A GENERAL EQUILIBRIUM MODEL OF SOVEREIGN DEFAULT AND BUSINESS CYCLES

ENRIQUE G. MENDOZA

AND

VIVIAN Z. YUE

Key Stylized Facts of Sovereign Default

- V-shaped output dynamics around default episodes
 Deep recessions. Most defaults with output 7% below trend
- Countercyclical interest rates
 Average correlations between spreads and GDP: -0.5
- 3. Foreign debt/GDP ratios high on average and before default

Average: 1/3. After defaults: 2/3

Cyclical Dynamics Around Default Events

Cyclical Dynamics Around Default Events

The Disconnect between Default & Business Cycle Theories

 Business cycle models with working capital constraint take as given country interest rates

Match Fact No. 2 and generate higher output volatility

...but country spreads are unexplained

...cannot account for Fact No. 1 and No. 3

...entire wages bill needs to be paid in advance

▶ Neumeyer & Perri (05), Uribe & Yue (06), Oviedo (05)

The Disconnect between Default & Business Cycle Theories

- ► Eaton-Gersovitz sovereign default models Match Fact No. 2
 -but output is an endowment with ad-hoc default costs ...cannot explain Fact No. 1
 - ...cannot account for Fact No. 3 with proportional output cost or Fact No. 1 with asymmetric output cost
 - Aguiar & Gopinath (06), Arellano (08), Bi (08), D'Erasmo (08), Bai and Zhang (09), Hatchondo, Martinez & Sapriza (09), Arellano & Ramanarayanan (09), Benjamin & Wright (09), Chatterjee & Eyigungor (09), Yue (10), Cuadra, Sanchez & Sapriza (10), Durdu, Nunes & Sapriza (10)...

Percent Output Cost of Default - Comparison

- Proportional cost (Aguiar and Gopinath 2006, Yue 2010): $y_t^{def} = \lambda y_t$.
- Asymmetric cost (Arellano 2008): $y_t^{def} = y_t \text{ if } y_t \leq \lambda E[y]; \quad y_t^{def} = \lambda E[y] \text{ if } y_t > \lambda E[y].$

Percentage of output cost of default $h\left(y_{t}\right)=\ln\left(y_{t}\right)-\ln\left(y_{t}^{def}\right)$

- Default model with endogenous output dynamics
 - Continuum of Imported Input Varieties
 - A fraction of imported inputs requires working capital
 - Domestic inputs are imperfect substitutes and require labor reallocation
 - Default triggers exclusion for government and firms

- Default model with endogenous output dynamics
 - Continuum of Imported Input Varieties
 - A fraction of imported inputs requires working capital
 - Domestic inputs are imperfect substitutes and require labor reallocation
 - Default triggers exclusion for government and firms

- Default model with endogenous output dynamics
 - Continuum of Imported Input Varieties
 - A fraction of imported inputs requires working capital
 - Domestic inputs are imperfect substitutes and require labor reallocation
 - Default triggers exclusion for government and firms

Default causes efficiency loss and an output cost increasing in state of TFP

- Quantitative analysis calibrated to Argentina shows that the model produces:
 - Countercyclical spreads and key business cycle statistics
 - Dynamics of GDP and bond spreads around default
 - High debt/GDP ratios on average and at default
 - Strong financial amplification of TFP shocks during default events

Basic Model: Production and Working Capital

Final goods production technology

$$y = \varepsilon M^{\alpha_m} L_f^{\alpha_l} \overline{k}^{\alpha_k}$$

Armington aggregator of imported and domestic inputs (imperfect substitutes, $0 < \mu < 1$)

$$M_t = \left[\lambda \left(m_t^d
ight)^\mu + \left(1-\lambda
ight)\left(m_t^*
ight)^\mu
ight]^{rac{1}{\mu}}, \;\; m_t^* \equiv \left[\int_{j\in[0,1]} \left(m_{jt}^*
ight)^
u dj
ight]^{1/
u}$$

Basic Model: Production and Working Capital

Final goods production technology

$$y = \varepsilon M^{\alpha_m} L_f^{\alpha_l} \overline{k}^{\alpha_k}$$

Armington aggregator of imported and domestic inputs (imperfect substitutes, $0 < \mu < 1$)

$$M_t = \left[\lambda \left(m_t^d
ight)^\mu + \left(1-\lambda
ight)\left(m_t^*
ight)^\mu
ight]^{rac{1}{\mu}}, \;\; m_t^* \equiv \left[\int_{j\in[0,1]} \left(m_{jt}^*
ight)^
u dj
ight]^{1/
u}$$

▶ A subset $[0, \theta]$ of imported inputs requires working capital κ borrowed abroad.

$$\frac{\kappa_t}{1+r_t^*} \ge \int_0^\theta p_j^* m_j^* dj$$

▶ Domestic intermediate goods do not require working capital but need to be produced hiring domestic labor $(m = AL_m^{\gamma})$.

Producers' Problems

- Competitive producers take all prices and factor costs as given
- ► Final goods sector

$$\pi_{t}^{f} = \varepsilon_{t} (M_{t})^{\alpha_{M}} (L_{t}^{f})^{\alpha_{L}} k^{\alpha_{k}} - \int_{0}^{1} p_{j}^{*} m_{jt}^{*} dj - r_{t}^{*} \int_{0}^{\theta} p_{j}^{*} m_{jt}^{*} dj - p_{t}^{m} m_{t}^{d} - w_{t} L_{t}^{f}.$$

Producers' Problems

- Competitive producers take all prices and factor costs as given
- Final goods sector

$$\pi_{t}^{f} = \varepsilon_{t} (M_{t})^{\alpha_{M}} (L_{t}^{f})^{\alpha_{L}} k^{\alpha_{k}} - \int_{0}^{1} p_{j}^{*} m_{jt}^{*} dj - r_{t}^{*} \int_{0}^{\theta} p_{j}^{*} m_{jt}^{*} dj - p_{t}^{m} m_{t}^{d} - w_{t} L_{t}^{f}.$$

▶ The price of the Dixit-Stiglitz aggregator of imported inputs m_t^*

$$P^*\left(r_t
ight) = \left[\int_{ heta}^{1}\left(p_j^*
ight)^{rac{
u}{
u-1}}\,dj + \int_{0}^{ heta}\left(p_j^*\left(1+r_t^*
ight)
ight)^{rac{
u}{
u-1}}\,dj
ight]^{rac{
u-1}{
u}}.$$

Producers' Problems

- Competitive producers take all prices and factor costs as given
- Final goods sector

$$\pi_{t}^{f} = \varepsilon_{t} (M_{t})^{\alpha_{M}} (L_{t}^{f})^{\alpha_{L}} k^{\alpha_{k}} - \int_{0}^{1} p_{j}^{*} m_{jt}^{*} dj - r_{t}^{*} \int_{0}^{\theta} p_{j}^{*} m_{jt}^{*} dj - p_{t}^{m} m_{t}^{d} - w_{t} L_{t}^{f}.$$

► The price of the Dixit-Stiglitz aggregator of imported inputs m_t^*

$$P^{st}\left(r_{t}
ight)=\left[\int_{ heta}^{1}\left(p_{j}^{st}
ight)^{rac{
u}{
u-1}}\,dj+\int_{0}^{ heta}\left(p_{j}^{st}\left(1+r_{t}^{st}
ight)
ight)^{rac{
u}{
u-1}}\,dj
ight]^{rac{
u-1}{
u}}.$$

► Intermediate goods sector

$$\pi_m = \max_{l,m} \left[p_m A L_m^{\gamma} - w L_m \right]$$

Production Optimality Conditions

$$\varepsilon F_{m^*} \left(m^*, m^d, L_f, \overline{k} \right) = P_m^* (r^*)
\varepsilon F_{L_f} \left(m^*, m^d, L_f, \overline{k} \right) = w
\varepsilon F_{m^d} \left(m^*, m^d, L_f, \overline{k} \right) = p_m^d
p_m^d \gamma A L_m^{\gamma - 1} = w
w = \omega L^{\omega - 1}
L = L_f + L_m
m_d = A L_m^{\gamma}$$

How does Default Cause Efficiency Loss in Production?

- Channels
 - ▶ direct: demand for m* falls with default
 - ▶ indirect: L_f , M fall
 - **general equilibrium**: L falls, L_m , m^d rise or fall depending on gross substitutes or complements

How does Default Cause Efficiency Loss in Production?

- Channels
 - ▶ direct: demand for m* falls with default
 - ▶ indirect: L_f , M fall
 - general equilibrium: L falls, Lm, m^d rise or fall depending on gross substitutes or complements
- At default: firms use only m^d and m_j^* , $j \in [\theta, 1]$, causing efficiency loss because m^d is imperfect substitute.
 - ► Gopinath and Neiman (2010): evidence of drop in imported inputs within-firm in the Argentine debt crisis

Effect of Default on Equilibrium Factor Allocations

	(1)	(II)	(III)	(IV)	(V)
	Baseline	Threshold	Cobb-Douglas	High Within-	Inelastic
		η_{m^d,m^*}	Aggregator	$\eta_{m_j^*}$	Labor
η_{m^d,m^*}	2.86,	1.96	1		
$\eta_{m_j^*}$	2.44			10	
M	-11.36%	-21.90%	-40.72%	-3.08%	-9.61%
m^*	-90.64%	-81.59%	-68.21%	-30.38%	-90.46%
m^d	1.73%	0.01%	-13.65%	0.46%	3.73%
L	-2.77%	-7.11%	-19.12%	-0.73%	0.0%
\mathcal{L}^f	-6.29%	-11.40%	-19.22%	-1.67%	-3.65%
_L ^m	2.48%	0.02%	-18.91%	0.65%	5.37%

(percent changes relative to a state with $r^* = 0.01$)

Output Cost of Default

Output Costs of Default as a Function of TFP Shock

- Output cost of default is increasing and strictly convex in TFP
- Output cost of default is higher and a steeper function of ε at lower elasticities
- Debt provides more hedging. Model supports more debt.

Output Cost of Default

Output Costs of Default at a Neutral TFP Shock

Households' Problem

Preference: GHH utility function

$$\sum_{t=1}^{\infty} \beta^{t} \frac{\left(c_{t} - \frac{L_{t}^{\omega}}{\omega}\right)^{1-\sigma} - 1}{1-\sigma}$$

▶ Static problem: given gov transfers T_t , wages and profits

$$\max_{c_t, L_t} \frac{\left(c_t - \frac{L_t^{\omega}}{\omega}\right)^{1-\sigma} - 1}{1 - \sigma}$$
s.t. $c_t = w_t L_t + \pi_{f,t} + \pi_{m,t} + T_t$

Sovereign Debt Market

- ▶ Risk neutral foreign investors face world interest rate r^* .
- ▶ Government issues one-period discount bonds with face values b' and price $q(b', \varepsilon)$. Asset markets are incomplete.
- ▶ Gov. defaults if value of default exceeds value of repayment.

Sovereign Debt Market

- ▶ Risk neutral foreign investors face world interest rate r^* .
- ▶ Government issues one-period discount bonds with face values b' and price $q(b', \varepsilon)$. Asset markets are incomplete.
- ► Gov. defaults if value of default exceeds value of repayment.
- ▶ Default causes temporary exclusion from world credit markets (exogenous re-entry with probability η), affecting both consumption smoothing and access to imported inputs
 - ► Implicit or explicit trade sanctions during defaults (Kaletsky (1985), Bulow and Rogoff (1989), Rose (2005), Martinez and Sandleris (2008), Kohlscheen and O'Connell (2008))

Government's Problem

Given $q(b', \varepsilon)$, the gov. solves a social planner's problem

$$V\left(b,\varepsilon
ight)=\max\left\{ v^{nd}\left(b,\varepsilon
ight),v^{d}\left(\varepsilon
ight)
ight\}$$

Government's Problem

Given $q(b', \varepsilon)$, the gov. solves a social planner's problem

$$V\left(b,arepsilon
ight)=\max\left\{ v^{nd}\left(b,arepsilon
ight),v^{d}\left(arepsilon
ight)
ight\}$$

$$v^{nd}(b,\varepsilon) = \max_{c,m^d,m^*,L^f,L^m,L,b'} \left[u(c,L) + \beta EV(b',\varepsilon') \right]$$
s.t. $c + q(b',\varepsilon)b' - b \le \varepsilon f(M,L^f,k) - m^*P^*(r^*)$

$$L^f + L^m = L, \quad A(L^m)^{\gamma} = m^d, M = M(m^d,m^*)$$

Government's Problem

Given $q(b', \varepsilon)$, the gov. solves a social planner's problem

$$V\left(b,arepsilon
ight)=\max\left\{ v^{nd}\left(b,arepsilon
ight)$$
 , $v^{d}\left(arepsilon
ight)
ight\}$

$$\begin{split} v^{d}\left(\varepsilon\right) &= \max_{c,m^{d},m^{*},L^{f},L^{m},L} \left[u\left(c,L\right) + \beta\left(1-\eta\right) E v^{d}\left(\varepsilon'\right) + \beta \eta E V\left(0,\varepsilon'\right) \right] \\ \text{s.t. } c + x &= \varepsilon f\left(M,L^{f},k\right) - m^{*}P^{*} \\ L^{f} + L^{m} &= L, \quad A(L^{m})^{\gamma} = m^{d}, \ M = M\left(m^{d},m^{*}\right) \end{split}$$

Default Probability and Bond Pricing

Default set

$$D(b) = \left\{ \varepsilon : v^{nd}(b, \varepsilon) \le v^{d}(\varepsilon) \right\}$$

Default probability (two-dimensional default set)

$$p(b',\varepsilon) = \int_{D(b')} d\mu(\varepsilon'|\varepsilon)$$

Default Probability and Bond Pricing

Default set

$$D(b) = \left\{ \varepsilon : v^{nd}(b, \varepsilon) \le v^{d}(\varepsilon) \right\}$$

Default probability (two-dimensional default set)

$$p(b',\varepsilon) = \int_{D(b')} d\mu(\varepsilon'|\varepsilon)$$

Lenders' no arbitrage conditions:

$$q\left(b',\varepsilon\right) = \begin{cases} \frac{1}{1+r^*} & \text{if } b' \ge 0\\ \frac{1-\rho(b',\varepsilon)}{1+r^*} & \text{if } b' < 0 \end{cases}$$

Recursive Equilibrium for the DSGE

A recursive equilibrium is defined by: (i) decision rules $b'(b, \varepsilon)$, value function $V(b, \varepsilon)$ and default set D(b); and (ii) sovereign bonds price $q(b', \varepsilon)$ such that:

- 1. Given $q(b', \varepsilon)$, the sovereign government's problem is solved;
- 2. Given D(b), the lender's no arbitrage condition is satisfied.

Calibration: Parameters set using Data and RBC values

Calibrated Parameters		Value	Target statistics
CRRA risk aversion	σ	2	Standard RBC value
Risk-free interest rate	r^*	1%	Standard RBC value
Capital share	α_k	0.17	Capital share in GDP (0.3)
Int. goods share	α_m	0.43	Int. goods in gross output
Labor share	α_L	0.40	Labor share in GDP (0.7)
Labor share	γ	0.7	Labor share in GDP (0.7)
Labor elasticity parameter	ω	1.455	Frisch wage elasticity (2.2)
Re-entry probability	η	0.83	Length of exclusion (3 years)
Armington weight in M	λ	0.62	Regression estimate
Armington curvature in M	μ	0.65	Regression estimate
CES elasticity parameter	ν	0.59	Gopinath and Neiman (2010)

Calibration: Parameters set by SMM

Estimated Parameters		Value	Targets from data
Productivity persistence	ρ_{ε}	0.95	GDP autocorrelation (0.95)
Productivity innovations std.	σ_{ϵ}	1.70%	GDP std. deviation (4.70%)
Intermediate goods TFP	Α	0.31	Output drop in default (13%)
Subjective discount factor	β	0.88	Default frequency (0.69%)
Working capital parameter	θ	0.70	Working Capital share (6%)
Sensitivity of payment to IFOs	ξ	-0.67	TB increase in default (10%)

 Adjustment to account for capital outflows during default (repayments to IFOs)

$$x_t = \xi \ln \varepsilon_t$$

Dynamics of Output Before and After Default Events

- Deep recession following default
- Gradual recovery after default
- Calvo, Izquierdo and Talvi (2006) "Phoenix Miracles"

Dynamics of Output Before and After Default Events

- ▶ Default triggered by "typical" TFP shock -7.67% (\approx 1.3 std).
- ▶ 81% amplification in output drop due to default
- Gradual recovery driven by TFP recovery and re-entry

Business Cycle Moments

Statistics	Data	Model	Model w/o x_t
Average debt/GDP ratio	35%	22.88%	21.34%
Average bond spreads	1.86%	0.74%	1.68%
Std. dev. of bond spreads	0.78%	1.23%	1.63%
Consumption std./GDP std.	1.44	1.05	1.05
Correlations with GDP			
bond spreads	-0.62	-0.17	-0.21
trade balances	-0.87	-0.54	-0.31
labor	0.39	0.52	0.52
intermediate goods ¹	0.90	0.99	0.99

Business Cycle Moments

Statistics	Data	Model	Model w/o x_t
Correlations with bond spreads			
trade balances	0.82	0.15	0.12
labor ¹	-0.42	-0.19	-0.26
intermediate goods ¹	-0.39	-0.16	-0.18
Historical default-output co-movements			
correlation between default and GDP^1	-0.11^2	-0.09	-0.12
frac. of defaults with GDP below trend ¹	$61.5\%^2$	83%	82%
frac. of defaults with large recessions ¹	32.0% ²	21.1%	20%

Note 1: Statistical moment computed at annual frequency.

Note 2: Cross-country historical estimate for 1820-2004 from Tomz and Wright (2007).

Macro Dynamics Around Default Events

Macro Dynamics Around Default Events

	Output	Mean	Mean	Std.
	drop at	Debt/GDP	spread	dev of
	default	ratio		spread
(1) Data	13%	35%	1.86%	0.78%
(2) Baseline	13%	22.88%	0.74%	1.23%
Working capital				
(3) $\theta = 0$	13%	8.99%	0.05%	0.08%
(4) $\theta = 0.6$	13.9%	20.39%	0.59%	1.17%
(5) $\theta = 0.8$	14.3%	26.84%	0.61%	1.19%
Armington elasticity				
Armington elasticity				
(6) 2.63 ($\mu = 0.62$)	14.6%	31.25%	0.55%	0.99%
(7) 3.10 ($\mu = 0.68$)	12.9%	16.15%	1.14%	1.36%
Armington share				
(8) $\lambda = 0.58$	17.20%	39.01%	0.28%	0.79%
(9) $\lambda = 0.66$	12.7%	14.16%	0.99%	1.42%

	GDP corr. with		frequency of
	spread default		default w. GDP
			below trend
(1) Data	-0.62	-0.11	62%
(2) Baseline	-0.17	-0.09	83%
Working capital			
(3) $\theta = 0$	0.24	-0.02	75%
(4) $\theta = 0.6$	-0.11	-0.11	88%
(5) $\theta = 0.8$	-0.14	-0.10	84%
Armington elasticity			
Armington elasticity			
(6) 2.63 ($\mu = 0.62$)	-0.16	-0.09	90%
(7) 3.10 ($\mu = 0.68$)	-0.11	-0.09	78%
Armington share			
(8) $\lambda = 0.58$	-0.08	-0.04	83%
(9) $\lambda = 0.66$	-0.11	-0.08	77%

	Output	Mean	Mean	Std.
	drop at	Debt/GDP	spread	dev of
	default	ratio		spread
(1) Data	13%	35%	1.86%	0.78%
(2) Baseline	13%	22.88%	0.74%	1.23%
Within-variety elasticity				
(10) 2.22 ($\nu = 0.55$)	14.1%	25.83%	0.60%	1.17%
(11) 2.89 ($\nu = 0.65$)	12.8%	19.81%	0.72%	1.22%
Frisch elasticity of labor	supply			
(12) 1.67 ($\omega = 1.6$)	12.8%	22.34%	0.91%	1.29%
(13) 2.5 ($\omega = 1.4$)	14.3%	24.46%	0.45%	1.05%
Probability of re-entry				
(14) $\phi = 0.05$	14.3%	37.02%	0.39%	0.88%
(15) $\phi = 0.1$	13.5%	19.78%	0.65%	1.21%

	GDP co	orr. with	frequency of
	spread default		default w. GDP
			below trend
(1) Data	-0.62	-0.11	62%
(2) Baseline	-0.17	-0.09	83%
Within-variety elasticity			
(10) 2.22 ($\nu = 0.55$)	-0.11	-0.09	84%
(11) 2.89 ($\nu = 0.65$)	-0.12	-0.07	82%
Frisch elasticity of labor	r supply		
(12) 1.67 ($\omega = 1.6$)	-0.17	-0.13	85%
(13) 2.5 ($\omega = 1.4$)	-0.02	-0.06	68%
Probability of re-entry			
(14) $\phi = 0.05$	-0.11	-0.05	82%
(15) $\dot{\phi} = 0.1$	-0.11	-0.12	94%

Concluding Remarks

- Proposed default model with endogenous output dynamics that solves country risk-business cycle disconnect
- Increasing endogenous cost of default driven by efficiency loss due to factor substitution/reallocation
- Strong financial amplification mechanism linking default with deep recessions
- Model explains three key stylized facts of sov. default & key business cycle features
- Hints at important connection between trade structure/openness, default incentives and debt dynamics