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Introduction



A new take on popular models

• Motivation: Heterogeneous Agents Models of the BIHA (Bewley (1986), İmrohoroğlu

(1989), Huggett (1993), Aiyagari (1994)) variety are rooted in uninsurable earnings risk

• β(1 + r) < 1 =⇒ save for a rainy day to smooth consumption

• This paper poses a theory of precautionary savings for consumption levels that
occasionally provide additional joy or utility

• save for a sunny day to cash in on these opportunities

• Model: extreme value (EV) shocks provide a convenient approach

• widely used, but not in this way – new theoretical insights

• Why bother? Strong predictions about consumption behavior that:

1. are borne out in the data PSID

2. can discipline key EV parameters
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What we do

• Model: iid shocks to the utility of specific consumption levels induce deviations
from consumption choices predicted by the Euler equation.

• structural: shocks give opportunities

• easily coexist with other types of shocks (i.e. earnings risk)

• Households internalize them: new rationale for precautionary savings

• Empirics: measure predicted consumption in PSID.

• empirical fact: ↑ wealth, ↑ deviations from predicted onsumption

• quantitative analysis proceeds in 2 phases

1. Can our model replicate this? Can others?

2. What are the implications for precautionary savings?
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What we find

• Model: our economies with extreme value shocks have

• well-defined, well-behaved continuous and ∞-horizon limits

• additional (and intuitive) facets of marginal value of wealth

• fanning out of consumption “errors”: different from shocks to MRS

• Quantitative analysis: compare our EV shock economies to ones with earnings
risk, marginal utility risk, combinations of all

• Only EV model can replicate fanning out of consumption errors

• Simple empirical moments discipline EV shocks

• We use slope of consumption error variance w.r.t. cash on hand

• Implied noise is equivalent to increasing earnings risk by 26%

• limitation: our mechanism acts evenly over wealth distribution (both poor and rich
save for a sunny day)

• Extension (in progress) to explain top wealth inequality: Listening to this temporary
spending opportunities is optional (only rich end up doing it).
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What we contribute to the literature Full literature

• Rare periods of high consumption: durable goods (see Waldman (2016) for a review) or
its modern cousin, memorable goods (Hai, Krueger, and Postlewaite (2020))

• No durability of enjoyment (no need to track the stock)

• Not triggered by temporary earnings

• Standard utility functions as insufficient to accumulate wealth beyond
consumption smoothing: (as in Carroll (2000) or more recently Michaillat and Saez (2021)) want
wealth in the utility function

• Rationale for additional value of wealth with empirical discipline

• Dynamic discrete choice: McFadden (1973), Rust (1987), all of IO...

• Extend EV shocks into realm of fundamentals; change ex ante behavior rather than
provide tractable error structure
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Data: the Nature of Errors in
Consumption Functions



Deviations in predicted consumption by wealth

• Our theory looks at an ignored property of consumption:

• Using PSID data, we find that variance of log consumption errors increases with
cash on hand

• measure by predicting consumption and
computing deviations

• then group into quantiles of cash on hand
and average within bin

ind. var. = cash on hand
decile mean decile rank

intercept 0.1091 0.0980
(0.0057) (0.0096)

slope 0.0048 0.0845
(0.0007) (0.0167)

Notes: Actual regressors for decile rank regressions are
0.05 for decile 1, 0.15 for decile 2, etc.

details of measurement approach visual
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Ruling out the usual suspects

Measurement error: for c = g(a) and random ζ, suppose

• consumption is mismeasured, c̃ = ζc: then CV (c̃|a) = CV (ζ).

• wealth is mismeasured, ã = a/ζ: then CV (c|ã) = CV (g−1(ζ))

Several widely used classes of shocks cannot replicate this pattern:

• income: sensitivity of c to income declines as agents move away from constraint
=⇒ so do errors

• marginal utility: c(a; θ) = λ(θ)a, so c(a) = λa =⇒ errors are independent of a

6



Simplest Dynamic Model: A two period
savings model



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + ϵc , ϵc random variables, one for each c.

• Tomorrow: u(c ′).

• u increasing, strictly concave, differentiable.

• No borrowing, no interest, no income, given wealth a,

u(c) + ϵc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(Malmberg and Hössjer (2018)). Derivatives give information.

2. Pose structure in ϵc that yields well behaved probl Resnick and Roy (1991).

• Today we follow the first approach
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Construction of the Finite Choice Economies

• Economies indexed by N : Cardinality of choices.

• Equally spaced grid. c i = i c1 i ∈ {1, · · · ,N}

• Convenient Normalization: Choose the N Economies so that

• Consuming 1 is on the grid cM(N) = 1.

• We are close to the upper bound: cN ≥ c ≥ cN−1.

• Then take limits as N → ∞ to get continuous objects.
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Preferences in the finite choice economies

• Consumption level c i associated to ηi , i ∈ {1, · · · ,N}.

• ηi iid type 1 Extreme Value (no need to bring back ϵc). We get

u(ci ) + u(a− ci ) + ηi

• Assume that ηi are iid, Gumbel: ηi ∼ G(µN , α).

• 2 key parameters: µN (location / mean) and α (scale / variance)

• Note α = 0 is the standard model without shocks.

Normalization: expected max of ηi shocks over a unit interval is 0:

• define η ≡ maxi=1,...,M(N) ηi and normalize E[η] = 0

• math: µN = −α(γE + lnM(N)) imposes this; only α left

• economics: utility bonus of a unit interval budget set is 0
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Finite pie-eating problem

• Household chooses

max
c i∈{c1,··· ,cN}

u(c i ) + ηi + u(a− c i ),

s.t. c i ≤ a.

• Or maxi∈{1,··· ,J(N)} u(c i ) + ηi + u(a− c i ), when J(N) = arg maxi=1,...,N{ci ≤ a}.

• ratio J(N,a)
M(N)

= cJ(N,a) holds by construction; limN→∞
J(N,a)
M(N)

= a

• key: size of budget set (a) determines the number of alternatives and therefore the
number of shocks received, J(N, a)

• More options increases expected value

• Options have cardinal interpretation and shocks are factored in ex-ante
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Ex-Ante Value and Decision Rules

• The ex-ante value

vN(a) =

∫
max

c i∈{c1,··· ,cJ(N,a)}
{u(c i ) + ηi + u(a− c i )} dF (η1, · · · , ηN),

• The density

hN(a, i) = P

(
argmax

j∈{1,··· ,J(N,a)}

{
u(c j) + ηj + u(a− c j)

}
= n

)
,

• The cdf

HN(a, a′) = P

(
argmax

c i∈{c1,··· ,cJ(N,a)}

{
u(c i ) + ηi + u(a− c i )

}
≤ a′

)
,
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Standard results in Extreme Value Theory yield formulas

• The value satisfies

vN(a) = α ln

 1
J(N, a)

J(N,a)∑
i=1

exp

{
u(c i ) + u(a− c i )

α

}+ α ln cJ(N,a).

• First term is sort of weighted average of the standard utilities of all choices (notice
the log and the exp)

• Last term, acts as a utility bonus of wealth, a form of option value.

• The probability of each choice i is

hN(a, i) =
exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

j=1 exp
{

u(c j )+u(a−c j )
α

} .
• The cdf HN(a, a′) satisfies

HN(a, a′) =

∑n(a′)
i=1 exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

i=1 exp
{

u(c i )+u(a−c i )
α

} .
where n(a′) = maxj∈{1,··· .N} j , s.t. c j ≤ a′.
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the log and the exp)

• Last term, acts as a utility bonus of wealth, a form of option value.

• The probability of each choice i is

hN(a, i) =
exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

j=1 exp
{

u(c j )+u(a−c j )
α

} .
• The cdf HN(a, a′) satisfies

HN(a, a′) =

∑n(a′)
i=1 exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

i=1 exp
{

u(c i )+u(a−c i )
α

} .
where n(a′) = maxj∈{1,··· .N} j , s.t. c j ≤ a′.
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Take limits as N → ∞: Continuous Approx. to N-Economies

• The Value converges to (because it is essentially a Riemann integral)

v(a) = α ln

(∫ a

0
exp

{
u(c) + u(a− c)

α

}
dc

)
+ α ln a =

α ln

(∫ a

0
exp

{
u(a− a′) + u(a′)

α

}
da′
)
+ α ln a

• The CDF converges to

H(a, a′) =

∫ a′

0 exp
{

u(c)+u(a−c)
α

}
dc∫ a

0 exp
{

u(c)+u(a−c)
α

}
dc

.

(multiply and Divide by J(N, a)).

• Note that these are differentiable functions.

• Main insights go through whether discrete or continuous case; in remainder, we’ll
go with continuous.
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Closed forms and continuous limits

• Using standard results from discrete choice and our normalization of the EV
shocks, we obtain

VN(a) = α ln

 cJ(N,a)

J(N, a)

J(N,a)∑
i=1

exp

(
v(ci ; a)

α

) → V (a) = α ln

[∫ a

0
exp

(
v(c; a)

α

)
dc

]

hN(ci ; a) =
exp

(
v(ci ;a)

α

)
∑J(N,a)

j=1 exp
(

v(cj ;a)

α

) → h(c; a) =
exp

(
v(c;a)
α

)
∫ a
0 exp

(
v(c;a)
α

)
dc

• Convergence akin to Riemann integrals.

• Main insights orthogonal to discrete v. continuous; use continuous for remainder
of talk.
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Marginal value of wealth I

V ′(a) =

∫ a

0
u′(a− c)h(c; a)dc

= u′(a− c∗(a)) +

∫ a

0

[
u′(a− c)− u′(a− c∗(a))

]
h(c; a)dc

MVW is positive and increasing in α.

• 1st term: standard effect: ↑ a =⇒ ↑ c tomorrow given c today

• 2nd term: novel to our framework from “noise” in decisions

• positive by Jensen’s inequality given prudence (u′(a− c) convex in c)

• comes from not being constrained upon choosing c that lead to low a′

• key mechanism: sunny day v. rainy day
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Marginal value of wealth II

Higher α fans out h(c; a) =⇒ more weight on high future MU states =⇒ MVW
increases due to convexity of u′(a− c).

16



Consumption choices “fan out” with wealth

1

2

3

4

5

6

7

8

10
-3

Violations of Euler equation /
deviations from predicted
consumption grow on average

• potential driver of right tail of
wealth?
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Wealth Disregards Euler Equation: Fanning wide of Consmpt
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The infinitely-lived savings problem



Extending the environment: T = 2 → T = ∞

Almost everything is the same as the 2-period case, except:

• now assume flow utility and shocks occur each period: u(ct) + ϵc,t

• Households discounts future at rate β, takes interest rate r as given

• assume and verify that β(1 + r) < 1

• Define action-specific value as

vt(ci ; a) = u(ci ) + βVt+1((a− ci )(1 + r)) + ηi

• First consider a finite number of periods, then take limit as T → ∞
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Value functions and decision rules with infinite horizon

• Proceeding as before, we have

Vt(a) = α ln

∫ a

0
exp

(
vt(ci ; a)

α

)
dc + α ln a

ht(a) =
exp

(
vt (ci ;a)

α

)
∫ a

0 exp
(

vt (ci ;a)
α

)
dc

• Given this, it is straightforward to show that:

• Vt(a) = T (Vt+1, a) as described above is a contraction

• =⇒ Vt(a) is strictly concave and differentiable

• infinite horizon limits exist V (a), h and takes analogous forms
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A special case: Log Utility Thanks to Hanbaek Lee

EV shocks No EV shocks EV change

V (a) 1+α
1−β

ln a+ B 1
1−β

ln a+ B̃ steeper slope

c(a) (1+α)(1−β)
1+α+α(1−β)

a (1 − β)a lower avg consumption

h(c; a) ∼ B
(

1+α
α

,
β(1+α)
α(1−β)

+ 1; 0, a
)

- Beta distribution

To first order, EV shocks act as a specific form of increased patience, but variation
around average skews towards savings.
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Quantifying the Novel Precautionary
Motive



Excercise I: use slope from PSID to estimate α

ind. var. cash on hand: decile mean cash on hand: decile rank
moment intercept slope required α intercept slope required α

PSID data 0.1091 0.0048 - 0.0980 0.0845 -
(0.0057) (0.0007) (0.0096) (0.0167)

model with EVS shocks only
EVS only 0.0742 0.0048 0.1824 0.1265 0.0845 0.3562

add in earnings risk:
iid 0.0637 0.0048 0.1635 0.1118 0.0845 0.3237
STY (2004) 0.0483 0.0048 0.1143 0.0444 0.0845 0.1441

Notes: Slopes match data to numerical precision by design. Actual regressors for decile rank regressions are 0.05
for decile 1, 0.15 for decile 2, etc. STY (2004) refers to the labor income process of Storesletten, Telmer, and
Yaron (2004 JPE).
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Interpreting the estimates: recalibrating non-EVS economies

What does α = 0.1143 mean? Consider the following exercise:

• solve no EV, Aiyagari economy with earnings process from last row

• increase variance of income until economy has r∗ from EV case

• required increase in the unconditional variance of earnings measures the
contribution of EV shocks to savings

Result: the variance of earnings risk must increase by 26-33%.

• related exercise: with mean 1 iid normally distributed marginal utility shocks, need
a standard deviation of θ of 0.465.
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Exercise II: implications for wealth inequality (shares)

• EV model: estimate (β, γ, α) to match wealth moment and PSID regression coefficients

• No EV model: estimate β to match wealth moment

Data K-Y (1) top 20%(2)
EV No EV EV No EV

bottom 20% -0.41 1.18 0.74 0.93 0.64
2nd quintile 0.87 4.54 3.68 3.91 3.55
3rd quintile 3.74 10.4 9.70 8.77 8.74
4th quintile 10.3 20.8 21.5 19.1 19.8
top 20% 85.5 63.1 64.4 67.3 67.2
top 10% 73.3 43.4 44.7 48.8 47.8
top 5% 61.2 28.6 29.5 35.0 32.9
top 1% 34.9 9.60 9.68 13.9 12.6
top 0.1% 12.7 1.25 1.32 3.50 2.90
top 0.01% 4.24 0.150 0.146 0.813 0.593

• Punchline 1: EV effect brings UP bottom of distribution (counterfactual)

• Punchline 2: also fans out right tail of distribution, conditional on share
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Taking Stock: What have we learned?

• Uniform Extreme Value Shocks add a Precuationary Motive to Savings

• Help with the shape of Euler Equation Errors

• Does not Help with Wealth Dispersion

• The Poor are concerned with this Option to consume

• We now put together these ideas with some form of notion of Superior Goods so
that it only affects the “Rich”.
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Problem with Option to Ignore EV Shocks

• Think of two Subperiods:

• In the morning we have a standard utility function.

• In the afternoon we get extreme value shocks over levels of consumption that we
can Choose to Ignore

• The fundamental problem we look to solve is

V (a) = max
y∈[0,a]

u(a− y) +W (y)

where W (y) = Eϵ

max

βV (y), max
c∈[0,y ]

ϵ(c) + βV (y − c)︸ ︷︷ ︸
≡W̃ (y ;ϵ)
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Problem with Option to Ignore EV Shocks

• we obtain after many a step (which can be interpreted)

W (y) = v(y) exp

{
−
∑

j wj (y)

w(y)

}
+ α ln

∑
j

wj (y)

(1 − exp

(
−
∑

j wj (y)

w(y)

))

−α

∫ ∑
j wj (y)

w(y)

0
ln s exp {−s} ds

1st Term “Floor” value v times the probability that theoption is chosen.

2nd Term Typical expected value of the extreme value branch of the max operator in (??), again times the probability
that this branch is chosen

3rd Term Adjustment to the second term which filters out the values of the extreme value branch which are never
chosen in light of the outside option of the first branch.

• Computationally, this formula is still very useful: as long as we have a precise numerical integral of the
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Figure 1: An example from the 2-period model

Figure 2: Low θ
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Figure 3: High θ

Figure 4: Beginning of period values and policies
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Preliminary Finding

• The Option to Pay Attention to the Extreme Value Shock is Operationally like a
superior Good

• It will only be exercised occasionally and with probability increasing in resources

• We expect that it will

• add wealth concentration at the top

• Improve the fit of the errors

• Still Work to do Here
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Conclusion

We have developed a theory of structural extreme value preference shocks that imply
preqcautionary savings. This is a new tool.

• very different from shocks to marginal utility

• strong predictions about consumption errors that are confirmed by data and can
be used to estimate the key parameter of the EV process

• implies a strong precautionary motive

• similar to 1/3 increase in variance of earnings

• fans out right tail of wealth distribution

• Promising Direction of hte Notions of Option to Choose
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Thank you Very Much
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Log case: derivation

Guess and verify V (a) = A ln a+ B, which implies

V (a) = α ln

∫ a

0
c

1
α (a− c)

βA
α dc + βA ln(1 + r) + βB + α ln a

Then the change of variables y = c/a implies

V (a) = (1 + βA+ 2α) ln a+ α ln

∫ 1

0
y

1
α (1 − y)

βA
α dy︸ ︷︷ ︸

=B(1/α+1,βA/α+1)

+βA ln(1 + r) + βB

where B is the beta function. Proceeding, we obtain

A =
1 + 2α
1 − β

B =
α

1 − β
lnB

(
1
α

+ 1,
β(1 + 2α)
α(1 − β)

+ 1
)

+
β

1 − β

1 + 2α
1 − β

ln(1 + r)

Back to log case main Decision rule



Log case: decision rule

By plugging in the form of the value function from the log case, we obtain

h(c; a) =
1
a

(
c
a

)p−1
(
(
1 − c

a

)q−1

B
∼ B(p, q; [0, a])

• p = 1
α
+ 1 and q = β(1+2α)

α(1−β)
+ 1 are the shape parameters

• B is the constant from the previous slide

• B(p, q; [0, a]) is the (generalized) beta distribution with shape parameters p and q

defined over the extended interval [0, a]

Back to log case main Back to log case derivation



MU failure details (I): form of the value function

If we guess that V (x, θ) = A(θ) x1−γ

1−γ for a set of constants A(θ) with mean A =
∑

θ π(θ)A(θ). Then,
solving the Euler equation yields

c

(1 + r)(x − c)
=

[
β(1 + r)A

θ

]− 1
γ

︸ ︷︷ ︸
≡Γ(θ;A)

=⇒ c∗(x, θ) =
(1 + r)Γ(A, θ)

1 + (1 + r)Γ(A, θ)︸ ︷︷ ︸
≡Λ(θ;A)

x

Tomorrow’s cash on hand will be

x′∗(x, θ) = (1 + r)(x − c∗(x, θ)) = (1 + r)(1 − Λ(θ;A))︸ ︷︷ ︸
≡∆(θ;A)

x

and so under the guess of V (x, θ) (which implies V (x) =
∑

θ π(θ)V (x, θ) = A x1−γ

1−γ ),

max
c

θu(c) + βV ((1 + r)(x − c)) = θ
(c∗)1−γ

1 − γ
+ βA

(x′∗)1−γ

1 − γ

=⇒ A(θ)
x1−γ

1 − γ
=

[
θΛ(θ;A)1−γ + β∆(θ;A)1−γ

] x1−γ

1 − γ

Given N levels of θ and existing expressions for A, Λ, and ∆, this is a system of N equations in N
unknowns (the A(θ)), and so it must have a unique solution.



MU failure details (II): figure

• MU shocks affect consumption share of wealth along wealth distribution in a
homogenous fashion

• make the log consumption figure streamlined, include analog for EV case.



Parameters Back: alternative economies

parameter model value notes

CRRA γ 2.0 standard

subjective discount factor β 0.96 standard for annual model

capital share λ 0.30 ”

depreciation rate δ 0.072 ”

STY (2004) earnings process

standard deviation, perm comp. STY σ(ϵ1) log-normal, 5-point discret

persistence, persi comp. STY ρ(ϵ2) AR(1), 10-point discret

st dev, pers comp. STY σ(ϵ2) normally distributed innovation

st dev, transitory comp. STY σ(ϵ3) log-normal, 5-point discret

specific to certain model variant

coef. of variation, labor productivity ER σ(ζ) 0.2 2/3 or 1% precautionary savings

coef. of variation, marginal utility MUR σ(θ) 0.328 match r from ER economy

scale parameter, simple model EVS α 0.048 ”

scale parameter, full model EVS+STY α̃ 0.114 calibration to PSID data

augmented transt earnings risk STY aug ˜σ(ϵ3) 0.456 match r from EVS+STY Ec

augmented marg ut risk MUR+STY ˜σ(θ) 0.465 match r from EVS+STY Ec



Figure: empirical results
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More on simple 2-good case (I)

Assume the following functional forms:

• EVS good: u1(c1) =
c
1−γ1
1
1−γ1

, γ1 low

• non-EVS good: u2(c2) =
(c2−c2)

1−γ2

1−γ2
, γ2 high

• c2 ≥ 0: floor to capture the “necessity” nature of this good

• =⇒ c1 ≤ a− c2, since an Inada condition holds at c2 rather than 0

• tomorrow: u3(c
′) = (c′)1−γ′

1−γ′ , γ′ ∈ [γ1, γ2] (or just non-EVS)

Fundamental solution: equalize marginal utilities and use up budget

c−γ1
1 = (c2 − c2)

−γ2 = (a− c1 − c2)
−γ′

=⇒ c2 = c2 + c
γ1
γ2
1 =⇒ c1 + c

γ1
γ2
1 + c

γ1
γ′
1 = a− c2

Can solve for c1 via bisection, then plug into c2 expression.



More on simple 2-good case (II)

EVS solution: equalize marginal utilities only for non-EVS good and future
consumption, use up budget

(c2 − c2)
−γ2 = (a− c1i − c2)

−γ′

Can solve for c∗2 (c1) via bisection, then plug back into budget to get a′∗(c1)



Formulas: 2 goods, 2 periods

The ex-ante value function and decision rules can then be defined as in the baseline:

V (a) = α ln

∫ a

0
exp

(
vc1(a)

α

)
dc1 + α ln a

h(c1; a) =
exp

(
vc1 (a)

α

)
∫ a

0 exp
(

vc1 (a)
α

)
dc1

Note that the density over c1 induces a density over c2 via c∗2 (c1).

Back



Decision contours: 2 goods, 2 periods, same u(·) function
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Empirical approach: predicting consumption

Goal: flexible prediction model of consumption expenditures from PSID

Methodology: proceed in 2 steps

1. adapt Kaplan and Violante (2010) to measure log income

• 3 components: (i) permanent; (ii) AR(1); and (iii) transitory

2. estimate consumption function ln c = g(xit , ηit ,Zit) where xit is cash on hand, ηit
is a transitory shock, and Zit is a control vector

Key measurement: define residual ξit = ln cit − ĝ(xit , ηit ,Zit), then compute variance
within deciles

• implementing analogous measure in-model is trivial (no regressions!)

figure: empirical results back to main



Figure: empirical results
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Fundamental shocks and finite choice economies

Preferences: consuming c ∈ [0, c] (with c non-binding) yields u(c)+ϵc

• u(·): standard: strictly concave, differentiable

• ϵc : random variables attached to each level of consumption

• no borrowing, r = 0 =⇒ future utility u(a− c) for wealth / c.o.h. a

Proceed by considering this economy as the limit of discrete economies

• indexed by the cardinality N of consumption grid {ci}Ni=1

• assume c = 1 is on the grid at location M(N): cM(N) = 1

• grid is “close” to the upper bound, cN ≥ c ≥ cN−1

• equally-spaced grid, take limit as N → ∞ to get continuous objects

back to main



MU failure details: form of the value function

If we guess that V (x, θ) = A(θ) x1−γ

1−γ for a set of constants A(θ) with mean A =
∑

θ π(θ)A(θ). Then,
solving the Euler equation yields
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(1 + r)(x − c)
=
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x

and so under the guess of V (x, θ) (which implies V (x) =
∑

θ π(θ)V (x, θ) = A x1−γ

1−γ ),

max
c

θu(c) + βV ((1 + r)(x − c)) = θ
(c∗)1−γ

1 − γ
+ βA

(x′∗)1−γ
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=⇒ A(θ)
x1−γ

1 − γ
=

[
θΛ(θ;A)1−γ + β∆(θ;A)1−γ
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Given N levels of θ and existing expressions for A, Λ, and ∆, this is a system of N equations in N
unknowns (the A(θ)), and so it must have a unique solution.



Parameters Back: alternative economies

parameter model value notes

CRRA γ 2.0 standard

subjective discount factor β 0.96 standard for annual model

capital share λ 0.30 ”

depreciation rate δ 0.072 ”

STY (2004) earnings process

standard deviation, permanent comp. STY σ(ϵ1) log-normal, 5-point discretization

persistence, persistent comp. STY ρ(ϵ2) AR(1), 10-point discretization

standard deviation, persistent comp. STY σ(ϵ2) normally distributed innovation

standard deviation, transitory comp. STY σ(ϵ3) log-normal, 5-point discretization

specific to certain model variant

coef. of variation, labor productivity ER σ(ζ) 0.2 2/3 or 1% precautionary savings

coef. of variation, marginal utility MUR σ(θ) 0.328 match r from ER economy

scale parameter, simple model EVS α 0.048 ”

scale parameter, full model EVS+STY α̃ 0.114 calibration to PSID data

augmented transitory earnings risk STY aug ˜σ(ϵ3) 0.456 match r from EVS+STY economy

augmented marginal utility risk MUR+STY ˜σ(θ) 0.465 match r from EVS+STY economy
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