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Q If supp,s

equilibrium. Otherwise, set z;—;(b, s) = 2,—;41(b, s) and j ~» j+ 1 and go to 3.

|@r—j(b, 8) — ax—j41(b, s)|| < € for & = B,C, Q, u, H we have solved the
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@ Set the Bellman equation that characterizes the current planner’s problem:

V,s) = max u(c— G(h)) 4+ BEy |, V(b',s") (8)
c, b hv
b/
C+§ = b+ 2F(k,h,v) — puv (9)
2Fy(k,h,v) = G'(h) (10)

z2F, (k, h,v) = pu (1+%) (11)
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value. If constraint does not bind, retain that choice. If it binds, solve for every b’,

the values of ¢, h, v, g, p that satisfy (9)-(15), with (14) holding with equality.
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@ Solve Bellman eq. using VFI iteration. Assume first that collateral constraint is not
binding. For each initial pair (b, s) search over grid of bonds for b’ that yields highest
value. If constraint does not bind, retain that choice. If it binds, solve for every b’,
the values of ¢, h, v, g, p that satisfy (9)-(15), with (14) holding with equality.

@ Denote by 0%, = c, q, h, v, u the policy functions that solve Bellman eq. Compute the

sup distance between B, Q,C, H, v, pand o, i = c, q, h, v, p. If this distance exceeds
1.0e-6, update B, Q,C, v, u and return to Step 3.



