Firm Dynamics in an Urban Economy*

Jeffrey Brinkman, Daniele Coen-Pirani, and Holger Sieg

Abstract:
We develop a new dynamic general equilibrium model to explain firm entry, exit, and relocation decisions in an urban economy with multiple locations and agglomeration externalities. We characterize the stationary distribution of firms that arises in equilibrium. We estimate the parameters of the mode using a method of moments estimator. Using unique panel data collected by Dun and Bradstreet, we find that agglomeration externalities increase the productivity of firms by up to eight percent. Economic policies that subsidize firm relocations to the central business district increase agglomeration externalities in that area. They also increase economic welfare in the economy.

JEL Classifications: R30, R13, L11, C51

Running Head: Firm Dynamics

*Manuscript received October 2013; revised June 2014.

1We would like to thank the editor of the journal, the anonymous referees, Dan Ackerberg, Patrick Bayer, Steven Berry, Rui Castro, Gilles Duranton, Dennis Eppe, Joe Gyourko, Vernon Henderson, Thomas Holmes, Matt Kahn, Ariel Pakes, Theodore Papageorgiu, Diego Puga, Stephen Redding, Steve Ross, Esteban Rossi-Hansberg, Albert Saiz, Kurt Schmidheiny, Frank Wolak, Jipeng Zhang and seminar participants at numerous conferences and universities. Sieg acknowledges financial support from the NSF (SES-0958705). The views expressed here are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System.
1 Introduction

A key insight of Marshall (1920) is that geographic proximity of economic activity increases efficiency in production and trade. Over the past several decades, research has formalized this idea and developed general equilibrium models to study the impact of agglomeration externalities on firm choices and economic welfare. This paper makes four contributions to this important literature. First, we develop a dynamic model that provides strong predictions about firm dynamics as well as entry, exit, and relocation decisions. Most previous research in urban and regional economics has been based on static models.\(^2\) Second, we provide an integrated approach for estimating our dynamic equilibrium model of firm locational choices.\(^3\) Third, we use a novel data set and show that our empirical approach provides new empirical

\(^3\)From a purely methodological perspective, our paper is related to Davis, Fisher, & Whited (2011), who develop a growth model in which the total factor productivity of cities depends on the density of economic activity. They estimate the magnitude of this external effect and evaluate its importance for the growth rate of consumption per capita in the U.S. Similarly, Holmes (2011) estimates a dynamic model to study the expansion of Walmart and to quantify the importance of geographic proximity in designing distribution networks. Ahlfeldt, Redding, Sturm, & Wolf (2012) develop a static urban model of residential and firm location decisions and estimate it exploiting Berlin’s division and reunification as a source of exogenous variation in the concentration of local economic activity.
insights into the sorting of firms within large metropolitan areas and the importance of agglomeration externalities. We find that agglomeration externalities increase the productivity of firms by up to eight percent. Finally, we show that economic policies that subsidize firm relocations to the central business district increase agglomeration externalities in that area. More importantly, they can also increase economic welfare in the economy. Hence, our analysis suggests that place-based policies that encourage firms to relocate to locations with high agglomeration externalities can be beneficial.

We consider a model of an economy with two distinct locations that endogenously differ in the magnitude of their agglomeration externalities. Following Lucas & Rossi-Hansberg (2002), agglomeration externalities are a function of local employment density and, therefore, depend on firm sorting. We model firm dynamics and industry equilibrium as suggested by Hopenhayn (1992). Firms enter the economy with an initial productivity and must pay an entry cost. Productivity then evolves according to a stochastic first-order Markov process. Each period, firms compete in the product market, must pay a fixed cost of operating, and realize a profit. Agglomeration externalities affect firm dynamics and the sorting of firms in at least three important ways. First, entry patterns depend on local land rental rates and location-specific externalities. This gives rise to an initial sorting of new firms. Second, the productivity of firms changes over time which implies that growth trajectories will differ by location, thus creating incentives to relocate within a city to exploit a better match with the agglomeration externalities. Finally, the continuation value for a firm is location specific, which implies that exit rates depend on location. We characterize the stationary equilibrium of the urban economy and show that it differs from a static sorting model.

\footnote{Our data set does not include any measure of investment in research and development. We, therefore, abstract from investments and innovation, which is discussed in detail in Melitz (2003), Klette & Kortum (2004), and Duranton & Puga (2004).}
While we can establish some properties of stationary equilibria, analytical solutions of equilibria do not exist. Equilibria exist and are locally unique. In particular, two different equilibria have distinctly different local land rents and agglomeration externalities. When we estimate the model we condition on the observed wages and land rents, and solve for the unique equilibrium conditional on these outcomes. This approach then effectively deals with potential multiplicity problems in estimation.

We develop an algorithm that can be used to estimate the parameters of our model. We show that a subset of the structural parameters of the model can be estimated using the observed input and output choices without solving for the equilibrium of the model. The remaining parameters of the model, which include the cost parameters, affect the equilibrium selection rules and can be estimated using a nested fixed point algorithm. The estimator is a simulated method of moments estimator that matches selected moments characterizing entry, exit and relocation of firms within the metropolitan area.

Our empirical analysis is based on unique panel data collected by Dun and Bradstreet. Large U.S. cities often act as a hub for service sector industries for a larger region. We, therefore, focus on locational choices within the service sector, excluding industries in which proximity to the consumer is a key factor for firm location. Our analysis reveals a number of important empirical regularities that characterize firm sorting within metropolitan areas.\(^5\) Firms located in the central business dis-

\(^5\)Most previous empirical studies have focused on sorting across cities or metropolitan areas. For example, Ellison & Glaeser (1997) argued that agglomeration externalities are important to understanding the geographic concentration of manufacturing in the U.S. Deckle & Eaton (1993) find that the geographic scale of agglomeration is mostly at the national level, while the financial sector is concentrated in specific metropolitan areas. Combes, Duranton, Gobillon, Puga, & Roux (2010) distinguish between selection effects and productivity externalities by estimating productivity distributions across cities. In contrast we focus on sorting within a metropolitan area, which is more consistent with the notion that agglomeration occurs on a local scale. This is consistent with findings
trict (CBD) are older and larger than firms located outside the CBD. They use more land and labor in the production process. However, they face higher rental rates for office space, which implies that they operate with a higher employee per land ratio. Firms entering or exiting the city center are typically larger than firms outside the CBD. Firms that relocate to the CBD tend to be larger firms that have grown in the recent past. These facts are not specific to Pittsburgh, which is our main empirical application, but hold for most U.S. metropolitan areas.

We implement our estimator for a variety of different model specifications. We find that our model fits the moments used in estimation as well as a set of moments that we use for model validation. Our estimates imply that agglomeration externalities increase the productivity of firms by up to eight percent. Economic policies that subsidize firm relocation to the CBD increase employment concentration in that area. The welfare gains in the CBD are typically larger than the losses outside the CBD, leading to an increase in overall welfare.

The rest of the paper is organized as follows. Section 2 describes the data set used in the empirical analysis and characterizes firm sorting within a metropolitan area. Section 3 develops our stochastic dynamic equilibrium model and discusses its properties. Section 4 describes identification and estimation of the model’s parameters. Section 5 presents the estimation results. Section 6 discusses the policy implications of our analysis, while Section 7 concludes.

by Rosenthal & Strange (2001, 2003). They report the level and type of agglomeration at different geographic scales, and also measure the attenuation of these externalities within metropolitan areas. Holmes & Stevens (2002) also find evidence of differences in plant scale in areas of high concentration, suggesting that production externalities act on individual establishments.
2 Data and Empirical Regularities

To get some quantitative insights into firms’ sorting behavior in U.S. metropolitan areas we analyzed U.S. Census data for a number of metro areas. We define a business district within the metropolitan area as those zip codes within a city that have a relatively high density of firms, signifying local agglomeration. To make this concept operational, we use an employment density of at least 10,000 employees per square mile. These locations need not be contiguous, as some metropolitan areas exhibit multiple dense business districts.

Table 1: Concentration of Employment in Dense Business Districts

<table>
<thead>
<tr>
<th>MSA</th>
<th>Total Emp. Outside CBD</th>
<th>Total Emp. in CBD</th>
<th>Avg. Emp. outside CBD</th>
<th>Avg. Emp. in CBD</th>
<th>% Services outside CBD</th>
<th>% Services in CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>1,115,398</td>
<td>229,002</td>
<td>15.79</td>
<td>29.25</td>
<td>45.24%</td>
<td>63.31%</td>
</tr>
<tr>
<td>Boston</td>
<td>1,728,075</td>
<td>531,349</td>
<td>15.66</td>
<td>39.01</td>
<td>41.99%</td>
<td>59.90%</td>
</tr>
<tr>
<td>Chicago</td>
<td>3,070,387</td>
<td>528,529</td>
<td>15.86</td>
<td>24.47</td>
<td>41.85%</td>
<td>66.50%</td>
</tr>
<tr>
<td>Columbus</td>
<td>705,534</td>
<td>63,278</td>
<td>18.69</td>
<td>23.73</td>
<td>42.88%</td>
<td>58.64%</td>
</tr>
<tr>
<td>Hartford</td>
<td>499,718</td>
<td>18,783</td>
<td>17.26</td>
<td>26.95</td>
<td>40.31%</td>
<td>61.41%</td>
</tr>
<tr>
<td>Houston</td>
<td>1,720,625</td>
<td>286,574</td>
<td>16.38</td>
<td>28.47</td>
<td>42.86%</td>
<td>65.51%</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>491,959</td>
<td>24,315</td>
<td>15.24</td>
<td>25.38</td>
<td>43.09%</td>
<td>66.28%</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>4,257,269</td>
<td>974,693</td>
<td>15.02</td>
<td>19.39</td>
<td>44.16%</td>
<td>52.39%</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>1,921,626</td>
<td>196,428</td>
<td>15.91</td>
<td>27.66</td>
<td>43.99%</td>
<td>55.74%</td>
</tr>
<tr>
<td>Phoenix</td>
<td>1,551,921</td>
<td>64,793</td>
<td>18.31</td>
<td>27.78</td>
<td>47.79%</td>
<td>71.01%</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>822,013</td>
<td>157,009</td>
<td>14.58</td>
<td>40.04</td>
<td>39.16%</td>
<td>60.90%</td>
</tr>
<tr>
<td>Salt Lake</td>
<td>440,239</td>
<td>53,086</td>
<td>15.22</td>
<td>21.08</td>
<td>45.64%</td>
<td>58.90%</td>
</tr>
<tr>
<td>San Antonio</td>
<td>655,740</td>
<td>26,572</td>
<td>17.21</td>
<td>20.49</td>
<td>43.22%</td>
<td>56.59%</td>
</tr>
<tr>
<td>Seattle</td>
<td>1,260,335</td>
<td>179,230</td>
<td>14.55</td>
<td>20.33</td>
<td>42.07%</td>
<td>58.97%</td>
</tr>
<tr>
<td>St Louis</td>
<td>1,253,959</td>
<td>84,034</td>
<td>16.38</td>
<td>42.57</td>
<td>41.41%</td>
<td>52.43%</td>
</tr>
<tr>
<td>Wash. DC</td>
<td>1,930,848</td>
<td>303,770</td>
<td>15.42</td>
<td>21.68</td>
<td>49.96%</td>
<td>60.05%</td>
</tr>
</tbody>
</table>

*Percentage of establishments outside the CBD that are in the service industries.

**Percentage of establishments in the CBD that are in the service industries.

Table 1 shows the concentration of employment in dense business districts for a
sample of U.S. cities. First, we report statistics using all firms located in the metro area. We find that there is a significant amount of heterogeneity among the cities in our sample. There are some cities such as Phoenix and Hartford where employment is not concentrated in dense business districts. Most larger cities in the U.S., such as Los Angeles, Chicago, Boston, Washington, Philadelphia, and Houston, have a significant fraction of firms located in high density central business districts. This finding is also true for a variety of mid-sized cities such as Pittsburgh and Seattle. Focusing on the differences between firms located inside and outside of the CBD, we find that firms in the CBD are larger than the MSA average. This indicates that they have higher levels of productivity. This finding is common among all cities in our sample. In addition, firms in the service sector are more concentrated in the CBD compared to firms in general, suggesting that service-oriented firms benefit more from local agglomeration than other sectors.

To estimate our model, we need more detailed data than those that are publicly available from the U.S. Census. Our empirical application, therefore, focuses on firm location choices in Allegheny County, the second most populous county in Pennsylvania, and the nucleus of the Pittsburgh metropolitan area. We are interested in characterizing the observed sorting of establishments, as well as entry, relocation and exit rates.\(^6\) For this purpose we use establishment-level data from Dun and Bradstreet’s Million Dollar Database.\(^7\) This database provides detailed information on establishments in Allegheny County in two years, 2008 and 2011. The coverage is nearly universal compared to Census counts of establishments in the county. The database provides data on location, facility size, total employment, industry, year

\(^{6}\)While we use the terms “firm” and “establishment” interchangeably, our unit of analysis in the empirical section is an establishment. In practice, 92 percent of establishments in our sample are single-establishment firms.

\(^{7}\)Information on Dun and Bradstreet data is available on-line at http://www.dnbmdd.com/. Appendix A.3 discusses in detail how our data set was constructed from the raw data.
established, and sales. The Dun and Bradstreet data have advantages and disadvantages relative to other firm-level data such as those collected by the U.S. Census. The firm-level sales data are obtained by Dun and Bradstreet through a variety of methods, including self-reporting by firms, financial statements, as well as statistical models to impute missing data. This last methodology is potentially problematic for our analysis as we use sales data to estimate establishment-level productivity. A clear advantage of the Dun and Bradstreet data is that it contains information on both establishment level sales and facility size, the latter of which is crucial for our application.

We focus on service industries, given that there is strong evidence that U.S. cities have undergone a transformation during the past decades, moving from being centers of individual manufacturing sectors toward becoming hubs for service industries.\(^8\)

We exclude wholesale and retail businesses from our analysis of services, since the locational decisions of these businesses are primarily driven by proximity to consumers (Hotelling, 1929).\(^9\) For similar reasons, we also do not consider businesses in the entertainment sector. We, therefore, define the service sector as consisting of businesses that operate in information technology, finance, real estate, professional services, management, administrative support, education, health care and related sectors. These sectors account for 51 percent of employment in Allegheny County.

In order to characterize the sorting patterns of establishments we define the cen-

\(^8\)Duranton & Puga (2005), for example, show evidence that cities have become more functionally specialized, with larger cities, in particular, emerging as centers for headquarters and business services. They posit that this change is primarily related to industrial structure and a decrease in remote management costs in particular. Davis & Henderson (2008) provide further evidence that services and headquarters are indeed more concentrated in large cities relative to the entire economy and that headquarters concentration is linked to the availability of diverse services.

\(^9\)Following Bresnahan & Reiss (1991), there is a large literature that explains entry and exit into markets with a small number of potential entrants.
tral business district of our geographic area as the three zip codes in the center of Pittsburgh. These include the downtown central business district and the business district in Oakland, the two significant dense commercial areas of Pittsburgh.10 The CBD, so defined, accounts for over 20 percent of total employment, about 28 percent of service sector employment, and 13 percent of establishments, but less than 1 percent of all the land in Allegheny County. The places in Allegheny County outside the CBD are treated in what follows as the alternate location, denoted by oCBD (mnemonic for outside the CBD).11

Comparing firms that are located inside the CBD with firms that are outside the CBD, we find some important patterns that hold for all service industries. Table 2 reports the total employment, the average employment and the facility space per employee for firms inside and outside the CBD for selected service industries in 2011. Notice that finance, education, and professional services are the industries that are most heavily concentrated in the CBD.

Establishments’ size. The average employment size of establishments is larger in the CBD. The average establishment in the CBD employs about 23 persons, while the average firm outside the CBD has fewer than 9 employees.

Land use. Firms located in the CBD use less office space per employee; that is, office space per employee is 297 square feet in the CBD compared to 482 outside the CBD. This is partially due to the fact that rents for office space are approximately 12 percent higher in the CBD.

To get some additional insights into the firm sorting process, we analyze the full

10The zip codes are 15222, 15219, and 15213.

11None of the results reported in this paper rely on this definition of the alternate location. We can, for example, omit those parts of Allegheny County that have little economic development and obtain similar results regarding firm sorting.
Table 2: Establishment Employment and Facility Size by Industry in 2011

<table>
<thead>
<tr>
<th>NAICS</th>
<th>Sample Size</th>
<th>Total Emp</th>
<th>% Emp CBD</th>
<th>Emp CBD</th>
<th>Emp oCBD</th>
<th>Facility CBD</th>
<th>Facility oCBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information (51)</td>
<td>881</td>
<td>8,487</td>
<td>23.8</td>
<td>8.4</td>
<td>18.2</td>
<td>613</td>
<td>428</td>
</tr>
<tr>
<td>Finance (52)</td>
<td>2,733</td>
<td>36,420</td>
<td>45.6</td>
<td>8.3</td>
<td>49.1</td>
<td>412</td>
<td>166</td>
</tr>
<tr>
<td>Real Estate (53)</td>
<td>2,609</td>
<td>13,749</td>
<td>21.9</td>
<td>4.5</td>
<td>12.1</td>
<td>1,290</td>
<td>1,207</td>
</tr>
<tr>
<td>Prof. Services (54)</td>
<td>6,957</td>
<td>52,521</td>
<td>30.5</td>
<td>6.7</td>
<td>10.8</td>
<td>420</td>
<td>355</td>
</tr>
<tr>
<td>Management (55)</td>
<td>184</td>
<td>995</td>
<td>13.1</td>
<td>5.1</td>
<td>8.1</td>
<td>499</td>
<td>345</td>
</tr>
<tr>
<td>Admin. Support (56)</td>
<td>5,694</td>
<td>31,613</td>
<td>11.9</td>
<td>5.1</td>
<td>14.0</td>
<td>551</td>
<td>304</td>
</tr>
<tr>
<td>Education (61)</td>
<td>495</td>
<td>23,328</td>
<td>63.4</td>
<td>19.9</td>
<td>224.0</td>
<td>458</td>
<td>106</td>
</tr>
<tr>
<td>Health Care (62)</td>
<td>6,173</td>
<td>98,144</td>
<td>18.0</td>
<td>14.7</td>
<td>25.2</td>
<td>387</td>
<td>357</td>
</tr>
<tr>
<td>Total</td>
<td>25,726</td>
<td>265,257</td>
<td>27.9</td>
<td>8.5</td>
<td>22.9</td>
<td>482</td>
<td>297</td>
</tr>
</tbody>
</table>

Notes: “Emp” denotes average employment. “Facility” is average facility size measured in square feet per employee. Source: Authors’ calculations based on Dun and Bradstreet’s data set.

distribution of firms by location. Table 3 reports a number of percentiles of the age, facility size, employment size, and revenue distribution by location. Table 3 reveals two other important features of firms sorting across locations.

Age. Firms in the CBD tend to be older. The 75th percentile of the age distribution in the CBD is 26 years while it is 21 years outside the CBD.

Revenue per employee. Firms in the CBD have a higher revenue per employee. The latter fact is consistent with the notion that firms in the CBD may have higher productivity levels than firms located outside the CBD.

Table 3 also shows that there are significant differences among firms in the right tail of the distribution. Looking at the 90th and higher percentiles, we find large differences between firms inside and outside the CBD.

One potential concern of the analysis above is that differences between firms located inside and outside the CBD may be due to aggregation among different industries. In the lower panels of Table 3, we, therefore, report the same statistics for two
Table 3: Establishment Characteristics by Location and Industry in 2011

All Service Industries (NAICS 51-62)

<table>
<thead>
<tr>
<th>Percentile</th>
<th>CBD</th>
<th>oCBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>Emp</td>
</tr>
<tr>
<td>10th</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25th</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>50th</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>75th</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>90th</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td>95th</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>99th</td>
<td>108</td>
<td>288</td>
</tr>
</tbody>
</table>

Professional, Scientific, and Technical (NAICS 54)

<table>
<thead>
<tr>
<th>Percentile</th>
<th>CBD</th>
<th>oCBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>Emp</td>
</tr>
<tr>
<td>10th</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>25th</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>50th</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>75th</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>90th</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>95th</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>99th</td>
<td>88</td>
<td>138</td>
</tr>
</tbody>
</table>

Financial Services (NAICS 52)

<table>
<thead>
<tr>
<th>Percentile</th>
<th>CBD</th>
<th>oCBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>Emp</td>
</tr>
<tr>
<td>10th</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25th</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>50th</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>75th</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>90th</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td>95th</td>
<td>77</td>
<td>114</td>
</tr>
<tr>
<td>99th</td>
<td>151</td>
<td>106</td>
</tr>
</tbody>
</table>

Notes: “Emp” is average employment, “Facility” is average facility size measured in square feet, “Rev/Emp” is revenue per employee. Source: Authors’ calculations based on Dun and Bradstreet data.
industries. The middle panel reports the results for the information technology sector which is an “average” service industry in terms of its concentration of employment in the CBD. The lower panel reports the statistics for the finance industry which is the most heavily concentrated industry in our sample. We find that the qualitative differences between firms located inside and outside the CBD are not driven by aggregation across firms in the different service industries. If anything, the differences in the financial service industry are more pronounced than the differences in the sample of all service industries.

We observe firms at two points in time, 2008 and 2011. Table 4 reports firm-level characteristics. Notice that the average firm characteristics are similar in both time periods.12

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment count CBD</td>
</tr>
<tr>
<td>Establishment count oCBD</td>
</tr>
<tr>
<td>Average Employment CBD</td>
</tr>
<tr>
<td>Average Employment oCBD</td>
</tr>
<tr>
<td>Average Facility Size CBD</td>
</tr>
<tr>
<td>Average Facility Size oCBD</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on Dun and Bradstreet data set.

Finally, we characterize differences in entry, exit, and relocation rates by location. Here we exploit the panel structure of our data set. Dun and Bradstreet collect detailed information about names, addresses, and age of the firm. In addition, establishments are matched across time periods using the D-U-N-S number, which remains

12In terms of the local economy the size of the aggregate labor force in Allegheny county remains relatively stable between 2008 and 2011, increasing by 0.7 percent, according to the Bureau of Labor Statistics. Real per capita gross domestic product data from the Bureau of Economic Analysis shows a 2.15 percent increase between 2008 and 2010, the last year of published data.
assigned to an establishment regardless of location. Entrants were determined as establishments that were present in 2011, but not in 2008. Exits were calculated similarly. Also shown are measures of total movement (where the zip code of the establishment changed) as well as movement to and from the CBD. Table 5 reveals four more empirical regularities.

Table 5: Entry, Exit and Relocation

<table>
<thead>
<tr>
<th>Establishments that:</th>
<th>Count</th>
<th>Percent</th>
<th>Average Employment 2008</th>
<th>Employment 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relocate*</td>
<td>554</td>
<td>2.2*</td>
<td>43.7</td>
<td>49.1</td>
</tr>
<tr>
<td>Move from CBD to oCBD</td>
<td>84</td>
<td>0.25**</td>
<td>12.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Move from oCBD to CBD</td>
<td>57</td>
<td>0.22**</td>
<td>15.7</td>
<td>20.1</td>
</tr>
<tr>
<td>Entry in the CBD</td>
<td>743</td>
<td>22.3***</td>
<td>n.a.</td>
<td>7.1</td>
</tr>
<tr>
<td>Entry oCBD</td>
<td>7,982</td>
<td>35.5****</td>
<td>n.a.</td>
<td>4.1</td>
</tr>
<tr>
<td>Exit from CBD</td>
<td>1,075</td>
<td>29.9***</td>
<td>17.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>Exit from oCBD</td>
<td>6,060</td>
<td>29.4****</td>
<td>6.2</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*All establishments that changed zip code between 2008 and 2011.
**Percent of establishments in entire county
*** Percent of CBD establishments
**** Percent of oCBD establishments
Source: Authors’ calculations based on Dun and Bradstreet data set.

Entry and exit rates. They are of similar magnitudes in the CBD and outside.

Average employment of new entrants. New establishments in the CBD are larger than new establishments outside the CBD. Entrants in the CBD hire on average 7.1 employees, while entrants outside the CBD employ 4.1 workers.

Average employment of exiting firms. Firms that exit the CBD are much larger than firms that exit outside the CBD. The average employment of exiting firms in the CBD is 17.6 compared to 6.2 for firms outside the CBD.

13See Neumark, Zhang, & Wall (2007) for a discussion of this matching method, as well as a more general discussion of the Dun and Bradstreet data set.
Relocation. There is substantial relocation measured at the zip code level; that is, approximately 2.2 percent of all firms relocate during the three-year period. However, relocation rates are about ten time smaller when zip codes are aggregated into our geographic units, CBD and oCBD. Notice that firms that relocate to the CBD are larger than the average firm oCBD and are expanding, while firms relocating to oCBD are smaller than the average firm in the CBD and are shrinking.

Rental prices and wages. The rental rates are $22.34 and $19.87 per square foot per year in the CBD and oCBD, respectively. These rents were obtained from industry data collected by Grubb and Ellis in 2008. Average yearly income in the service sector is equal to $48,661 per year, based on Census Business Patterns data. We take the latter figure to represent the exogenous wage in our model and assume it takes the same value across the two locations.

3 A Dynamic Model of Firm Location Choices

We develop a new dynamic general equilibrium model of firm location choice that can explain the empirical regularities described in the previous section. We consider a model with two distinct locations, denoted by $j = 1, 2$, which can be interpreted as inside ($j = 1$) and outside ($j = 2$) a CBD.

3.1 Technologies and Markets

There is a continuum of firms that produce a single output good and compete in a product market. In each period, a firm chooses to stay where it is, move to the other location, or shut down. Firms are heterogeneous and productivity evolves according to a stochastic law of motion.
Assumption 1 A firm draws a new productivity shock, φ', each time period. The productivity shock evolves over time according to a Markov process with a conditional distribution $F(\varphi'|\varphi)$.

Each firm produces a single output good using labor, land, and capital as input factors. The technology that is available to the firms in the economy satisfies the following assumption.

Assumption 2 The production function of a firm in location j can be written as:

$$y = q(\varphi, n, l, k; e_j)$$ \hspace{1cm} (1)

where y is output, n is labor, l is land, k is capital, and e_j is the agglomeration externality in location j. The production function satisfies standard regularity conditions.

The agglomeration externality arises due to a concentration of employees operating in the same location (Lucas & Rossi-Hansberg (2002)).

Assumption 3 The agglomeration externality can be written as

$$e_j = e_j(N_j/L_j)$$ \hspace{1cm} (2)

where N_j and L_j are aggregate measures of labor and land, respectively. The function e_j is increasing in its argument.

\footnote{Note that for convenience we use the word “land” in the description of the model. In the empirical analysis we use data on establishments’ facility size as the empirical counterpart of this input.}
The urban economy is part of a larger economic system that determines output prices and wages.\footnote{It is straightforward to endogenize wages and output prices by adding a local labor market and an aggregate demand for output to our model. The assumption of uniform wages across the two locations can also be relaxed to reflect differential sorting of workers across firms in the two locations or the existence of commuting premia. However, since the Dun and Bradstreet data does not distinguish between different types of labor, we opted for the simplest specification.}

Assumption 4 The output price, p, the capital rental price, p_k, and the wage, w, are constant over time, independent of location, and determined exogenously.

Rental prices for land, r_j, however, are equilibrium outcomes. The supply of land is determined by an inverse land supply function in each location.

Assumption 5 The inverse land supply function is given by:

\[
(3) \quad r_j = r_j(L_j), \quad j = 1, 2
\]

which is increasing in the aggregate amount of land used in j.

Since rental prices for land must be higher in equilibrium in locations with high externalities, the agglomeration externality is, at least, partially capitalized in land rents.

We can break down the decision problem of a firm into a static and a dynamic problem. Consider the static part first. This problem arises because firms compete in the product market each period.\footnote{We abstract from oligopolistic competition, which is studied, for example, in Ericson & Pakes (1995). That framework is more appropriate when there are few competitors in the industry. Pakes & McGuire (1994, 2001) discuss how to solve models with oligopolistic competition. Doraszelski & Pakes (2006) provide a survey of that literature.}
Assumption 6 The product market is competitive and firms behave as price takers. Firms make decisions on land, labor, and capital usage after they have observed their productivity shock, φ, for that period.

Let π_j denote a firm’s one period profit in location j. The static profit maximization problem can be written as:

\[
\max_{\{n,l,k\}} \pi_j (n, l, k; \varphi),
\]

where the profit function is given by:

\[
\pi_j (n, l, k; \varphi) = pq (\varphi, n, l, k; e_j) - w n - p_k k - r_j l - f_j.
\]

The parameter f_j denotes a fixed cost of operation that may depend on location. Solving this problem, we obtain the demand for inputs as a function of φ, denoted by $n_j(\varphi), l_j(\varphi)$, and $k_j(\varphi)$, as well as an indirect profit function, denoted by $\pi_j(\varphi)$.\(^\text{17}\)

Let μ_j denote the measure of firms located in j. Given the static choices for land and labor use for each firm, we can use this measure to calculate the aggregate demand for land and labor:

\[
L_j = \int l_j(\varphi) \mu_j(d\varphi),
\]

\[
N_j = \int n_j(\varphi) \mu_j(d\varphi).
\]

Notice that the agglomeration effect e_j in equation (2) depends on the ratio of these two quantities.

\(^{17}\)Note that the sub-index j summarizes the dependence of the profit and input demand functions on location j’s rent and externality.
Consider now the dynamic aspect of a firm’s problem. The following Bellman equations formalize the decision problem of a firm that begins the period in location 1 or 2 with a productivity shock φ:

\begin{align}
V_1(\varphi) &= \pi_1(\varphi) + \beta \xi \max \left\{ 0, \int V_1(\varphi') F(d\varphi'|\varphi), \int V_2(\varphi') F(d\varphi'|\varphi) - c_r \right\} \\
V_2(\varphi) &= \pi_2(\varphi) + \beta \xi \max \left\{ 0, \int V_2(\varphi') F(d\varphi'|\varphi), \int V_1(\varphi') F(d\varphi'|\varphi) - c_r \right\}
\end{align}

where β is the time discount factor, and c_r is the cost of moving from one location to another. In each period, a firm is also subject to an exogenous exit probability $1 - \xi$. The first term on the right-hand side of the Bellman equations represents the flow of profits from operating in the location; the second term reflects the choice that each firm faces at the end of each period among three alternative choices: exit and get a liquidation value normalized to zero; continue operating in the current location; move to the other location and continue operations there.

Solving the dynamic decision problem above implies decision rules of the following form for firms currently in location j:

\begin{align}
x_j(\varphi) &= \begin{cases} 0 & \text{if the firm exits at the end of the period} \\ 1 & \text{if the firm chooses location 1 at the end of the period} \\ 2 & \text{if the firm chooses location 2 at the end of the period} \end{cases}
\end{align}

To close the model, we need to specify the process of entry.

Assumption 7: Firms are free to enter in both locations. All prospective entrants are ex-ante identical. Upon entering, a new firm incurs a cost c_j and draws a productivity shock φ from a distribution $\nu_j(\varphi)$.

Note that we allow the entry cost to vary by location. Assumption 7 guarantees that the expected discounted profits of a prospective firm are always less than or equal to the entry cost:

\[c_j \geq \int V_j(\varphi) \nu_j(d\varphi), \quad j = 1, 2 \]

(11)

If there is positive entry of firms, then this condition holds with equality.

We focus on a stationary economy in which the measures of firms \(\mu_j \) are time-invariant. Formally, \((\mu_1, \mu_2)\) must satisfy the following recursive equations:

\[\int_0^{\varphi'} \mu_1(dz) = \xi \int F(\varphi'|z) 1 \{ x_1(z) = 1 \} \mu_1(dz) \]

\[+ \xi \int F(\varphi'|z) 1 \{ x_2(z) = 1 \} \mu_2(dz) + M_1 \int_0^{\varphi'} \nu_1(dz) \]

(12)

and

\[\int_0^{\varphi'} \mu_2(dz) = \xi \int F(\varphi'|z) 1 \{ x_1(z) = 2 \} \mu_1(dz) \]

\[+ \xi \int F(\varphi'|z) 1 \{ x_2(z) = 2 \} \mu_2(dz) + M_2 \int_0^{\varphi'} \nu_2(dz) \]

(13)

where \(1 \{ x_j(\varphi) = l \} \) is an indicator function equal to 1 if \(x_j \) equals \(l \) and 0 otherwise, and \(M_j \) denotes the measure of firms entering in location \(j \). Equation (12) states that the measure of active firms with productivity shock smaller than \(\varphi' \) in location \(j = 1 \) at the beginning of a period is given by the sum of three measures. The first is the measure of active firms with productivity shock smaller than \(\varphi' \) in location \(j = 1 \) at the beginning of a period, choose to continue production in that location, survive the exogenous shutdown shock, and draw a productivity shock smaller than \(\varphi' \) at the beginning of the period. The second is the measure of firms who were operating in location \(j = 2 \) in the previous period, choose to relocate to \(j = 1 \) at the end of the period, survive the shutdown shock, and
draw a productivity shock smaller than \(\varphi' \). The third term represents the measure of new firms who choose to begin production in location \(j = 1 \) and draw a productivity shock smaller than \(\varphi' \). Equation (13) refers to location \(j = 2 \) and has a similar interpretation.

3.2 Equilibrium

We are now in a position to define a stationary equilibrium for our economy.

Definition 1 A stationary equilibrium for this economy consists of rents, \(r^*_j \), externalities, \(e^*_j \), masses of entrants, \(M^*_j \), aggregate quantities of labor \(N^*_j \) and land \(L^*_j \), stationary distributions of firms, \(\mu^*_j(\varphi) \), land, labor, and capital demand functions, \(l^*_j(\varphi), n^*_j(\varphi), \text{ and } k^*_j(\varphi) \) respectively, value functions, \(V^*_j(\varphi) \), and decision rules, \(x^*_j(\varphi) \), for each location \(j = 1, 2 \), such that:

1. The demand functions for labor, land, and capital inputs solve the firm’s static problem in (4).
2. The decision rule (10) for a firm’s location is optimal, in the sense that it maximizes the right-hand side of equations (8).
3. The free entry conditions (11) are satisfied in each location, with equality if and only if \(M^*_j > 0 \).
4. The aggregate quantities of labor and land are given by equations (6) and (7).
5. The market for land clears in each location consistent with equation (3).
6. The externalities are consistent with (2).
7. The distributions of firms \(\mu^*_j \) satisfy equations (12) and (13).
3.3 Discussion

Any stationary equilibrium of our model can be characterized by a vector of equilibrium values for rents, masses of entrants, and externalities in each location: \((r_1, r_2, M_1, M_2, e_1, e_2)\). Finding an equilibrium for this model is equivalent to the problem of finding the root of a nonlinear system of six equations. For any vector \((r_1, r_2, M_1, M_2, e_1, e_2)\), we can:

1. Solve the firms’ static profit maximization problem and obtain the indirect profit functions for each location;
2. Solve the dynamic programming problem in equations (8) and obtain the optimal decision rules for exit, entry, and relocation;
3. Iterate on equations (12) and (13) to obtain the stationary distributions of firms, \(\mu_j\);
4. Calculate the aggregate land and labor demands using equations (6) and (7);
5. Check whether the following six equations are satisfied: the two land market clearing conditions (equation 3), the two free-entry conditions (equation 11), and the two equations that define the externalities in each location (equation 2).

If the equilibrium conditions are not satisfied, the vector of scalars can be updated and the process repeated until all of the conditions for equilibrium are satisfied. If this algorithm converges, an equilibrium of the model has been computed.\(^{18}\)

\(^{18}\)In Section 4.1 we adopt a number of fairly standard functional forms for the firms’ production function and the agglomeration externality that allow us to express each agglomeration effect as a function of the land rent in the same location. This allows us to simplify the computation of equilibrium, as described in detail in Appendix A.1.
Equilibria typically exist for these types of models. In Appendix A.2, we provide a proof of the existence of equilibrium for a simplified version of our model in which firm productivity remains constant over time upon entry. Moreover, we have computed equilibria for a large number of different specifications of our general model.

As in other sorting models with endogenous amenities and multiple locations, equilibrium does not have to be unique. Multiple equilibria arise since it is possible that different endogenous levels of agglomeration externalities are consistent with optimal firm decisions and market clearing conditions. As a consequence these equilibria will have different endogenous land prices. A key advantage of the econometric analysis is that we observe the equilibrium land rents and wages. Equations (26) - (28) in Appendix A.1 imply that there exists a unique level of agglomeration externalities and aggregate labor, land use and capital levels in each location that are consistent with the observed wages and land rents. By conditioning on the observed land rents and wages, we are thus effectively computing the unique equilibrium under which the data were generated.

Characterizing the properties of equilibrium requires additional assumptions, and additional insights can be gained only by using numerical methods. Before describing the estimation of the model’s parameters it is useful to discuss the model’s potential in accounting for the empirical regularities documented above.

\[19\] Hopenhayn (1992) provides a formal existence proof for his model. The existence of agglomeration externalities and multiple locations does not fundamentally change that problem.

\[20\] The only source of multiplicity that we cannot formally rule out is that there exist two stationary firm distributions that give rise to same rents, agglomeration externalities, aggregate labor and land use pattern, and thus must have the same decision rules that characterize optimal firm behavior. Hopenhayn (1992) proves that the stationary distribution of firms in his model is unique. Our computational analysis confirm this conjecture for our model once we condition on the observed rental values.
In the Dun and Bradstreet data, establishments located in the CBD are on average larger (in terms of employment) than establishments located outside the CBD. There are two types of mechanisms within the model that help to account for this fact. First, stronger agglomeration effects (i.e., $e^*_1 > e^*_2$) in the CBD will contribute to increased productivity and size there. The second mechanism is firms' selection. In turn, selection comes in two flavors. On the one hand, the entrants’ distribution v_j is allowed to vary across locations, so that new establishments that enter in the CBD might be larger from the beginning of their lives, as the data suggest. On the other hand, relocation to the CBD can also play a role if relocating firms are drawn from the right tail of the productivity distribution of firms outside the CBD. Relocation from outside the CBD to the CBD can also explain why in the data firms in the CBD tend to be older than firms outside the CBD.

In the data, firms in the CBD economize on the use of land, in the sense that they have higher employee to facility size ratios on average. In the model firms optimally choose to use less facility space per employee in the CBD if the equilibrium rent is higher there, i.e., $r^*_1 > r^*_2$.

Firms located in the CBD are on average older than firms located outside the CBD. Relocation plays an important role in accounting for this fact as the largest firms outside the CBD also tend to be the oldest firms there, and these firms choose to relocate to the CBD. In order to gain some insight about the economic forces driving relocation decisions, consider the per-period profit function for a firm with productivity φ in location j:

$$\pi_j(\varphi) = C \varphi e_j^\frac{1}{1-\alpha-\gamma-\eta} r_j^{-\frac{\gamma}{1-\alpha-\gamma-\eta}} - f_j$$

(14)

where C is a location-independent constant that depends on the model’s parameters. As shown in Appendix A.1, equation (31), the externality e_j can be written as an
increasing function of the equilibrium rent \(r_j \):

\[
e_j = \left(\frac{\alpha}{\gamma} \frac{r_j}{w} \right)^\theta
\]

because a higher \(r_j \) leads to higher employment density. Replacing this expression for the externality into equation (14) yields static profits as a function of firm-level productivity and the rent in location \(j \):

\[
\pi_j(\varphi) = C \left(\frac{\alpha}{\gamma w} \right)^\theta \varphi r_j^{\frac{\theta}{1 - \alpha - \gamma - \eta}} - f_j.
\]

Equation (16) allows us to illustrate some of the key trade-offs involved in firms’ relocation choices.\(^{21}\) Consider the case in which the production share of the external effect is larger than the land share, or \(\theta > \gamma \). In this case, static profits are increasing in the rent \(r_j \) due to the higher externality, so the location with the highest rent (the CBD, \(j = 1 \)) offers higher operating profits to all firms, independently of their productivity level \(\varphi \). Thus, the only reason firms might want to relocate from the CBD to oCBD is the fixed cost \(f_j \). Specifically, if fixed operating costs are higher in the CBD (\(f_1 > f_2 \)), it is straightforward to show that high productivity firms will want to relocate from oCBD to the CBD while low productivity firms will want to relocate from the CBD to oCBD. The intuition is that high productivity firms gain more from relocating to the CBD because they profit more from the externality due to their larger size. Conversely, low productivity firms might move from the CBD to oCBD because the savings in fixed costs would compensate for the reduction in variable profits. For the same reason, if fixed operating costs are lower oCBD

\(^{21}\)In the model relocation decisions are somewhat more complex than what suggested by this static analysis because the fixed cost of relocation introduces dynamic considerations into this choice. However, the static version of the model captures many of the important insights associated with relocation decisions.
\((f_1 < f_2),\) we would not expect any relocation to occur from oCBD to the CBD. The opposite conclusions apply if external effects are relatively small, or \(\theta < \gamma.\) Notice that the evidence in Tables 4 and 5 suggests that firms relocating from oCBD to the CBD are selected, on average, from the right-tail of the employment distribution of oCBD firms, while firms relocating from the CBD to oCBD are selected, on average, from the left-tail of the employment distribution of CBD firms. While this selection pattern is consistent with the \(\theta > \gamma\) parameter configuration, we do not impose this restriction when estimating the model.

Finally, the model can account for the fact that exiting firms in the CBD tend to be larger than exiting firms outside the CBD. The model explains this fact through the exogenous exit of firms. Notice that while the exogenous exit rate \(\xi\) is independent of location, if on average firms in the CBD are larger than those outside the CBD, the average exiting firm in the CBD is also larger than its counterpart outside the CBD.

In order to illustrate some of the properties of the model discussed above, it is useful to consider a numerical example. The example focuses on the case in which the externality is relatively important in production \((\theta > \gamma)\) and relocation of firms occurs in both directions \((f_1 > f_2).\) The example is only illustrative of the model’s potential because the parameters employed in this example differ from those of the estimated model discussed in Section 5. Specifically, the parameters in the example are the same as the estimated ones reported in Table 7, with the exception of \(f_1, f_2,\) and \(c_r\) which are set equal to 300,000, 90,000, and 180,000 respectively. By contrast, in the estimated model the fixed cost \(f_1\) is smaller than \(f_2\) so that there is only relocation from oCBD to the CBD and the relocation cost \(c_r\) is relatively large.\(^{22}\)

\(^{22}\)If the relocation cost is relatively large, there might not be any relocation from the CBD to oCBD even if \(f_1 > f_2.\)
We plot the optimal decision rules and the stationary distribution of incumbents and entrants in Figure 1. To make the picture clearer we rescaled all the measures of establishments in the top panel so that they have unit mass.

Figure 1: Stationary Distributions and Decision Rules

The lower panel of Figure 1 plots the optimal decision rules. The equilibrium implies that firms with high productivity shocks relocate to the CBD, while low productivity firms leave the CBD.
Figure 1 also illustrates two important differences between dynamic and static models. First, there are no differences between entrants and incumbents in a static model. In a dynamic model firm size changes over time, which implies large differences in the stationary distribution of incumbents and the exogenous distribution of entrants. Second, a static version of our model results in a cut-off rule characterizing locational choices. As a consequence, the distribution of incumbents in the CBD and the one characterizing incumbents outside the CBD have no common support, i.e. they do not overlap. This is inconsistent with the data. A dynamic model can generate overlap in the two distributions without relying on location specific idiosyncratic shocks. The overlap arises endogenously due to the existence of mobility costs. Hence sorting patterns do not satisfy perfect stratification.

4 Identification and Estimation

This section describes the estimation procedure. We start by making a number of functional form assumptions described in Section 4.1 and then describe identification of the model’s parameters in Sections 4.2 and 4.3. We present our estimator in Section 4.4.

4.1 Parameterization of the Model

In our parameterized model, we assume that the logarithm of the productivity shock follows an autoregressive process of order one, i.e., \(\log(\varphi)' = \rho \log(\varphi) + \varepsilon' \), where \(\rho \) is the autocorrelation coefficient and \(\varepsilon' \) is a normally distributed random variable with mean \(\mu_\varepsilon \) and variance \(\sigma_\varepsilon^2 \). The entrants’ distributions \(\nu_j \) of productivity shocks are assumed to be both lognormal with the same location parameter \(\mu_\varepsilon \) and potentially location-dependent scale parameters \(\sigma_{\varepsilon j}^2 \). The dependence of \(\sigma_{\varepsilon j}^2 \) on \(j \) gives us enough
flexibility to be able to match the mean and variance of the employment distribution of entrants in both locations.

Rosenthal & Strange (2003) suggest that the externality acts as a multiplier on the production function. In our computational model we use a standard Cobb-Douglas function: \(y = \varphi e_j n^\alpha l^\gamma k^\eta \). The externality is assumed to be an iso-elastic function of employment density in a location: \(e_j = (N_j/L_j)^\theta \), with \(\theta > 0 \). Notice that this specification of the externality rules out exogenous productivity differences across locations. Our data are insufficiently detailed and limited in time to allow us to try to separate exogenous from endogenous sources of productivity differences across locations. It is worthwhile noticing, however, that all the positive results of the paper are unaffected by this distinction, and we could, alternatively, treat \(e_j \), for \(j = 1,2 \), as two parameters to be estimated. The assumption that there are no exogenous productivity differences across locations is, however, important for the policy analysis and welfare calculations of Section 6.

The land inverse supply function in each location is also iso-elastic: \(r_j = A_j L_j^\delta \), where \(A_j \) and \(\delta \) are parameters. Notice that the elasticity parameter \(\delta \) is the same across locations, while differences in the scale parameter \(A_j \) allow us to capture differences in the scale of economic activity in and outside the CBD.

Our strategy for identification and estimation of the model’s parameters involves two steps. First, we show that a subset of parameters can be identified and estimated without computing the equilibrium of the model. Second, we construct a nested fixed point algorithm to estimate the entire parameter set simultaneously.

4.2 Parameters Identified Without Solving the Model

Consider first the subset of parameters that can be identified and estimated without solving the model. They are the production function parameters \((\alpha, \gamma)\), the external-
ity parameter θ, the parameters of the law of motion for productivity (μ, σ, ρ), and
the parameters of the entrants’ productivity distributions $(\mu_e, \sigma_{e1}, \sigma_{e2})$. We make the
following assumption about variables that are observed by the econometrician and
that allow us to identify these parameters.\footnote{We do not observe any measures of the capital stock in the Dun and Bradstreet data, so we simply solve out for it using the firm’s first-order condition. We restrict the capital share so that the sum of capital and land shares amount to half of the labor share: $\eta + \gamma = 0.5\alpha$. This is consistent with the evidence reported in Valentinyi & Herrendorf (2008). Since the rental price of capital is not identified separately from μ_e, we normalize it to one in the rest of the analysis.}

Assumption 8

1. w, r_1 and r_2 are observed without error.

2. We observe for a large random sample of firms output, labor and land inputs as well as locational choices.

3. We observe entry, exit and relocation decisions of all firms in the sample.

4. Output is measured with error, i.e., we observe

\[\bar{y}_{ij} = y_{ij} - u_{ij} \]

where y_{ij} denote true output of firm i in location j, \bar{y}_{ij} denotes observed output, and the error term satisfies $E[u_{ij}] = 0$.

5. A model period corresponds to three years in the data.

Given the Cobb-Douglas production function, the first order conditions for optimal labor demand imply the standard factor share results:

\[\alpha \bar{y}_{ij} - w n_{ij} = \alpha u_{ij} \quad j = 1, 2. \]
The assumption that $E[u_{ij}] = 0$ then identifies α. Similarly, the land input satisfies:

\begin{equation}
\gamma \tilde{y}_{ij} - r_j l_{ij} = \gamma u_{ij} \quad j = 1, 2
\end{equation}

and γ is, therefore, identified as well. The key identifying assumption is that the (endogenous) input choices are uncorrelated with the measurement error in output.

To show that the parameters of the distribution of productivity of entrants are identified, note that the log labor demand equation is given by

\begin{equation}
\ln(n_{ij}) = \frac{1}{1 - \alpha - \gamma - \eta} (\chi_j(\theta) + \ln(\varphi_{ij})) \quad j = 1, 2
\end{equation}

where the term $\chi_j(\theta)$ is known up to the externality parameter θ:

\begin{equation}
\chi_j(\theta) = (\theta - \gamma) \ln\left(\frac{r_j}{\gamma}\right) + (\gamma + \eta - \theta - 1) \ln\left(\frac{w}{\alpha}\right) + \eta \ln \eta.
\end{equation}

Taking the expectation of log employment among establishments that enter in location j yields the following moment:

\begin{equation}
E[\ln(n_{ij})|\text{entrants}] = \frac{1}{1 - \alpha - \gamma - \eta} (\chi_j(\theta) + \mu_e) \quad j = 1, 2
\end{equation}

These two equations identify μ_e and θ.\footnote{Note that θ is identified by the differences in mean labor inputs among the two locations since it operates as a shifter of the intercept in the labor demand equation.} Moreover, the second moments of the entrants’ employment distributions identify the scale parameters σ_{ej}:

\begin{equation}
V[\ln(n_{ij})|\text{entrants}] = \left(\frac{1}{1 - \alpha - \gamma - \eta}\right)^2 \sigma_{ej}^2 \quad j = 1, 2.
\end{equation}

Note that identification here is based on unconditional moments of the shocks of entrants and the timing assumption that entrants make decisions before they observe
the productivity shock.25

Finally, consider identification of the law of motion of productivity. Assumption 8 implies that we observe labor inputs for all firms that are active in period \(t \) including those that will exit at the end of that period. The law of motion for labor inputs can be written as:

\[
\ln(n_{ijt}) - \chi_j - \rho(\ln(n_{ij't-1}) - \chi_{j'}) = \frac{1}{1 - \alpha - \gamma - \eta} \epsilon_{ijt}
\]

if establishment \(i \) is observed in location \(j' \) in period \(t - 1 \) and in location \(j \) in period \(t \). Hence, we can identify \(\mu_\epsilon \), \(\sigma_\epsilon \) and \(\rho \) based on the equation above. Here the key identifying assumption is that the lagged level of inputs is uncorrelated with the current innovation of the productivity shock.26

To summarize, all parameters above are identified and can, therefore, be consistently estimated without computing the equilibrium of the model. Using the orthogonality conditions above, we can define a GMM estimator to estimate these structural parameters.

\subsection*{4.3 Identifying the Remaining Parameters}

The remaining parameters that need to be identified and estimated are the fixed cost parameters \(f_1, f_2 \), the relocation costs \(c_r \), the entry costs \(c_1, c_2 \), the exogenous probability of exit, \(\xi \), and the parameters of the land supply functions \(A_1, A_2 \).27 To

25We have also worked out the case in which entrants can immediately exit after observing the shock which gives rise to some selection at the entry level. Results are available from the authors.

26These type timing assumptions are crucial for Olley-Pakes and dynamic panel data estimators. For a discussion of these issues see, for example, Arrelano & Bond (1991), Olley & Pakes (1996), Blundell & Bond (1998), Levinsohn & Petrin (2003) and Ackerberg, Caves, & Frazier (2006).

27We set the discount factor \(\beta \) equal to 0.86 (or about 5 percent per year) and the land supply elasticity \(\delta \) equal to 0.5 since we do not have access to data that would allow us to estimate the
identify these parameters, we need additional moment restrictions. While we do not have a formal argument for identification, we can provide an intuitive explanation for identification. The fixed cost largely affects the expected life span of a firm.\footnote{This suggests using average age of the incumbents in both locations to identify the fixed costs. Unfortunately, the age data in Dun and Bradstreet have many missing observations.} Alternatively, an increase in fixed costs increases exits and reduces the number of incumbents and increases entry in equilibrium. We, therefore, identify these parameters using moments that capture the relative mass of entrants and incumbents in both locations.

Relocation costs affect the amount of relocation in equilibrium. We can, therefore, identify and estimate this parameter based on moments that characterize relocating firms. To identify the probability of exogenous exit, we can use the characteristics of firms that exit. Setting $\xi = 0$, the model predicts that only small firms will exit the economy. In the data, we observed that exit is not just limited to small firms. This type of exit is captured by the shock ξ, which leads to exogenous exits by establishments. We include the mean log employment of exiting firms to help us identify this parameter. The ratio of A_1/A_2 determines the relative size of both locations, which can be measured by M_1/M_2. \footnote{We normalize the level of A_2 so that in equilibrium $M_1 + M_2 = 1.$}

We compute the equilibrium conditional on the observed rental prices, r_1 and r_2. (The corresponding values are reported in Section 2.) As a consequence the entry cost parameters, c_1 and c_2, in both locations are then implicitly determined by the two free-entry conditions in equation (11). As we discussed in detail in the previous section, there is only one equilibrium that is consistent with these rental rates.

supply elasticity. Estimates vary for this rent elasticity of supply for office space but are generally accepted to be significantly greater than unity (Wheaton, 1999).
4.4 Estimation

We adopt a method of simulated moments approach to estimate all parameters of our model. Denote the parameter vector by ϕ. Let ϕ_0 denote the vector that characterizes the data-generating process. Let N denote the sample size of the Dun and Bradstreet sample. Combine all empirical moments used in the estimation procedure into one vector m_N and denote with $m_S(\phi)$ their simulated counterparts where S denotes the number of simulations. The orthogonality conditions are then given by

\[
g_{N,S}(\phi) = m_N - m_S(\phi)
\]

Following Hansen (1982), the parameters of our model can be estimated using the following moments estimator:

\[
\hat{\phi}_{N,S} = \arg\min_{\phi \in \Phi} g_{N,S}(\phi)' W_N g_{N,S}(\phi)
\]

for a weighting matrix W_N that converges in probability to a positive semi-definite matrix W_0.30

We implement two different estimators. The first estimator is based on the orthogonality conditions discussed in Section 4.2. The second estimator imposes all orthogonality conditions. We discuss both in more detail in the next section.

30Since we can make the simulation error arbitrarily small, we suppress the dependence of our estimator on S. The estimator $\hat{\phi}_N$ is a consistent estimator of ϕ_0 and the asymptotic covariance matrix of the estimator is given in Newey & McFadden (1994). It is straightforward to correct for the sampling error induced into the estimation procedure by the simulations. However, if the number of simulations is large, these errors will be negligible. For a discussion, see Gourieroux & Monfort (1993).
5 Estimation Results

First we focus on those parameters that can be estimated without solving the entire model. Table 6 reports the parameter estimates and the estimated standard errors for three different samples. The second column of this table presents parameters estimated using the sample of service-sector data, while the other two columns refer to parameters estimated using only data from the finance and professional/scientific/technical services sectors, respectively.31

Table 6: Parameter Estimates: Partial Solution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Service Sector</th>
<th>Finance Sector</th>
<th>Professional Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAICS 51–62</td>
<td>NAICS 52</td>
<td>NAICS 54</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.469</td>
<td>0.328</td>
<td>0.582</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.020)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.086</td>
<td>0.039</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.007)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.625</td>
<td>1.249</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.490)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>(\mu_e)</td>
<td>13.75</td>
<td>18.47</td>
<td>10.89</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(2.946)</td>
<td>(0.550)</td>
</tr>
<tr>
<td>(\sigma_{e1})</td>
<td>0.255</td>
<td>0.460</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.073)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>(\sigma_{e2})</td>
<td>0.155</td>
<td>0.259</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.041)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.967</td>
<td>0.979</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
</tbody>
</table>

Notes: This table reports the values of the parameters that can be estimated without solving the entire model, as described in Section 4.

Overall, we find that the results are qualitatively similar across different sector specific samples. Nevertheless, there are some interesting differences. Agglomeration

31The parameters estimated in Table 6 are derived from exactly identified versions of the model and they provide a perfect fit to the moments.
effects, as measured by the size of the external effect in the CBD relative to oCBD, are stronger (weaker) in the financial (professional) sector than the full sample. Firms in the finance industry operate with smaller labor and land shares than other service sector firms. Entering firms have higher productivity. The opposite result holds for firms in the professional sector.

Table 7 presents parameter estimates for the entire vector of parameters using the nested fixed point estimator which imposes the full set of orthogonality conditions implied by the model. The estimate of the labor share parameter is 0.482. The estimate of the land share parameter is 0.091. These estimates are broadly consistent with those reported in the literature.32

The estimate of the agglomeration externality is 0.656. The restriction $\theta > \gamma$ is necessary to obtain an equilibrium sorting pattern in which high productivity firms prefer locations with high agglomeration externalities.

Productivity shocks are highly correlated across time. The point estimate of 0.967 is also consistent with previous estimates in the literature (Hopenhayn & Rogerson, 1993). We find that the distribution of productivity of entrants in the CBD has a larger standard deviation than the distribution of entrants outside the CBD.

Fixed costs of operation over a three-year period are $98,259 inside and $290,259 outside the CBD. The estimated standard errors are large, hence there is a broad range of fixed costs that are consistent with the observed sorting patterns. Notice that since the estimate of f_1 is smaller than the estimate of f_2, there is no relocation from the CBD to oCBD in the estimated version of the model. As discussed in Section 3.3, this is due to the fact that the CBD has two key advantages for incumbent firms relative to the alternative location. First, the productivity advantage of the CBD

32Estimates about the land share are reported in Deckle & Eaton (1993), Adsera (2000), and Caselli & Coleman (2001).
Table 7: Parameter Estimates: Full Solution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.482</td>
<td>(0.015)</td>
</tr>
<tr>
<td>γ</td>
<td>0.091</td>
<td>(0.006)</td>
</tr>
<tr>
<td>θ</td>
<td>0.656</td>
<td>(0.025)</td>
</tr>
<tr>
<td>μ_e</td>
<td>13.77</td>
<td>(0.099)</td>
</tr>
<tr>
<td>σ_{e1}</td>
<td>0.247</td>
<td>(0.013)</td>
</tr>
<tr>
<td>σ_{e2}</td>
<td>0.142</td>
<td>(0.013)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.967</td>
<td>(0.002)</td>
</tr>
<tr>
<td>μ_ε</td>
<td>0.452</td>
<td>(0.061)</td>
</tr>
<tr>
<td>σ_ε</td>
<td>0.188</td>
<td>(0.030)</td>
</tr>
<tr>
<td>f_1</td>
<td>98,259</td>
<td>(27,459)</td>
</tr>
<tr>
<td>f_2</td>
<td>290,259</td>
<td>(54,078)</td>
</tr>
<tr>
<td>c_r</td>
<td>4,069,794</td>
<td>(1,985,409)</td>
</tr>
<tr>
<td>ξ</td>
<td>0.752</td>
<td>(0.037)</td>
</tr>
<tr>
<td>A_1/A_2</td>
<td>1.464</td>
<td>(0.131)</td>
</tr>
</tbody>
</table>
is large enough to offset its higher rental prices for all firms. Second, the estimated fixed cost of operation is also smaller in the CBD. Thus, there is no reason for low productivity firms in the CBD to want to pay the fixed cost and move oCBD.

As discussed in Section 4.3, the entry cost parameters are estimated residually in order to make the free entry conditions hold. Their values are $1,283,989 and $242,188 inside and outside the CBD respectively. Relocation costs are large, approximately $4.1 million which is driven by the fact that there is only a small amount of relocation in the data (Table 5). Given this relatively large cost of relocation, only the largest firms choose to relocate. These results suggest that the fit of the model is likely to be similar if relocation would be ruled out a-priori. However, we show in Section 6 that policies that affect relocation costs have the potential of generating welfare gains for the economy as a whole.

The rental rate for office space is 12 percent higher in the CBD than the rental rate outside the CBD. The rental price ratio along with the estimate of the externality parameter, θ, implies that firms located in the CBD receive an 8 percent productivity gain over firms located outside the CBD. This gain is due to the local agglomeration externality.

Our estimate of the productivity gain associated with being located in the CBD relative to the outside location is of the same order of magnitude as the productivity effects of agglomeration estimated in the literature. The exact magnitude of this

33 Notice, however, that the cost parameters are estimated less precisely than the other parameters of the model.

34 As explained in more detail in Appendix A (see equation (31)), given our functional forms, the ratio between the externality in the CBD and the externality oCBD can be written as the following function of equilibrium rents: $e_1/e_2 = (r_1/r_2)^\theta$.

35 This figure is likely to be an upper bound on the true effect of agglomeration forces on productivity, as we abstract from other sources of productivity differentials between locations, such as location-specific amenities or infrastructure.
effect and the associated interpretation of the size of the parameter θ are closely tied to many elements that are specific to our model, such as the exact specification of agglomeration effects and the geographic units of analysis. For example, Ciccone & Hall (1996) and Davis et al. (2011) express agglomeration effects as a function of output rather than employment density. The former paper takes a county as the unit of analysis, while the latter uses a metropolitan area. Unlike in these papers, our measure of physical space is not land area but office space. Finally, different from other papers, we focus our analysis on the service sector.

Table 8: Fit: Moments Used in Estimation

<table>
<thead>
<tr>
<th>Moment</th>
<th>Sample</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor share</td>
<td>0.4686</td>
<td>0.4822</td>
</tr>
<tr>
<td>Land share</td>
<td>0.0863</td>
<td>0.0910</td>
</tr>
<tr>
<td>Mean log employment entrants (CBD)</td>
<td>1.0158</td>
<td>1.0405</td>
</tr>
<tr>
<td>Mean log employment entrants (oCBD)</td>
<td>0.8032</td>
<td>0.8012</td>
</tr>
<tr>
<td>Variance log employment entrants (CBD)</td>
<td>0.7372</td>
<td>0.8033</td>
</tr>
<tr>
<td>Variance log employment entrants (oCBD)</td>
<td>0.2730</td>
<td>0.2670</td>
</tr>
<tr>
<td>Autocorrelation of log employment</td>
<td>0.9673</td>
<td>0.9673</td>
</tr>
<tr>
<td>Mean log employment incumbents (CBD)</td>
<td>1.6528</td>
<td>1.6334</td>
</tr>
<tr>
<td>Mean log employment incumbents (oCBD)</td>
<td>1.2948</td>
<td>1.3001</td>
</tr>
<tr>
<td>Variance log employment incumbents</td>
<td>1.2394</td>
<td>1.2356</td>
</tr>
<tr>
<td>Mean log employment exiting firms</td>
<td>0.8172</td>
<td>0.8051</td>
</tr>
<tr>
<td>Ratio of entrants to incumbents</td>
<td>0.5243</td>
<td>0.5237</td>
</tr>
<tr>
<td>Ratio of incumbents in CBD vs oCBD</td>
<td>0.1712</td>
<td>0.1680</td>
</tr>
<tr>
<td>Ratio of entrants in CBD vs oCBD</td>
<td>0.0922</td>
<td>0.0970</td>
</tr>
<tr>
<td>Fraction relocating from oCBD to CBD</td>
<td>0.0022</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

We also evaluate the within-sample fit of our model. Table 8 reports the empirical moments observed in the data and the corresponding moments predicted by our model. Overall, we find that the within-sample fit of our model is good, which is not surprising since we are only using a small number of over-identifying restrictions in the estimation.
Table 9: Fit of Model - Moments Not Targeted in the Estimation

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean log employment (CBD)</td>
<td>1.10</td>
<td>1.46</td>
</tr>
<tr>
<td>Mean log employment (oCBD)</td>
<td>0.69</td>
<td>1.12</td>
</tr>
<tr>
<td>Median log facility size (CBD)</td>
<td>7.82</td>
<td>7.29</td>
</tr>
<tr>
<td>Median log facility size (oCBD)</td>
<td>7.79</td>
<td>7.17</td>
</tr>
<tr>
<td>Median age (CBD)</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Median age (oCBD)</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Percent establishments relocating from oCBD to CBD</td>
<td>0.22</td>
<td>0.26</td>
</tr>
<tr>
<td>Percent employment relocating from oCBD to CBD</td>
<td>0.48</td>
<td>4.53</td>
</tr>
<tr>
<td>Median log employment relocating from oCBD to CBD</td>
<td>1.38</td>
<td>4.49</td>
</tr>
<tr>
<td>Percent establishments exiting economy (3 years)</td>
<td>29.48</td>
<td>34.27</td>
</tr>
<tr>
<td>Percent establishments entering economy (3 years)</td>
<td>34.39</td>
<td>34.27</td>
</tr>
<tr>
<td>Median log employment exiting firms (CBD)</td>
<td>0.69</td>
<td>1.27</td>
</tr>
<tr>
<td>Median log employment exiting firms (oCBD)</td>
<td>0.69</td>
<td>0.75</td>
</tr>
<tr>
<td>Mean log employment exiting firms (CBD)</td>
<td>1.14</td>
<td>1.27</td>
</tr>
<tr>
<td>Mean log employment exiting firms (oCBD)</td>
<td>0.76</td>
<td>0.75</td>
</tr>
</tbody>
</table>

More interesting is the comparison between sample and predicted moments that are not used in estimation. Table 9 reports a variety of additional interesting statistics. Consider first median log employment, log facility size, and age. We find that the model provides a good fit of these moments of the data as well. We slightly underestimate the median age, which is derived from self-reported year-established data and probably measured with a fair bit of error in the data. Hence, we do not use moments based on age in estimation. The remainder of Table 9 focuses on characteristics of firms entering, exiting, and relocating. Overall, our model fits the entry and exit distribution of firms reasonably well. It is harder to fit the distribution of relocating firms which may be due to the fact that it is difficult to measure relocation in the data. Our empirical moments are probably lower bounds for the total amount of relocation.
6 Policy Analysis

Our analysis has some important policy implications. Relocation costs prevent establishments from moving because the gains for the individual firm are smaller than the moving costs. As a consequence dynamic models have different policy implications than static models that typically consider the two extreme cases of zero or infinite moving costs. Locational decisions may not be efficient, since firms ignore the external benefits of density and agglomeration to other firms when making locational decisions. Since agglomeration effects are present in and outside the CBD, it is not clear whether a relocation subsidy will generate an improvement in aggregate welfare. Our model helps us to address these important policy issues.

We consider a subsidy to relocation to the CBD financed by a proportional wage tax paid only by firms located in the CBD. In other words, this is a policy that could be implemented unilaterally by a CBD. Specifically, a firm that moves from outside to inside the CBD is subsidized at the rate \(s \) and wages are taxed at the rate \(\tau \). Given that labor is elastically supplied at the rate \(w \), the after-tax wage becomes \(w(1 + \tau) \), so that the tax is fully absorbed by firms in the CBD in terms of higher labor costs. A balanced-budget requirement calls for the revenue from the wage tax to cover the equilibrium amount of subsidies paid out to relocating establishments:

\[
\tau w \int n_1(\varphi)\mu_1(d\varphi) = s c_r \xi \int 1 \{ x_2(\varphi) = 1 \} \mu_2(d\varphi) \tag{27}
\]

As in Rossi-Hansberg (2004), we adopt as a welfare measure the aggregate surplus generated by our economy:

\[
\text{Surplus} = \int_0^{L_1} (r_1^* - A_1 L^\delta) \, dL + \int_0^{L_2} (r_2^* - A_2 L^\delta) \, dL. \tag{28}
\]

This corresponds to the areas between the equilibrium rents and the inverse land
supply functions in both locations.\footnote{Note that there is no surplus associated with workers because they supply labor in a perfectly elastic manner. Similarly, the industry under consideration operates under aggregate returns to scale (taking entry and relocation into account) and does not generate any surplus.}

Table 10 reports the quantitative implications of two policies that differ in the magnitude of the relocation subsidy. Given the potential for multiplicity of equilibria, we use the initial equilibrium as reference point and compute the locally unique stationary equilibrium that corresponds to the policy change.\footnote{We focus on the steady state effects of the policy and not on the transition between steady states.} Qualitatively, results are similar across these two experiments.

Table 10 shows that the policy implies that rents increase in the CBD and decline outside the CBD. Aggregate employment and facility use increase in the CBD despite a reduction in entry and in the measure of firms in that location. The opposite pattern is observed outside the CBD. Turning to the welfare implications of this policy, we find that the surplus in the CBD increases, while it decreases outside the CBD. Overall welfare, measured by total surplus, increases.

We interpret the results in the following way. A relocation subsidy benefits firms located outside the CBD because it makes it cheaper for them to relocate to the CBD. The increase in the expected value of entering outside the CBD induces an increase in the measure of entrants and incumbents in that location. However, since the largest establishments from outside the CBD relocate to the CBD, aggregate employment outside the CBD falls. Moreover, aggregate employment falls more than facility use, leading to a reduction in employment density and agglomeration effects outside the CBD. Hence, there is a decline in equilibrium rents and surplus in that location. The opposite mechanism is operative in the CBD: the employment reallocation from outside the CBD increases aggregate employment, employment density, agglomeration
Table 10: Policy Experiments

<table>
<thead>
<tr>
<th>Subsidy rate (%)</th>
<th>10.00</th>
<th>20.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax rate (%)</td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>Employment relocation</td>
<td>6.96</td>
<td>14.56</td>
</tr>
<tr>
<td>Rent CBD</td>
<td>0.62</td>
<td>1.51</td>
</tr>
<tr>
<td>Rent oCBD</td>
<td>-0.09</td>
<td>-0.20</td>
</tr>
<tr>
<td>Measure of entrants in CBD</td>
<td>-11.60</td>
<td>-22.94</td>
</tr>
<tr>
<td>Measure of entrants oCBD</td>
<td>2.28</td>
<td>4.84</td>
</tr>
<tr>
<td>Aggregate measure of entrants</td>
<td>0.94</td>
<td>2.15</td>
</tr>
<tr>
<td>Measure of firms CBD</td>
<td>-8.58</td>
<td>-16.38</td>
</tr>
<tr>
<td>Measure of firms oCBD</td>
<td>2.02</td>
<td>4.25</td>
</tr>
<tr>
<td>Aggregate measure of firms</td>
<td>0.62</td>
<td>1.47</td>
</tr>
<tr>
<td>Aggregate employment CBD</td>
<td>1.57</td>
<td>3.83</td>
</tr>
<tr>
<td>Aggregate employment oCBD</td>
<td>-0.26</td>
<td>-0.60</td>
</tr>
<tr>
<td>Aggregate employment</td>
<td>0.47</td>
<td>1.17</td>
</tr>
<tr>
<td>Aggregate facility CBD</td>
<td>1.25</td>
<td>3.05</td>
</tr>
<tr>
<td>Aggregate facility oCBD</td>
<td>-0.18</td>
<td>-0.40</td>
</tr>
<tr>
<td>Aggregate facility</td>
<td>0.35</td>
<td>0.88</td>
</tr>
<tr>
<td>Surplus in CBD</td>
<td>1.88</td>
<td>4.61</td>
</tr>
<tr>
<td>Surplus oCBD</td>
<td>-0.26</td>
<td>-0.60</td>
</tr>
<tr>
<td>Total surplus</td>
<td>0.59</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Note: Except for the first two rows, entries are percent changes relative to the values implied by the benchmark model.
effects and equilibrium rents. Entry of new firms in the CBD falls because of the tax used to finance the subsidy. Overall, our results indicate that there might be too little relocation of establishments to the CBD and are supportive of policy efforts targeted to increase the extent of agglomeration effects in CBDs.

We conclude this section with a caveat. The net welfare gain produced by the relocation subsidy crucially depends on the assumption, discussed earlier, that the sources of productivity differences across locations are endogenous agglomeration effects rather than exogenous factors. Most of our results are otherwise unaffected by this distinction.

7 Conclusions

We have developed a new dynamic general equilibrium model to explain firm entry, exit, and relocation decisions in an urban economy with multiple locations. We have shown that there are important differences between dynamic and static models. First, there are no differences between entrants and incumbents in a static model. In a dynamic model, firm size changes over time, which implies large differences in the stationary distribution of incumbents and the exogenous distribution of entrants. Second, a static version of our model results in a cut-off rule characterizing locational choices. As a consequence, the distributions of firms do not overlap. A dynamic model can generate overlap in these distributions without relying on location specific idiosyncratic shocks. It is hard to think about relocation decisions and exit within a static framework. Finally, dynamic models allow us to study the impact of policy interventions and the adjustments of firms in the presence of positive, but finite moving costs.

We have shown that firms located in the central business district are older and
larger than firms located outside the urban core. They use more land and labor in the production process. However, they face higher rental rates for office space, which implies that they operate with a higher employee per land ratio. Our estimates imply that agglomeration externalities increase the productivity of firms by up to eight percent. Economic policies that subsidize firm relocations can potentially have large effects on economic growth and firm concentration in central business districts.

In our policy experiment the tax-subsidy scheme implemented by the CBD occurs in the context of a non-strategic environment where the second location is assumed not to try to attract establishments from the CBD. In large U.S. metropolitan areas, there are often many independent communities that compete among each other to attract firms using targeted subsidies. It is not obvious that this type of tax and subsidy competition among communities increases economic welfare. Our model could be usefully extended to allow for this sort of strategic behavior. Another fruitful extension would focus on competition among regional economies or metropolitan areas for firms. This type of firm relocation entails different and broader trade-offs from the ones analyzed in this paper, as firms would have to consider issues such as distance from customers and variations in local labor market conditions.

Jeffrey Brinkman, Federal Reserve Bank of Philadelphia, USA.
Daniele Coen-Pirani, University of Pittsburgh, USA.
Holger Sieg, University of Pennsylvania, USA.
A Appendix

A.1 Computation of Equilibrium

Computation of equilibrium involves searching for a vector of rents, masses of entrants, and externalities, in each location: \((r_1, r_2, M_1, M_2, e_1, e_2)\). The task of computing an equilibrium can be simplified by exploiting some properties of the parameterization used in our computational model.

(1) Externality as a function of rents. From the static first-order condition that determines the ratio of land and labor inputs, we obtain that the labor/land ratio is the same for all firms in the same location \(j\):

\[
\frac{n}{l} = \frac{\alpha r_j}{\gamma w}.
\]

(29)

Aggregating over all firms in a location, we obtain that:

\[
\frac{N_j}{L_j} = \frac{\alpha r_j}{\gamma w}
\]

(30)

and using the parameterization of the externality as \(e_j = (N_j/L_j)^\theta\) we obtain an expression linking the externality, \(e_j\) in each location to that location’s rent, \(r_j\)

\[
e_j = \left(\frac{\alpha r_j}{\gamma w}\right)^\theta.
\]

(31)

We can, therefore, solve the Bellman equations as a function of the rents \((r_1, r_2)\) only.

(2) Equilibrium rents. The free-entry conditions, assumed to hold as equality,
are then:\(^{38}\)

\[(32) \quad \int_{0}^{\infty} V_1(\varphi) d\nu_1(\varphi) = c_1\]

\[(33) \quad \int_{0}^{\infty} V_2(\varphi) d\nu_2(\varphi) = c_2.\]

These are two equations in two unknowns \((r_1, r_2)\). The non-linearity of the model implies that there may be more than one possible candidate value for equilibria with entry in both locations.

3) Stationary distributions and equilibrium entry ratio. Next, define the ratio of entrants in the two locations as \(m = M_1/M_2\) and the distribution of firms standardized by the mass of entrants in location 2 as:

\[(34) \quad \hat{\mu}_j = \frac{\mu_j}{M_2}.\]

The standardized stationary distributions satisfy

\[
\int_{0}^{\varphi'} \hat{\mu}_1(dz) = \xi \int F(\varphi' | z) 1 \{ x_1(z) = 1 \} \hat{\mu}_1(dz)
+ \xi \int F(\varphi' | z) 1 \{ x_2(z) = 1 \} \hat{\mu}_2(dz) + m \int_{0}^{\varphi'} \nu_1(dz)
\]

and

\[
\int_{0}^{\varphi'} \hat{\mu}_2(dz) = \xi \int F(\varphi' | z) 1 \{ x_1(z) = 2 \} \hat{\mu}_1(dz)
+ \xi \int F(\varphi' | z) 1 \{ x_2(z) = 2 \} \hat{\mu}_2(dz) + \int_{0}^{\varphi'} \nu_2(dz).
\]

\(^{38}\)In addition to equilibria with entry in both locations, as assumed here, it is also possible to have equilibria in which entry occurs only in one of the two locations.
Given a value for \(m \), forward iteration on these two equations (starting with entrant distributions in each location) yields the equilibrium standardized stationary distributions \(\hat{\mu}_j \), \(j = 1, 2 \). To find the equilibrium value of \(m \), substitute the aggregate demands for land in the two locations into the inverse land supply functions and take their ratios to obtain:

\[
\frac{r_1}{r_2} = \frac{A_1}{A_2} \left[\frac{\int l_1(\varphi)\hat{\mu}_1(d\varphi)}{\int l_2(\varphi)\hat{\mu}_2(d\varphi)} \right]^{\delta}.
\]

This equation determines the equilibrium value of \(m \).

(4) **Level of entry.** Finally, the mass of entrants in location 2, \(M_2 \), is determined by the market clearing condition for land:

\[
\left(\frac{r_2}{A_2} \right)^{\frac{1}{\delta}} = M_2 \int l_2(\varphi)\hat{\mu}_2(d\varphi),
\]

Note that \(M_2 \) can be solved for analytically. Given \(M_2 \) and \(m \), it is feasible to retrieve \(M_1 = mM_2 \).

The above discussion suggests a computational solution algorithm that can be separated into two basic steps. First, search for rents \((r_1, r_2)\) that satisfy free entry, by using a standard value function iteration routine. Then, find a ratio of entrant masses, \(m \), that satisfy the standardized stationary distribution above, using forward iteration starting with the initial entrant distributions. Everything else in the model can be solved analytically.

In practice, we solve for equilibrium computationally by discretizing the productivity shocks using a grid of 300 points spaced evenly on a log scale. When necessary, we use linear interpolation between grid points, in particular when dealing with decision rule cutoffs that may lie off the grid. A simple robust simplex search is applied in all search routines. Given that the decision rules introduce discontinuities in the
first derivative of the value functions, more efficient gradient search methods are impractical. Solutions for rents, entrant ratios, value functions, and distributions are ultimately checked for precision to the machine and software tolerances, and convergence and stability are not generally an issue.

A.2 Analytical Properties of Equilibrium

To get some additional insights into the properties of our model, it is useful to simplify the structure of the model and shut down the future productivity shocks. We can then characterize the equilibrium of the model almost in closed form.39 Let us impose the following additional assumptions.

\textbf{Assumption 9}

1. The productivity shock φ is drawn upon entry once and for all from a uniform distribution in $[0, 1]$:

$$\nu_j(\varphi) = 1 \text{ for } \varphi \in [0, 1] \text{ and } j = 1, 2. \quad (37)$$

2. There is no capital in the model: $\eta = 0$.

3. The externality parameter θ satisfies the following restrictions: $\theta = 1 - \alpha > \gamma$.

4. There is no fixed production cost: $f_j = 0, j = 1, 2$.

In what follows we characterize the unique equilibrium of this version of the model in which $r_1 > r_2$ and firms move from location 2 to location 1, but not vice versa.

39The model cannot be entirely solved in closed form because the equilibrium r_2 has to satisfy a highly non-linear equation. Sufficient conditions on the model’s parameters for r_2 to exist and be unique are imposed instead. Conditional on r_2, everything else can be solved for analytically.
Firms that enter in location 1 stay there all the time or exit. All exits are exogenous.

First note that under assumptions 2–4 above, the indirect profit functions can be written as:

\[\pi_j (\varphi) = r_j \Delta \varphi^\psi, \ j = 1, 2, \]

where

\[\Delta = \left[\frac{\alpha}{\gamma} \right]^{\frac{1}{1-\alpha-\gamma}} \left(\frac{1-\alpha-\gamma}{\gamma} \right) > 0, \] \hspace{1cm} (39)

\[\psi = \frac{1}{1-\alpha-\gamma} > 1 \] \hspace{1cm} (40)

are known functions of the parameters of the model. Notice that since there are no fixed costs, all entrants stay in the economy until they are exogenously forced to exit through the shock \(\xi \).

We have the following result.

Proposition 1 If \(r_1 > r_2 \), then firms in location \(j = 2 \) follow a simple cut-off rule. Firms below the threshold \(\varphi_r \) stay in location 2, and firms with shocks larger than \(\varphi_r \) move to location 1. The cut-off \(\varphi_r \) is defined as:

\[\varphi_r = \left[\frac{1 - \beta \xi}{c_r \Delta} \right]^{\frac{1}{\psi}}. \] \hspace{1cm} (41)

For the model to be meaningful we assume that parameters are such that \(\varphi_r < 1 \).

Proof:
Notice that since profits are increasing in \(r \) and we are assuming that \(r_1 > r_2 \), firms located in 1 never want to switch location. The value function of firms in location 1
is therefore:

\[(42) \quad V_1(\varphi) = \frac{\pi_1(\varphi)}{1 - \beta \xi}. \]

Next consider the decision rule of firms located in 2. Firms with shocks in \((0, \varphi_r)\) stay in 2 forever (as long as they survive the exogenous destruction shock). Firms with high shocks move to 1. The indifference condition for staying v. moving is:

\[(43) \quad \frac{\pi_2(\varphi_r)}{1 - \beta \xi} = \pi_2(\varphi_r) + \beta \xi (V_1(\varphi_r) - c_r). \]

This equation defines the cut-off value \(\varphi_r\), which can be solved for analytically to obtain the expression in equation \((41)\). The lemma then follows from the result that the benefits of switching to location 1 monotonically increase with \(\varphi\). Q.E.D.

Next we consider the free-entry conditions and show that these conditions determine the rents in both locations. We have the following result:

Proposition 2 There is at most one set of rental rates \((r_1, r_2)\) that are consistent with entry in both locations. Conditions on the parameter values guarantee the existence of \((r_1, r_2)\).

Proof (of uniqueness):

First consider the free-entry condition in location 1, which is given by

\[(44) \quad \int V_1(\varphi) \nu(\varphi) d\varphi = c_1. \]

Substituting in our optimal decision rule and simplifying, we obtain the equilibrium rent in location 1:

\[(45) \quad r_1 = \frac{c_1 (1 + \psi) (1 - \beta \xi)}{\Delta}. \]
Free entry in location 2 requires:

\[\int V_2(\varphi) \nu(\varphi) d\varphi = c_2. \tag{46} \]

Replacing the value function in location 2 and taking into account the definition of \(\varphi_r \) in (41) this equation simplifies to:

\[(\varphi_r)^{\psi+1} + \frac{(\psi + 1)}{\psi \beta \xi} \left(\beta \xi + \frac{c_2 - c_1}{c_r} \right) (\varphi_r)^{\psi} + \frac{1 - \beta \xi}{\psi \beta \xi} = 0. \tag{47} \]

A solution to this equation requires the entry cost differential between the two locations to be sufficiently large:

\[c_1 - c_2 > 2 \beta \xi c_r. \tag{48} \]

Under this condition, the equilibrium value of \(\varphi_r \), if it exists, is unique. In turn, \(\varphi_r \) is monotonically related to \(r_2 \) by equation (41). Thus, if the solution \(\varphi_r \) to equation (47) is unique, the equilibrium value of \(r_2 \) is also unique. Q.E.D.

Next we characterize the equilibrium distribution of firms in each location.

Proposition 3 For each value of \(M_2 \), there exists a unique stationary equilibrium distribution of firms in each location.

Proof:

Without loss of generality, let us normalize the model so that entry in location 2 is always equal to \(M_2 = 1 \). This implies a specific choice of \(A_2 \). Given this the mass of firms in location 2 is \(\mu_2(\varphi) \):

\[\mu_2(\varphi) = \begin{cases} \frac{1}{1 - \xi} \varphi_r & \text{if } \varphi \in [0, \varphi_r] \\ 1 - \varphi_r & \text{if } \varphi > \varphi_r \end{cases}. \tag{49} \]
Firms with $\varphi > \varphi_r$ move to 1, and there is a measure $1 - \varphi_r$ of them. Firms in the group $\varphi \in [0, \varphi_r]$ remain in 2 forever subject to surviving the death shock ξ.

Let m denote entry in location 1. The mass of firms in location 1 is:

$$
(50) \quad \mu_1(\varphi) = \begin{cases}
\frac{m}{1-\xi} \varphi_r & \text{if } \varphi \in [0, \varphi_r] \\
\frac{(\xi+m)}{1-\xi} (1 - \varphi_r) & \text{if } \varphi > \varphi_r
\end{cases}.
$$

Firms in the first group originate in 1 and stay in 1 forever. Firms with $\varphi > \varphi_r$ arrive from 2 sources: (1) firms that entered in 1 and stayed there forever subject to the death shock $m (1 - \varphi_r) / (1 - \xi)$ and (2) firms that entered in location 2 last period, survived the shock and moved to 1 where they remain forever: $\xi (1 - \varphi_r) / (1 - \xi)$.

Q.E.D.

Finally, we have the following result:

Proposition 4 There is at most one value of m such that the relative demand for land equals the relative supply of land. Under conditions on the parameters, m is shown to exist.

Proof:

Given the equilibrium distributions, we can solve for the equilibrium value for entry, denoted by m. Note that given the assumptions the demand for land is:

$$
(51) \quad l_j(\varphi) = \left[\frac{\alpha}{w} \right]^{\psi} \varphi^\psi.
$$

The equilibrium value of m is such that it solves the relative land equilibrium condition which can be written as,

$$
(52) \quad \frac{r_1}{r_2} = \frac{A_1}{A_2} \left[\int \varphi^\psi \mu_1(\varphi) d\varphi \right]^\delta.
$$
where the left-hand side does not depend on \(m \). The right-hand side is monotonically increasing in \(m \) through the mass \(\mu_1(\varphi) \). This means that if \(m \) exists, it is unique. For \(m \to \infty \) the right-hand side of (52) goes to infinity. For \(m \to 0 \) the right-hand side is strictly positive. To show that it is less than the left-hand side for \(m = 0 \), \(A_1 \) must be sufficiently small. Since the rest of the equilibrium is independent of \(A_1 \) one can always choose \(A_1 \) small enough in order to guarantee existence. Thus, there exists a unique value of \(m \). Q.E.D.

In what follows we present the equilibrium of the model in a numerical example.

Result 1 Consider the following parameter values: \(\beta = 0.5, \alpha = 0.65, \theta = 0.35, \xi = 0.9, \gamma = 0.01, w = 1, A_1 = 0.5, A_2 = 1.0, c_1 = 0.1, c_2 = 0.01, c_r = 0.01, \delta = 0.5. \) Then, the unique equilibrium of the model is characterized by the following: \(\varphi_r = 0.33, r_1 = 0.02, r_2 = 0.007, m = 3.21. \)

The analysis of this section shows we can provide conditions which imply that there exists a unique equilibrium with entry in both locations.

A.3 Description of Data

The data for this paper was collected from the Dun and Bradstreet Million Dollar Database\(^{40}\). This database contains establishment level data on a wide range of business characteristics. Importantly, for our purposes, the data set contains information on employment, facility size, sales, industry (NAICS classification) and year established. In addition, the addresses of the establishments are included. One other important feature of the data is that Dun and Bradstreet assigns a unique identifier to each establishment, called a DUNS-number, which is retained over time, even if the

\(^{40}\)Information on Dun and Bradstreet data is available on-line at http://www.dnbmdd.com/
establishment changes location. This allows the researcher to track the dynamics of firms. The coverage of the data set is near universal when compared to establishment counts from the census, and the data has been shown to be reliable.41

The data was collected in two snapshots in 2008 and 2011 for Allegheny County, Pennsylvania. Initially, there were 54,587 and 62,637 observations in 2008 and 2011 respectively. We chose to look specifically at the service sector which we defined as 2-digit NAICS classifications from 51 to 62. This left us with, 25,162 and 30,865 observations in 2008 and 2011 respectively. A panel was then constructed by linking firms across years using their DUNS-number. Establishments were separated into two locations, by assigning zip codes 19213, 19219, and 19222 to the CBD, and all other zip codes to the oCBD. These zip codes correspond to the downtown business district and Oakland areas of the city which are the two significant dense business districts in Pittsburgh. For estimation purposes, an establishment was considered a mover if it moved from the CBD to the oCBD. Finally, establishments were considered entrants if they appeared in the 2011 sample and not the 2008 sample. Likewise exiting firms were those present in 2008 but not 2011.

Several steps were taken to clean and process the data beyond what is described above. First, there were several data points with obvious errors or extreme values. Also approximately three percent of the data had missing data fields. These were simply removed. Next, because Dun and Bradstreet is continually improving their data coverage, many firms appeared in 2011 that were not present in 2008. Some of these were actual entrants, while others simply were recently included in the data set. To correct this, we checked establishments that were flagged as new entrants to make sure that they were not established prior to 2008 using the ‘year established’ field provided in the data. This lead to the removal of 4,046 establishments that were

41See Neumark et al. (2007) for an analysis of the completeness and reliability of the data.
not true entrants. Note, that these excluded data did not differ significantly based on observables, so we assume they were excluded at random. Finally, there seemed to be some very suspicious outliers related to the sales data. To remedy this, we created a variable, sales per employee, and removed the top and bottom 0.1 percent of these values. The final sample contains 24,136 and 25,726 establishments in 2008 and 2011 respectively, with 16,486 incumbents linked between the two years, suggesting that there are 32,122 unique establishments in the sample.
References

