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1 Introduction

This Appendix provides a user's guide for the Matlab codes that implement the FiPIt algorithm. It

describes how the various steps of the algorithm presented in Section 3 of the paper are undertaken

in the computer programs. The programs are distributed in a zip �le labeled MendozaVillalva-

zoFiPItCode available online. The main directory of this �le has the same name, and it contains

two folders named FiPIt and M�les. The main Matlab script is named mainFiPIt.m and is located

in the FiPIt folder. This folder also includes the output �les as well as script �les used to gener-

ate various output components (moments, graphs, etc.). The mainFiPIt.m program calls several

function scripts that are stored in the MFiles folder. Table A1 provides a list of all the �les, their

location and contents.

Table A1: Files Included in the MendozaVillalvazoFiPItCode Directory

Name Folder Location Description

mainFiPIt.m FiPIt/ Main script
script1_Moments.m FiPIt/ Script to obtain moments in Table 2 and 5.e
script2_PolicyPlot.m FiPIt/ Script to produce the Figures
script4_TableDi�Ampl.m FiPIt/ Script to the probability of Sudden Stops
fBiLinearInterpolation.m MFiles/ Function for bi-linear interpolation
fFiPIt_Cons.m MFiles/ Function to �nd consumption rule from the Euler Equation for bonds using FiPIt
fFiPIt_EulerError.m MFiles/ Function to compute Euler Errors
fFiPIt_MuBond.m MFiles/ Function to compute Lagrange multiplier of ad-hoc debt limit in the RBC model
fFiPIt_MuHat.m MFiles/ Function that solves for credit constraint mutiplier ratio using a non-linear solver
fFiPIt_PriceK.m MFiles/ Function to compute price of capital from the capital Euler Equation using FiPIt
fMarkov.m MFiles/ Function to generate Markov chain simulation

The output of mainFiPIt.m is stored in a .mat �le. To solve the variant of the model in which

the credit constraint never binds (denoted the RBC model), set the valuef of κ high enough so as

to ensure that this is the case. Under our calibration, κ > 1 is su�cient. The .mat �le with the

RBC solution is named solFiPIt_RBC.mat. To solve the Sudden Stops (SS) model, set κ < 1.

The .mat �le with this solution is named solFiPIt_SS.mat. The long-run moments of these two

models reported in Table 2 and 5.e of the paper are computed using script1_Moments.m, choosing

to comment in or out either line 14 or 15 to load the corresponding .mat �le with the RBC or SS

solution. Similarly, to produce the policy function plots run script2_PolicyPlot.m and to produce

the probability of Sudden Stops run script4_TableDi�Ampl.m.

2 Recursive Equilibrium Conditions

To implement the FiPIt method, we �rst re-write the equilibrium conditions of the model in recursive

form. The model has two endogenous states, b and k, and three exogenous states, using s to denote
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the triple of exogenous shocks s ≡ (A,R, p), which includes the shocks to TFP (A), the world

interest rate (R) and the price of imported inputs (p). The recursive equilibrium is de�ned by

a set of recursive functions for allocations [b′(b, k, s), k′(b, k, s), c(b, k, s), L(b, k, s), v(b, k, s)], prices

[w(b, k, s), q(b, k, s), d(b, k, s)] and multipliers [λ(b, k, s), µ(b, k, s)] that satisfy the following recursive

equilibrium conditions:

(
c(b, k, s)− L(b, k, s)ω

ω

)−σ
= λ(b, k, s)(1 + τ) (1)

αAkγL(b, k, s)α−1v(b, k, s)η = w(b, k, s)

(
1 + φ(R− 1) +

µ(b, k, s)

λ(b, k, s)
φR

)
(2)

ηAkγL(b, k, s)αv(b, k, s)η−1 = p

(
1 + φ(R− 1) +

µ(b, k, s)

λ(b, k, s)
φR

)
(3)

λ(b, k, s) = RβE[λ(b′(b, k, s), k′(b, k, s), s′)] + µ(b, k, s) (4)

(5)
λ(b, k, s) =

1

q(b, k, s)
βE
[
λ(b′(b, k, s), k′(b, k, s), s′)(d(b′(b, k, s), k′(b, k, s), s′)

+ q′(b′(b, k, s), k′(b, k, s), s′))
]
+ µ(b, k, s)κ

d(b, k, s) = γAkγ−1L(b, k, s)αv(b, k, s)η − δ + a

2

(k′(b, k, s)− k)2

k2
(6)

q(b, k, s) = 1 + a

(
k′(b, k, s)− k

k

)
(7)

w(b, k, s) = L(b, k, s)ω−1(1 + τ) (8)

c(b, k, s)(1 + τ) + k′(b, k, s)− (1− δ)k + a

2

(k′(b, k, s)− k)2

k
= AkγL(b, k, s)αv(b, k, s)η

−pv(b, k, s)− φ(R− 1)(L(b, k, s)ω(1 + τ) + pv(b, k, s))−R−1b′(b, k, s) + b

(9)

3 Contents of the mainFiPIt.m program

The mainFiPIt.m �le is divided into 5 cells, each one including comments describing how the

contents of each cell relate to each of the seven algorithm steps described in subsection 3.2 of the

paper. The itemized step numbers labeled in bold typeface below match the step numbers in the

paper description, with the line in the Matlab code in which the step is executed indicated in

parenthesis.
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Cell 1. Parameterization & State Space: Sets the model's parameter values, creates the

discrete grids of bonds and capital, de�nes the Markov processes of shocks, and sets the values

of program parameters that de�ne the method to solve for capital price, the convergence criteria,

the maximum number of iterations and the updating coe�cients for decision rule conjectures

between one iteration and the next. The endogenous states are foreign bonds b and domestic

capital k. The exogenous states are included in s, which denotes a triple of shocks s ≡ (A,R, p)

that includes TFP (A), the world interest rate (R) and the price of imported inputs (p). The

realization set for shock triples s ∈ S comes from the discretization of the stochastic processes

of the shocks, which is typically done using Tauchen's quadrature method. Here, we take S

and the associated Markov transition probability matrix from Mendoza (2010), where each

shock has two realizations and hence S has eight triples. For the endogenous states, the

algorithm de�nes grids with a total of nBondGrid nodes for bonds and nCapitalGrid nodes for

capital. The state space has nBondGrid × nCapitalGrid × 8 elements and is de�ned by all

(b, k, s) ∈ B⊗K⊗S. The conditional statement starting in Line 82 adjusts the bonds grid when

the SS model is being solved to make sure the collateral constraint binds before the lower bound

of the grid. The recursive equilibrium is de�ned by a set of recursive functions for allocations

[b′(b, k, s), k′(b, k, s), c(b, k, s), L(b, k, s), v(b, k, s)], prices [w(b, k, s), q(b, k, s), d(b, k, s)] and the

multipliers [λ(b, k, s), µ(b, k, s)]. The model and program parameters are listed in Table A2.

Table A2: Parameter Values

Calibrated parameters

σ coe�cient of relative risk aversion 2.0
ω labor elasticity coe�cient 1.8461
β discount factor 0.92
a capital adjustment costs coe�cient 2.75
φ fraction of input costs requiring working capital 0.2579
δ depreciation rate 0.088
α labor share in gross output 0.59
η imported inputs share in gross output 0.10
γ capital share in gross output 0.31
τ tax on consumption 0.17
A average TFP 6.982

Algorithm parameters

ρb Updating weight for bonds decision rule 1.00
ρµ Updating weight for multiplier ratio 1.00
ρq Updating weight for price of capital 0.30
εf Function convergence criterion 10e-4
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Cell 2. Initial Conjectures, Array De�nitions & Non-linear Solver Options: This cell

de�nes the initial conjectures for the equilibrium recursive functions. Following the notation

in the paper, at any iteration j the initial conjectured functions are denoted q̂j(b, k, s) for the

price of capital, b̂′j(b, k, s) for the decision rule for bonds, and ˆ̃µj(b, k, s) ≡ µj(b, k, s)/λj(b, k, s)

for the multiplier ratio. This cell also initializes the arrays for other variables and constructs a

function that sets the optimization options for the non-linear solver used later in the program

to solve for allocations when the credit constraint binds.

Step 1. (Line 106) Sets the �rst-iteration recursive function conjectures to b̂′0(b, k, s) = b,

q̂0(b, k, s) = 1 and ˆ̃µ0(b, k, s)) = 0 for all (b, k, s) ∈ B ⊗K ⊗ S. The instructions after those

initialize the arrays for other variables, the �rst-iteration value of the convergence metric for

the recursive functions (nMaxDif ) and the iterations counter (nIter), and they also de�ne the

function pSolverOpt to set the options for Matlab's fsolve non-linear solver used later in the

code when solving for allocations in states in which µ̃ > 0.

Cell 3. Main Loop Executing Iterations on Equilibrium Recursive Functions: The While

loop starting in line 143 executes the successive iterations on the equilibrium recursive functions

for bonds, price of capital and multiplier ratio. The current iteration number (j) is stored in

the integer nIter, and the value of the convergence metric attained in iteration nIter is stored

in nMaxDif.

Step 2. (Line 146) Generates decision rules for capital, investment, factor allocations, gross
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output and consumption in iteration j implied by the conjectures q̂j(b, k, s), b̂
′
j(b, k, s),

ˆ̃µj(b, k, s):

k′j(b, k, s) =
k

a
[q̂j(b, k, s)− 1 + a]

ĩj(b, k, s) =(k′j(b, k, s)− k)
[
1 +

a

2

(
k′j(b, k, s)− k

k

)]
− δk

vj(b, k, s) =

{
Akγη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + ˆ̃µj(b, k, s)φR]

} ω
ω(1−η)−α

Lj(b, k, s) =

{
α

η(1 + τ)
pvj((b, k, s)

} 1
ω

yj(b, k, s) =Ak
γLj(b, k, s)

αvj(b, k, s)
η

(1 + τ)cj(b, k, s) =yj(b, k, s)− pvj(b, k, s)− φ(R− 1) [(1 + τ)Lj(b, k, s)
ω + pvj(b, k, s)]

− ĩj(b, k, s)−
b̂′j(b, k, s)

R
+ b

The code uses here the same set of expressions for the RBC and SS solutions. For the latter,

the values of factor allocations, gross output and consumption vary with µ̃(·), whereas in the

RBC solution they do not because µ̃(·) = 0 always. Note also that since µ̃(·) is always set to

zero in the �rst iteration, the �rst-iteration results of this step are identical when solving either

the RBC or SS models. When solving the RBC model, µ̃(·) remains zero in all iterations, but

when solving the SS model, µ̃(·) > 0 in states in which the credit constraint binds.

Step 3.1 (Line 166) Assume the collateral constraint does not bind. Solve for new decision

rules (indexed j+1) for labor, intermediate goods and output. Since the constraint is assumed

to be non-binding, these decision rules are the same in RBC and SS solutions:

vj+1(b, k, s) =

{
Akγη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1)]

} ω
ω(1−η)−α

Lj+1(b, k, s) =

{
α

η(1 + τ)
pvj+1(b, k, s)

} 1
ω

yj+1(b, k, s) =Ak
γLj+1(b, k, s)

αvj+1(b, k, s)
η

Steps 3.2 & 3.3. (Line 181) Solve for the j + 1 consumption and bonds decision rules using

the bonds' Euler Equation and the resource constraint. For each (b, k, s) in the state space,

consumption is solved for using the fFiPIt_Cons.m function located in the M�les folder. This

function �nds the new consumption rule by solving �directly� from the Euler equation, as
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explained in Step 3.2 of the algorithm description in the paper:

cj+1(b, k, s)

=

βRE
(cj(b̂′j(b, k, s), k′j(b, k, s), s′)−Lj(b̂′j(b, k, s), k′j(b, k, s), s′)ωω

)−σ
− 1
σ

+
Lj+1(b, k, s)

ω

ω

fFiPIt_Cons.m calls the function fBiLinearInterpolation.m, also in the M�les folder, in order

to �nd the values of cj(b̂
′
j(b, k, s), k

′
j(b, k, s), s

′), Lj(b̂′j(b, k, s), k
′
j(b, k, s), s

′), which are deter-

mined using bi-linear interpolation because b̂′j(b, k, s) and k′j(b, k, s) are not on the nodes of

the bonds and capital grids in general. Once cj+1(b, k, s) is determined, the new bonds policy

function b′j+1(b, k, s) is solved for using the resource constraint, and the implied leverage ratio

is computed (i.e. the value of
−qbt bt+1+φRt(wtLt+ptvt)

κqtkt+1
).

Step 3.4. (Line 192) Check if collateral constraint binds using the new decision (j+1-indexed)

decision rules:

b′j+1(b, k, s)

R
− φR [(1 + τ)Lj+1(b, k, s)

ω + pvj+1(b, k, s)] + κq̂j(b, k, s)k
′
j(b, k, s) ≥ 0

Line 202 evaluates if there are (b, k, s) states for which the new bonds decision rule is below

the lower bound of the bonds grid. In these cases, the lower bound is a binding ad-hoc debt

limit. The bonds decision rule is re-set equal to this debt limit, the consumption decision rule

is re-set to the value implied by the resource constraint, and we also compute the associated

Lagrange multiplier for the binding ad-hoc debt limit.

Step 4. (Line 217) This step is only executed when solving the SS model and only for states

(b, k, s) in which the constraint was found to be binding in Step 3.4, because these are the only

states in which the decision rules depend on µ̃. This step solves for µ̃j+1(b, k, s) by applying

Matlab's fsolve root �nder to a function formed using the fFiPIt_MuHat.m script located in the

M�les folder. fFiPIt_MuHat.m forms equation (38) in the paper. It uses the j-indexed func-

tions for consumption and labor to form the expected value in the right-hand-side of eq. (38),

which requires the same bi-linear interpolation method used to solve for cj+1 in step 3.2. The

solver uses the optimization options set in pSolverOpt as de�ned in Cell 1 and returns the value

of µ̃j+1(b, k, s). The solver uses these options: optimoptions(`fsolve',`Display',`o�',`TolFun',1e-

18). A small tolerance convergence criterion is needed in order to attain convergence of the
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recursive functions and small Euler errors. We use as initial condition (vInitX ) the current

iteration's initial conjecture µ̃j(b, k, s). After µ̃j+1(b, k, s) is solved for, we compute the associ-

ated j+1 values of the decision rules using eqs. (33)-(36) in the paper. Keep in mind that there

are many variations of occasionally binding constraints for which the constrained allocations

and the multiplier of the binding constraint can be solved separately, in which case there is no

need to use a non-linear solver in this step. Two cases explored in the paper are one in which

working capital is removed from the collateral constraint and one in which the credit constraint

is set to a constant value instead of the value of collateral (see p. 15 and p. 24 of the paper).

This makes the FiPIt algorithm signi�cantly faster.

Step 5. (Line 250) This step is just a comment noting that at this point in the code we

have solved the new (j + 1-indexed) optimal decision rules for all (b, k, s) in the state space

conditional on the conjectured q̂j(b, k, s) function.

Step 6. (Line 252) Compute the new pricing function. This step is coded so as to allow the

user to choose one of the two alternatives to compute the pricing function described in Steps

6.1 and 6.2 of the paper. The former uses �xed-point iteration, the latter �nds q as the forward

solution of the capital Euler equation. The �xed-point iteration (forward) solution is chosen by

setting pFixPointPriceK == 1 (pFixPointPriceK == 0) in the algorithm parameters of Cell 1.

In both cases, we solve for qj+1(b, k, s) using the fFiPIt_PriceK.m script located in the M�les

folder. This script solves the following equation, which is eq. (41) in the paper (we use (·) to

denote (b, k, s) so as to shorten the notation):

qj+1(b, k, s)

=

βEt

[(
cj+1

(
b′j+1(·), k′j(·), s′

)
− Lj+1(b′j+1(·),k′j(·),s′)

ω

ω

)−σ [
d′
(
b′j+1(·), k′j(·), s′

)
+ q̂j

(
b′j+1(·), k′j(·), s′

)]]
(
cj+1(·)− Lj+1(·)ω

ω

)−σ
(1− κµ̃j+1(·))

where

d′
(
b′j+1(·), k′j(·), s′

)
= γA′k′j(·)γ−1Lj+1

(
b′j+1(·), k′j(·), s′

)α
vj+1

(
b′j+1(·), k′j(·), s′

)η
− δ + a

2

(k′j(b
′
j+1(·), k′j(·), s′)− k′j(·))2

k′j(·)2

When solving by �xed-point iteration, the above Euler equation solves directly for qj+1(·), since

all the terms in the right-hand-side of the expression are known at this point in the code. The

equation is solved once and the solution passed on as the new pricing function. Note that in

forming the conditional expectation, we use j-indexed conjectures of the price of capital and
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the capital decision rule (since their j + 1 values are not known), but the rest of the relevant

recursive functions are indexed j+1 (since they have been solved for in the previous steps of the

algorithm). As before, bi-linear interpolation is used to determine the values of all the functions

that have (b′j+1(·), k′j(·)) as arguments (the t+1 variables in the conditional expectation of the

Euler equation), since those functions are only known at grid nodes.1 When solving by forward

solution, fFiPIt_PriceK.m is used repeatedly to iterate on the above capital Euler equation

until qj+1(·) and q̂j (·) converge, but keeping all the other functions unchanged. For these

iterations, the iteration counter is the integer nIterInner, and the value of the convergence

metric at iteration nIterInner is denoted nMaxDifInner. The convergence criterion is the value

assigned to the parameter nTolInner in Cell 1.

Step 6.1. (Line 271) If pFixPointPriceK = 1, then the �rst solution for qj+1(b, k, s) generated

for each (b, k, s) using fFiPIt_PriceK.m is retained as the new pricing function.

Step 6.2. (Line 274) If pFixPointPriceK = 0 (which is executed by the else instruction when

pFixPointPriceK = 1 is not valid), then fFiPIt_PriceK.m is used to generate the new values

of qj+1(b, k, s) for each (b, k, s) as we iterate to convergence on the capital pricing function.

Step 7. (Line 281) Check convergence and update conjectures. The convergence criterion is

given by nMaxDif ≤ εf , where nMaxDif is the following convergence metric:

nMaxDif =

max
{
|qj+1(b, k, s)− q̂j(b, k, s)|, |b′j+1(b, k, s)− b̂′j(b, k, s)|, |µ̃j+1(b, k, s)− ˆ̃µj(b, k, s)|

}
∀(b, k, s) ∈ B ⊗K ⊗ S. The value of εf is de�ned by setting the program parameter nTol in

Cell 1. If convergence is attained, the recursive equilibrium has been solved and the results are

stored in either the solFiPIt_SS.mat �le for the SS model or the solFiPIt_RBC.mat �le for

the RBC model. If convergence is not attained, then generate new conjectures as follows:

x̂j+1(b, k, s) = (1− ρx)x̂j(b, k, s) + ρxxj+1(b, k, s)

for x = [q, b, µ̃] and some 0 ≤ ρx. x̂j(b, k, s) in the right-hand-side of this expression represents

the initial conjectures used in the current iteration, while x̂+1j(b, k, s) in the left-hand-side

1For evaluating dividends, we found that the algorithm performs better if we interpolate the functions that enter

in the de�nition of dividends individually and then generate the value of dividends, instead of �rst de�ning dividends

and then interpolating the dividends function.
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denotes the new conjectures for the next iteration. Use 0 < ρx < 1 (ρx > 1) for the particular

function x(·) that is not converging (converging too slowly). The values of the ρx coe�cients

are set with the parameters nUpdateGuessB and nUpdateGuessPK in Cell 1.2 Return to Step

2 (Line 146) using the new conjectures for the next iteration.

Cell 4. Compute Euler Equation Errors.

The solution of the recursive equilibrium is completed when the program exits Cell 3. The next

two cells generate two important objects based on the model solution. First, Cell 4 computes

the errors of the Euler equations of bonds and capital using the fFiPIt_EulerError.m function

located in the M�les folder. Then Cell 5 computes the ergodic distribution of bonds, capital

and shocks. To compute the Euler errors, the Euler equations are evaluated at the equilibrium

solutions rather than used to solve for the equilibrium. Hence, fFiPIt_EulerError.m uses the

equilibrium functions (the last solutions generated by the functions that converged according

to the tolerance criterion) in all the relevant terms of the Euler equations.

Cell 5. Compute the Ergodic Distribution.

We compute the ergodic distribution of (b, k, s) by iterating to convergence on the law of motion

of the conditional transition probabilities from (b, k, s) (denoted Mj(b, k, s)) to (b′, k′, s′) (de-

notedMj+1(b
′, k′, s′)) ∀(b, k, s), (b′, k′, s′) ∈ B⊗K⊗S. The initial guess (called mErgDistGuess

in line 404) is a uniform distribution. The law of motion is formed using the decision rules for

capital and bonds and the exogenous Markov process of the shocks. Since we have solved for

approximately continuous decision rules using bi-linear interpolation, we use a standard modi-

�cation of this law of motion adjusted for the fact that decision rules do not yield values on the

nodes of the bonds and capital grids in general. For every (b, k, s) we �nd bL ≤ b′(b, k, s) ≤ bU

and kL ≤ k′(b, k, s) ≤ kU , where bL, bU , kL, kU are the grid points closest to b′(·) and k′(·) .

Then we iterate on the conditional distributions as follows:

Mj+1(bL, kL, s
′) =

∑
s

Pr[s′|s]Mj(b, k, s)

(
bU − b′(b, k, s)

bU − bL

)(
kU − k′(b, k, s)

kU − kL

)

Mj+1(bL, kU , s
′) =

∑
s

Pr[s′|s]Mj(b, k, s)

(
bU − b′(b, k, s)

bU − bL

)(
k′(b, k, s)− kL

kU − kL

)
2We set ρB = ρµ̃ = 1 and ρq = 0.3 because this produced the best convergence performance, but this can change

with other parameterizations or in other applications of the algorithm.
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Mj+1(bU , kL, s
′) =

∑
s

Pr[s′|s]Mj(b, k, s)

(
b′(b, k, s)− bL

bU − bL

)(
kU − k′(b, k, s)

kU − kL

)

Mj+1(bU , kU , s
′) =

∑
s

Pr[s′|s]Mj(b, k, s)

(
b′(b, k, s)− bL

bU − bL

)(
k′(b, k, s)− kL

kU − kL

)
The convergence criterion is max|Mj+1(b, k, s) −Mj(b, k, s)|< εDist ∀(b, k, s) ∈ B ⊗K ⊗ S,

with the value of εDist set by the parameter nTolDist in Cell 1.

4 Auxiliary Notes

• Interpolation: Bi-linear interpolation can be done using the �interp2� Matlab function,

but we found that programming the interpolation directly improved the performance of the

code. We determine �rst the interpolation nodes, and then apply the standard bi-linear

interpolation rule. The scripts that implement the functions interpolations determine the

relevant interpolation nodes and then perform the bi-linear interpolation. To determine the

interpolation nodes, for each (b, k, s), create �rst vectors with the di�erences hb(b, k, s) =

b̂′j(b, k, s) − b and hk(b, k, s) = k′j(b, k, s) − k, then �nd the location of the smallest positive

di�erence and smallest negative di�erence (i.e. the di�erence closest to zero from below) in

these vectors. For example, for the interpolation nodes over the b dimension (bn, bn+1), �nd

the locations of argminhb(b, k, s) for hb(b, k, s) ≥ 0 and argmaxhb(b, k, s) for hb(b, k, s) ≤ 0. bn

is the location of the argmin and bn+1 is the location of the argmax. Once the interpolation

nodes are found, the interpolation is executed by calling the fBiLinearInterpolation.m function

located in the M�les folder. The scripts also make these adjustments when the interpolated

functions return decision rule values outside the state space: Use extrapolation if k′j(b, k, s)

returns a value below (above) the �rst node k1 (last node kNCapitalGrid) and also if b̂′j(b, k, s)

returns a value above the last node bNBondGrid, but for b̂′j(b, k, s) < b1 evaluate the functions

at b1, because the lower bound on bonds represents an ad-hoc debt limit used for calibration.

• Parallelization: There are several loops that run faster in parallel, using parfor instead of

for. This can be done with all loops that do not need to run sequentially. The outmost loop

controlling the iterations of the policy and pricing functions needs to be executed sequentially,

but several others can be parallelized. Parfor can be used in Step 2, 3, 4, and 6. For

the FiPIt variant of Step 6 a sequential sum is needed to attain convergence. We included

comments in the code indicating speci�c loops where parfor was used. Using parfor requires
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Matlab's Parallel Computing Toolbox. Note also that setting the number of workers to the

largest feasible (i.e. the number of processors) does not necessarily minimize execution time,

particularly in machines with several processors. In various computers with more than 16

processors, we found that using 6 or 7 workers produced the fastest execution times.

• Invalid allocations: Rule out allocations with non-positive arguments in the utility function.

These are cases such that, at any iteration and for a given triple (b, k, s) the conjectured

functions (indexed by j) or the unconstrained or constrained new decision rules (indexed by

j + 1) yield c − Lω/ω ≤ 0. In these cases, the solution of consumption when the constraint

does not bind and/or of the multiplier µ̃ when it binds cannot be obtained because they

involve the fractional exponent 1/σ (for σ > 1), which requires a positive base. Note that

this requirement is stricter than feasibility, because it is not just that the allocations are

technologically feasible, they also need to avoid hitting the Inada condition of the CRRA

utility function. In the mainFiPIt.m program, this causes an error that stops execution at

the point in which the �rst attempt to solve for a state of nature with c − Lω/ω ≤ 0 is

encountered. As explained in the paper (see p. 13 and p. 15), however, the FiPIt algorithm

has the advantage that starting from initial conjectures b̂′0(b, k, s), q̂0(b, k, s),
ˆ̃µ0(b, k, s)) such

that the implied labor and consumption decision rules satisfy c0(·)− L0(·)ω
ω > 0, implies that

cj(·) − Lj(·)ω
ω > 0 for any iteration j > 0 . For the baseline calibration and all six variations

we solved for, the initial conditions b̂′0(b, k, s) = b, q̂0(b, k, s) = 1 and ˆ̃µ0(b, k, s)) = 0 satis�ed

this condition.

5 Sketch of Other FiPIt Applications

We provide here a brief sketch of four examples:

1. Mendoza [1995]: This is an RBC small open economy with incomplete markets and

three sectors, quadratic capital adjustment costs given by (φ/2)(kt+1− kt)2, and a max-

imum debt limit as the only occasionally binding constraint. The model has endogenous

discounting, but consider a variant with a standard constant discount factor. The adjust-

ment costs formulation does not satisfy the Hayashi conditions required for the average

and marginal Tobin's Q to be the same, but for implementing FiPIt de�ne a quasi capital

pricing function given by qt ≡ 1+ φ(kt+1 − kt), so that given a conjecture of this pricing
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function we can obtain an implied capital decision rule. Start with this pricing con-

jecture and a conjectured bonds decision rule. The model's equilibrium conditions, the

implied capital decision rule, and the bonds decision rule can be used so that the resource

constraint for tradable goods yields an implied decision rule for tradables consumption.

FiPIt can then be used on the Euler equation for bonds to solve for a new tradables

consumption decision rule, and the resource constraint yields a new bonds decision rule.

FiPIt can then be applied to the Euler equation for capital to solve for a new q function.

2. Ludwig and Schön [2018]: This is a model of optimal human capital accumulation h

with a no-borrowing constraint on an asset a that pays an exogenous interest rate R

(i.e. a small open economy). Human capital depreciates at rate δ and is produced with a

concave function of human capital investment f(i). Agents have CRRA period utility and

an exogenous probability of survival given by an increasing, concave function s(h). To

solve using FiPIt, start with a conjectured decision rule for assets Â(a, h) and a conjecture

for the shadow relative price of human capital investment ˆ̃µ(a, h) where µ ≡ µ/λ and λ

and µ are the multipliers on the resource constraint and law of motion of human capital

accumulation respectively. Given these conjectures, the model's equilibrium conditions

yield implied decision rules for human capital, consumption and investment in human

capital. Then FiPIt can be applied to the Euler equation on assets to solve for a new

consumption decision rule and using the result in the resource constraint yields a new

decision rule for assets A(a, h). If A(a, h) < 0, re-de�ne the decision rule as A(a, h) = 0,

set the associated consumption to the amount supported by the resource constraint,

and compute the ratio ψ/λ (where ψ is the multiplier on the no-borrowing constraint).

Finally, rewrite the Euler equation for human capital in terms of the ratio µ/λ and apply

FiPIt to solve for a new decision rule for µ̃. There is no need to use a root-�nder in this

case.

3. Mendoza and Smith [2006]: This is a stochastic model of a small open economy in which

agents trade in world bond markets and in a market where equity on the economy's capital

can be bought by foreign investors, who face a quadratic cost of purchasing equity. A

productivity shock a�ects equity returns. There is a credit constraint imposing a limit

on the ratio of debt to the market value of the equity holdings of domestic agents,

and a short-selling limit on the equity position. Given conjectures of the decision rule

for bonds and the equity pricing function, the optimality condition of foreign investors
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and market clearing conditions yield an implied decision rule for equity holdings (the

quadratic adjustment cost plays a role similar to the capital adjustment cost in the SS

model we solved earlier). Given these, the resource constraint of the small open economy

yields a decision rule for consumption. Assuming the credit constraints do not bind,

FiPIt can then be applied to the bonds Euler equation to solve for a new consumption

decision rule, and the resource constraint yields a new bonds decision rule. If the latter

yields a value that violates the credit constraint, the constraint is imposed with equality

to obtain new values for the bonds decision rule and consumption, and for the ratio of

the multiplier of the borrowing constraint. Finally, FiPIt is applied to the Euler equation

for equity holdings to obtain a new equity pricing function.

4. Huggett [1993]: This is one of the canonical heterogeneous agents models in which a

continuum of agents trade non-state-contingent debt facing idiosyncratic Markov income

shocks and a maximum debt limit. The optimization problem solved by an individual

agent, who takes an exogenously-determined value of the interest rate as given, is identical

to that of the small open endowment economy studied in Section 2, which has only one

endogenous state variable. Start with a conjectured decision rule for bonds, use the

resource constraint to obtain the implied decision rule for consumption. Then apply

FiPIt to solve for a new consumption decision rule, and use the resource constraint to

obtain a new bonds decision rule. If the latter violates the maximum debt limit, rede�ne

to bonds decision rule to match the debt limit and set the associated consumption decision

rule to the amount supported by the resource constraint. Iterate to convergence on the

bonds decision rule and then use the decision rules and Markov process of income shocks

to compute the ergodic distribution of bonds and income (i.e. the wealth and income

distribution across agents). The di�erence with the small open economy is that now the

interest rate is also part of the solution. The ergodic distribution is used to compute the

aggregate demand for bonds (i.e. the mean of asset demand across agents), which must be

equal zero at equilibrium in order to clear the bond market. If it yields exceeds demand

(supply), the interest rate is reduced (increased) until the market-clearing condition holds

up to a convergence criterion. Again FiPIt does not require a root �nder.
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