Griffiths evidently intends you to do this calculation in the quasistatic limit. This means that you should include the contribution to \vec{E} from $-\nabla V$ but neglect the $-\partial \vec{A}/\partial t$ term. Including the latter (properly) requires a full electrodynamic solution for the electric and magnetic fields in the cavity between the two ends of the wire and is important at very high frequency $\omega > 2\pi c/d$.

2 Calculate both the electric (repulsion) between the upper and lower hemispheres and the magnetic (attraction) between them.

3 To make the vector algebra manageable you might find it useful to use the identity

$$\vec{V} \equiv (\vec{V} \cdot \hat{e}_r) \hat{e}_r + \hat{e}_r \times (\vec{V} \times \hat{e}_r)$$

and apply this theorem to the vector $\vec{P} \times \vec{M}$. This will allow you to express the interior and exterior momentum density as a function of $\vec{P} \times \vec{M}$ instead of the two fields separately. BTW, the result implies that if the polarization is quenched, the sphere acquires a net mechanical momentum from the interaction of the polarization currents with the magnetic field.

4 Evaluate the time averages of these quantities.