions apply to a smaller share of the economy.

Row (5) considers an estimation of the model in levels as opposed to the estimation in growth rates in

the benchmark estimation. The parameter estimates are similar, but the variance decomposition reveals

a significantly larger importance for θd , accounting for two thirds of the variance of GDP and TFP.

Row (6) considers an estimation with preferences that are additively separable between C , D, and N.

The preferences are calibrated to be as similar as possible to the GHH preferences, with a risk aversion

of 1 for consumption and a Frisch elasticity of 0.72 for labor supply. When estimating this version of the

model we find a somewhat larger contribution of θd shocks for TFP and GDP.

The next set of robustness analysis (rows 7-10) reports the results when the Bayesian estimation

targets investment price data instead of shopping time. Rows (8)-(9) correspond to rows (2)-(3), i.e.,

when we drop one of the cross-sectional calibration targets. The main message is that when we do not

target aggregate shopping time data, shocks to θd account for a larger share of fluctuations – around

60% of the variance of GDP and TFP. This thanks to a somewhat larger estimated volatility of θd than

in the economies that target shopping time. For example, under the benchmark calibration (rows (1) and

(7)) the standard deviation increases from 9.7% to 24%. One should expect that the estimated variance

of θd would be larger once we allow this variable to capture all shocks to the search friction, including

sources of variation that affect search effort beyond what can be inferred from shopping time.

In rows (7)-(9) we use the longest possible time series (1967:1 to 2019:4). Row (10) restricts the time

frame to be the same as under the estimation targeting shopping time data (2003:1 to 2019:4). This

illustrates that it does not make much difference if we use the shorter data series versus going back to

1967.

All in all, we conclude that our main finding is robust: θd accounts for a large share of fluctuations

in GDP and TFP. This share ranges from 40% to 60%, depending on whether or not we target shopping

time in the estimation.

5.2 Amplification revisited

Our model differs from the existing literature in that shoppers affect productivity via their endogenous

search effort. So far our quantitative analysis has established that search-related shocks, which we model

as preference shocks θd , account for a significant share of fluctuations in output and TFP. However, search

effort has an impact on business cycles beyond the direct impact of search shocks. The reason is that,

as we demonstrated in Section 2.1.1, the presence of endogenous search effort amplifies the propagation

of other shocks to output and measured TFP. We now revisit this issue and quantify the amplification

of non-search shocks in the benchmark version of our estimated search model. To this end, we compare

the effects of shocks in our benchmark endogenous search model relative to a model where we shut down
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fluctuations in search effort (η = 0). This alternative “Fixed Search” economy has constant search effort

at a level equal to the steady-state search in the benchmark economy. All other parameters are as in the

benchmark economy.

As a first exercise we calculate the contemporaneous elasticity – i.e., the passthrough – of output

and TFP to shocks z , zI , θn, and θd with and without endogenous search effort. The upper panel of

Table 6 shows that search effort amplifies the passthrough of true technology shocks z by about 8% for

both TFP and output. The amplification of the investment-specific shock zI and the labor supply shock

θn is quantitatively smaller. A quantitatively small amplification of θn is in line with the findings of the

analytical model, see equation (17).15 The search shock θd has obviously no effect without endogenous

search.

Table 6: Search-Effort Amplification

Measure 1: Instantaneous Impact on TFP and GDP

TFP Output
Search Fixed Search Search Fixed Search

g 1.075 1.000 1.339 1.259
zI 0.207 0.203 0.233 0.237
θn -0.015 0 -0.254 -0.239
θd -0.059 0 -0.074 0

Measure 2: Variance from Each Shock Alone

Variance of TFP Variance of Output
Search Fixed Search % increase Search Fixed Search % increase

g 0.423 0.360 17.5 0.624 0.548 14.1
zI 0.063 0.063 0.0 0.078 0.078 0.0
θn 0.0004 0 – 0.160 0.144 11.1
θd 0.348 0 – 0.533 0 –
Total 0.828 0.420 97.1 1.416 0.774 83.0

The upper panel reports the contemporaneous elasticities of TFP and GDP to the shocks z ,
zI , θn, and θd in economies with endogenous search (η > 0) and with fixed search (η = 0),
respectively. The lower panel reports the variance of TFP and output attributable to each
shock in the benchmark economy (“Search”) and in and the fixed-search economy. The “%
increase” column reports how much the variance contribution of each shock is amplified
when going from constant search to endogenous search effort.

To put these results in perspective, we quantify how the search effort amplifies the variance of aggre-

gate fluctuations attributable to each shock on its own. The lower panel of Table 6 reports how much

the variance of GDP and TFP increases when going from a fixed-search economy to our benchmark

endogenous search economy. The main finding is that the variance of TFP and output attributable to

non-search shocks increases. For TFP the lion’s share of the effect comes through the amplification of the

15A log-linearization of our quantitative model implies the same expression for the elasticities of z and θn as in equation
(17), plus terms reflecting aggregate capital and the investment shock zI which Section 2 abstracts from. The analysis in
Section 2.1.1 is therefore informative about the amplification in our estimated model.
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productivity shock z (17.5% larger contribution), while for output both z and θn provide quantitatively

relevant amplification.

We conclude that search effort is a quantitatively important propagation mechanism of shocks. One

implication of this findings it that fluctuations in measured TFP will be larger than the fluctuations in

true productivity both because search-related shocks (θd) induce fluctuations in search effort and, hence,

in measured TFP, and because search effort interacts with non-search shocks in a way that influences

measured TFP. This amplifies the effect of true technology shocks.

6 Extensions: Variable capacity utilization and Storable Goods

We now provide two substantial extensions of our model, each of whom has the potential to mitigate our

mechanism.

6.1 Varying capacity utilization

In our model demand shocks induce endogenous change in search effort and, hence, a change in the share

of the production capacity that is realized as actual output. Since shopping effort is an unmeasured factor,

fluctuations in search influence the measured Solow residual, as illustrated in Section 2. This point is

related to the well known measurement concern that any mismeasurement of factor inputs will show up as

movements in the Solow residual. It is a common practice in DSGE models to allow for varying capacity

utilization, i.e., changes in the intensity of factors of production, which in turn induce movements in the

Solow residual (see for instance Basu (1996) and Francis and Ramey (2005)). This is often motivated as

a mechanism for how aggregate demand shocks pass through to aggregate productivity (cf. Corrado and

Mattey (1997)).

The purpose of this section is to demonstrate that the significant role our estimation attributes to

(shopping utility) preference shocks is robust to allowing for varying capacity utilization of capital and

shocks to this utilization. To this end we extend our benchmark model to allow for varying capacity

utilization of capital along the lines of Christiano et al. (2005). In particular, we assume that to utilize a

fraction h of pre-installed capital, households have to pay the variable cost ψ(h) given by

ψ(h) = ξ
h1+σa − 1

1 + σa
, (36)

where 1/σa captures the elasticity of depreciation of capital with respect to how intensively it is used.

Households can choose a separate capacity utilization for each capital stock, denoted hc and hx for

utilization of capital for consumption and investment sector, respectively. The budget constraint becomes

c + Pi i = π + (hckc) Rc + (hiki ) Ri + n W ,
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where the expression for investment i —the equivalent to equation (22)— now incorporates the additional

cost of using capital more intensively,

i = k ′c + k ′i − (1− δ − ψ(hc)) kc − (1− δ − ψ(hi )) ki .

We first estimate this version of model with the same shocks and data series as in the benchmark

model, but allowing the value for σa to be estimated. We assume that σa follows an inverse Gamma

distribution. Christiano et al. (2005) calibrate σa to be 0.1. We therefore use this value as the prior

for σa. Table 7 presents the estimated results. In line with the findings of Christiano et al. (2005) the

estimated value for σa implies a large elasticity.

Table 7: Bayesian Estimation: with Capacity Utilization on Capital

Priors and Posteriors for the Shock Parameters likelihood = 655.1

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.900 0.05 0.9571 [0.9293, 0.9851]

ρg Beta 0.900 0.05 0.8018 [0.7163, 0.8920]

ρi Beta 0.900 0.05 0.8550 [0.7684, 0.9449]

ρn Beta 0.900 0.05 0.9710 [0.9502, 0.9929]

σd Inv Gamma 0.010 Inf 0.0703 [0.0591, 0.0815]

σg Inv Gamma 0.010 Inf 0.0031 [0.0024, 0.0038]

σi Inv Gamma 0.010 Inf 0.0112 [0.0093, 0.0130]

σn Inv Gamma 0.010 Inf 0.0118 [0.0101, 0.0136]

σa Inv Gamma 0.100 Inf 1.4960 [0.4196, 2.7162]

Var Decomp
θd g zI θn

Y 44.62 28.62 11.60 15.16
Y /N 19.92 42.70 10.33 27.04
Investment 13.17 6.11 76.51 4.21
P i 11.33 1.51 83.72 3.44
TFP 36.98 44.28 14.78 3.96
Consumption 27.91 26.40 35.99 9.70
Labor 11.29 5.32 1.22 82.18
Capacity utilization 80.48 3.03 16.14 0.34

The estimation targets the data series of GDP, labor pro-
ductivity, investment, and shopping time. Quarterly U.S.
data, 2003:I to 2019:IV. The inverse of σa is the elasticity
of capital depreciation rate to capital usage.
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Capacity utilization on capital gives the model an additional channel for labor productivity and Solow

residual movements. This in turn generates smaller estimated fluctuations for the demand shock θd and

productivity shock z . The standard deviation of θd drops from 0.097 to 0.070 and the standard deviation

of g drops in half, from 0.76 percent to 0.31 percent. The variance decomposition, however, shows that

even when allowing for a standard mechanism of capital capacity utilization, our shopping mechanism

remains quantitatively important (cf. Table 7). In particular, the demand shock θd accounts for about 45

percent of GDP variability, about 37 percent of TFP variability and 28 percent of consumption variability

(versus 39, 39, and 29 percent, respectively, in the benchmark economy).

Table 8: Bayesian Estimation: with Capacity Utilization Shock

Priors and Posteriors for the Shock Parameters likelihood = 849.9

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.900 0.05 0.9343 [0.9101, 0.9590]

ρz Beta 0.900 0.05 0.8576 [0.8383, 0.8829]

ρi Beta 0.900 0.05 0.8919 [0.8536, 0.9256]

ρn Beta 0.900 0.05 0.9268 [0.9082, 0.9435]

ρh Beta 0.900 0.05 0.9489 [0.9279, 0.9744]

σd Inv Gamma 0.010 Inf 0.0732 [0.0612, 0.0847]

σz Inv Gamma 0.010 Inf 0.0031 [0.0024, 0.0037]

σi Inv Gamma 0.010 Inf 0.0114 [0.0096, 0.0132]

σn Inv Gamma 0.010 Inf 0.0124 [0.0105, 0.0142]

σh Inv Gamma 0.005 Inf 0.0097 [0.0075, 0.0118]

σa Inv Gamma 0.100 Inf 0.9400 [0.7665, 1.1106]

Var Decomp
θd g zI θn θh

Y 42.59 32.34 10.24 14.80 0.03
Y /N 17.68 48.81 8.65 24.85 0.01
Investment 14.11 9.55 70.36 4.94 1.04
Pi 13.01 1.38 78.89 4.60 2.12
TFP 33.73 50.13 12.44 3.69 0.00
Consumption 27.14 27.09 35.08 9.39 1.30
Labor 11.27 4.89 1.13 82.67 0.05
Capacity utilization 79.44 4.05 15.49 0.51 0.50

The estimation targets the data series of GDP, labor productivity,
investment, shopping time, and total capacity utilization. Quar-
terly U.S. data, 2003:I to 2019:IV. The inverse of σa is the elasticity
of capital depreciation to capital usage. ρh and σh are the auto-
correlation and standard deviation of innovation of the cost for
capacity utilization of capital.
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Ideally we would like to quantify the role of varying capacity utilization versus the varying shopping

effort. Fortunately, there exists aggregate measurements of capital capacity utilization, namely the quar-

terly series Total Capacity Utilization in Manufacturing from the Board of Governors. By incorporating

empirical data for both shopping time and capacity utilization explicitly in the estimation of the model,

we can undertake a horse-race comparison between the two mechanisms. Since we target an additional

data series we must introduce an additional shock. In a way parallel to the shock to the disutility of

shopping effort we introduce a shock θh to the cost of varying capacity utilization, affecting both capital

stocks. The cost of capacity utilization h then becomes

ψ(h, θh) = θh ξ
h1+σa − 1

1 + σa
, (37)

We assume that the shock θh follows an AR(1) process with an autocorrelation of ρh and a standard

deviation of innovation of σh. Table 8 provides the results. The estimation and variance decomposition

are similar to the previous estimation without the extra shock. In particular, the role of θd is unaffected

by the existence of the new shock in the capacity utilization model. Here, θd accounts for 43% of the

variance of output, 34% of the variation of TFP, and 27% of consumption volatility.

Consider now the quantitative role for the capacity utilization shock θh relative to the other shocks.

The lower panel in Table 8 shows that θd and shocks to technology account for the lion’s share of fluc-

tuations in output and TFP and are of approximately equal importance, while capital capacity utilization

shocks are quantitatively irrelevant for business cycles. In particular, θh accounts for less than 0.1% of

the fluctuations in TFP and output.

We conclude that our shopping effort mechanism remains important regardless of whether or not we

allow for varying capacity utilization and shocks to capacity utilization costs in the model. Moreover,

capital capacity utilization and shocks to such utilization play a quantitatively negligible role in accounting

for the aggregate variables in our model — orders of magnitude smaller than the contribution of the

shopping shock. This suggest that whereas variation in search effort is quantitatively relevant for the

propagation of US business cycles, varying intensity in the use of capital is less relevant.

6.2 Storable Goods

In our benchmark model newly produced consumption goods can either be found by a shopper (and

consumed instantly) or not found, in which case the goods are permanently lost. This property seems

like a good description of services, which are consumed the moment they are produced. However, for

many goods —especially for durables— producers have a third alternative: goods that are not instantly

found can be stored as inventories and offered for sale later. As it turns out, the ratio of inventories to

annual sales for total business (i.e., manufacturing, retail, and wholesale) is 11.5% (source: Bureau of

Labor Statistics (BLS)).
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The possibility to store goods could in principle change the mechanism for how shocks to shopping

utility propagates to the aggregate economy. To investigate this possibility, we extend our shopping

environment to model explicitly the distinction between services and consumer goods, allowing goods to

be stored as inventories for firms and as a stock of consumer goods for households. Investment goods

and services are modeled exactly as in the benchmark model in Section 3.

6.2.1 A Shopping Model with Storable Goods

We now extend the baseline model with intermediate goods and services, assuming that there are search

frictions in the markets for both goods and services. An unmatched service location produces zero output.

Goods, however, can be stored. Goods are produced in two stages. First, there is a manufacturing stage

where a physical object is produced using capital and labor. This object is added to the firm’s stock

of inventories and these goods become available in a location that may or may not be matched with a

shopper. If there is a match, a sale is produced that adds to output. If there is no match, the goods

become inventories that may in turn be traded across firms in a secondary frictionless market.16

Aggregate consumption C and investment I are produced with intermediate inputs of goods and

services according to CES aggregators for C and I ,

C =
[
ωc (Mc)

ζ−1
ζ + (1− ωc)(Sc)

ζ−1
ζ

] ζ
ζ−1

, I =
[
ωi (Mi )

ζ−1
ζ + (1− ωi )(Si )

ζ−1
ζ

] ζ
ζ−1

(38)

where ζ is the elasticity of substitution between goods and services and (ωc ,ωi ) is the share of goods in the

CES aggregators for consumption and investment. Moreover, (Mc ,Mi ) and (Sc ,Si ) are the intermediate

inputs of goods and services in the production of consumption and investment, respectively. Output is

the sum of consumption, investment, and the change in firms’ inventories. This procedure for measuring

output is consistent with the way GDP is measured in NIPA. The aggregate state of the economy is

Λ = (θ,X ,K ) where X = (Xc ,Xi ) are the inventories in goods producing firms for consumption and

investment, respectively, and K is a vector of the capital stocks, K = (Kmc ,Kmi ,Ksc ,Ksi ), with a

capital stock Kmc in the production of intermediate goods for consumption, Ksc capital in services for

consumption, Kmi capital in goods for investment, and Ksi capital in services for investment.

Markets are differentiated by what is traded, and by price, tightness, and quantities. There are

four different markets, indexed with a triplet (pι, qι,Fι) where pι is the price, qι = Dι/Tι is market

tightness, and Fι is the capacity. The market subscript ι = {mc , sc ,mi , si} denotes intermediate goods

for consumption, services for consumption, goods for investment, and services for investment. The price

of inventories are given by px and pxi in intermediate goods production for consumption and investment,

respectively. Each sector has a fixed measure of firms with Tmc + Tsc + Tmi + Tsi = 1.

16In a previous version of this paper we allowed also households to store consumption goods. This extension has only a
minor quantitative effect on the results.
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Households Households have preferences over consumption goods mc , services sc , hours worked n, and

total search effort, defined as the sum of search in each market, d = dmc + dsc + dmi + dsi . Current

utility is given by u(mc , sc , d , n; θ) where θ = (θd , θn) is the same vector of preference shocks as in the

benchmark model.

Each period, households start with an initial holding capital in each sector k = (kmc , ksc , kmi , ksi ).

Households choose consumption goods mc , services sc , shopping efforts (dmc , dsc , dmi , dsi ), hours worked

n, and investments in each sector (imc , isc , imi , isi ), taking as given the aggregate state Λ, the wage W ,

and rental returns R = (Rmc ,Rsc ,Rmi ,Rsi ), to maximize

V (Λ, k) = max u(mc , sc , d , n; θ) + β E{V (Λ′, k ′)},

subject to the budget constraint

mc pmc(Λ)+sc psc(Λ) +
∑

ι={mc,sc,mi ,si}

pι(Λ)iι ≤ π(Λ) + n w(Λ) +
∑

ι={mc,sc,mi ,si}

Rι(Λ)Kι,

the shopping constraints for goods and services, mc = dmc Ψd [qmc(Λ)] Fmc(Λ), sc = dsc Ψd [qsc(Λ)] Fsc(Λ),

mi = dmi Ψd [qmi (Λ)] Fmi (Λ), si = dsi Ψd [qsi (Λ)] Fsi (Λ), total investment, imc + isc + imi + isi = i ,

and capital accumulations for each sector ι = {mc , sc ,mi , si}, k ′ι = (1 − δ)kι + iι, and investment i is

assembled with mi and si using the CES aggregator (38).

Let the temporary value function V̂ ι(Λ, k, p̂ι, q̂ι, F̂ι) denote the utility attained by the household if

the market ι ∈ {mc , sc ,mi , si} is given by the triplets (p̂ι, q̂ι, F̂ι) as opposed to the equilibrium triplets

(pι(Λ), qι(Λ), Fι(Λ)).

Firms As in the benchmark model, each sector has a fixed measure of firms and a Cobb-Douglas

production function f . Firms in the services sector solve the same problem as in the benchmark model

(cf. equations (24)) with the participation constraints in the service sector given by V̂ ι(Λ,K , p̂ι, q̂ι, F̂ι) ≥
V (Λ,K ) for ι = {sc , si}.

Consider now the problem of a good producer for either consumption or investment, ι = {mc ,mi}.
Firms carry inventories xι from last period that depreciate at rate δx . Firms then choose inputs of labor nι

and capital kι for production and add the current production z f (kι, nι) to their net inventories (1−δx)xι.
This sum yields current capacity Fι. Firms offer the triplet (pι, qι,Fι) to customers. After the matching

process, firms choose how much extra investment of inventory to purchase or sell in the frictionless market

for inventories. The unmatched firms purchase ix ,u units of inventory and the matched firms purchase

ix ,m. This in turn gives the next period’s inventories x ′u and x ′m for the unmatched and matched firms,
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respectively,

x ′u = z f (nι, kι) + (1− δx)xι + ix ,u, (39)

x ′m = z f (nι, kι) + (1− δx)xι − Fι + ix ,m. (40)

To summarize, a producer in sector ι = {mc ,mi} chooses {nι, kι, pι, qι,Fι, ix ,u, ix ,m, x ′m, x ′u} to solve

the following recursive problem, where ΨT ,ι(qι) is the probability that the firm will be matched with a

shopper, Ω(Λ, xι) is the value of the firm, and Υ(Λ, Λ′) is the stochastic discount factor.

Ωι(Λ, xι) = max
nι,kι,ix ,m,ix ,u ,pι,qι,Fι

−W (Λ)nι − Rι(Λ)kι

+ΨT ,ι(qι)
{
pιFι − px(Λ)ix ,m + E

[
Υ(Λ, Λ′) Ωι(Λ

′, x ′m)|Λ
]}

+ (1 − ΨT ,ι(qι))
{
−pxι(Λ)ix ,u + E

[
Υ(Λ, Λ′) Ωι(Λ

′, x ′u)|Λ
]}

subject to the capacity constraint

Fι ≤ zf (nι, kι) + (1− δx)xι,

the dynamics of inventories for non-matched (39) and matched state (40), and the participation constraint

for shoppers V̂ι(Λ,K , p̂ι, q̂ι, F̂ι) ≥ V (Λ,K ). Average dividends are

πι(Λ) = ΨT ,ι(qι)pιFι −W (Λ)nι − Rι(Λ)kι −ΨT ,ι(qι)pxι(Λ)ix ,m − (1−ΨT ,ι(qι))pxι(Λ)ix ,u.

Finally, in Appendix F we show that firms with identical initial inventories choose the same inventory

holdings for the following period, i.e., x ′u(Λ, x) = x ′m(Λ, x).

Equilibrium Let the consumption good be the numéraire, so pmc = 1. The competitive equilibrium

consists of allocations {S , Mc , N, Dι, Iι, Nι, K
′
ι , X

′
c , X

′
i , x

′
c , x

′
i }, dividend and profits {π, πι}, values V

and Ω, prices {W ,Rι, pxc , pxi , Υ}, market tightness and capacity pι, qι,Fι such that

1. Households choose {Mc , S , Dι, Iι, N, π, K ′
ι , V } to solve their problem taking as given prices

{W ,Rι} and dividends π. The stochastic discount factor Υ satisfies Υ(Λ, Λ′) = βus(Λ
′)/us(Λ).

2. The allocation {pι, qι,Fι,Nι/Tι,Kι/Tι}, profit πι, inventory choices X ′
ι/Tι = x ′mι = x ′uι, ix ,u,ι, ix ,m,ι,

and value function Ωι for ι = {mc ,mi} solve the problem of producers in sector ι, taking as given

{Υ,W ,Rι, pxι}.

3. The allocation {pι, qι,Fι,Nι,Kι} and the profit πι solve the problem of the service producers, taking

as given {W ,Rι} for ι = {sc , si}.
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4. Market clearing conditions are satisfied

Mc = TmcΨT ,mc(qmc)Fmc Sc = TscΨT ,sc(qsc)zsc f (Nsc ,Ksc)

Mi = TmiΨT ,mi (qmi )Fmi Si = TscΨT ,si (qsi )zsi f (Nsi ,Ksi )

I = Imc + Isc + Imi + Isi

N = Nmc + Nsc + Nmi + Nsi π = Tmcπmc + Tscπsc + Tmiπmi + Tsiπsi

X ′
c = Tmc [1−ΨT ,mc(qmc)]Fmc X ′

i = Tmi [1−ΨT ,mi (qmi )]Fmi

Fmc = (1− δ)Xmc/Tmc + zmc f (Kmc/Tmc ,Nmc/Tmc)

Fmi = (1− δ)Xmi/Tmi + zmi f (Kmi/Tmi ,Nmi/Tmi ).

The equilibrium is optimal (we omit the proof since it is similar to the one in Section 3).

6.2.2 Calibration and Quantitative Analysis

We assume that consumption is a constant-elasticity-of-substitution (CES) composite of services and

consumption goods. Households’ preferences are otherwise similar to those in the benchmark model and

are given by

u(mc , sc , d , n) =
1

1− γ

{[
ωc(mc)

ζ−1
ζ + (1− ωc)(sc)

ζ−1
ζ

] ζ
ζ−1 − (d)1+1/η

1 + 1/η
− χ

n1+1/ν

1 + 1/ν

}1−γ

,

where ωc is the share of storable consumption goods and ζ is the elasticity of substitution between services

and the storable good.

Most parameters are calibrated using the same moments as in the benchmark. The parameter values

and targets are summarized in Table 13 in Appendix G. Following Herrendorf et al. (2013), we set ωc and

ωi so that the model matches the average value-added share of services in consumption and investment

of 87% and 52%, respectively, and set the elasticity between goods and services to ζ = 0.85. Richardson

(1995) argues that the annual cost of holding inventories is between 25 percent and 55 percent of the

value of the stored goods. Taking out interest rate costs, the cost of holding inventories is between 19

percent to 43 percent per year. For simplicity, we set δx = 19 percent.

We also match the observed ratio of inventories to sales since the ratio is directly linked to the

market tightness Dmc/Tmc and Dmi/Tmi . Given we choose all prices equal to 1 at the steady state,

the inventory-sales ratio helps the model pin down the mean productivities in sectors. In the data, the

average annual real inventories to sales ratio for total business (manufacturing, wholesale and retail trade)

is 11.5 percent (Source: BLS). We also normalize the steady-state investment goods price to 1 as in the

benchmark calibration and equalize the steady-state productivity of goods and service production. These
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normalizations pin down the steady state productivities zmc , zmi , zsc , and zsi .

As in the benchmark, we estimate the model using Bayesian methods. As in our benchmark, the

model has four shocks: the disutility shock of shopping θd , the disutility shock of labor θn, the growth

rate shock for the neutral technology, and the investment-specific shock zI . The priors and distributions

are the same as in the benchmark estimation.

Table 9: Bayesian Estimation: Model with Storable Goods, Shopping
time, Short Sample

Priors and Posteriors for the Shock Parameters (Likelihood = 660.8)

Data used: Y , Y /N, Inv , shopping time
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.900 0.05 0.9546 [0.9269, 0.9856]

ρg Beta 0.100 0.05 0.1734 [0.0784, 0.2738]

ρi Beta 0.900 0.05 0.8581 [0.8949, 0.9991]

ρn Beta 0.900 0.05 0.9657 [0.9429, 0.9922]

σd Beta 0.010 Inf 0.0735 [0.0608, 0.0861]

σg Inv Gamma 0.010 Inf 0.0042 [0.0034, 0.0050]

σi Inv Gamma 0.010 Inf 0.0156 [0.0121, 0.0191]

σn Inv Gamma 0.010 Inf 0.0118 [0.0100, 0.0134]

Variance Decomposition
θd g zI θn

Y 36.76 28.73 17.17 17.33
Y /N 18.36 25.59 19.72 36.32
Investment 3.71 2.59 90.21 3.49
Pi 0.46 0.53 98.02 0.98
TFP 43.65 15.04 25.87 15.43
Consumption 34.77 27.20 25.53 12.50
Labor 8.93 14.92 1.11 75.04
Service 48.28 31.49 4.93 15.30
Goods 2.02 8.00 79.38 10.60
Serive price 27.97 49.12 21.21 1.70
goods/service 15.08 4.70 79.46 0.76
inventory/sale 91.75 1.19 6.15 0.90

The table shows the Bayesian estimation for the shopping model with storable goods and services. The estimation

targets the data series of output, labor productivity, investment, and shopping time. The sample is quarterly U.S.

data, from Q1 in 2003 to Q4 in 2019.

Tables 9 and 10 report the results from the estimation for our two benchmark economies with storage

(i.e., with and without targeting shopping-time data). The variance decomposition shows that the demand

shock θd still plays a significant role in accounting for business cycle fluctuations – 37 to 63 percent of

the variance of output and 44 to 60 percent of TFP. Note also that the shopping friction is quantitatively

more relevant for services than for durable consumption goods: according to the variance decomposition,
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Table 10: Bayesian Estimation: Model with Storable Goods, Long
Sample

Priors and Posteriors for the Shock Parameters (Likelihood = 2614.5)

Data used: Y , Y /N, Inv , P i

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.900 0.05 0.9923 [0.9880, 0.9966]

ρg Beta 0.900 0.05 0.9165 [0.9019, 0.9301]

ρzi Beta 0.900 0.05 0.0000 [0.8766, 0.9198]

ρn Beta 0.900 0.05 0.9779 [0.9697, 0.9850]

σd Beta 0.010 Inf 0.1754 [0.1609, 0.1903]

σg Inv Gamma 0.010 Inf 0.0037 [0.0031, 0.0044]

σzi Inv Gamma 0.010 Inf 0.0138 [0.0124, 0.0150]

σn Inv Gamma 0.010 Inf 0.0000 [0.0110, 0.0129]

Variance Decomposition
θd g zI θn

Y 63.11 27.06 4.33 5.50
Y /N 29.78 55.58 4.14 10.50
Investment 9.83 27.15 60.64 2.37
Pi 5.73 39.53 53.90 0.85
TFP 59.55 31.09 5.39 3.98
Consumption 54.95 34.86 6.72 3.48
Labor 36.60 3.62 0.90 58.88
Service 71.36 23.53 0.97 4.15
Goods 6.04 36.62 49.69 7.64
Service price 44.67 49.12 5.76 0.45
goods/service 45.72 20.17 33.80 0.31
inventory/sale 97.73 1.91 0.32 0.04

The table shows the Bayesian estimation for the shopping model with storable goods and services. The estimation

targets the data series of output, labor productivity, investment, and investment price. The sample is quarterly U.S.

data, from Q1 in 1967 to Q4 in 2019.
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θd accounts for a share of the variance of services which is substantially larger than than for storable

goods (cf. Table 9).

The extended model has rich predictions for the dynamics of goods, services, and the inventories-to-

sales ratio. In the data, aggregate purchases of durable goods are much more volatile than services and

non-durable goods, and the model has similar predictions. Moreover, the inventories-to-sales ratio in the

model is countercyclical as in the data, although it is more volatile in the model than that in the data.

In our benchmark analysis firms have inventories of goods but households cannot store goods. How-

ever, many goods are durable and households do in fact keep inventories of durable goods. As a robustness

analysis we assume that all consumption goods are storable (while services remain non-storable). We fo-

cus on the estimation targeting shopping time. Row 2 of Table 11 documents that the role of θd remains

large in this economy, albeit slightly lower than in the benchmark economy (row 1).

Services are arguably more differentiated than goods and the search friction associated with services

might therefore be larger than for goods. To explore this possibility we consider an extreme version of

our economy where there are no search frictions for goods but the search friction for services remain in

place. Rows 3-4 of Table 11 shows that the role for θd in these economies is approximately the same as

in the economy with durables.

Table 11: Robustness analysis — Goods and Services

Lhood std(θd) Var Decomp Y Var Decomp TFP Rel. std goods
θd g zI θd g zI

Use shopping time data 03-19, mixed frequency
(1) Benchmark: non-durable 660.8 0.074 36.76 28.73 17.18 43.65 15.04 25.88 1.54
(2) Alternative: durable 648.9 0.075 34.64 26.21 23.60 39.70 13.33 34.01 1.63
(3) Goods no frictions, non-durable 652.8 0.076 33.49 29.81 21.00 40.36 15.55 30.31 1.70
(4) Goods no frictions, durable 657.6 0.075 33.30 29.89 19.88 39.77 15.82 30.24 1.57

The table documents the estimation results for under alternative calibrations and model assumptions with both goods and services.
All estimations target the quarterly U.S. data series of GDP growth, labor productivity growth, investment growth, and aggregate
shopping time. Row (1) and (3) assume non-durable goods, row (2) and (4) have durable goods with depreciation of 19% annually.
Row (3) and (4) assume that goods are not subject to search friction, but services are.

Summing up, the main results from the benchmark model are robust to allowing firms to hold inven-

tories of consumer durables and to let households store such goods: demand shocks are a major driver of

TFP and output. In addition, the extension with inventories is consistent with stylized facts on cyclical

properties of services, consumption goods, and inventories.
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7 Conclusion

This paper provides a business cycle theory with an explicit productive role for the demand for goods. A

search friction prevents perfect matching between producers and potential consumers. A larger demand

for output is associated with more intense search for goods and, hence, a larger utilization of the potential

production. Shocks that cause changes in search effort or search efficiency will therefore induce changes

in aggregate output even if standard factors such as capital and labor are fixed. Thus, when applying a

neoclassical production function that ignores search effort as an input, changes in demand and search effort

generate procyclical movements in measured TFP. A competitive search protocol resolves the matching

friction and the equilibrium outcome is efficient and unique. The framework is otherwise a standard

neoclassical model with flexible prices. Krueger et al. (2016) illustrate how the ideas we develop in this

paper could be implemented by means of a reduced-form expenditure externality in production.

Our main quantitative exercise is to estimate the model using standard Bayesian techniques. Business

cycles are driven by preference shocks to search effort and labor supply, true technology shocks, and

investment-specific shocks. Preference shocks affecting search effort account for a large share of the

fluctuations in consumption, GDP, and the Solow residual. This finding holds true regardless of whether

we use average shopping time from ATUS as a proxy for search effort and target this series in the Bayesian

estimation or if we take a broader view on search effort and estimate the model without targeting direct

observations of search effort. Our findings are also robust to extending the model to allow for varying

capacity utilization of capital and to allow firms and households to store consumption goods as inventories

and durables.

Our paper is consistent with Keynes’ idea that consumer demand can have real effects. We show that

this holds true even in a neoclassical model with flexible prices, amended with a product market matching

friction.

We have modeled the product-market friction as a pure search friction. However, the idea that

households contribute to productivity by extracting more output from a given productive structure is

wider than the notion of narrow search for goods and services. When a product is not very popular one

can choose the most desired specifications without any compromise. In an expansion, the economy is

tight and the average quality of goods and services are lower. In such situations it might appear as if the

firms have higher productivity, as more tables are busy and all varieties of a good can be sold. However,

in these situations households’ effort contributes to more matches and, hence, production.

In future work, we plan to extend this environment to contexts where the demand shocks are generated

by financial frictions, government expenditures, or foreign demand shocks. It would also be interesting to

consider additional frictions that could break the efficient outcome of the competitive search model, such

as coordination failures or additional labor market frictions. Another promising direction is one where
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pure positive wealth effects increase, not decrease search efferts and productivity. This may help with

understanding the great recession.17 Finally, it is straightforward to embed our search friction for goods

within other approaches to business cycles such as the New Keynesian tradition (eg. Qiu and Ŕıos-Rull

(2022)), or the Mortensen-Pissarides view of search frictions in the labor market.18 Ultimately, these

two traditions build on technology shocks as a major source of fluctuations, and our findings provide a

rationale for substituting productivity shocks for demand shocks in these models.

17Preliminary work in this direction is in Huo and Ŕıos-Rull (2020).
18Ritto (2024) uses our search friction to study a version of the search and matching monetary theory models in a way

that can be estimated.
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Appendix

Not Intended for Publication

A Proof of Proposition 1: Existence and Optimality of Equilibria in the Endowment

Economy

Write the Lagrangian problem as L = pΨT (q)z − λ
(
u(Yp ,

Y
pΨd (q)z

)− ū
)
. The first-order conditions are

then

∂L
∂q

= ΨT (q)z − λ

(
− ∂u

∂C

Y

(p)2
− ∂u

∂D

Y

(p)2
1

Ψd(q)z

)
= 0

∂L
∂p

= −pz
dΨT (q)

dq
− λ

∂u

∂D

Y

pz

1

(Ψd(q))
2

dΨd(q)

dq
= 0

Substituting out λ and simplifying yields the following condition:

∂u

∂C
z =

∂u

∂D

1

Ψd(q)

ΨT (q)

Ψd(q)

dΨd (q)
dq

dΨT (q)
dq

− 1


Exploiting that q−1ΨT (q) = Ψd(q) and

dΨd (q)
dq = − 1

q2
ΨT (q) +

1
q
dΨT (q)

dq , we can rewrite the first-order

conditions as

∂u

∂C
z = − ∂u

∂D

1

Ψd(q)

1

q

ΨT (q)
dΨT (q)

dq

= − ∂u

∂D

1
dΨT (q)

dq

.

With T = 1 and q = D in equilibrium, equation (5) follows. QED

B Proof of Proposition 2: Characterization of Equilibrium in the Dynamic Production

Economy without Capital

Recall the potential output is given by znα and the number of matches is M = (d)φ. Value added

is y = z (d)φ nα. We assume that α ≥ φ, which ensure that the production function does not have

increasing returns to scale. Given the storage technology, consumption is c = y − s and c ′ = y ′ + s.

Substitute these constraints into a GHH-formulation of the objective function with four shocks:

V =
1

1− γ
θβ

(
θc [z (d)

φ nα − s]− θd
d1+1/η

1 + 1/η
− θn

n1+1/ν

1 + 1/ν

)1−γ

+
1

1− γ
θβ′

(
θc′
[
z ′
(
d ′)φ (n′)α + s

]
− θd ′

(d ′)1+1/η

1 + 1/η
− θn′

(n′)1+1/ν

1 + 1/ν

)1−γ

1



The first-order conditions are,

θd
θc

d
1
η = φ

y

d
(B.1)

θn
θc

n
1
ν = α

y

n
(B.2)

(
A (d)φ nα − s − θd

θc

d1+1/η

1 + 1/η
− θn
θc

n1+1/ν

1 + 1/ν

)−γ

(B.3)

=
θβ′

θβ

(
θ′c
θc

)1−γ
(
z ′
(
d ′)φ (n′)α + s − θd ′

θc′
(d ′)1+1/η

1 + 1/η
− θn′

θc′
(n′)1+1/ν

1 + 1/ν

)−γ

.

Combining (B.1)-(B.2) with (7) and production function, we can solve analytically for n, d , and y

ξ1 · ln d =

(
1

ν
+ 1

)
ln z − α ln

(
θn
θc

)
−
(
1

ν
+ 1− α

)
ln

(
θd
θc

)
+

(
1

ν
+ 1− α

)
lnφ+ α lnα,

ξ1 · ln n =

(
1 +

1

η

)
ln z −

(
1

η
+ 1− φ

)
ln

(
θn
θc

)
− φ ln

(
θd
θc

)
+ φ ln (φ) +

(
1

η
+ 1− φ

)
ln (α) ,

ξ1 · ln y =

(
1

η
+ 1

)(
1

ν
+ 1

)
ln z −

(
1

η
+ 1

)
α ln

(
θn
θc

)
−
(
1

ν
+ 1

)
φ ln

(
θd
θc

)
+ const, (B.4)

where ξ1 and const are constant with ξ1 is positive (due to the assumption that 1 ≥ φ + α) and given

by ξ1 ≡
(
1
η + 1− φ

) (
1
ν + 1

)
−
(
1
η + 1

)
α and const =

(
1
ν + 1

)
φ ln (φ) +

(
1
η + 1

)
α ln (α).

Note that when search effort is constant (η → 0), the elasticities of labor on z and θn become 1
1
ν
+1−α

,

as in a standard RBC model with GHH preference. Furthermore, the presence of endogenous search effort

(η > 0) leads to a larger elasticity of n and y to z and θn shocks.

Let us examine the response of output to the shocks more closely. Let x̂ denote the log deviation of

variable x from a steady state. We can further write the output equation (B.4) as

ŷ =
1+ν
ν

1+ν
ν −

(
α+ 1+ν

ν
η

1+ηφ
) [ẑ − α

ν

1 + ν
θ̂n −

ηφ

1 + η
θ̂d +

(
α

ν

1 + ν
+

ηφ

1 + η

)
θ̂c

]
.

The equation again establishes that the presence of search friction η > 0 and φ > 0 leads to a larger

response of output to shocks. Note that the propagation of y to a shock to z and/or θn is increasing in

2



φ, η, α, and ν:

∂

∂ν

 1+ν
ν

1+ν
ν −

(
α+ 1+ν

ν
η

1+ηφ
)
 = α

(η + 1)2

(−ν − η + αν − νη + ηφ+ ανη + νηφ− 1)2
> 0,

∂

∂ν

 α

1+ν
ν −

(
α+ 1+ν

ν
η

1+ηφ
)
 =

α (η + 1) (η (1− φ) + 1)

(−ν − η + αν − νη + ηφ+ ανη + νηφ− 1)2
> 0,

∂

∂α

 α

1+ν
ν −

(
α+ 1+ν

ν
η

1+ηφ
)
 =

(η (1− φ) + 1) ν (ν + 1) (η + 1)

(−ν − η + αν − νη + ηφ+ ανη + νηφ− 1)2
> 0.

Consider now the measured TFP A, i.e., the Solow residual when search effort is ignored. This can

be defined as A ≡ y/nα = z (d)φ, which implies

ξ1 lnA = ξ1 ln z + ξ1φ ln d

=

(
1

η
+ 1

)(
1

ν
+ 1− α

)
ln z − φα ln

(
θn
θc

)
− φ

(
1

ν
+ 1− α

)
ln

(
θd
θc

)
+φ

(
1

ν
+ 1− α

)
lnφ+ φα lnα.

We now work on the solution for saving s and consumption c . Let us first calculate the terms inside

the utility function:

ln

(
θd
θc

)
+ (1 + 1/η) ln d − ln (1 + 1/η) = ln y + lnφ− ln

(
1 + η

η

)
ln

(
θn
θc

)
+ (1 + 1/ν) ln n − ln (1 + 1/ν) = ln y + ln (α)− ln (1 + 1/ν)

It follows that we can write

z (d)φ nα − θd
θc

d1+1/η

1 + 1/η
− θn
θc

n1+1/ν

1 + 1/ν
= ξ2 · y ,

where ξ2 ≡ 1− ηφ
1+η − ν

1+να ∈ (0, 1). Note that the assumption 1 ≥ φ+ α ensures that X is positive.

Consider now the Euler equation;

[z (d)φ nα − s]− θd
θc

d1+1/η

1 + 1/η
− θn
θc

n1+1/ν

1 + 1/ν

= (β)−
1
γ

(
θc′

θc

)− 1−γ
γ

([
z ′
(
d ′)φ (n′)α + s

]
− θd ′

θc′
(d ′)1+1/η

1 + 1/η
− θn′

θc′
(n′)1+1/ν

1 + 1/ν

)
,
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or, equivalently,

ξ2 · y − s = (β)−
1
γ

(
θc′

θc

)− 1−γ
γ (

ξ2 · y ′ + s
)

which implies savings s

s =
ξ2

(β)−
1
γ

(
θ′c
θc

)− 1−γ
γ

+ 1

· y −
(β)−

1
γ

(
θ′c
θc

)− 1−γ
γ
ξ2

(β)−
1
γ

(
θc′

θc

)− 1−γ
γ

+ 1

· y ′

Consumption is then given by

c =
(β)−

1
γ

(
θ′c
θc

)− 1−γ
γ

+ 1− ξ2

(β)−
1
γ

(
θc′

θc

)− 1−γ
γ

+ 1

· y +
(β)−

1
γ

(
θc′

θc

)− 1−γ
γ
ξ2

(β)−
1
γ

(
θc′

θc

)− 1−γ
γ

+ 1

· y ′.

C Planner Problem, Competitive Equilibrium, and the First Welfare Theorem in the

Stocahstic Growth Model Economy

In the text we appeal to a version of the First Welfare Theorem and focus on the planner problem.

This Appendix characterizes the planner problem and the competitive equilibrium, and proves that the

allocation implied by the decentralized competitive equilibrium is equivalent to the planner allocation.

C.1 Derivations of optimality condition for the planner

The optimality conditions follow from the first-order conditions of the planner problem (25), rewritten as

max
Dc ,Di ,Nc ,Ni ,K ′

c

u (Dc Ψd ,c [Dc ] zc f (Kc/Tc ,Nc/Tc) ,Dc + Di ,Nc + Ni , Λ)

+ β E
{
W
(
θ′,K ′

c ,DiΨd ,i [Di ]zi f (Ki/Ti ,Ni/Ti ) + (1− δ) (Kc + Ki )− K ′
c

) ∣∣ Λ}.
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The first-order conditions over Dc , Di , Nc , Ni , and K ′
c are given by

∂u

∂C

∂ΨT ,c [Dc ]

∂Dc
zc f (Kc/Tc ,Nc/Tc) +

∂u

∂D
= 0 (C.1)

∂u

∂D
+
∂ΨT ,i [Di ]

∂Di
zi f (Ki/Ti ,Ni/Ti )β E

{
∂W (Λ′)

∂K ′
i

∣∣∣∣ Λ} = 0 (C.2)

∂u

∂N
+
∂u

∂C
ΨT ,c [Dc ] zc

f (Kc/Tc ,Nc/Tc)

∂Nc
= 0 (C.3)

∂u

∂N
+ΨT ,i [Di ] zi

∂f (Ki/Ti ,Ni/Ti )

∂Ni
β E

{
∂W (Λ′)

∂K ′
i

∣∣∣∣ Λ} = 0 (C.4)

β E

{
∂W (Λ′)

∂K ′
c

− ∂W (Λ′)

∂K ′
i

∣∣∣∣ Λ} = 0. (C.5)

And the envelope conditions are

∂W (Λ)

∂Kc
=

∂u

∂C
ΨT ,c [Dc ] zc

∂f (Kc/Tc ,Nc/Tc)

∂Kc
− (1− δ)

ΨT ,i [Di ]zi
∂f (Ki/Ti ,Ni/Ti )

∂Ni

∂u

∂N
(C.6)

∂W (Λ)

∂Ki
= −

(
ΨT ,i [Di ]zi

∂f (Ki/Ti ,Ni/Ti )

∂Ki
+ 1− δ

)
1

ΨT ,i [Di ]zi
∂f (Ki/Ti ,Ni/Ti )

∂Ni

∂u

∂N
. (C.7)

Optimality conditions (26)-(28) follow directly from equations (C.1)-(C.4). Combining equations (C.5)-

(C.6)-(C.7) with (C.3) yields equation (29):

0 = E

{
∂W (Λ′)

∂K ′
c

− ∂W (Λ′)

∂K ′
i

∣∣∣∣ Λ} = E

{
∂u

∂N ′

(
∂f (K ′

i /Ti ,N
′
i /Ti ) /∂K

′
i

∂f
(
K ′
i /Ti ,N ′

i /Ti

)
/∂N ′

i

− ∂f (K ′
c/Tc ,N

′
c/Tc) /∂K

′
c

∂f (K ′
c/Tc ,N ′

c/Tc) /∂N ′
c

) ∣∣∣∣∣ Λ
}
.

Euler equation (30) follows from plugging (C.7) into equation (C.4).

C.2 Competitive Equilibrium

Let Ac = µT 1−φ
c and Ai = µT 1−φ

i . Consider the household problem in the benchmark economy, equations

(18)-(22) in the text. Let the multiplier on the household’s budget constraint (21) be denoted λ. The

5



first-order conditions for the households can then be expressed as,

λp̂c =
∂u

∂c
+

∂u
∂d

Ψd ,c(q̂c)F̂c
(C.8)

λp̂i −
∂u
∂d

Ψd ,i (q̂i )F̂i
= βE

{
λ′Rc(Λ

′) + (1− δ)

[
λ′pi (Λ

′)−
∂u
∂d ′

Ψd ,i (q̂
′
i )F̂

′
i

]}

λp̂i −
∂u
∂d

Ψd ,i (q̂i )F̂i
= βE

{
λ′Ri (Λ

′) + (1− δ)

[
λ′pi (Λ

′)−
∂u
∂d ′

Ψd ,i (q̂
′
i )F̂

′
i

]}

λW =
∂u

∂n

∂V̂ c

∂p̂c
= −λdcAc q̂

φ−1
c F̂c ,

∂V̂ c

∂q̂c
= (φ− 1)dcAc q̂

φ−2
c F̂c

(
∂u

∂c
− λp̂c

)
∂V̂ c

∂F̂c
= dcAc q̂

φ−1
c

(
∂u

∂c
− λp̂c

)
∂V̂ i

∂p̂i
= −λdiAi q̂

φ−1
i F̂i ,

∂V̂ i

∂q̂i
= (φ− 1)diAi q̂

φ−2
i F̂i

[
−

∂u
∂d

Ψd ,i (q̂i )F̂i

]
∂V̂ i

∂F̂i
=
∂u

∂c
diAi q̂

φ−1
c

[
−

∂u
∂d

Ψd ,i (q̂i )F̂i

]
.

Now let’s consider the problem (24) of a firm j = {c , i}. Let the multiplier for the participation

constraint be γ and for the production constraint be υ. We can write the firm’s first-order conditions as

Aj q̂
φ
j F̂j + γ

∂V̂ j

∂p̂j
= 0, φAj q̂

φ−1
j p̂j F̂j + γ

∂V̂ j

∂q̂j
= 0, p̂Aj q̂

φ − υ + γ
∂V̂ j

∂F̂j
= 0

W = υzj
∂f (k , n)

∂n
, Rj = υzj

∂f (k, n)

∂k
.

Equilibrium In equilibrium, pc = p̂c = 1, pi = p̂i , qj = q̂j , and Fj = F̂j for each j = {c , i}.
The competitive equilibrium consists of 16 functions, five functions from the households’ problem,

{C ,Dc ,Di ,N, I}, four functions from the firms’ problems {kc , ki , nc , ni}, aggregate capital and labor

in each sector {Kc ,Ki ,Nc ,Ni}three functions from competitive search problem, {qc , qi , pi}, and four

price functions, {W ,Pa,Rc ,Ri}, which simultaneously satisfy the following functional equations.
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First, the household problem yields the following functional equations,

∂u

∂c
pi = β E

{[
(1− φ)Rc(Λ

′) + pi (Λ
′)(1− δ)

] ∂u
∂c ′

| Λ
}

(C.9)

∂u

∂c
pi = β E

{[
(1− φ)Ri (Λ

′) + pi (Λ
′)(1− δ)

] ∂u
∂c ′

| Λ
}

(C.10)

(1− φ)
∂u

∂c
=

∂u
∂n

W
(C.11)

−∂u
∂d

=
∂u

∂c
φAcD

φ−1
c zc f (kc , nc) (C.12)

−∂u
∂d

=
∂u

∂c
φAiD

φ−1
i pizi f (ki , ni ). (C.13)

Second,the firms’ problems yield four functional equations,

(1− φ)W = ΨT ,c(qc)zc
∂f (kc , nc)

∂nc
(C.14)

W

Rc
=
∂f (kc , nc)/∂nc
∂f (kc , nc)/∂kc

(C.15)

(1− φ)
W

pi
= ΨT ,i (qi )zi

∂f (k, ni )

∂ni
(C.16)

W

Ri
=
∂f (ki , ni )/∂ni
∂f (ki , ni )/∂ki

. (C.17)

Finally, market clearing yields

qc = Dc , qi = Di

C = TcΨT ,c(qc)zc f (kc , nc)

I = TiΨT ,i (qi )zi f (ki , ni )

I = K ′
c + K ′

i − (1− δ)(Kc + Ki )

N = Nc + Ni

Kc = Tckc ,Ki = Tiki

Nc = Tcnc ,Ni = Tini .

Incidentally, by combining equations (C.14) and (C.16) we obtain the expression for the relative price of

investment, equation (27) in the text.

C.3 A First Welfare Theorem in the Production Economy

We now show that the competitive equilibrium corresponds to the planner allocation. To this end, we

show that the first-order conditions of the competitive equilibrium are the same as the ones in the planner

7



problem.

First, equation (C.12) and (C.13) in the equilibrium is identical to equation (26) in the planner

problem. Second, combining equation (C.11) and (C.14) yields the first-order condition on labor (28) in

the planner problem. Finally, equation (29) in the planner problem holds in equilibrium. To see this, take

the difference between (C.9) and (C.10) from the household’s problem, and get

0 = E

{(
Ri (Λ

′)− Rc(Λ
′)
)
(1− φ)

∂u

∂c ′
| Λ
}

Now we replace uc with un/W using equation (C.11) and obtain

0 = E

{(
Ri (Λ

′)− Rc(Λ
′)
) ∂u/∂n′
W (Λ′)

| Λ
}
.

Then replace R/W with firms’ first-order conditions (C.15) and (C.17) to obtain the planner’s Euler

equation.

D Details about the Calibration of the Production Economy

We consider an economy with an annual growth rate of 3%, which implies a quarterly value ḡ = 0.74%

Depreciation δ. With a constant growth rate, the capital accumulation is given by

(1 + ḡ)K ′ = (1− δ)K + I .

Hence the steady state K and I satisfy (δ+ ḡ)K = I . Let the investment share of output be κ = pI I/Y =

20% and the ratio of aggregate capital to quarterly output pIK/Y = 2.75 ∗ 4 = 11. This allows us to

pin down the depreciation rate at the quarterly frequency

δ =
pI I/Y

pIK/Y
− ḡ =

0.2

11
− 0.74% = 1.08%

Labor’s share αn: Consider now the share of output for a consumption-producing firm that is paid to

labor. Using the equilibrium condition (C.14) and (C.16), we can express the equilibrium price in sector

j = {c, i} as

pj = (1− φ)
W

ΨT ,j(qj)zj
∂f (kj ,nj)

∂nj

= (1− φ)
WNj

αnΨT ,j(qj)Fj
(D.1)

where the second equation comes from the assumption that f is Cobb-Douglas so αn f (kj , nj) = nj
∂f
∂nj

,

and Kj = Tjkj , Nj = Tjnj . In each sector j , the wage bill is WNj , and total (measured) value added is

8



the sales ΨT ,j (qj)Fj , where Fj = zj f (kj , nj), so labor’s share of output is

WNc +WNj

Y
=

αn
1−φTcΨT ,c(qc)Fc + pi

αn
1−φTiΨT ,i (qi )Fi

Y
=

αn

1− φ

C + pi I

Y
=

αn

1− φ

where the second equality follows from equation (D.1). We then find αn = (1− φ) ∗ labor share.

Capital’s share αk . At the steady state, Rc = Ri = R. From households’ first order conditions,

steady state implies that

pi = β(1 + ḡ)−σ[(1− φ)Ri + (1− δ)pi ] ⇒ (1− φ)
R

pi
=

1− β(1 + ḡ)−σ(1− δ)

β(1 + ḡ)−σ
. (D.2)

Combining the investment firms’ optimization (C.16) and (C.17), we have

(1− φ)
Ri

pi
= ΨT ,i (qi )zi

∂f (ki , ni )

∂ki
= αk

ΨT ,i (qi )zi f (ki , ni )

ki
= αk

I/Ti

ki
= αk

I

Ki
.

Similarly, from consumption firms’ optimization, we have

(1− φ)
Rc

pc
= αk

C

Kc
.

The share of output that goes to reproducible capital is

RK

Y
=

RKc + RKi

Y
=

αk
1−φpi I +

αk
1−φpcC

Y
=

αk

1− φ
.

Now let’s check RK/Y ,

αk

1− φ
=

RK

Y
=

R

pi

piK

Y
=

1

1− φ

1− β(1 + ḡ)−σ(1− δ)

β(1 + ḡ)−σ

piK

Y
,

where the last equality comes from (D.2). Hence we can solve αk from the above equation

αk =
1− β(1 + ḡ)−σ(1− δ)

β(1 + ḡ)−σ

piK

Y
.

With r = 0.01 quarterly, β(1 + ḡ)−σ = 1/(1 + r), δ = 1.08%, piK/Y = 11, the above equation implies

αk = 0.23.

Search efficiency µ, measure Tc , and Ti We first solve for Dj in each sector. Combining the

households’ FOCs (C.12) and (C.13), we have

C

Dc
=

pi I

Di
⇒ Dc

Di
=

C

pi I
.

9



Recall the consumption share is 1− κ. The above equation implies Dc = (1− κ)(Dc +Di ) = (1− κ)D.

Under GHH preference and equation (C.12), we have

φ
C

Dc
= D

1
η ⇒ (1− κ)D1+1/η = φC = φ(1− κ).

Hence D = φ
η

1+η .

The capacity utilization in sector j is defined as the probability that a production unit gets matched,

i.e., ΨT ,j [Dj ] = A(Dj/Tj)
φ. A capacity utilization of ΨT ,j = 81% in each sector implies Tc/Ti = Dc/Di .

Given that Tc + Ti = 1, we can solve Tc = 1− κ and Ti = κ. We can now evaluate A = 0.81φ− φη
1+η .

Mean TFP Zc = E (zc) and Zi = E (zi ). To compute average TFPs, we first obtain the share of

labor and capital in each sector. In steady state, the two sectors, consumption and investment, have the

same ratio of wage to rental. Under the assumption of Cobb-Douglas of f , this implies Ni
Ki

= Nc
Kc

= N
K . In

addition, we divided equation (C.14) by equation (C.16) and get

pi =
ΨT (q)z∂f (kc , nc)/∂nc

zzi∂f (ki , ni )/∂ni
=

C/Tc

I/Ti

ni
nc

=
C

I

Ni

Nc
,

which implies

Ni

Nc
=

κ

1− κ
. (D.3)

Similarly Ki/Kc = κ/(1− κ). We choose pi = 1 in steady state, thus I = κ and K = 11. We can then

find Ki = κK , Kc = (1− κ)K , Ni = κN, and Nc = (1− κ)N, where N is chosen to be 0.3. We can now

back up the mean productivities using the production function

zc =
C

TcΨT ,c f (kc , nc)
=

1− κ

(1− κ)0.81× (Kc/Tc)αk (Nc/Tc)αn
,

zi =
I

TiΨT ,i f (ki , ni )
=

κ

κ0.81× (Ki/Ti )αk (Ni/Ti )αn
,

where we use the equilibrium condition that each firm in sector j uses 1/Tj fraction of total capital and

labor in that sector.

D.1 Proof of Proposition 3: Characterization of Equilibrium in the Heterogeneous Agents

Economy

Consider a static economy with J types of agents who differ in their consumption expenditure yj , j ∈
{1, ..., J}. With a price level of P = 1, the aggregate expenditure must equal

∑
j yjsj = C , where sj

is the population share of type j households, and C is aggregate consumption. There is a unit measure
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of firms, each of whom has a production function f (k , n) = (k)αk (n)αn . We start by showing that in

equilibrium all firms supply the same capacity F .

Lemma 1. All firms supply the same capacity of consumption goods, given by F = zf (Kc ,Nc).

Proof. Since there are no externalities or distortions, it is straightforward that the welfare theorems apply.

Accordingly, we formulate the problem as a planner problem,

max
∑
j

ξju (Cj ,Dj)

s.t. KC =
∑
j

Kj NC =
∑
j

Nj 1 =
∑
j

Tj , Cj = Dφ
j T

1−φ
j zf (Kj ,Nj),

where ξj denotes the planner weight on households of type j and Kj , Nj , and Tj denote the capital, labor,

and share of firms allocated to production intended for group j . Dj and Tj represent the aggregate search

effort in market j and the aggregate measure of firms catering to market j . We rewrite the problem as a

Lagrange problem

Θ =
∑
j

ξju
(
Dφ
j (Tj)

1−φ zf (Kj ,Nj) ,Dj

)
− λK

∑
j

Kj − KC

− λN

∑
j

Nj − NC

− Γ

∑
j

Tj − 1


Taking the first-order conditions yields,

−ud ,j = uc,j · φ
(
Dj

Tj

)φ−1

zf (Kj ,Nj)

Γ

λK
=

ξjuc,j · (1− φ)
(
Dj

Tj

)φ
f (Kj ,Nj)

ξjuc,j ·
(
Dj

Tj

)φ
Tj

∂f (Kj ,Nj)
∂Kj

= (1− φ)
f (Kj ,Nj)

Tj
∂f (Kj ,Nj)

∂Kj

λK
λN

=
ξjuc,j ·

(
Dj

Tj

)φ
Tj

∂f (Kj ,Nj)
∂Kj

ξjuc,j ·
(
Dj

Tj

)φ
Tj

∂f (Kj ,Nj)
∂Nj

=

∂f (Kj ,Nj)
∂Kj

∂f (Kj ,Nj)
∂Nj

.

When f is Cobb-Douglas, the last two conditions imply

Γ

λK
= (1− φ)

(Kj)
αk (Nj)

αn

Tjαk (Kj)
αk−1 (Nj)

αn
=

1− φ

αk

Kj

Tj

λK
λN

=
αk (Kj)

αk−1 (Nj)
αn

αn (Kj)
αk (Nj)

αn−1
=
αk

αn

Nj

Kj
.

It follows that all firms have the same capital-labor ratio, equal to Kc/Nc , and all firms have the same

output per location, F = zf (Kc ,Nc).

11



We now solve the decentralized problem. Conjecture that there will be J different markets open,

which all provide F but differ in the offered pair (pj , qj). Let π̄ represent the expected revenue for a

firm operating in the most profitable market. Profit maximization then imposes the following arbitrage

condition on any offered (pj , qj),

pj =
π̄

F
· (qj)−φ =

π̄

F
·
(
Dj

Tj

)−φ

.

The search technology implies that for households of type j , cj = Dφ
j (Tj)

1−φ F . We can thus obtain

income of a household yj = pjcj = π̄Tj . Thus, since
∫
Tjdj = 1, aggregate revenue equals aggregate

expenditure, π̄ =
∫
yjdj = C . It follows that the measure of firms catering to type j households is equal

to j ’s expenditure share Tj = sjyj/C . This in turn implies equation (31). Finally, the intra-temporal

first-order condition yields equation (32).

E Shopping Time Data and Robustness

Using the data from American Time Use Survey (ATUS), we construct “total shopping time” as the sum

of the time spent shopping, professional and personal care service, household services, and the associated

travel time. We specifically include the following categories: TU-7, TU-8, TU-9, TU-18-7, TU-18-8, and

TU-18-9. We also consider two alternative measures of shopping time. The first one excludes travel time

from the total shopping time, while the second measure uses a smaller set of categories as in Petrosky-

Nadeau et al. (2016), which do not include security procedures or paid services like childcare, financial

services, or personal care. To construct each of the three series, we take a weighted average across the

working-age population (25-59), using the weights provided by ATUS. The data covers the period from

2003 to 2019.

Panel (a) presents the levels of the benchmark shopping time (black-solid line), shopping time exclud-

ing travel time (blue-dashed line), and shopping time constructed using Petrosky-Nadeau et al. (2016)

(henceforth PNWZ, black-dotted-dashed line). Panel (b) shows the annual growth rates for each shop-

ping series, with the average growth rate removed from each series. The results indicate that the three

shopping series have different levels, with the benchmark measure being the highest. The average weekly

shopping time is 5.27 hours using the benchmark construction, 4.85 hours using PNWZ method, and

3.27 hours without the travel time. Nonetheless, the growth rates of the three series show remarkable

similarities.

To show the robustness of the benchmark estimation, we reestimate the model using the two alter-

native shopping series. Figure 2 presents a comparison of the results obtained from each of the three

shopping series. Table 12 shows that the estimated θd shock and the variance decompositions are very

similar across the three estimations.
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Figure 2: Shopping Time
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(b) Growth Rate
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This figures shows the level and growth rates in shopping time between 2003 and 2019 for the working age group (25-59

years old). The data source is American Time Use Survey (ATUS). Panel (a) shows the benchmark shopping time (black

-solid line), shopping time excluding travel time (blue-dashed line), and shopping time constructed using Petrosky-Nadeau

et al. (2016) (black-dotted-dashed line). Panel (b) shows the growth rates for each shopping series.

Table 12: Robustness analysis — Alternative Measures of Shopping Time

Lhood std(θd) Var Decomp Y Var Decomp TFP
θd g zI θd g zI

Use shopping time data 03-19, mixed frequency

(1) Benchmark 603.7 0.097 38.60 44.21 5.48 39.09 48.43 8.74
(2) No travel time 603.7 0.098 39.04 44.21 5.15 39.69 48.35 8.23
(3) Alternative 2 607.0 0.093 37.53 44.31 5.89 38.01 48.67 9.40

The table documents the estimation results for alternative shopping time. All estimations target
the quarterly U.S. data series of GDP growth, labor productivity growth, investment growth, and
growth of aggregate shopping time. Row (1) uses the benchmark shopping time, row (2) uses
shopping time excluding travel time, and row (3) uses the shopping time constructed following
Petrosky-Nadeau et al. (2016).

13



F Identical inventory choice at the storable good model

In this subsection, we show that consumption goods producers with identical initial inventory choose the

same holdings of next period’s inventory, i.e.

x ′u(Λ, x) = x ′m(Λ, x). (F.1)

A good producer in sector ι = {c , i} chooses {nι, kι, pι, qι,Fι, ix ,u, ix ,m, x ′m, x ′u} to maximize

Ω(Λ, x) = max −W (Λ)nι − Rι(Λ)kι

+ΨT ,ι(qι)
{
pιFι − pxι(Λ)ix ,m + E

[
M(Λ, Λ′) Ω(Λ′, x ′m)|Λ

]}
+ (1 − ΨT ,ι(qι))

{
−pxι(Λ)ix ,u + E

[
M(Λ, Λ′) Ω(Λ′, x ′u)|Λ

]}
subject to the capacity constraint

Fι ≤ zιf (nι, kι) + (1− δx)xι,

the inventory accumulation constraint for the unmatched state and for the matched state,

x ′u = zιf (nι, kι) + (1− δx)x + ix ,u, (F.2)

x ′m = zιf (nι, kι) + (1− δx)x − Fg + ix ,m, (F.3)

and the participation constraint of households. Let µu and µm be the multipliers on the unmatched

constraint (F.2) and the matched inventory constraint (F.3) respectively. Taking the first order conditions

on ix ,u, ix ,m, x
′
m, x

′
u, we have

ΨT ,ι(qι)pxι(Λ) = µm, (1−ΨT ,ι(qι))pxι(Λ) = µu

ΨT ,ι(qι)E [M(Λ, Λ′)Ωx(Λ
′, x ′m)] = µm, (1−ΨT ,ι(qι))E [M(Λ, Λ′)Ωx(Λ

′, x ′u)] = µu

Combining these four equations, we have

ΨT ,ι(qι)E [M(Λ, Λ′)Ωx(Λ
′, x ′m)]

(1−ΨT ,ι(qι))E [[M(Λ, Λ′)Ωx(Λ′, x ′u)]
=
µm
µu

=
ΨT ,ι(qι)pxι(Λ)

(1−ΨT ,ι(qι))pxι(Λ)

which implies

E [M(Λ, Λ′)Ωx(Λ
′, x ′m)]

E [M(Λ, Λ′)Ωx(Λ′, x ′u)]
= 1.

It is therefore x ′m = x ′u.
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G Calibration of the storable good model

Table 13 reports the calibrated targets and parameter values.

Table 13: Calibration of the Shopping Model with Storable Goods

Targets Value Parameter Value

First Group: Parameters Set Exogenously

Risk aversion 1 γ 1
Real interest rate 4% β 0.99
Frisch elasticity 0.72 ν 0.72
Elasticity of substitution 0.85 ζ 0.85
Inventory depreciation 0.185 δx 0.185

Second Group: Standard Targets

Fraction of time spent working 30% χ 6.50
Labor share of output 0.67 αn 0.46
Consumption share 0.80 αk 0.23
Capital-output ratio 2.75 δ 1.08%
Service share in consumption 0.90 ωc 0.05
Service share in investment 0.50 ωi 0.50
Inventory-sale ratio 11.5% E (zmc) 0.70

Third Group: Normalization

Steady-state output 1 E (zmi ) 0.59
Relative price of investment 1 E (zsi ) 0.70
Relative price of service 1 E (zsc) 1.28
Capacity utilization of services 0.81 Asc 0.92

Fourth Group: Targets Specific to This Economy

Cross-sectional st. dev. of cons. good prices 9% φ 0.32
Shopping time expenditure elasticity 7.5% ηd 0.20
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