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Financial innovation and overconfidence about the risk of new financial products were key
factors behind the 2008 U.S. credit crisis. We show that a model with a collateral constraint in
which learning about the risk of a new financial environment interacts with Fisherian
amplification produces a boom–bust cycle in debt, asset prices and consumption. Early
realizations of a high-borrowing-ability regime turn agents optimistic about the persistence
probability of this regime. Conversely, the first realization of a low-borrowing-ability regime
turns agents unduly pessimistic. The model predicts large increases in household debt, land
prices and excess returns during 1998–2006 followed by a collapse.

& 2013 International Monetary Fund. Published by Elsevier B.V. All rights reserved.
“Booms become busts because justifiable confidence becomes foolish optimism.” – Robert J. Samuelson, “Causes of the
Crisis,” Washington Post, 3/19/2012.
1. Introduction

The U.S. financial crisis was preceded by sharp increases in household credit, residential land prices, and leverage ratios
(see Fig. 1).1 Between 1997 and 2006, the year in which the crisis started as home prices began to decline nationwide, the
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Fig. 1. Net credit market assets, value of residential land and leverage ratio.
Sources: Net Credit Market Assets: Flow of Funds Accounts of the United States, Board of Governors of the Federal Reserve System. Value of Residential
Land: Davis and Heathcote (2007).

Fig. 2. Timeline of events during the run-up to the U.S. credit crisis.
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net credit assets of U.S. households fell from �35 to �70% of GDP and the market value of residential land surged from 45%
to nearly 75% of GDP.2 By contrast, these ratios were quite stable in the previous two decades. Debt grew much faster than
land values, however, because the ratio of the two, a macroeconomic measure of household leverage, rose from 0.68 in 1997
to 0.93 in 2006. The crisis then resulted in a sudden increase in leverage, as land prices fell faster than the ability to reduce
debts, and leverage continued hovering around 1.2 after that.

As Fig. 2 shows, the U.S. credit boom started with a period of significant financial innovation characterized by new
financial instruments that “securitized” the payment streams generated by a wide variety of assets, particularly home
mortgages, and by far-reaching reforms that radically changed financial regulations. The gradual introduction of
collateralized debt obligations (CDOs) dates back to the early 1980s, but the securitization boom that fueled the growth
of household debt started in the mid 1990s with the introduction of residential mortgage backed securities (RMBSs) and
collateralized mortgage obligations (CMOs). This process was greatly amplified by the introduction of credit default swaps
(CDSs) on the payments of CMOs by the mid 2000s. By the end of 2007, the market of CDSs alone was worth about
$45 trillion (or 3 times U.S. GDP). The financial reforms introduced in the 1990s were the most significant since the Great
Depression, and in fact aimed at removing the barriers separating bank and non-bank financial intermediaries set in the
1933 Glass–Steagall Banking Act. Three Acts were particularly important for the housing boom: The 1995 New Community
Reinvestment Act, which strengthened the role of Fannie Mae and Freddie Mac in mortgage markets and facilitated
mortgage securitization; the 1999 Gramm–Leach–Bliley Act, which removed the prohibition on bank holding companies
from owning other financial companies; and the 2000 Commodity Futures Modernization Act, which left over-the-counter
financial derivatives beyond the reach of regulators.

The pattern linking financial innovation, booms in credit and asset prices, and financial crises is not unique to the recent
U.S. experience. In fact, credit booms and busts are commonly associated with large changes in the financial environment.
For instance, many of the countries to which the financial crisis spread after the U.S. crash in 2008 displayed similar pre-
crisis features, in terms of a large expansion of the financial sector into new instruments under new regulations, and also
experienced housing booms (e.g. the United Kingdom, Spain, Iceland, Ireland). Mendoza and Terrones (2012) provide more
systematic evidence of this phenomenon. They found that 35% of the credit booms observed in the 1960–2010 period across
developed and emerging economies occurred after surges in capital flows, which were largely driven by reforms that
liberalized capital accounts, and 25% occurred after large financial reforms. They also found that credit booms are associated
with sharp cycles in economic activity and housing prices.

This paper provides an explanation for the observed relationship between financial innovation and the credit cycle. In
particular, we show that financial innovation, interacting with credit constraints, leads to a “natural” underpricing of the risk
associated with a new financial environment, and that this produces a surge in credit and asset prices followed by a collapse.
2 Following Davis and Heathcote (2007), we focus on residential land prices instead of housing prices. They showed that land prices are significantly
more important than prices of residential dwellings for explaining the evolution of U.S. housing prices between 1975 and 2006.
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Undervaluing the risk is natural because of the lack of data on the performance of the new financial instruments, and on the
stability of the financial system under new laws.3

We propose a model in which the true risk of the new financial environment can only be discovered with time, and this
learning process interacts with a collateral constraint that limits households’ debt not to exceed a fraction of the market
value of their holdings of a fixed asset (i.e., residential land). Financial innovation is modeled as a structural change that
introduces a regime with a higher leverage limit. Agents know that in this new environment one of the two financial
regimes can materialize in any given period: one in which high ability to leverage continues, and one in which there is a
lower leverage limit. They do not know the true risk of this new environment, because they lack data with which to estimate
accurately the true switching probabilities across the two regimes. They are Bayesian learners, however, and so they learn
over time as they observe regime realizations, and in the long-run their beliefs converge to the true regime-switching
probabilities. Hence, in the long-run the model converges to the rational expectations (RE) solution, but in the short-run
optimal plans and asset prices deviate from the RE equilibrium, because beliefs that differ from those of the RE solution lead
to mispricing of risk.4

The model's collateral constraint introduces the classic Fisherian mechanism of financial amplification, but the analysis of
its interaction with the learning dynamics is a novel feature of this paper.5 In particular, the deviations of the agents’ beliefs
from the true RE regime-switching probabilities distort asset pricing conditions. If the constraint binds, optimistic beliefs
lead agents to assign higher probabilities to states with lower excess returns, which causes a feedback loop producing higher
asset prices and higher debt, and the opposite occurs when agents are pessimistic. Thus, the over- or under-pricing of assets
translates into over- or under-inflated collateral values that affect the financial amplification dynamics.

Quantitative analysis shows that the process of discovery of risk in the presence of collateral constraints leads to a period
of booming credit and land prices, followed by a sharp, sudden collapse. We conduct an experiment calibrated to U.S. data in
which we date the start of financial innovation in the first quarter of 1998 and the beginning of the financial crisis in the first
quarter of 2007. Hence, from 1998 to the end of 2006 we assume that the economy experienced the high-leverage regime,
followed by a switch to the low-leverage regime in the first quarter of 2007.6 Net credit assets did not rise sharply then (see
Fig. 1), but the fraction of banks tightening credit standards in the Federal Reserve's Willingness to Lend Survey jumped from
nearly zero to over 50%, and the median downpayment on conventional mortgages jumped from 5% to 13% (see February 16,
Wall Street Journal). We also acknowledge that several factors beyond the scope of this paper played a role in the U.S. crisis
(e.g. excessive leverage and exposure to counterparty risk amongst financial intermediaries, moral hazard in financial
markets and rating agencies, reckless lending practices, global financial imbalances, flawed government regulation, etc.). In
this paper, however, we focus exclusively on the role of financial innovation affecting households' ability to borrow in an
environment with imperfect information, because we aim to show how these frictions alone cause a sharp boom–bust
credit cycle.

The initial priors of the Bayesian learning process are calibrated to match observed excess returns on Fannie Mae's RMBS
at the beginning of 1998, and the high- and low-leverage limits are set equal to the actual leverage ratios before 1998 and at
the end of 2006. Under these assumptions, agents become very optimistic about the probability of persistence of the high-
leverage regime soon after 1998, and remain so until they observe the switch to the low-leverage regime. During this
“optimistic phase,” debt, leverage and land prices rise significantly above what the RE equilibrium predicts.7 In fact, the
model accounts for 64% and 49% of the 1998–2006 rise in net household debt and residential land prices respectively, and it
matches well the observed dynamics of RMBS excess returns. Conversely, when agents observe the first realization of the
low-leverage regime, they respond with a sharp correction in their beliefs and become unduly pessimistic, causing sharp
downward adjustments in credit, land prices and consumption.

The transition to the low-leverage regime is exogenous, and thus part of the credit crisis in the model is exogenous.
However, the equilibrium declines in credit and prices in the model also reflect the endogenous amplification operating
through the interaction of the collateral constraint and the agents’ beliefs. This amplification mechanism is very strong and
accounts for most of the drop in credit and prices predicted by the model. Moreover, the effects on debt and asset prices are
nearly twice as large when learning and credit frictions interact than when we remove either one.

We model learning following the approach proposed by Cogley and Sargent (2008b). They offer an explanation of the
equity premium puzzle based on persistent pessimism caused by the Great Depression. They assume high and low states for
exogenous consumption growth, with the true transition probabilities across these states unknown. Agents learn the true
3 In the U.S. securitization boom, the strategy of “layering of risk,” mixing tranches of top-rated assets with riskier assets, justified the belief that the
new instruments were so well diversified that they were virtually risk free, assuming that the risk was priced correctly.

4 We follow the standard practice of referring to the perfect information equilibrium as the rational expectations equilibrium, even though the
Bayesian learning equilibrium is also a rational expectations equilibrium.

5 Fisher (1933) gave a prominent role to changes in optimism and gloom of economic agents, but modern formulations of financial accelerators
abstract from fluctuations in beliefs. He, however, assigned a limited role to changes in beliefs except when they interact with his credit amplification
mechanism: “I fancy that over-confidence seldom does any great harm except when, as, and if, it beguiles its victims into debt.” (Fisher (1933)).

6 We take this switch to the low-leverage as exogenous. One way to endogenously generate such a switch is to explicitly model the freeze of the
interbank market as in Gertler and Kiyotaki (2010).

7 The degree of optimism peaks just before agents observe the first realization of the low-leverage regime, because, when the new financial
environment is first introduced, agents cannot rule out the possibility of the high-leverage regime being absorbent until they experience the first low-
leverage state.
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probabilities over time as they observe consumption growth. Similarly, in our setup, the true probabilities of switching
across leverage regimes are unknown, and agents learn about them over time.

This paper is also related to the large Macro and Finance literatures on learning models. On the Macro side, the literature
tends to focus on learning from noisy signals (e.g. Blanchard et al., forthcoming; Boz, 2009; Boz et al., 2011; Edge et al.,
2007; Lorenzoni, 2009; VanNieuwerburgh and Veldkamp, 2006, and the survey by Evans and Honkapohja, 1999). The
informational friction in our models is different, because agents observe realizations of the relevant variables without noise.
Instead, there is imperfect information about their true transition probabilities. The U.S. credit crisis provides a natural
laboratory to study learning models of this class, because the creation of the late 1990s brand-new financial regime implied
that there was no useful data to estimate the true probability of its potential failure. Our work is also reminiscent of the
literature on Knightian uncertainty, where agents do not know the true model with which to assess the future (see Caballero
and Krishnamurthy, 2008 for an application to financial crises).

The imperfect information studies by Adam et al. (2011), Gennaioli et al. (2012) and Zeira (1999) are closer to this paper's
argument. Adam et al. (2011) study housing booms and current account imbalances in G7 countries using a learning model
with a collateral constraint in which Bayesian learning about housing prices amplifies the effects of interest rate cuts.
Gennaioli et al. (2012) study how underestimating the probability of rare events that have large negative effects on risky
asset returns causes overborrowing in an environment with endogenous financial innovation. In their model, the infor-
mational friction is in the form of “local thinking,” by which agents assign zero probability to those rare events. In contrast,
we model Bayesian learning about transition probabilities across financial regimes, with agents always assigning non-zero
probability to all states of nature. The papers also differ in that we evaluate the ability of our model's quantitative
predictions to match U.S. data while they focus mainly on theoretical analysis. Zeira argued that financial liberalization or
structural changes in productivity could be followed by booms and crashes because of “informational overshooting.” As in
our setup, agents need to learn the true characteristics of a new asset pricing environment, but in Zeira's model this is
captured by an increase in dividend growth of unknown duration and agents updating their beliefs about a future date in
which high dividend growth will end. As long as they observe high dividend growth, their beliefs about future dividends
increase, leading to a boom in stock prices. Then when agents finally observe the end of the dividend boom, expectations of
future profits fall and prices collapse.

The credit constraint used in our model is similar to those widely examined in the macro literature on financial frictions
and the international macro literature on Sudden Stops, see for example, Jermann and Quadrini (2006), Mendoza (2010) and
Durdu et al. (2009). When these credit constraints are used in RE models, precautionary savings reduce significantly the
long-run probability of states in which the constraints bind. In our learning model, however, agents have much weaker
incentives for building precautionary savings than under rational expectations, until they attain the long-run equilibrium in
which they know the true risk of the financial environment. That is, the process of discovery of risk generates sizable
overborrowing (relative to the RE decentralized equilibrium), because of the optimistic expectations of agents during the
optimistic phase. Since agents borrow “too much” during this phase, the economy is also more vulnerable to suffer a credit
crunch when the first switch to a low-leverage regime occurs. In addition, our model differs from most financial crisis
models in that it aims to explain both the boom and bust credit cycles, whereas crisis models typically focus only on the
latter.

Finally, this paper is also related to some of the recent literature on the U.S. crisis that emphasizes learning frictions,
financial innovation and deregulation, particularly the work of Howitt (2011), Favilukis et al. (2010) and Ferrero (2012).
Howitt studies the interaction of expectations, leverage and a solvency constraint in a representative agent setup similar to
ours, but he uses adaptive learning about asset returns to show how this leads to periods of “cumulative optimism” followed
by “cumulative pessimism,” and how this can lead to a crisis.8 Favilukis et al. (2010) analyze the macroeconomic effects of
housing wealth and housing finance in a heterogenous-agents, DSGE model with credit constraints. They study transition
dynamics from an environment with high financial transaction costs and tight credit limits to one with the opposite
features. Ferrero (2012) has a similar flavor in that he studies the effects of relaxing LTV requirements. Similar to these two
studies, our paper emphasizes the role of a relaxation of borrowing constraints, but we focus on the effects of imperfect
information and learning, while they study rational expectation models.

The remainder of the paper proceeds as follows: Section 2 describes the model and the learning process. Section 3
examines the model's quantitative implications. Section 4 concludes.
2. A model of financial innovation with learning

Consider a representative-agent economy where risk-averse individuals formulate optimal plans facing exogenous
income fluctuations, the risk of which cannot be fully diversified because asset markets are incomplete. Individuals have
access to two assets: a non-state-contingent bond and an asset in fixed supply (land). The credit market is imperfect,
8 Interestingly, Howitt's work and ours differ in terms of the motivation for focusing on learning to study the financial crisis. Howitt argues that
learning matters because agents learn about the process of asset returns in an unchanged financial regime, while we argue that it matters because agents
learn gradually the true persistence of a new financial regime with perfect information about the process driving dividends.
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because individuals' ability to borrow is limited not to exceed a fraction κ of the market value of their land holdings. That is,
κ imposes an upper bound on the agents' leverage ratio.

The main feature that differentiates this model from other macro models with credit frictions is that agents have
imperfect information about the regime-switching probabilities that drive fluctuations in κ. Specifically, we model a
situation in which financial innovation starts with an initial shift from a low-leverage regime ðκlÞ to a regime with higher
ability to leverage ðκhÞ, and agents do not know the true regime-switching probabilities between κl and κh. They are Bayesian
learners, and in the long-run they learn the true probabilities, but in the short-run they form expectations with the
posteriors they construct as they observe realizations of κ.

We assume that the risk-free interest rate is exogenous in order to keep the interaction between financial innovation and
learning tractable. At the aggregate level, this assumption corresponds to an economy that is small and open with respect to
world capital markets. This is in line with recent evidence suggesting that in the era of financial globalization even the U.S.
risk-free rate has been significantly influenced by outside factors, such as the surge in reserves in emerging economies and
the persistent collapse of investment rates in South East Asia after 1998 (see Warnock and Warnock, 2006; Bernanke, 2005;
Durdu et al., 2009; Mendoza et al., 2009). Moreover, data from the Flow of Funds of the United States shows that, while pre-
1980s the U.S. economy was in virtual financial autarky, because the fraction of net credit of U.S. nonfinancial sectors
financed by the rest of the world was close to zero, about one-half of the surge in net credit since the mid-1980s
was financed by the rest of the world (see Mendoza and Quadrini, 2010). Alternatively, our setup can be viewed as a partial
equilibrium model that studies the effects of financial innovation on household debt and residential land prices, taking the
risk-free rate as given, as in Corbae and Quintin (2009) and Howitt (2011). Still, we will examine how our main results vary if
we allow the interest rate to fall as financial innovation starts, in line with what was observed in U.S. 1998–2006 data.

2.1. Agents' optimization problem and equilibrium conditions

Agents act atomistically in competitive markets and choose consumption (ct), land holdings ðltþ1Þ and holdings of one-
period discount bonds ðbtþ1Þ, taking as given the price of land (qt) and the gross real interest rate (R) so as to maximize a
standard intertemporal utility function:

Es0 ∑
1

t ¼ 0
βtuðctÞ

� �
ð1Þ

It is critical to note that Et
s
represents expectations conditional on the representative agent's beliefs formulated with the

information available up to and including date t. These beliefs will differ in general from the rational expectations formu-
lated with perfect information, which are denoted Et

a
.

The agents' budget constraint is

ct ¼ ztg ltð Þþqtlt�qtltþ1�
btþ1

R
þbt ð2Þ

Agents operate a Neoclassical production function gðltÞ subject to a TFP shock zt.9 A linear production technology can also be
used, but we will use the curvature of gðltÞ to calibrate the model so that the condition that arbitrages returns across bonds
and land is consistent with U.S. data on the risk-free interest rate and the value of residential land (see Section 3 for details).

TFP shocks follow an exogenous discrete Markov process, about which agents have perfect information. That is, they
know the Markov transition matrix πðztþ1jztÞ and the corresponding set Z of M possible realizations of z at any point in time
(i.e., ztA Z ¼ fðz1oz2o⋯ozMÞg). Alternatively, we could assume that TFP shocks are also affected by imperfect information.

Frictions in credit contracting that we do not model explicitly force agents to comply with a collateral constraint that
limits the value of debt (given by btþ1=R since 1=R is the price of discount bonds) to a time-varying fraction κt of the market
value of their land holdings

btþ1

R
Z�κtqt ltþ1 ð3Þ

In this constraint, κt follows a “true” Markov process characterized by a standard two-point, regime-switching process with
regimes κh and κl, with κh4κl, and transition probabilities given by Fa ¼ paðκtþ1∣κtÞ.10 The continuation probabilities
are denoted Fahh � paðκtþ1 ¼ κh∣κt ¼ κhÞ and Fall � paðκtþ1 ¼ κl∣κt ¼ κlÞ, and the switching probabilities are Fahl ¼ 1�Fahh and
Falh ¼ 1�Fall. The long-run probabilities are Πh ¼ Falh=ðFalhþFahlÞ and Πl ¼ Fahl=ðFalhþFahlÞ respectively, and the corresponding
9 Instead of modeling utility of housing services and production of residential dwellings (see Iacoviello, 2005; Kiyotaki et al., 2011), we focus on the
role of residential land as an asset with dividends set by a production technology and its price as the value of collateral. This is in line with the findings of
Davis and Heathcote (2007) about residential land prices as the main driver of home prices, and it also allows us to maintain tractability in the global, non-
linear learning algorithm needed to solve the model. In principle, introducing our framework of financial innovationwith learning into models in the line of
Iacoviello or Kiyotaki et al. should still produce a rise (fall) in housing prices during the optimistic (pessimistic) phase to the extent that land as an input in
housing production is in inelastic supply and buyers and sellers have common beliefs.

10 One could also specify a continuous AR(1) process for κ, κt ¼mtþκt�1þϵt . The different regimes could be captured with a shift in the mean:
mAfmh ;mlg, which the agents could learn about. We conjecture that this setup would yield similar results as agents could turn optimistic about the
persistence of the mh regime.
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mean durations are 1=Fahl and 1=Falh. The long-run unconditional mean, variance, and first-order autocorrelation of κ follow
the standard regime-switching formulae:

Ea½κ� ¼ ðFalhκhþFahlκ
lÞ=ðFalhþFahlÞ ð4Þ

s2ðκÞ ¼ΠhðκhÞ2þΠlðκlÞ2�ðE½κ�Þ2 ð5Þ

ρðκÞ ¼ Fall�Fahl ¼ Fahh�Falh: ð6Þ
Using μ to denote the Lagrange multiplier on the credit constraint, the Euler equations for bonds and land in the agents’

problem are

u′ðctÞ ¼ βREst u′ðctþ1Þ
� �þμt ð7Þ

qtðu′ðctÞ�μtκtÞ ¼ βEst ½u′ðctþ1Þðztþ1g′ðltþ1Þþqtþ1Þ�: ð8Þ
Defining the return on land as Rq

tþ1 � ðztþ1g′ðltþ1Þþqtþ1Þ=qt and the period marginal utility of consumption as
λtþ1 � βu′ðctþ1Þ; the Euler equations can be used to derive the following expression for the excess return on land:

Est Rq
tþ1�R

h i
¼ ð1�κtÞμt�covst ðλtþ1;R

q
tþ1Þ

Est ½λtþ1�
: ð9Þ

Thus, as Mendoza (2010) explained, the borrowing constraint enlarges the standard premium on land holdings, driven
by the covariance between marginal utility and asset returns, by introducing direct and indirect effects. The direct effect is
represented by the term ð1�κtÞμt . The indirect effects are represented by the fact that the credit constraint hampers the
agents' ability to smooth consumption, which reduces covst ðλtþ1;R

q
tþ1Þ, and tilts consumption towards the future, which

lowers Est ½λtþ1�. Moreover, since expected land returns satisfy qtE
s
t ½Rq

tþ1� � Est ½ztþ1g′ðltþ1Þþqtþ1�, we can obtain the following
forward solution for the agents’ land valuation as11:

qt ¼ Est ∑
1

j ¼ 0
∏
j

i ¼ 0

1
Est ½Rq

tþ1þ i�

 ! !
ztþ1þ jg′ ltþ1þ j

� �" #
: ð10Þ

The expressions in (9) and (10) imply that the collateral constraint lowers land prices because it increases the rate of
return at which future land dividends are discounted. Note also that land valuations are reduced at t not just when the
constraint binds at t, which raises Est ½Rq

tþ1�, but also if the constraint is expected to bind in the future, which raises Est ½Rq
tþ1þ i�

for some i40.
While the above effects are at work even when the true Markov process of κ is known (replacing Et

s
with Et

a
), condition

(10) also suggests that the learning process and the collateral constraint interact in an important way. For instance, suppose
the credit constraint with κh binds at t. It follows that expected excess returns for tþ1 must be lower in states with κh than
with κl, since the constraint must bind more in the latter. Hence, if beliefs are optimistic, agents assign more probability to
states with lower expected returns than under true rational expectations, and this, via condition (10), translates into higher
land prices, which in turn via the collateral constraint yields higher debt. The opposite is also true: if beliefs are pessimistic,
agents assign higher probability to states with higher land returns, which depress current land prices more than under
rational expectations, and via the collateral constraint this results in even lower debt.

Given the fixed unit supply of land, the model's equilibrium conditions are

u′ðctÞ ¼ βREst ½u′ðctþ1Þ�þμt ð11Þ

qtðu′ðctÞ�μtκtÞ ¼ βEst ½u′ðctþ1Þðztþ1g′ð1Þþqtþ1Þ� ð12Þ

ct ¼ ztg 1ð Þ�btþ1

R
þbt ð13Þ

btþ1

R
Z�κtqt1 ð14Þ

We adapt the Bayesian learning setup proposed by Cogley and Sargent (2008b) (see Appendix A for details). This setup
has the property that, if agents observe a long enough sample with sufficient regime switches, their beliefs converge to Fa.12

Moreover, since κ is exogenous and observable, we are modeling passive learning from and about exogenous variables
without noise. This facilitates the numerical solution, because it allows us to separate the evolution of beliefs from the
agents’ dynamic optimization problem, since agents cannot benefit from experimenting with the latter in order to improve
the former. Accordingly, we follow a two-stage solution strategy: First, we use Bayesian learning to generate the sequence of
11 Following Mendoza (2010), it is also possible to use Eq. (8) to express the forward solution for qt in terms of the future stream of dividends
discounted at the stochastic discount factors adjusted for the shadow value of the credit constraint.

12 Time alone does not determine how fast agents learn. The order in which κ realizations occur and the number of switches across regimes also
matters.
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posterior density functions ff ðFs∣κtÞgTt ¼ 1 over T periods in which a history of realizations of κ is observed. Each of these
density functions is a probability distribution over possible transition matrices Fs. Since agents do not know Fa, the density
function changes with the history of realizations observed up to date t (i.e., fκt ; κt�1;…; κ1g where κt ¼ ðκt ; κt�1;…; κ1Þ) and
with the date-0 priors, as we explain below.

The second stage of the solution, again following Cogley and Sargent, solves the agent's optimal plans and the model's
recursive equilibrium by adopting Kreps's Anticipated Utility (AU) approach to model dynamic optimization with Bayesian
learning. The AU approach focuses on combining the sequences of posterior densities obtained in the first part, ff ðFsjκtÞgTt ¼ 1,
with chained solutions from a set of “conditional” AU optimization problems. These problems are conditional on the
posterior density function of Fs that agents form with the history of realizations up to each date t. The rest of this section
discusses in more detail the two stages of the solution algorithm.

2.2. Bayesian learning setup

The Cogley–Sargent learning setup fits nicely our aim to study financial innovation as the arrival of a new state κh with
imperfect information about its transition probabilities, since there was no data history with which to evaluate the
creditworthiness of the new financial instruments and the stability of the new financial regime. As we show below, if agents
start by observing κh for a few periods, they go through an “optimistic phase” in which they assign a probability to
continuing in κh higher than the true value. This optimism by itself is a source of vulnerability, because it is quickly reversed
into a “pessimistic phase” with the opposite characteristics as the first realization of κl hits the economy. In addition, during
the optimistic phase, the incentives to build precautionary savings against the risk of a shift in κ are weaker than in the long-
run RE equilibrium, which increases the agents’ risk of being caught with “too much” debt when the shift to κl occurs.

The learning framework takes as given κT and a prior of Fs for date t¼0, and it yields the posteriors sequence ff ðFsjκtÞgTt ¼ 1.
At every date t, the information set includes κt . Agents then form posteriors using a Bayesian beta-binomial probability
model (see Appendix A). Since information is imperfect only with regard to the Markov transition matrix across κ′s, and
because κ can only take two values, this boils down to imperfect information about Fhh

a
and Fll

a
. The other two elements of the

transition matrix of κ are recovered as the corresponding complements. The posteriors have distributions FshhpBetaðnhh
t ;nhl

t Þ
and FsllpBetaðnlh

t ;n
ll
t Þ, where nt

ij
i; j¼ h; l are counters of the number of regime switches observed in a particular history κt .

As in Cogley and Sargent (2008b), we assume that the date-0 priors for Fhh
s

and Fll
s
are independent and given by

pðFsiiÞp ðFsiiÞn
ii
0�1ð1�FsiiÞn

ij
0�1 for i¼ h; l. The counter nij

0 denotes the number of transitions from state i to state j assumed to have
been observed before t¼1. The regime counters are then updated as follows:

nij
tþ1 ¼

nij
t þ1 if κtþ1 ¼ κj and κt ¼ κi;

nij
t otherwise:

8<
:

The posterior means, which are key for the second stage of the solution, are given by

Et ½Fshh� ¼ nhh
t =ðnhh

t þnhl
t Þ; Et ½Fsll� ¼ nll

t =ðnll
t þnlh

t Þ: ð15Þ
Thus, the posterior means of the continuation probability of a particular regime change only when that same regime is
observed at date t. Since in a two-point, regime-switching setup continuation probabilities also determine mean durations,
it follows that agents learn about both the persistence and mean duration of κl and κh only as they actually experience each
regime.13

The potential for financial innovation to produce significant underestimation of risk can be inferred from the evolution of
the posterior means. With financial innovation defined as the arrival of a brand new regime κh with unknown probabilities
of shifts between κh and κl, the learning process starts from nij

0 � 0.14 It follows then from Eq. (15) that the first sequence of
realizations of κh generates substantial optimism (i.e., a sharp increase in Et ½Fshh� relative to Fhh

a
). Moreover, it also follows that

the optimism produced by any subsequent sequence of realizations of κh will be smaller. Intuitively, this is because it is only
after observing the first switch to κl that agents rule out the possibility of κh being an absorbent state. Similarly, the first
realizations of κl generate a pessimistic phase, in which Et ½Fsll� is significantly higher than Fll

a
, and pessimism in this phase is

larger than in any subsequent pessimistic phase.
Fig. 3 illustrates the model's learning dynamics using a simple example. Here, we set Fahh ¼ 0:95 and Fall ¼ 0:5, initial priors

nij
0 ¼ 0:1 for all i; j¼ h; l, and use a sample of 300 κ realizations produced by a stochastic simulation of the true Markov-

switching process. The chart shows the κ realizations, the time paths of Et ½Fshh� and Et ½Fsll�, and the true regime-switching
probabilities.

The striking result from this example is that financial innovation leads to significant underestimation of risk, because the
initial sequence of realizations of κh (the first “optimistic phase” up to t¼30) generates a high level of optimism that builds
quickly. In fact, agents update their beliefs about the persistence of κh from 0.5 to 0.916 just after observing κ1 ¼ κh, and then
13 If priors, as well as Fhh
a

and Fll
a
, are correlated, learning would be faster, because agents would update both Fhh

s
and Fll

s
every period. But this is akin to

removing some of the informational friction by assumption. In an extreme case, with perfectly correlated priors and Fahh ¼ Fall , agents know from the start
that the transition matrix is symmetric, which violates the initial premise stating that they do not know any of its properties.

14 A truly “new” financial regime has nij
0 ¼ 0, but in this case the binomial distribution is not defined.
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in the subsequent 29 periods Et ½Fshh� continues rising to peak at around 0.999. As explained above, optimism never grows as
large during the optimistic phases that occur later on (e.g. between dates 40 and 80). The first realizations of κl generates a
strong “pessimistic phase,” in which Et ½Fsll� is significantly higher than Fll

a
and raises quickly towards 1, so the period of highly

optimistic expectations is followed by a period of highly pessimistic expectations.
Fig. 3 also reflects the result indicating that Et ½Fshh� and Et ½Fsll� are updated only when the economy is in the high- or low-

leverage state. This also explains why in this example Et ½Fshh� converges to its RE counterpart faster than Et ½Fsll�. Given that κl

is visited much less frequently, since Fahh4Fall, it takes longer to learn its true persistence.

2.3. Recursive anticipated utility competitive equilibrium

We define the AU competitive equilibrium in recursive form. Since in the quantitative analysis we solve the model by
policy function iteration on the equilibrium conditions (11) and (14), we formulate the recursive equilibrium using these
conditions (see Appendix B for details). The state variables are defined by the triple ðb; z; κÞ. Because the law of iterated
expectations still holds (see Appendix B in Cogley and Sargent, 2008b), we divide the problem into a set of AU optimization
problems (AUOP) for t ¼ 1;…; T , each conditional on Et ½Fshh� and Et ½Fsll�. We use time indices in policy and pricing functions to
identify the date of the beliefs that match the corresponding AUOP.

It is important to note that the recursive AU equilibrium solution is not the same as full Bayesian optimization, which
takes into account projections of the effect of future κ realizations on the evolution of beliefs. This is generally of limited
tractability, because it requires a large state space that includes at each date t the four-dimensional vector nt with all
permutations of the regime-switching counters that can be observed up to that date.15 Cogley and Sargent (2008a) show,
however, that the optimal plans and asset prices obtained using AU are accurate approximations to those obtained with full
Bayesian optimization, even in an environment with incomplete markets, CRRA preferences, and large regime-switching
income shocks.16

Solving the sequence of AUOPs is akin to solving a sequence of equilibrium policy and pricing functions, one for each set
of beliefs obtained at each date t ¼ 1;…; T . This is still a demanding computational problem, particularly because of the non-
linearity induced by the occasionally binding collateral constraint, but less vulnerable to the curse of dimensionality than
the full Bayesian problem. Consider the date-t AUOP. Agents observe κt and update their beliefs. Using the posterior means
in (15), we construct the date-t transition matrix

Est ½κ′jκ� �
Et ½Fshh� 1�Et ½Fshh�
1�Et ½Fsll� Et ½Fsll�

" #
:

The solution to the date-t AUOP is then given by policy functions (b′tðb; z; κÞ; ctðb; z; κÞ; μtðb; z; κÞÞ and a pricing function
qtðb; z; κÞ that satisfy conditions (11)–(14) rewritten in recursive form:

u′ðctðb; z; κÞÞ ¼ βR ∑
z′AZ

∑
κ′A fκh ;κlg

Est ½κ′jκ�πðz′jzÞu′ðctðb′; z′; κ′ÞÞ
" #

þμtðb; z; κÞ ð16Þ

qtðb; z; κÞðu′ðctðb; z; κÞÞ�μtðb; z; κÞκÞ ¼ β ∑
z′AZ

∑
κ′A fκh ;κlg

Est ½κ′jκ�πðz′jzÞu′ðctðb′; z′; κ′ÞÞðz′g′ð1Þþqtðb′; z′; κ′ÞÞ
" #

ð17Þ
15 Intuitively, the AU approach captures the risk of fluctuations in future κ′s but not the uncertainty about future changes in their transition
probabilities, while the Bayesian optimization captures both.

16 The accuracy of their approximation begins to deteriorate with CRRA coefficients above 5. In our calibration it is set at 2, but since their model does
not have a collateral constraint, our approximation may not be as accurate.
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ct b; z; κð Þ ¼ zg 1ð Þ�b′tðb; z; κÞ
R

þb ð18Þ

b′tðb; z; κÞ
R

Z�κqt b; z; κð Þ1 ð19Þ

It is critical to note that solving the date-t AUOP means solving for a full set of optimal plans over the entire state space
ðb; z; κÞ and conditional on date-t beliefs. Thus, we are solving for the optimal plans agents conjecture they would make over
the infinite future acting under those beliefs. For characterizing the “actual” equilibrium dynamics to match against data,
however, the solution of the date-t AUOP determines optimal plans for date t only. For example, the equilibrium decision
rules for bond holdings that the model predicts for t ¼ 1;…; T is obtained by chaining the relevant decision rules as follows:
b2 ¼ b′1ðb; z; κÞ; b3 ¼ b′2ðb; z; κÞ;…; bTþ1 ¼ b′T ðb; z; κÞ. This is crucial because beliefs change as time passes, and each subsequent
κt is observed, which implies that the policy and pricing functions that solve each AUOP also change. Thus, history matters
for the full solution of the model because different histories κt yield different sequences of beliefs, and hence different AUOP
solutions. If at any two dates t and tþ j we give the agents the same values for ðb; z; κÞ, they in general will not choose the
same bond holdings for the following period because Est ½κ′jκ� and Estþ j½κ′jκ� will differ.

We can now define the model's recursive AU equilibrium as follows.

Definition. Given a history of realizations κT ; a recursive AU competitive equilibrium for the economy is given by a sequ-
ence of policy functions ½b′tðb; z; κÞ; ctðb; z; κÞ; μtðb; z; κÞ�Tt ¼ 1 and pricing functions ½qtðb; z; κÞ�Tt ¼ 1 such that: (a) b′tðb; z; κÞ; ctðb; z; κÞ;
μtðb; z; κÞ and qtðb; z; κÞ solve the date-t AUOP conditional on Est ½κ′jκ�; and (b) Est ½κ′jκ� is the transition probability matrix of κ
produced by the date-t posterior density of Fs determined by Eq. (A.4) in Appendix A.

3. Quantitative analysis

In this section, we examine the model's quantitative predictions for the following experiment: at t¼1, financial
innovation begins with the first realization of κh, and the κh regime continues for J periods. At t ¼ Jþ1 the first realization of
κl occurs, and this regime continues until date T.

3.1. Baseline calibration

The functional forms for preferences and technology are standard: uðctÞ ¼ c1�s
t =ð1�sÞ and gðltÞ ¼ lαt . The calibration

requires setting values for the parameters (α; β; s;RÞ, the Markov process for z, and the parameters of the learning setup
(κh, κl, nhh

0 , nhl
0 , nll

0, n
lh
0 , J and T). The baseline calibration is set to U.S. data but later we conduct sensitivity analysis to evaluate

the robustness of the results.
We calibrate the model to a quarterly frequency at annualized rates. The date t¼1 is set to 1998Q1, because 1998 is in the

midpoint of the period covered by the changes in financial regulation and introduction of new instruments (see Fig. 2), and
it is also the year in which RMBS spreads rose sharply, from 48 to 126 basis points between end-1997 and end-1998. We
date the start of the financial crisis ðt ¼ Jþ1Þ as of 2007Q1, to match the early stages of the subprime mortgage crisis in the
Fall of 2006. This is also in line with the observation that the net fraction of banks reporting tighter standards for mortgage
loans jumped significantly to 16% in 2007Q1. The experiment ends in 2008Q4. These timing assumptions imply κ¼ κh from
1998Q1 to 2006Q4 and κ¼ κl from 2007Q1 to 2008Q4. Thus, the learning period has a total length of T¼44 quarters, in
which the first 36 κ realizations are κh (J¼36) and the remaining 8 are κl.

The values of ðα; β; s;RÞ, κl, and the Markov process for z are set either using U.S. data averages from the pre-financial
innovation era (before 1998) or targeting moments of the stochastic steady state of a variant of the model that represents
that era to match cyclical properties of U.S. data. In the pre-financial-innovation model, there is only one financial regime
with κ¼ κl, which we assume to be binding, and hence the only source of uncertainty are TFP shocks.

The real interest rate is set to 2.7% annually, which is the average ex post real interest rate on U.S. three-month
T-bills during the period 1980Q1–1997Q4. Mean output is normalized to 1 (since L¼1 and the unconditional mean of z also
equals 1). The TFP process is set to approximate an AR(1) process ðlnðztÞ ¼ ρ lnðzt�1ÞþetÞ fitted to HP-filtered real U.S. GDP
per capita using data for the period 1965Q1–1997Q4. The estimation yields ρ¼ 0:878 and se ¼ 0:00663, which imply a
standard deviation of TFP of sz ¼ 1:39%. We use Tauchen and Hussey's (1991) quadrature method to construct a Markov
approximation to this process with a vector of 9 realizations. The transition probability matrix and realization vector are
available on request. The value of s is set to s¼ 2:0, the standard value in quantitative DSGE models.

As noted in the Introduction, we measure b using the net credit market assets of U.S. households and non-profit
organizations in the Flow of Funds data set, and ql using the value of residential land estimated by Davis and Heathcote
(2007). The 1980Q1–1997Q4 average ratios of these variables relative to GDP were b ¼�0:316 and ql ¼ 0:49. The household
leverage ratio is the ratio of net credit market assets to the value of residential land, and hence we set the value of κl by
combining the 1980Q1–1997Q4 average of this leverage ratio with the value of R: κl ¼ 0:647=1:027¼ 0:63. The fact that net
credit assets and land values were fairly stable prior to 1998 (see Fig. 1) supports the idea of using this constant value of κl

to characterize the pre-financial-innovation regime, and the fact that by the end of 2010 the median downpayment on



Table 1
Baseline parameter values.

β Discount factor (annualized) 0.91
s Risk aversion coefficient 2.0
c Consumption–GDP ratio 0.668
A Lump-sum absorption 0.322
r Interest rate (annualized) 2.702
ρ Persistence of endowment shocks 0.878
se Standard deviation of TFP shocks 0.007
α Factor share of land in production 0.026
L Supply of land 1.0
κh Value of κ in the high securitization regime 0.926

κl Value of κ in the low securitization regime 0.629

Fahh True persistence of κh 0.964

Fall True persistence of κl 0.964

nhh
0 , nhl

0
Priors 0.014
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conventional mortgages bounced back to what it was a decade earlier (see February 16, 2011 Wall Street Journal) supports
the idea of setting κl in the new regime to be the same as in the pre-financial-innovation era.

The GDP ratios in the resource constraint at the average of the stochastic stationary state of the pre-financial innovation
model must match the observed U.S. data averages from the pre-financial-innovation period. As noted above, the average
bond holdings–GDP ratio in the data was b ¼�0:316. For the consumption–GDP ratio, the data shows a slight trend, so we
use the last observation of the pre-financial-innovation regime (1997Q4).17 This implies c ¼ 0:669. To make these b and c
values consistent with the model's average resource constraint, we need to take into account the fact that investment and
government absorption are included in the data but not in the model. To adjust for this discrepancy, we introduce a fixed,
exogenous amount of autonomous spending A, so that the long-run average of the resource constraint is 1¼ cþA�bðR�1Þ=R
. Given b ¼�0:316, c ¼ 0:669 and R¼1.027 it follows that A¼ 1�cþbðR�1Þ=R¼ 0:322.

The values of α and β are set by solving the pre-financial innovation model repeatedly until we hit these two calibration
targets (keeping all the other parameter values we have set up to this point unchanged): the standard deviation of
consumption relative to output over the 1980Q1–1997Q4 period (0.8), and the condition that arbitrages the returns on land
and bonds at the observed average of the value of residential land to GDP (ql ¼ 0:49) for the same period. This condition
follows from (11) and (12) and implies α¼ ðql=zlαÞ½R�1þβ�1ð1�βRÞð1�κlÞ�.18 The model hits the targets with α¼ 0:026 and
β¼ 0:91.

Notice that βR¼ 0:934o1. This is important because it ensures the existence of an ergodic distribution of bonds given
that asset markets are incomplete. Intuitively, this occurs because of the interaction between the precautionary savings
motive, which pushes for increasing bond holdings, and the incentive to tilt consumption towards the present, and hence
reduce bond holdings, because βRo1. Consumption tilting and precautionary savings will also play a key role later in the
analysis of the dynamics induced by financial innovation.

The parameters that remain to be calibrated (κh and the nij
0 counters) are independent of the rest of the calibration

strategy, because they are unrelated to the pre-financial-innovation regime. The value of κh matches the 2006Q4 leverage
ratio, hence κh ¼ 0:926. This is the largest leverage ratio attained in the new financial regime just before the crisis. Note,
however, that κh does not always bind in the new regime. First, as the economy moves from the pre-financial-innovation
regime with κl binding, agents build debt over time, and hence the equilibrium leverage ratio does not hit its new ceiling
immediately. Second, the new regime features two possible realizations of κ that are occasionally binding, so κh only binds
with some probability (Table 1).

The calibration of the initial priors with the nij
0 counters is critical because, as shown in Section 2, together with the

history of realizations of κ, they drive the magnitude and speed with which optimism and pessimism fluctuate. Thus, the
calibration of the priors imposes quantitative discipline on how much the model is allowed to rely on these fluctuations for
explaining credit booms and busts. For simplicity, we impose the symmetry condition n0 ¼ nhl

0 ¼ nhh
0 ¼ nll

0 ¼ nlh
0 , so that there

is only one counter to calibrate.
We set n0 so that, conditional on all of the parameter values, the model matches an estimate of the observed excess

return on land relative to the risk free rate for 1998Q2, which corresponds to Es1½Rq
2�R�. On this date, the credit constraint

does not bind, because κ¼ κh and at t¼0 the economy was in the pre-financial innovation regime with κl binding, but agents
believe that a switch to κl at t¼2 can occur with probability E1½Fshl�. This causes n0 and Es1½Rq

2�R� to be positively related,
because the optimism built into the date-1 beliefs bumps up the conditional covariance between Rq

2 and λ2, and then
condition (9) implies a higher Es1½Rq

2�R� even if the collateral constraint does not bind at t¼1. The data proxy for Es1½Rq
2�R�
17 Consumption and GDP data are from the International Financial Statistics of the IMF.
18 This uses the fact that E½Rq � � R in the stochastic steady state of the pre-financial-innovation era, because the regime with only κl yields a collateral

constraint that is almost always binding and with a negligible excess return.
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is the 1998Q2 option-adjusted spread on the Fannie Mae RMBS with 30-year maturity over the T-bill rate, which the
Bloomberg data service reports at 48 basis points. The model matches this spread with n0 ¼ 0:014.19

Two caveats about this approach to calibrate n0: First, we used “option-adjusted” spreads that are adjusted for prepay-
ment risk, without this adjustment we would have larger spreads. We chose this measure because we do not explicitly
model prepayment risk (the unadjusted spread was 110.2 basis points). Second, since the calibration is at a quarterly
frequency, we would like to use quarterly excess returns. However, RMBSs do not have such short-term maturities, because
the underlying assets tend to be long-term mortgages. Still, using the 30-year RMBS spread is useful because it actually
makes it harder for the model to generate optimism than spreads for a lower maturity. This is because 30-year RMBSs
generally have higher spreads than securities with a quarterly maturity, and higher spreads are associated with higher n0,
which weakens the mechanism generating optimism and pessimism in the learning process.

To analyze further the implications of the calibration of the initial priors, Fig. 4 shows the density functions of Fhh
s

and Fll
s

for three different (nii
0;n

ij
0) pairs. Betað0:014;0:014Þ from the baseline calibration yields priors with a U-shaped, symmetric

distribution with most of the mass around 0 and 1, a mean of 0.5 and a variance of 0.24. Thus, agents conjecture that there
are four most likely scenarios before the first realization of κ is observed: (a) Fshh � 1; Fsll � 1; (b) Fshh � 1, Fsll � 0; (c) Fshh � 0,
Fsll � 1Þ; (d) Fshh � 0; Fsll � 0. After observing the first few realizations of κh, however, the agents can rule out (c) and (d).
By contrast, Betað1;1Þ, which assumes that at least one observation of switch and continuation of each κ regime has been
observed, has the same mean of 0.5, but the distribution is uniform over the (0,1) interval and it has a lower variance
(0.083).

Fig. 4 also plots the Betað36:014;0:014Þ distribution, which represents the beliefs about Fhh
s

at period 36 of the financial
innovation experiment. Since agents have observed 36 transitions from κh to κh, their beliefs are sharply skewed to the right.
This is another way to illustrate the high degree of optimism that the learning process creates in the initial optimistic phase.

Consider next how the calibrated initial priors influence the evolution of Et ½Fshh� and Et ½Fsll� as the sequence of realizations
of κ is observed. The initial spell of κh leads agents to become optimistic about the persistence of this regime very quickly.
With the baseline Betað0:014;0:014Þ, Et ½Fshh� jumps to about 0.986 in just one quarter, while with Betað1;1Þ the buildup of
optimism is more gradual, but still after 8 quarters Et ½Fshh� approaches 90%. This rapid adjustment of beliefs also occurs with
the surge of pessimism that follows the first observation of κl in period 37: with Betað0:014;0:014Þ, agents update Et ½Fsll� from
0.5 to almost 1 in period 37, and with Betað1;1Þ the change is slower but again by period 44, Et ½Fsll� approaches 0.9.

It is important to note that neither Betað0:014;0:014Þ nor Betað1;1Þ bias the initial priors in favor of optimism or
pessimism, because both yield initial beliefs with a 0.5 mean. This differs from the approach followed by Cogley and Sargent
(2008b), who studied the implications of inducing a pessimism bias in the priors. Moreover, even though the changes in
Et ½Fshh� between periods 1 and 36 are small, they still imply nontrivial changes in the agent's perceived risk of the financial
environment. For t¼1, the baseline model yields E1½Fshh� ¼ 0:986, which implies that the perceived mean duration of κh is 71
quarters and the coefficient of variation is 5.5%. In contrast, for t¼36 we have E36½Fshh� ¼ 0:999, which is close to 0:98; but
implies a much higher mean duration of κh (1000 quarters) and much lower coefficient of variation (1.3%). As we show
below, this reduces incentives for precautionary savings significantly. These effects are also very non-linear, with the mean
duration exploding to 1 as Et ½Fshh� approaches 1 from below.

At this point we have calibrated all of the parameters that are needed for solving the model. Notice in particular that the
true probability matrix Fa is not needed. Still, calibrating Fa is necessary if we want to compare the solutions of the learning
19 An alternative calibration strategy would be to set n0 to match the observed increase in household debt. This yields n0o0:014, which strengthens
the buildup of optimism and the surge in land prices and debt in the optimistic phase.
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model against the standard RE solution. We calibrate Fhh
a

so that the mean duration of high-leverage regimes is in line with
the estimated duration of credit boom episodes in industrial economies, which Mendoza and Terrones (2012) estimated at
about 7 years. This implies Fahh ¼ 0:964. With this calibration of Fhh

a
and conditional on observing κh at date 1, the probability

of observing κh the following 35 periods is 0.24. Thus, the true probability of observing the spell of κh in the baseline
calibration of our financial innovation experiment, which produces substantial optimism, is about 1/4. We assume a
symmetric process by setting Fall ¼ 0:964.

An interesting implication of this calibration of the true κ process is that it makes the model consistent with the “this-
time-is-different” argument of Reinhart and Rogoff (2009). In the long-run, agents' beliefs about the mean duration and
frequency of credit cycles match the data, but in the early stages of financial innovation they are unduly optimistic.

3.2. Quantitative findings

We discuss four sets of numerical results: long-run distributions of bond positions, forecast functions of macroeconomic
aggregates, average changes in these aggregates at the “turning points” of the learning experiment, and expected excess
returns. We compare the results of the baseline learning model (BL) with the RE model (i.e., a model with the collateral
constraint but without the learning friction) and with a fixed land valuation-learning (FVL) model, in which land in
the collateral constraint is valued at a constant price set to the long-run average (i.e., a model with the learning friction
but without the Fisherian amplification channel). In this case, the collateral constraint becomes btþ1=RZ�κtqltþ1, where
q ¼ 0:456.

3.2.1. Ergodic distributions
Fig. 5 plots conjectured ergodic distributions of b as of t¼1, 8, 36, 37 and 44 in the BL model and the true ergodic

distribution of the RE model (see Appendix C for details). The former are conjectures because the actual ergodic distribution
of the BL model is the same as in the RE model, since in the long-run agents learn Fa. In contrast, the conjectured ergodic
distributions are the agents’ projections of what the long-run equilibrium would look like using their beliefs as of each date.
Plotting these distributions together is useful for illustrating the impact of the optimism and pessimism driving the model's
dynamics on the agents willingness to borrow.

Consider first the conjectured distribution for t¼1. Recall that the mean of bond holdings pre-financial-innovation was
�0.31. Hence, already by period 1 agents conjecture that the support of the long-run distribution of bonds will shift sharply
to the left (i.e., support higher debt levels). But comparing the period-1 distribution with the new RE distribution for the
regime-switching κ process post-financial-innovation, it is clear that agents are also projecting to be saving much less than
they eventually will in the new stochastic steady state. The RE distribution has the typical bimodal shape of a two-point
regime-switching process with high persistence. In this case, agents are assessing the risk of the financial environment
correctly, and in particular they are aware that long spells of both κ regimes are possible.

Compare now the RE ergodic distribution with the conjectured ergodic distribution for period 36 in the BL model. Large
debt ratios (bond holdings in the interval [�0.59, �0.54]) are never a long-run equilibrium outcome in the RE model,
but they take most of the mass of the long-run distribution of bond holdings that is projected on the basis of the agents’
period-36 beliefs. Something similar happens much earlier because, as shown before, it takes observing only the first
few realizations of κh for agents to turn very optimistic. By period 8 agents already conjecture that debt positions in the
[�0.55,�0.51] range are most likely long-run equilibria, while in the RE ergodic distribution they have zero probability.
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Fig. 5. Ergodic distributions of bond holdings.
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As optimism builds, the highest debt conjectured to have positive long-run probability rises, and the mass of probability
assigned to debt levels larger than the largest debt under rational expectations also rises. This process peaks at the peak of
the optimistic phase in date 36. During this phase, agents are willing to “overborrow” (take on more debt at the averages
of the conjectured ergodic distributions of b) than what is ever optimal in the RE model, and “undersave” (build less
precautionary savings, or conjecture they can attain a lower average of b) than what is optimal in the RE model. When the
first realization of κl hits and the pessimistic phase starts, the opposite effects take over and they peak at date 44. By then,
agents are “underborrowing” and “oversaving” substantially. However, they have learned from their experience that shifts to
κh are possible, so the period-44 conjectured distribution is two-peaked.
3.2.2. Forecast functions
Forecast functions are useful for illustrating the model's equilibrium dynamics. These forecast functions use the sequence of

beliefs and decision rules of each AUOP to trace the equilibrium path of the expected values of the endogenous variables. Intuitively,
the algorithm that computes the forecast functions uses a law of motion for the evolution of the probability of the economy being
in each triple ðb; z; κÞ from t¼0 to 44. This law of motion can be computed for any triple of initial conditions, but we are interested
in the triple that approximates the state of the U.S. economy in 1997Q4. Thus, we start at date 1 with all the probability
concentrated in ðb1; z1; κhÞwhere b1 ¼�0:363 (net credit assets as a share of GDP in 1997Q4) and z1 ¼ 1. Then, for each subsequent
date, the value of κ is set to the corresponding realization in the κT sequence, the transition probabilities across values of z are given
by the Markov process of z, and the transitions across values of b are governed by the sequence of policy functions bt ′ðb; z; κÞ from
the AUOPs. The procedure is similar to the standard forecast functions of a REmodel, except that the policy function is time-varying
because it varies with each set of beliefs in the sequence ½f ðFsjκtÞ�44t ¼ 1 (see Appendix C for details).

Fig. 6 plots the forecast functions for the choice of bond holdings as a share of output ðb′=yÞ, consumption, the price of
land, and the savings rate (GSF/y) as percent deviations from their long-run means in the BL, RE and FVL models. The solid
(blue) lines correspond to the BL model, the dashed (green) lines are for the FVL model, and the dotted (red) lines represent
the RE model. Note that even the RE model generates some dynamics in this exercise, because the initial condition b1 is not
the long-run mean of the new financial regime with stochastic κ, and also because we are using a particular time series of
realizations of κ (instead of averaging across possible κ realizations at each date t).

The forecast functions for bonds in Panel (a) show that during the optimistic phase agents consistently borrow more in
the BL model than in both the RE and FVL models. In the first two periods after financial innovation is introduced, the three
models predict similar debt dynamics, but after that the optimism and the financial amplification feedback loop at work in
the BL model produce a much larger decline in bond holdings, while the bond dynamics in the RE and FVL models are
similar.20 b′=y declines by as much as 21 percentage points below the long-run average at the peak of optimism of the BL
model in period 36. These dynamics are in line with the downward trend in household debt observed in the data (see Fig. 1).
Interestingly, the combination of the learning friction and the Fisherian amplification delivers a much stronger decline in
assets than the alternatives that retain only one of the two mechanisms. In the RE model there is no buildup of optimism
to push for overborrowing, and in the FVL model there is no endogenous feedback from higher land prices into higher
collateral and thus higher borrowing ability.

The switch to the pessimistic phase in period 37 causes a large correction in bond holdings, which jump about 54 percentage
points in the BL model. An adjustment of this magnitude is an equilibrium outcome, despite CRRA preferences and incomplete
markets, because the arrival of the first realization of κl at date 37 is akin to a large, unexpected shock, in the sense that by date 36
agents believed that κh was almost absorbent ðE40½Fshh� � 1Þ. Part of this debt correction is exogenous, because of the fall in κ, but
part is the endogenous outcome of the interaction of Fisherian amplification and pessimistic beliefs. In fact, the κ shock triggers a
large Fisherian deflation and its interaction with the pessimistic beliefs yields the largest debt correction across the three models.
Bond holdings also jump up in the RE and FVL models, because of the switch from κh to κl in a state in which the collateral
constraint was binding. But the adjustments are much smaller. The debt reversal in the RE case is about half the size of that in the
learning model, and it reflects the effect of the Fisherian mechanism in the absence of a switch to pessimistic beliefs. The FVLmodel
yields the smallest correction, which isolates the effect of the switch to pessimistic beliefs without Fisherian amplification.

As agents overborrow during the optimistic phase in the BL model, they also bid more aggressively for the risky asset. This
increases the price of land significantly, as shown in Panel (b) of Fig. 6. This contrasts with the RE case, in which the price of land
declines slightly relative to the pre-financial-innovation price. This occurs because the price of land in the RE model is falling to a
lower long-run average in the financial innovation regime. In turn, the mean price of land in the RE model (with stochastic κ) is
lower than in the pre-financial-innovation regime (with constant κl) because, even though agents know the true distribution of κ,
they now face uncertainty about κ. Hence, financial innovation implies not only a higher mean κ but also a higher variance of κ. The
former enables the agents to borrow more, and therefore demand more of the risky asset and bid up its price, but the latter gives
them an incentive to hold less of the risky asset, because the new financial environment is riskier and they are risk averse. We find
that, if the gap between κh and κl is small, the “mean effect” dominates leading to higher land prices in the REmodel, but as the gap
20 This occurs because (a) in the FVL model the price is fixed at the long-run average of the RE model, and (b) the RE price displays very small
deviations from its long-run average. As a result, and since the values of κ are the same in both models, the debt allowed by the collateral constraint in both
models is about the same.
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widens, the “variance effect” becomes stronger and the mean land price in the RE model is lower than in the pre-financial-
innovation equilibrium (as is the case in the baseline calibration).

The FVL model generates a larger asset price boom during the optimistic phase and a smaller price crash compared with
the other two models. This is because the FVL model rules out the Fisherian amplification by construction, and hence at date
37 the downward spiral on land prices, collateral values, and debt that is at work in the other two models are not active
here. Moreover, the fixed land valuation for collateral also serves as a limited asset price guarantee, which produces a larger
price boom during the optimistic phase than in the learning and RE models. The guarantee is limited because it applies only
for the valuation of land used as collateral. Accordingly, the FVL model produces a smaller reversal in debt in period 37, as
agents are able to borrow more than in the other two models because of the constant collateral price. For the same reason,
the larger land price increase in the optimistic phase does not feed back into a large debt expansion.

Panels (c) and (d) of Fig. 6 show the forecast functions for the savings rate and consumption. Because of the large
adjustments that occur at date 37, Panels (e) and (f) “zoom-in” on the dynamics of these variables in the first 30 periods. To
understand the consumption dynamics, consider first what these dynamics would look like in a perfect-foresight model
where we switch from the constrained pre-financial innovation steady state with κl to a hypothetical financial innovation
deterministic steady state for a regime with κh. These two steady states are corner solutions because βRo1, and hence the
steady state of bonds is b¼�κqðκÞ, where qðκÞ is the steady state land price, which is increasing in κ.21 Thus, the increase in κ
yields a lower steady state for b (higher debt) because both κ and qðκÞ increase. But higher steady state debt means lower
21 The steady state price is qðκÞ ¼ ðαβÞ=½βðR�1Þþð1�βRÞð1�κÞ�.
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steady state consumption, since the nonfinancial wealth of the economy is invariant to changes in κ and the debt has to be
serviced. Thus, financial innovation tilts the time profile of consumption. On impact, when κ first rises, and for a few periods
after that, consumption rises above the pre-financial-innovation level as the collateral constraint is relaxed, but then it drops
monotonically until it reaches its new steady state below the pre-financial-innovation level. This consumption tilting effect
is also at work in the stochastic model, but is weaker because of the precautionary savings motive, which implies a smaller
rise in debt and a smaller consumption drop.

Now consider the consumption dynamics of the BL, RE and FVL models in Panels (c) and (e). The fact that the dynamics
for the first 36 periods are similar in all three models indicates that the consumption tilting effect dominates these
dynamics. This is because consumption converges quickly to its new long-run average (which is identical in the BL and RE
models, and very similar in the FVL model). There is over-consumption in the BL model relative to the RE and FVL models in
the early stages after the switch to κh, because of the larger increase in debt (i.e., decline in bond holdings). In the first two
periods, consumption is about the same in all three models, but the overconsumption in the BL model is clear between the
3rd and 10th periods. After period 10, however, the dynamics driven by consumption tilting dominate in all three models.
Consumption then remains smooth (as we are averaging across TFP and keeping κ constant at κh), until we arrive at date 37
and κ switches to κl.

At date 37, as explained earlier, the κ switch is akin to a large, unexpected shock in the BL and FVL models. In the BL
model, which also has the Fisherian amplification, this produces a dramatic collapse in consumption. This is in line with the
findings in Mendoza (2010) and Mendoza and Smith (2006), showing that in Fisherian amplification models there are
equilibria outside the ergodic distribution of wealth, where the economy could land as a result of unexpected shocks,
in which the impact response of consumption can be around �80%. In those models, however, precautionary savings
and perfect information about the Markov processes of shocks rule out consumption drops of that magnitude from the
equilibrium dynamics, while in our model the learning friction allows us to support them as short-run AU equilibria.

The RE and FVL models also produce large consumption declines when the economy switches to κl, but both are much
smaller than in the BL model. In the RE model this is again because precautionary savings and the lack of overborrowing
10 20 30 40
0

0.05

0.1

0.15

0.2

0.25
Interest rate premium

Conditional s. d. of expected excess return Direct effect / Expected excess return

Expected excess return

10 20 30 40
0

0.01

0.02

0.03

0.04

10 20 30 40
0

0.2

0.4

0.6

0.8

1

10 20 30 40
0

0.05

0.1

BL
FVL
RE

BL
FVL
RE
ARIMA
data

Fig. 7. Asset price dynamics. Notes: The interest rate premium in period 37 is 46.18, 1.99, and 0.80 in the BL, RE, and FVL models respectively. “Data” in top
right panel corresponds to actual option-adjusted RMBS spreads (see calibration for details). “ARIMA” in the same panel shows the one-period-ahead
excess return forecast of an ARIMA(1,1,1) model of the RMBS spreads estimated over 1998Q1–2008Q4.



E. Boz, E.G. Mendoza / Journal of Monetary Economics 62 (2014) 1–2216
prevented a large accumulation of debt in the optimistic phase. In the FVL model the smaller consumption drop occurs
because there is no Fisherian deflation of collateral, which yields the smallest corrections in debt and consumption.

Fig. 7 shows the dynamics of key asset pricing variables. Panel (a) plots the implicit endogenous interest rate premium
defined by ½u′ðctÞ=βEst ½u′ðctþ1Þ��� R, which is equal to μt=βE

s
t ½u′ðctþ1Þ�, and thus is also a measure of the shadow value of the

collateral constraint. If the constraint does not bind, there is no premium, and when it binds the premium rises as the
constraint becomes more binding. The dynamics of the interest premium are in line with our previous argument stating that
the constraint becomes nonbinding when financial innovation starts, and then begins to bind after some time. In the BL
model, the constraint begins to bind after period 5. Then the premium rises monotonically, at a decreasing rate, to converge
to about 5.5% at t¼36. The FVL model generates a larger premium of up to 7%, while the RE model generates a premium of
just above 2% in the optimistic phase. This is natural because in the FVL model rising land prices do not relax the borrowing
limit, and in the RE model the constraint is less binding because individuals desire to save more with rational expectations
than with optimistic beliefs.

When the switch to the pessimistic phase takes place at date 37, there is a large jump in interest premia as the collateral
constraint becomes tightly binding. This jump is in part due to the exogenous shift in κ, but in the BL and RE models it is also
heavily influenced by the endogenous dynamics driven by the Fisherian amplification and, in the BL model, the surge in
pessimism. Consequently, the jump in the interest premia is the largest in the BL model, followed by the RE model, and the
FVL model last. After the crisis at date 37, however, the constraint becomes nonbinding for 4 periods in the BL model and for
1 period in RE. Afterwards the interest premia become positive again in all three models.

The dynamics of Est ½Rq
tþ1�R� and sst ðRq

tþ1Þ are plotted in Panels (b) and (c) respectively. Panel (b) also shows two data
proxies for actual expected excess returns on RMBS to gauge the model's performance at tracking them. One proxy is just
the actual data on option-adjusted spreads referred to earlier. The second proxy is a one-step-ahead forecast from a
univariate time-series model (identified as an ARIMA(1,1,1)). The excess returns rise sharply in the BL and RE models during
the optimistic phase, and show a much smaller increase in the FVL model. The BL and RE models are also in line with
the sharp increase in actual expected excess returns between 1998 and 2004 (t ¼ 0;…;24 in the chart). After that, BL is
qualitatively consistent in predicting a decline in expected excess returns, but the drop in the data was larger.

The variability of returns in Panel (c) falls sharply during the optimistic phase in the BL and FVL models, and rises in the
RE model. Given this and the rise in expected excess returns in Panel (b), we can infer the dynamics of the Sharpe ratio
(St � Est ½Rq

tþ1�R�=sst ðRq
tþ1Þ), which would show that the compensation for taking risk rises gradually in all three models.

However, the rise in the BL and FVL models (from near 0 at t¼1 to around 2/3rd at t¼36) is larger and more gradual than in
the RE model (for which S36 peaks at about 1/3rd). Moreover, plots (b) and (c) imply that the gradual increase in the Sharpe
ratios in the FVL and BL models is driven by the gradual declines in sst ðRq

tþ1Þ during the optimistic phase, since Est ½Rq
tþ1�R�

remains largely stable. Thus, the buildup of optimism in the two models with imperfect information contributes signifi-
cantly to reduce the perceived risk of land and increase the compensation for risk-taking, putting upward pressure on asset
prices. Note, however, that even though the Sharpe ratios of the BL and FVL models are similar during the optimistic phase,
both Est ½Rq

tþ1�R� and sst ðRq
tþ1Þ are higher in the BL model. In contrast, excess returns show fairly similar behavior across the

RE and BL models. This is in line with the previous result showing that FVL yields the largest land price increase because of
the implicit guarantee for collateral valuation it provides.

Panel (d) shows the direct effect of the borrowing constraint on expected excess returns (see Eq. (9)) expressed as a ratio
of the latter. Looking at Panels (a) and (d), we find that the model in which the collateral constraint binds the most and
produces the largest interest rate premia (FVL) is also the model in which the direct effect contributes the most to the excess
returns (more than 90% by period 36). In the BL model, the direct effect rises gradually to reach about 30% by period 36. In
the RE model, the contribution remains stable at about 10% from periods 5–36. The contribution of the direct effect grows
very large in all three models when the first switch to κl occurs, as the credit constraint becomes very binding, and after that
it remains large in the FVL model and falls back to zero in the other two models as debt is adjusted sharply, but then it rises
again as the constraint becomes very binding.

The relatively small contribution of the direct effect to mean excess returns in the optimistic phase of the BL and RE
models, coupled with the nontrivial mean excess returns, indicates that the indirect effects operating via covst ðλtþ1;R

q
tþ1Þ=

Est ðλtþ1Þ also play an important role. Moreover, in the very early stages of this phase, when the collateral constraint does not
bind, mean excess returns in the RE and BL models increase only because covst ðλtþ1;R

q
tþ1Þ=Est ðλtþ1Þ is becoming more

negative. Thus, the perceived risk of land falls because both sst ðRq
tþ1Þ and covst ðλtþ1;R

q
tþ1Þ=Est ðλtþ1Þ are falling. In addition,

the fact that in the early stages of the experiment the only driving force of rising excess returns is the fall in
covst ðλtþ1;R

q
tþ1Þ=Est ðλtþ1Þ is consistent with our previous remark stating that the undervaluation of risk is the only

mechanism at work when we calibrate n0 to match the observed 48 basis points RMBS spread at t¼1. The direct effect
of the borrowing constraint is not at work because the constraint is not binding.

3.2.3. Turning points
Table 2 lists changes in average bond–output ratios and land prices, calculated with the data of the forecast functions, at

the key turning points: the peak of optimism at t¼36 relative to the pre-financial-innovation initial conditions, and at the
end of the learning experiment (t¼44) relative to the peak of optimism (which we label as financial crisis). The figures are
differences in the levels of b/y and q projected by the forecast functions, but not expressed in deviations from long-run
means (as was the case in the plots of Fig. 6).



Table 2
Average changes at the turning points.

Period (1) Data (2) RE (3) FVL (4) BL

Peak of optimism:
E½ðb=yÞ36�ðb=yÞ0� �0.334 �0.065 �0.071 �0.213
E½ðql=yÞ36�ðql=yÞ0� 0.267 �0.025 0.306 0.131

Financial crisis:
E½ðb=yÞ44�ðb=yÞ36� 0.023 0.122 0.133 0.262
E½ðql=yÞ44�ðql=yÞ36� �0.149 0.013 �0.301 �0.130

Note: Data column reports the difference between 2006Q4 and 1997Q4 observations (top panel) and between 2008Q4 and
2006Q4 observations (bottom panel). Period 0 in all three model scenarios corresponds to the 1997Q4 data observations,
which are the initial conditions.
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This table illustrates two main results. First, the BL model explains a significant part of the increases in debt and land
prices before the financial crisis. Second, the BL model generates significantly higher debt in the optimistic phase than the
RE or FVL models, and a much larger land price increase than the RE model.

The BL model explains 64% of the increase in household debt observed in the data (b/y falls by 21.3 percentage points vs.
33.4 in the data). Moreover, the decline in bond holdings in the BL model is about 14 percentage points of GDP larger than in
the RE or FVL models. The comparison with the RE model shows again that, when Fisherian amplification and optimistic
beliefs interact, financial innovation produces significant overborrowing. The comparison with the FVL model shows, also in
line with our previous findings, that the interaction of those two forces has significant quantitative implications for the size
of the credit boom.

Comparing changes in land prices, the BL model accounts for 49% of the land price boom observed in the data (the increase in q
in the model reaches 13 percentage points at date 36, vs. 26.7 in the data). As noted in the comparison of forecast functions, the RE
model yields a slight fall in q and the FVL model generates a larger price increase than the BL model.

Consider now the changes in bond holdings and land prices during the financial crisis. The BL model generates a large
debt reversal of 26 percentage points (and this after an even larger reversal between periods 36 and 37, as shown in Fig. 6).
By contrast, in the data the correction was only 2.3 percentage points. The model clearly overestimates the reversal in debt,
but part of the discrepancy is due to the fact that bonds in the model are one-period bonds while the average maturity of
household debt is significantly higher, particularly for mortgages. As a result, the switch to κl leads to an abrupt decline in
debt in the model, while in the data this has an effect that is spread over time. Indeed, as shown in the top panel of Fig. 1, the
reversal in the household debt ratio has continued, and by 2011 it had increased by about 10 percentage points of GDP.

The BL does a nice job at matching the observed decline in land prices during the financial crisis (13 and 14.9 percentage
points in model and data respectively). This is after an initial price collapse between periods 36 and 37 that is significantly
larger. In contrast, the FVL model produces a larger price decline, about twice as large as in the data, and the price change in
the RE model is again small and in the opposite direction from the BL and FVL models.

3.2.4. Projected excess returns on land
Next we investigate the projections of future excess returns that underlie the discounting of land dividends for the computation

of qt using Eq. (10) at key dates in the model's dynamics. Looking at these projections illustrates further the agents’ changing beliefs
about the riskiness of land. Fig. 8 plots expected excess returns for up to 50 periods ahead of t¼1, 36, and 37 (in Panels (a), (b)
and (c) respectively). These are expectations formed with the beliefs and decision rules as of periods 1, 36 and 37. In each scenario,
we set the initial state of nature so that b is at the mean bond holdings predicted by the forecast function in Fig. 6 for the
corresponding date, κ to its corresponding value in the history κt , and TFP to its mean value.

Focusing on expected excess returns projected as of t¼1 in Panel (a), the excess returns in the RE model exceed slightly
those of the BL setup up to the 10th period, and afterwards the BL model projects slightly higher returns. This pattern
justifies the result showing that the land price at date 1 is slightly lower in the RE model (because agents in the RE model
expect relatively higher excess returns in the first 10 periods, which carry more weight in discounting dividends). The FVL
model yields expected excess returns that lie significantly below both the RE and BL models, and this is consistent with the
sharply higher date-1 land price produced by the FVL model. The FVL model has lower excess returns because the removal
of the Fisherian amplification weakens the effects of the collateral constraint on excess returns shown in Eq. (9).

As agents reach the peak of the optimistic phase after observing κh for 36 periods, expected excess returns ahead of date
36 (Panel (b)) are significantly lower than they were predicted to be ahead of date 1 in the two models that incorporate the
learning friction. As explained in Section 2, this is because once the constraint binds at κh, land returns are lower in
the states with κh than with κl, and optimistic agents assign higher probabilities to the former than the true probabilities.
Given lower projected excess returns, these two models also produce sharply higher land prices at date 36 than at date 1.
Moreover, comparing now the projected future returns paths in the three models as of date 36 itself, projected returns in the
BL model are significantly smaller than in the RE model, and the FVL model predicts even smaller excess returns. This is
because in the FVL model beliefs turn as optimistic as in the learning model, but the removal of the Fisherian mechanism
reduces land risk premia.
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At date 37, when the switch to κl takes place, the ordering of projected excess returns across RE and BL models reverses
(Panel (c)). Projected excess returns for period 38 are very high in all three models, because they reflect the strong direct effect of
the borrowing constraint tightening sharply as κ switches. This direct effect includes both an exogenous factor, simply because of
the switch to κl, and an endogenous factor, because of the surge in μ37 (the direct effect in the right-hand-side of (9) for the excess
return at t¼38 expected as of t¼37 is given by ð1�κlÞμ37). Moreover, this direct effect is the strongest in the BL model that
combines both learning and Fisherian amplification, followed by the REmodel, and with the FVL model last. This is also in line with
the size and ordering of interest rate premia displayed in period 37 in Fig. 7.

After the initial severe tightening of the borrowing constraint, and the abrupt debt adjustment that follows, the
borrowing constraint is not projected to bind in the BL and RE models for a couple of periods, before enough debt is built
up to make the constraint bind again. In the FVL model the constraint is projected to remain binding, but still the debt
adjustment reduces the tightness of the constraint sharply and hence the projected returns. Beyond the adjustment phase of
the first 10 periods, projected returns in the BL model exceed those of the other two models, and those of the FVL model are
sharply lower. This pattern is consistent with the results showing that at date 37 the value of q is the highest in the FVL
model, followed by the RE model, and with the BL model price sharply lower.

It is also interesting to note that during periods 2–7 ahead of date 37, the projected excess returns of the RE model exceed those
of the BL model. This reflects the fact that the pessimistic expectations of the BL model result in a slower build up of debt, so that
the collateral constraint is expected to start binding a period later than under RE, and then to bind with lower shadow values than
under RE until period 10. However, since as of date 37 beliefs still favor overborrowing over the long run, relative to rational
expectations (compare the projected long-run debt distribution of bonds for period 37 with the ergodic RE distribution in Fig. 5),
agents project that the borrowing constraint will eventually becomemore binding in the BLmodel than in the REmodel, and hence
they project that land returns will converge to a higher level.

3.2.5. Sensitivity analysis
We now conduct a sensitivity analysis to study how changing the model's key parameters alters our main findings. To

simplify the exposition, we focus only on the turning point effects. We examine first in Table 3 various scenarios changing
the initial priors. Then we study in Table 4 changes in κh, κl, β and R. The second column of both tables shows the results for



Table 3
Sensitivity analysis: initial priors.

Period BL (1) (2) (3) (4)
n0 ¼ 1 n0 ¼ 0:01 nhh

0 ¼ 0:37 nll
0 ¼ 72

nll
0 ¼ 0:37 nlh

0 ¼ 1

E½ðb=yÞ36�ðb=yÞ0� �0.213 �0.065 �0.222 �0.213 �0.212
E½ðql=yÞ36�ðql=yÞ0� 0.131 �0.024 0.140 0.129 0.128

E½ðb=yÞ44�ðb=yÞ36� 0.262 0.133 0.271 0.261 0.263
E½ðql=yÞ44�ðql=yÞ36� �0.130 �0.003 �0.139 �0.128 �0.131

Table 4
Sensitivity analysis: key parameters.

Period BL (1) (2) (3) (4)
R¼ 1:0098 κl ¼ 0:75 κh ¼ 0:8 β¼ 0:95

E½ðb=yÞ36�ðb=yÞ0� �0.213 �0.240 �0.228 �0.128 �0.227
E½ðql=yÞ36�ðql=yÞ0� 0.131 0.168 0.145 0.122 0.147

E½ðb=yÞ44�ðb=yÞ36� 0.262 0.161 0.162 0.177 0.183
E½ðql=yÞ44�ðql=yÞ36� �0.130 �0.036 �0.064 �0.122 0.089
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the BL model for comparison. In general, the parameterizations that generate larger booms during the optimistic phase also
generate larger busts in the financial crisis.

Scenario (1) in Table 3 shows the results obtained by setting uniformly distributed initial priors ðn0 ¼ 1Þ. Debt dynamics
are qualitatively the same as in the BL model but the debt buildup is smaller (6.5 percentage points vs. 21.3 in BL). Moreover,
the price of land falls to a level about 2 percentage points lower in period 36 than in period 1, which differs sharply from the
13 percentage points increase produced by the BL model. This is because, throughout the optimistic phase, the beliefs about
the persistence of κh with the uniform priors are always lower than in the BL model. As explained before, the initial means of
the two priors are the same (0.5), but with the BL priors agents turn optimistic faster and reach a higher level of optimism.

Examining the forecast functions of land prices we found that prices with uniform priors follow a u-shaped trajectory in
the optimistic phase, instead of the monotonically increasing path displayed in the BL case. The reason for this is again the
more gradual buildup of optimism with the uniform priors, which affects the relative magnitude of the effects of higher
mean and higher variance of κ on land prices after financial innovation. In the early years, the effect of higher variance
dominates that of higher mean, causing a decline in the price of land, until agents turn optimistic enough. As agents observe
more κh s, and sufficient optimism builds up, the higher mean dominates the higher variance, but under uniform priors this
requires a longer sequence of κh than in the baseline case. Thus, if we look at an optimistic phase of more than 36 periods
with the uniform priors, we again find that at the peak of the optimistic phase the price of land is higher than in period 1.

The financial crisis effects on land prices and debt are also much weaker under the uniform priors than in the BL scenario, again
because of the more gradual adjustment of beliefs (now in the switch to pessimistic beliefs and the buildup of pessimism). Debt
adjusts by 13.3 percentage points instead of 26.2, and land prices fall only by 0.3 of a percentage point, instead of 13.

Reducing the initial priors to n0 ¼ 0:01 in Scenario (2) moves the model further away from uniform priors than in the BL
case (which was calibrated to n0 ¼ 0:014). Consequently, when agents observe the first κh they turn more optimistic than in
the BL case, and hence they borrow more and demand more of the risky asset. This produces larger debt and land price
booms. Similar effects are at work, but in the opposite direction, in the pessimistic phase, and hence with n0 ¼ 0:01 we find a
larger correction in debt and a larger drop in land prices in the financial crisis.

In Scenario (3) we increase nhh
0 and nll

0 so that Es0½F� ¼ Ea0½F�, which requires nhh
0 ¼ nll

0 ¼ 0:37; while keeping nhl
0 and nlh

0 at
the BL calibration values of 0.014 (i.e., in this case the continuation counters and the switching counters differ). The aim here
is to start agents off with distributions of priors that have means that happen to be equal to the true persistence parameters
of the κ regimes. Since agents do not know that this is the case, however, they still update their beliefs as they observe
subsequent realizations of κ. This scenario yields results very similar to the BL model. This is because with nhh

0 ¼ nll
0 ¼ 0:37

and nhl
0 ¼ nhl

0 ¼ 0:014 agents still face significant uncertainty about the true regime-switching structure of the credit regimes,
and hence they still turn quite optimistic. In fact, their initial beliefs about Es½Fhh� are more optimistic in Scenario (3) than in
the BL case (in the latter they start with Es0½Fhh� ¼ 0:5 vs. Es0½Fhh� ¼ 0:964 in Scenario (3)). This does not, however, translate
into significantly more borrowing because these differences in initial optimism become small after a few periods, since the
BL model also generates a substantial amount of optimism relatively quickly.

Next we examine a scenario that assumes that the κl realizations observed during the pre-innovation period are part of the
information set (Scenario (4)). This runs contrary to our assumption that a true structural financial innovation took place, so that
any previous information about the financial environment became useless. Since the BL calibration sets κl at the value of the pre-
financial-innovation era, however, one could argue that κl had been observed for a while before financial innovation, and thus
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agents could learn from that. Accordingly, Scenario (4) sets the initial priors such that agents take into account the realizations of κl

during 1980–1997 (nll
0 ¼ 72 observations) and 1 transition from κl to κh right at the beginning of innovation ðnhh

0 ¼ 1Þ. This scenario
is also akin to a formulation in which we could bias the initial priors so as to make agents perceive a much higher probability of
continuation of the low-leverage regime.

The priors in Scenario (4) imply Es0½Fll� ¼ 0:985 vs. Es0½Fll� ¼ 0:5 in the BL model. With the modified priors, agents believe that
when or if the economy transits into the κl regime, it will stay there for some time. As a result, during the earlier periods of the
optimistic phase the conjectured ergodic distributions of bonds are double-peaked with a large mass around the mean conditional
on κl. This implies that unconditional mean debt is smaller than in the BL model during the optimistic phase. Conversely, we find
higher debt levels during the pessimistic phase in Scenario (4) because, having observed one transition from κl to κh, the agents
turn less pessimistic compared to the BL case. Despite these differences in conjectured long-run distributions, the turning-points
dynamics reported in Table 3 do not differ much across Scenario (4) and the BL case. This is because, despite the differences in
unconditional means, the means conditional on κ do not differ much, and this occurs because the forecast functions used for the
turning points use the history κT described earlier and we also kept nhl

0 and nhl
0 unchanged. Thus the evolution of Est ½Fhh� is also the

same and this results in similar dynamics for the first 40 periods in which κh is observed.
Summing up, the results in Table 3 illustrates the importance of the initial priors. In particular, what is crucial is that the new

financial regime is truly a structural change, in terms of agents having little knowledge about the transition probabilities of κh. To be
precise, for the model to generate sizable booms and busts, agents having never observed κh (i.e., having uninformative priors about
the likelihood of transitions from κh to κl) is crucial. This is evident in the results for Scenario (1) with uniform priors, which are far
less favorable than the BL model and the other three scenarios. In this scenario, agents have “stronger” priors about the persistence
of κh, because n0¼1 implies that they have observed one transition from κh to κl and also one from κh to κh. Hence, they can
rule out the possibility of κh being close to absorbent. In addition, Scenario (4) shows that we can allow the priors about κl to be
informative (i.e., reflect a high number of observed realizations of that regime), but as long as nhh and nhl are low, the magnitude of
the boom and crash in debt and land prices remain about the same as in the BL case. The same applies to scenarios (2) and (3),
because both of these use initial counters that are far below 1.

We now turn to Table 4 which reports the turning-point effects in scenarios that change R, κh, κl, and β. Scenario (1)
considers a lower value of R, and is motivated by the observation that interest rates declined at around the same time as the
beginning of financial innovation, and remained very low since then. Hence, one may argue that, because of U.S. financial
innovation, or because of other forces like the large purchases of U.S. T-bills from China, the real interest rate fell along with
the increase in the U.S. agents’ ability to borrow.22 Accordingly, we changed R to the average interest rate for the period
1998–2008 in the data, which is 0.98% (as opposed to the 1980–1997 average of 2.7% used in the BL case).

With the lower R, the new long-run means of debt and land price are considerably larger, E½b=y� goes down from �0.36
in the RE and BL to �0.41, and the land price increases from 0.45 to 0.53. Intuitively, since R falls, the asset price needs to go
up in equilibrium in order for the expected returns of these two to be equated. In addition to these changes in long-run
averages, Scenario (1) in Table 4 shows that lower R generates larger increases in debt and asset prices than the BL case
during the optimistic phase. Lower interest rates support higher asset prices which in turn relax the borrowing constraint
allowing the agents to borrow more.23 Note, however, that in the crisis the correction in debt is smaller, and the fall in the
price of land is significantly smaller. Thus, considering falling real interest rates that coincide with financial innovation
enlarges the size of the debt and land price booms predicted by the model, but it makes the reversal of both smaller.

Increasing κl in Scenario (2) increases the size of booms in debt and land prices slightly. Note that the change only applies
to the value of κl in the new financial regime, while the pre-innovation κ is still 0.63. The larger debt and price booms occur,
even though we still have the same sequence of 36 realizations of κh as in the BL case, because agents take into account the
fact that with the higher κl the low-leverage regime is not as low as in the BL case. This results in both a higher mean and a
lower variance of κ, which support both larger debt and higher land prices. The size of the reversals in debt and land prices
are smaller because κl is higher than in the baseline, and thus allows agents to borrow more than in the BL case, and the
resulting direct and indirect effects of the collateral constraint on asset prices are weaker.

Reducing κh to 0.8 (Scenario (3)) reduces the size of the debt buildup, because of the tighter credit constraint in the high-
leverage regime in this experiment, and reduces also the size of the debt reversal in the crisis, because debt falls from a
lower level at the peak of the boom. The land price boom and crash change only marginally.

Finally, Scenario (4) shows results for a higher value of β (0.95 vs. 0.91 in the BL case). The higher discount factor supports
higher asset prices, because agents discount the future less. Since the collateral constraint becomes binding early in the
optimistic phase, these higher asset prices translate into higher debt levels.24 Hence, this scenario delivers slightly larger
debt and land price booms than in the BL case during the optimistic phase. In contrast, the financial crisis effects with higher
22 This experiment is also motivated by the aim to explore the role of interest rate changes, since R in the model is exogenous. In a variant of the BL
model with endogenous interest rate, the boom in debt would be weakened by an increase in R. But in the data the opposite was observed, so instead we
examine a scenario in which the exogenous R changes with financial innovation to match its observed decline.

23 In calculating turning points we measure booms relative to the 1997Q4 values in the data. If we measure the boom as deviations from long run
means, the boom during the optimistic phase would be smaller in this scenario than in the BL case, because the long-run means of debt and land price are
higher.

24 By contrast, in the long run, as the model converges to RE and the constraint does not bind, the higher β brings βR closer to 1, which strengthens
precautionary savings incentives and reduces debt.
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β are weaker than in the BL model, particularly in the case of asset prices (which recover quickly after a decline in period 37
and reach levels higher than pre-crisis by period 44).

4. Conclusion

The U.S. financial crisis was preceded by a decade of fast growth in household debt, residential land prices, and leverage,
accompanied by far-reaching financial innovation with the introduction of new instruments and deep changes in the regulatory
framework. In this paper, we argued that financial innovation in an environment with imperfect information and credit frictions
was a central factor behind the credit and land price booms that led to the crisis, and in the transmission mechanism that drove the
crisis itself. To make these points, we examined the interaction among financial innovation, learning, and a Fisherian collateral
constraint in a stochastic equilibrium model of household debt and land prices.

We used the model to study the quantitative implications of an experiment calibrated to U.S. data in which financial
innovation begins with a switch to a high-leverage regime, but agents do not know the true regime-switching probabilities
across high- and low-leverage regimes. Agents are Bayesian learners, however, so in the long-run, after observing a long
history of realizations of leverage regimes, they learn the true regime-switching transition probabilities. The collateral
constraint introduces Fisher's classic debt-deflation amplification mechanism, providing a vehicle for the waves of optimism
and pessimism produced by Bayesian learning to have amplification effects on debt and land prices. In this regard, this
paper offers a novel analysis in which the Fisherian feedback loop between debt and asset prices interacts with the
formation of beliefs, both of which are at the core of Fisher's original arguments.

In our setup, a buildup of optimism is a natural consequence of financial innovation, because agents start without enough data
to correctly evaluate the riskiness of the new environment. Calibrating the leverage regimes to data on the ratio of household debt
to residential land values, and the initial priors to the excess returns on the 30-year Fannie Mae RMBS in early 1997, the model
predicts that agents would turn very optimistic very quickly between the mid-1990s and the mid-2000s, after observing only a few
quarters of the high-leverage regime.

Fisher's financial amplification channel plays an important role because, as optimism builds up and land prices rise, the
agents’ ability to borrow also grows. Similarly, when optimism turns to pessimism, after the first observation of the low-
leverage regime, which we dated at the beginning of 2007, after the start of the sub-prime mortgage crisis in the Fall of
2006, the Fisherian channel amplifies the reversals in debt and asset prices. This occurs because fire-sales of land drive
down land prices and reduce the agents’ ability to borrow.

The interaction of the learning friction and the Fisherian amplification mechanism generates substantial overborrowing, which
accounts for almost two-third of the increase in net debt of U.S. households, and about two-fifth of the boom in residential land
prices, observed between 1997 and 2006. Moreover, the model also predicts a credit crunch, a crash in land values, a collapse in
consumption and a surge in private savings after the first realization of the low-leverage regime. In contrast, the size of the debt and
price booms, and the subsequent collapses, are significantly smaller in variants of the model that remove the learning friction or the
Fisherian mechanism.

Our work has important implications for the ongoing debate on financial reforms to prevent future crises. First, since
by definition the true riskiness of a truly brand-new financial regime cannot be correctly evaluated when the new regime
starts, and little or no data is available on its performance, exposure to the credit boom–bust process we studied in this
paper comes along with the potential benefits of financial innovation. Hence, close supervision of financial intermediaries in
the early stages of financial innovation is critical.

Second, the interaction of informational frictions and collateral constraints can be critical for the evaluation of macro-
prudential financial regulation policies. The credit constraint present in our model features the pecuniary externality typical of
the macro-prudential regulation literature, because agents do not internalize the effect of their individual borrowing plans on
equilibrium collateral prices, and this leads to “overborrowing” relative to debt levels that would be acquired without the
externality. In Bianchi et al. (2012) we use a setup similar to the one presented in this paper to study the interaction between the
externality and the underpricing of risk driven by the process of “risk discovery,” and use it to analyze the effectiveness of macro-
prudential debt taxes. We find that these taxes canweaken boom–bust cycles if regulators have access to better information than
private agents. Conversely, if policymakers are as uninformed as households about how financial markets will perform after
radical structural changes, taxes on debt can address overborrowing due to the credit externality, but not due to optimistic
beliefs.

Third, the ongoing financial reform process (e.g. Basle III, the Dodd–Frank act) is a new round of radical innovation in
capital markets, now tightening the legal and regulatory framework, which will affect the types of securities that will be
available and the size of the markets in which they will trade. Hence, agents once again will have to evaluate the riskiness of
the new financial environment with beliefs based on imperfect information. As a result, the risk exists that a few years of
slow credit growth and poor performance in asset markets can lead to the buildup of pessimistic expectations that will
hamper the recovery of financial markets.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jmoneco.
2013.07.001.
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