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This article studies the pruned state-space system for higher-order perturbation approximations to
dynamic stochastic general equilibrium (DSGE) models. We show the stability of the pruned approximation
up to third order and provide closed-form expressions for first and second unconditional moments and
impulse response functions. Our results introduce generalized method of moments (GMM) estimation and
impulse-response matching for DSGE models approximated up to third order and provide a foundation
for indirect inference and simulated method of moments (SMM). As an application, we consider a New
Keynesian model with Epstein–Zin preferences and two novel feedback effects from long-term bonds to
the real economy, allowing us to match the level and variability of the 10-year term premium in the U.S.
with a low relative risk aversion of 5.
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1. INTRODUCTION

The perturbation method approximates the solution to dynamic stochastic general equilibrium
(DSGE) models by higher-order Taylor series expansions around the steady state (see
Judd and Guu (1997) and Schmitt-Grohé and Uribe (2004), among others). These approximations
have grown in popularity, mainly because they allow researchers to quickly and accurately solve
DSGE models with many state variables and inherent non-linearities to analyse uncertainty shocks
or time-varying risk premia (see Fernández-Villaverde et al. (2011) and Rudebusch and Swanson
(2012), among others).
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Although higher-order approximations are intuitive and straightforward to compute, they often
generate explosive sample paths even when the corresponding linearized solution is stable. As
noted by Kim et al. (2008), these explosive sample paths arise because the higher-order terms
generate unstable steady states in the approximated system. The presence of explosive behaviour
complicates any model evaluation because no unconditional moments exist in this approximation.
It also means that any estimation method using unconditional moments, such as generalized
method of moments (GMM) or simulated method of moments (SMM), is inapplicable because
it relies on finite moments from stationary and ergodic probability distributions.1

For second-order approximations, Kim et al. (2008) suggest eliminating explosive sample
paths by pruning terms of higher-order effects than the considered approximation order when
the system is iterated forward in time. This article extends this pruning idea to perturbation
approximations of any order and shows how pruning greatly facilitates inference of DSGE models.
Special attention is devoted to the widely used second- and third-order approximations. We first
show that our pruning method ensures stable sample paths, provided the linearized solution is
stable. Next, we provide closed-form solutions for first and second unconditional moments and
impulse response functions (IRFs). We also derive conditions for the existence of third and fourth
unconditional moments to compute skewness and kurtosis.2

While it is hard to show general accuracy results regarding the pruned approximation,
Lan and Meyer-Gohde (2013a) and an earlier version of this article (Andreasen et al., 2013)
have found that our pruning scheme does not decrease accuracy (and often it improves it)
when compared to the unpruned state-space system. We can offer some intuition for this result.
Unpruned approximations are subject to what we call microbursts of instability. Often, the
simulations are hit by relatively large shocks, which push the simulation towards an explosive
path. After a few periods, a large shock of opposite sign typically sends the simulation back into
a stable path. During these periods of transitory explosive paths (or microbursts of instability),
the Euler equation errors of the unpruned approximation are often fairly large. Even when we
define a threshold above which we disregard a sample path as explosive, simulations will have
several microbursts of instability that do not reach the threshold and are kept in the sample. In
comparison, pruned approximations are not subject to these microbursts.

Our results are significant as most of the existing moment-based estimation methods for
linearized DSGE models now carry over to non-linear approximations. For models solved up to
third order, this includes GMM estimation based on first and second unconditional moments and
matching model-implied IRFs to their empirical counterparts in the tradition of Christiano et al.
(2005). Our results are also useful when estimating DSGE models using Bayesian methods,
for instance, when conducting inference using a limited information likelihood function from
unconditional moments, as suggested by Kim (2002), or when doing posterior model evaluations
on unconditional moments, as inAn and Schorfheide (2007). If simulations are needed to calculate
higher-order unconditional moments such as skewness or kurtosis, then our results provide a
foundation for SMM as in Duffie and Singleton (1993) and different types of indirect inference
as in Smith (1993), Dridi et al. (2007), and Creel and Kristensen (2011).3 Finally, our results are
also relevant to researchers who prefer to calibrate their models as in Cooley and Prescott (1995),

1. Ruge-Murcia (2013) reviews the use of GMM in the context of DSGE models. Non-explosive sam-
ple paths are also required for likelihood methods, for instance, when using the particle filter outlined in
Fernández-Villaverde and Rubio-Ramírez (2007).

2. Matlab codes to implement our procedures are available on the authors’ home pages; see for instance
https://sites.google.com/site/mandreasendk/home-1.Also, Dynare 4.4.0. has implemented our pruning method to simulate
models approximated to third order.

3. See also Ruge-Murcia (2012) for a Monte Carlo study and application of SMM based on the neoclassical growth
model solved up to third order.

http://sites.google.com/site/mandreasendk/home-1
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because the unconditional mean of a model solved with higher-order terms generally differs from
its steady-state value. Given our results, researchers can now easily correct for these higher-order
effects and non-linearly calibrate their models.4

The suggested GMM estimation approach, its Bayesian equivalent, non-linear calibration, and
IRF matching are promising because we can compute first and second unconditional moments
or IRFs in a trivial amount of time for medium-size DSGE models solved up to third order. For
the model described in Section 6 with seven state variables, it takes 0.75 second to find all first
and second unconditional moments and only 0.08 second to compute the IRFs for 20 periods
following a shock using an off-the-shelf laptop.

An application illustrates some of the new techniques this article makes available. We consider
a rich New Keynesian economy with Calvo pricing, consumption habits, and Epstein–Zin
preferences, which we estimate by GMM using first and second unconditional moments for
the U.S. yield curve and five macro variables. Our New Keynesian model introduces two novel
mechanisms that help us to improve our understanding of the interactions between financial
markets, monetary policy, and the real economy. First, households deposit their savings in a
financial intermediary. This financial intermediary invests in short- and long-term bonds and
creates a wedge between the policy rate set by the monetary authority and the interest rate on
deposits. Second, we augment the standard Taylor rule of the monetary authority to include the
excess return on a longer-term bond, which is closely related to term premia. The first mechanism
captures frictions in the financial markets that induce differences between the policy rate and the
interest rate faced by households. The second mechanism captures the observation that central
banks also react to term premia, as seen during the recent financial crisis. Our two mechanisms
depend on the degree of precautionary behaviour and, therefore, are only operative when the
model is solved at least using a third-order approximation. Thus, the methods derived in the
present article are essential for the quantitative analysis of the model.

When introducing the two feedback mechanisms from financial markets to allocations, our
model matches the mean and variability of the 10-year term premium with a reasonable risk
aversion of 5, while simultaneously matching key moments for standard real macro variables.
We also demonstrate the importance of a positive steady-state inflation in driving this result,
as it amplifies the non-linearities in the price dispersion index related to Calvo pricing and
produces the desired conditional heteroscedasticity in the stochastic discount factor. Notably, an
unpruned third-order approximation to our model gives explosive sample paths and is, therefore,
unable to “see” this novel channel for term premia volatility, which we uncover when using our
pruning method. Thus, our model and our pruning method go a long way in resolving the bond
risk premium puzzle described in Rudebusch and Swanson (2008) without postulating highly
risk-averse households, as in much of the existing literature.

The rest of the article is structured as follows. Section 2 introduces the problem. Section 3
presents the pruning method and the pruned state-space system for approximated DSGE models.
Stability and unconditional moments of the pruned state-space system for second- and third-
order approximations are derived in Section 4, with the expressions for the IRFs deferred to
Section 5. Section 6 presents our empirical application and Section 7 reports our empirical
findings. Section 8 concludes. Detailed derivations and proofs are deferred to the Appendix
and a longer Online Appendix available on the authors’ home pages or on request.

4. Some papers in the literature have accounted for the difference between the steady state and the mean of the
ergodic distribution by simulation; see, for instance, Fernández-Villaverde et al. (2011). These simulations are, however,
computationally demanding, in particular, for very persistent processes, where a long sample path is required to accurately
compute unconditional moments.



[15:40 4/8/2017 rdx037.tex] RESTUD: The Review of Economic Studies Page: 4 1–49

4 REVIEW OF ECONOMIC STUDIES

2. THE STATE-SPACE SYSTEM

We consider the following class of DSGE models. Let yt ∈R
ny be a vector of control variables,

xt ∈R
nx a vector of state variables, and σ ≥0 an auxiliary perturbation parameter. To simplify the

notation, yt and xt are expressed in deviations from their steady state. The exact solution to the
DSGE model is given by the state-space system

yt =g(xt,σ ), (1)

xt+1 =h(xt,σ )+σηεt+1, (2)

where εt+1 contains the nε exogenous zero-mean shocks. We refer to (1) and (2) as the observation
and state equations, respectively. Initially, we do not impose a distributional form for εt+1. We only
assume that εt+1 is independent and identically distributed with finite second moments, denoted
by εt+1 ∼IID(0,I). Additional moment restrictions will be imposed later. The perturbation
parameter σ scales the matrix η having dimension nx ×nε .5

In general, DSGE models do not have a closed-form solution and the functions g(xt,σ ) and
h(xt,σ ) cannot be found explicitly. The perturbation method is a popular way to obtain Taylor
series expansions to these functions around the steady state (xt =xt+1 =0 and σ =0). When
the functions g(xt,σ ) and h(xt,σ ) are approximated up to first order, the state-space system is
approximated by gxxt and hxxt in (1) and (2), respectively. Here, gx is an ny ×nx matrix with
derivatives of g(xt,σ ) with respect to xt and hx is an nx ×nx matrix with derivatives of h(xt,σ )

with respect to xt .6 Given our assumptions about εt+1, the approximated state-space system has
finite first and second unconditional moments if all eigenvalues of hx have modulus less than one.
Furthermore, the approximated state-space system fluctuates around the steady state, which is
the unconditional mean. In this case, it is straightforward to calibrate the structural parameters in
the DSGE model from unconditional first and second moments or carry out a formal estimation
using Bayesian inference, maximum likelihood, GMM, SMM, etc. (Ruge-Murcia, 2007).

When the functions g(xt,σ ) and h(xt,σ ) are approximated beyond linearisation, we could,
in principle, apply the same method to construct the approximated state-space system with their
higher-order Taylor series expansions. However, the resulting system cannot, in general, be shown
to have any finite unconditional moments and may display explosive dynamics. This occurs
even when we solve simple versions of the New Keynesian model. Hence, it is hard to use
this approximated state-space system to calibrate or estimate model parameters. Consequently,
it is useful to construct another approximated state-space system that has well-defined statistical
properties when analysing DSGE models solved beyond linearisation. We now explain how this
can be done.

3. THE PRUNING METHOD

Kim et al. (2008) suggest a pruning method to construct the approximated state-space system
for second-order approximations of DSGE models. We will refer to the resulting approximated
state-space system as the pruned state-space system. Section 3.1 reviews pruning and explains
its logic for the second-order approximation. Section 3.2 extends the method to a third-order
approximation. The general procedure for constructing the pruned state-space system for any
approximation order is then straightforward, but deferred to Appendix A.1 in the interest of
space. We relate our approach to the existing literature in Section 3.3.

5. As shown in Andreasen (2012), the assumption that εt+1 enters linearly in (2) is without loss of generality. A
few examples are provided in the Online Appendix.

6. The derivatives of g(xt ,σ ) and h(xt ,σ ) with respect to σ are zero (Schmitt-Grohé and Uribe, 2004).
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3.1. Second-order approximation

The first step when constructing the pruned state-space system for the second-order approximation

is to decompose the state variables into first-order effects xf
t and second-order effects xs

t as follows.
We start from the second-order Taylor series expansion of the state equation

x(2)t+1 =hxx(2)t + 1

2
Hxx

(
x(2)t ⊗x(2)t

)
+ 1

2
hσσ σ 2 +σηεt+1, (3)

where x(2)t is the unpruned second-order approximation to the state variables.7 Here, Hxx is
an nx ×n2

x matrix with the derivatives of h(xt,σ ) with respect to (xt,xt) and hσσ is an nx ×1

matrix containing derivatives taken with respect to (σ,σ ).8 Substituting x(2)t with xf
t +xs

t into the
right-hand side of (3) gives

hx

(
xf

t +xs
t

)
+ 1

2
Hxx

((
xf

t +xs
t

)
⊗
(

xf
t +xs

t

))
+ 1

2
hσσ σ 2 +σηεt+1. (4)

A law of motion for xf
t+1 is derived by preserving only first-order effects in (4). We keep the

first-order effects from the previous period hxxf
t and σηεt+1 to obtain

xf
t+1 =hxxf

t +σηεt+1. (5)

This expression for xf
t+1 is the standard first-order approximation to the state equation. Note that

xf
t+1 is a polynomial in {εs}t+1

s=1 that only includes first-order terms. The first-order approximation
to the observation equation is

yf
t =gxxf

t . (6)

Accordingly, the pruned state-space system for the first-order approximation is given by (5) and
(6), meaning that the pruned and unpruned state-space systems are identical in this case.

A law of motion for xs
t+1 is derived by preserving only second-order effects in (4). Here, we

include the second-order effects from the previous period hxxs
t , the squared first-order effects in

the previous period 1
2 Hxx

(
xf

t ⊗xf
t

)
, and the correction 1

2 hσσ σ 2. Hence,

xs
t+1 =hxxs

t +
1

2
Hxx

(
xf

t ⊗xf
t

)
+ 1

2
hσσ σ 2. (7)

We exclude terms with xf
t ⊗xs

t and xs
t ⊗xs

t because they reflect third- and fourth-order effects,
respectively. Note that xs

t+1 is a polynomial in {εs}t
s=1 that only includes second-order terms.

The final step in setting up the pruned state-space system is to derive the expression for the
observation equation. Using the same approach as above, we start from the second-order Taylor
series expansion of the observation equation

y(2)t =gxx(2)t + 1

2
Gxx

(
x(2)t ⊗x(2)t

)
+ 1

2
gσσ σ 2, (8)

where y(2)t denotes the unpruned second-order approximation to the control variables. Here, Gxx
is an ny ×n2

x matrix with the corresponding derivatives of g(xt,σ )with respect to (xt,xt) and gσσ

7. We adopt the standard assumption that the model has a unique stable first-order approximation, which implies
that all higher-order terms are also unique (Judd and Guu, 1997; Lan and Meyer-Gohde, 2014).

8. The derivatives of g(xt ,σ ) and h(xt ,σ ) with respect to (xt ,σ ) are zero.
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is an ny ×1 matrix containing derivatives with respect to (σ,σ ). We only want to preserve effects
up to second order, meaning that the pruned approximation to the control variables is given by

ys
t =gx

(
xf

t +xs
t

)
+ 1

2
Gxx

(
xf

t ⊗xf
t

)
+ 1

2
gσσ σ 2. (9)

Here, we leave out terms with xf
t ⊗xs

t and xs
t ⊗xs

t because they reflect third- and fourth-order
effects, respectively. To simplify notation, we treat ys

t as the sum of the first- and second-order
effects, while xs

t only contains the second-order effects. Hence, ys
t is a polynomial in {εs}t

s=1 that
includes all first- and second-order terms.9

Accordingly, the pruned state-space system for the second-order approximation is given by (5),

(7), and (9). The state vector in this system is thus extended to
[(

xf
t

)′ (
xs

t

)′ ]′
as we separately

track first- and second-order effects. For completeness, the unpruned state-space system for the
second-order approximation is given by (3) and (8).

3.2. Third-order approximation

We now construct the pruned state-space system for the third-order approximation. Following

the steps outlined above, we start by decomposing the state variables into first-order effects xf
t ,

second-order effects xs
t , and third-order effects xrd

t . The laws of motion for xf
t and xs

t are the same
as in the previous section, and only the recursion for xrd

t remains to be derived. The third-order
Taylor series expansion to the state equation is (Ruge-Murcia, 2012)

x(3)t+1 = hxx(3)t + 1

2
Hxx

(
x(3)t ⊗x(3)t

)
+ 1

6
Hxxx

(
x(3)t ⊗x(3)t ⊗x(3)t

)
+1

2
hσσ σ 2 + 3

6
hσσxσ

2x(3)t + 1

6
hσσσ σ 3 +σηεt+1, (10)

where x(3)t represents the unpruned third-order approximation to the state variables. Here, Hxxx
denotes an nx ×n3

x matrix containing derivatives of h(xt,σ ) with respect to (xt,xt,xt), hσσx is
an nx ×nx matrix including derivatives with respect to (σ,σ,xt), and hσσσ is an nx ×1 matrix
containing derivatives related to (σ,σ,σ ).10 We adopt the same procedure as before and substitute

xf
t +xs

t +xrd
t into the right-hand side of (10) to obtain

hx

(
xf

t +xs
t +xrd

t

)
+ 1

2
Hxx

((
xf

t +xs
t +xrd

t

)
⊗
(

xf
t +xs

t +xrd
t

))
+1

6
Hxxx

((
xf

t +xs
t +xrd

t

)
⊗
(

xf
t +xs

t +xrd
t

)
⊗
(

xf
t +xs

t +xrd
t

))
+1

2
hσσ σ 2 + 3

6
hσσxσ

2
(

xf
t +xs

t +xrd
t

)
+ 1

6
hσσσ σ 3 +σηεt+1. (11)

A law of motion for the third-order effects is derived by preserving only third-order terms in (11)

xrd
t+1 =hxxrd

t +Hxx

(
xf

t ⊗xs
t

)
+ 1

6
Hxxx

(
xf

t ⊗xf
t ⊗xf

)
+ 3

6
hσσxσ

2xf
t + 1

6
hσσσ σ 3. (12)

9. Lan and Meyer-Gohde (2013b) derive a stable non-linear approximation of g(xt ,σ ) and h(xt ,σ ) in terms of
{εs}t

s=1. By using (5), (7), and (9), we can also express ys
t as an infinite moving average in terms of {εs}t

s=1.
10. The derivatives of g(xt ,σ ) and h(xt ,σ ) with respect to (xt ,xt ,σ ) are zero.
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As in the derivation of the law of motion for xs
t in (7), σ is interpreted as a variable when

constructing (12). This means that 3
6 hσσxσ

2xs
t and 3

6 hσσxσ
2xrd

t represent fourth- and fifth-order
effects, respectively, and are therefore omitted. Note that xrd

t+1 is a polynomial in {εs}t
s=1 that

only includes third-order terms.
The final step is to set up the expression for the observation equation. Using results in

Ruge-Murcia (2012), the third-order Taylor series expansion is given by

y(3)t = gxx(3)t + 1

2
Gxx

(
x(3)t ⊗x(3)t

)
+ 1

6
Gxxx

(
x(3)t ⊗x(3)t ⊗x(3)t

)
+1

2
gσσ σ 2 + 3

6
gσσxσ

2x(3)t + 1

6
gσσσ σ 3, (13)

where y(3)t represents the unpruned third-order approximation to the control variables. In (13),
Gxxx denotes an ny ×n3

x matrix containing derivatives of g(xt,σ )with respect to (xt,xt,xt), gσσx
is an ny ×nx matrix including derivatives with respect to (σ,σ,xt), and gσσσ is an ny ×1 matrix
containing derivatives related to (σ,σ,σ ). To simplify notation, we treat yrd

t as the sum of the
first-, second-, and third-order effects, while xrd

t is only the third-order effect. Hence, preserving
effects up to third-order gives

yrd
t = gx

(
xf

t +xs
t +xrd

t

)
+ 1

2
Gxx

((
xf

t ⊗xf
t

)
+2
(

xf
t ⊗xs

t

))
+1

6
Gxxx

(
xf

t ⊗xf
t ⊗xf

t

)
+ 1

2
gσσ σ 2 + 3

6
gσσxσ

2xf
t + 1

6
gσσσ σ 3, (14)

which is a polynomial in {εs}t
s=1 that include all first-, second-, and third-order terms.

The pruned state-space system for the third-order approximation is given by (5), (7), (12),

and (14). The state vector in this system is further extended to
[(

xf
t

)′ (
xs

t
)′ (xrd

t

)′ ]′
, as we

need to separately track first-, second-, and third-order effects. For completeness, the unpruned
state-space system for the third-order approximation is given by (10) and (13).

3.3. Related literature

Lombardo and Sutherland (2007) pioneered the idea of separately keeping track of first- and
second-order effects to solve for the second-order perturbation approximation of a DSGE model.
Since the first circulation of our paper, Lombardo and Uhlig (2014) have presented an alternative
derivation of our pruned state-space system, but only for models without interaction between
the shocks and the state variables. We find, nevertheless, that our approach allows us to easily
derive many results and that the lack of interaction between the shocks and the state variables in
Lombardo and Uhlig (2014) is too restrictive in many models of interest.

Our pruning approach is analysed in Haan and Wind (2012), who highlight two potential
disadvantages of the method. First, pruning induces a larger vector of states than the unpruned
approximation. Second, the pruned state-space system for the kth-order approximation cannot fit
the exact solution if it happens to be a kth-order polynomial. We do not consider the large state
vector to be a problem because it is informative to assess how important each of the second- and
third-order effects is relative to the first-order effects. In addition, current computing power makes
memory considerations less of a constraint. For instance, Section 6 shows that the pruned state-
space system for a third-order approximation to a medium-size DSGE model is easily obtained
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and stored. We also view the second disadvantage as minor because an exact fit can be obtained
by raising the approximation beyond order k, as acknowledged by Haan and Wind (2012).

Our pruning scheme differs from the alternative presented in Haan and Wind (2012) along
two dimensions. First, for approximations beyond second order, these authors include terms with
higher-order effects than the approximation order. Second, their pruning scheme is expressed
around what they refer to as the stochastic steady state, while our pruning scheme is expressed
around the steady state.An advantage of our choices (i.e. omitting all higher-order effects than the
approximation order and approximating around the steady state) is that they allow the derivation
of unconditional moments in closed form. Furthermore, approximating around the steady state is
consistent with our treatment of σ as a variable.11

We conclude by stressing that, if a non-linear perturbation approximation does not preserve
monotonicity and convexity of the exact policy function — as seen for extreme calibrations
of DSGE models — then pruning will not restore these properties. For small DSGE models,
Haan and Wind (2012) propose the perturbation-plus approximation and show that it may restore
these properties of the policy function. However, the perturbation-plus algorithm is numerically
demanding, even for small models, and does not allow the unconditional moments to be obtained
in closed form.

4. STATISTICAL PROPERTIES OF THE PRUNED SYSTEM

This section shows that the pruned state-space system has well-defined statistical properties and
presents our closed-form expressions for first and second unconditional moments.12 We proceed
as follows. Section 4.1 extends the analysis in Kim et al. (2008) for a second-order approximation,
and Section 4.2 conducts a similar analysis for a third-order approximation. Applying the steps
below to higher-order approximations is conceptually transparent.

4.1. Second-order approximation

In this section, it is convenient to consider a more compact representation of the pruned state-space
system than the one in Section 3.1. Therefore, we introduce the vector

z(2)t ≡
[(

xf
t

)′ (
xs

t
)′ (xf

t ⊗xf
t

)′ ]′
,

where the superscript for zt denotes the approximation order. The first nx elements in z(2)t are

the first-order effects, while the remaining part of z(2)t contains second-order effects. The laws

of motion for xf
t and xs

t are stated above and the evolution for xf
t ⊗xf

t is easily derived from (5).
This allows us to write the laws of motion for the first- and second-order effects in (5) and (7) by
the linear law of motion in z(2)t

z(2)t+1 =A(2)z(2)t +B(2)ξ (2)t+1 +c(2), (15)

11. After we circulated the first version of our paper, Francisco Ruge-Murcia directed our attention to his unpublished
work on pruning at third order (Kim and Ruge-Murcia, 2009; Ruge-Murcia, 2012). His approach is similar to the one in
Haan and Wind (2012), but with additional approximations imposed to compute unconditional moments.

12. Although not explicitly considered in this paper, it is straightforward to compute conditional moments for the
state and control variables based on the expressions provided below.
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where
ξ
(2)
t+1 ≡

[
(εt+1)′ (εt+1 ⊗εt+1 −vec

(
Ine

)
)′ (εt+1 ⊗xf

t )′ (xf
t ⊗εt+1)′

]′
, (16)

and the law of motion in (9) as
ys

t =C(2)z(2)t +d(2). (17)

The expressions for A(2), B(2), c(2), C(2), and d(2) are provided in Appendix A.2.
Appendix A.3 shows that the system in (15) is stable if and only if all the eigenvalues of hx

have modulus less than one. This result might also be directly inferred from (5) and (7) because

xf
t is stable by assumption, xs

t is constructed from a stable process, and the autoregressive part
of xs

t is stable. The stability of (15) implies that the system has finite unconditional second

moments if and only if ξ (2)t+1 has finite unconditional second moments, which is equivalent to
εt+1 having finite unconditional fourth moments; see Appendix A.4. Hence, explosive sample
paths do not appear in the pruned state-space system (almost surely). These results also hold
for models with deterministic and stochastic trends provided trending variables are appropriately
scaled (King and Rebelo (1999)).

The next step is to find the expressions for the first and second unconditional moments. We

have from equation (16) that E

[
ξ
(2)
t+1

]
=0. Thus, E

[
z(2)t

]
=
(

I2nx+n2
x
−A(2)

)−1
c(2). To obtain

some intuition for the determinants of the mean in the pruned state-space system, we explicitly

compute some of the elements in E

[
z(2)t

]
. The mean of xf

t is easily seen to be zero from (5).

Equation (7) implies that

E
[
xs

t
]=(I−hx)

−1
(

1

2
HxxE

[
xf

t ⊗xf
t

]
+ 1

2
hσσ σ 2

)
.

Adding the mean for the first- and second-order effects, we obtain the mean of the state

variables in the pruned second-order approximation E

[
xf

t +xs
t

]
=E

[
xf

t

]
+E

[
xs

t
]
. These last

two equations show that the second-order effects correct the mean of the first-order effects to
adjust for uncertainty in the model. The adjustment comes from the second derivative of the

perturbation parameter hσσ and E

[
xf

t ⊗xf
t

]
. The latter can be computed from (5) and is given

by E

[
xf

t ⊗xf
t

]
=(I−hx ⊗hx)

−1(ση⊗ση)vec
(
Ine

)
.

Since E

[
xf

t

]
=0 and E

[
xs

t
] �=0, the mean value of the states in a first-order approximation is

their steady state, while the mean of the pruned second-order approximation is corrected by the
second moment of εt+1. In other words, the mean of xt implied by the pruned state-space system
will, in most cases, differ from the steady state. This result is crucial because it shows that we
cannot, in general, ignore the term E

[
xs

t
]

and simply use the steady state of the model to calibrate
or estimate model parameters.

Let us now consider the unconditional second moments. Standard properties of a VAR(1)
system imply that the variance–covariance matrix for z(2)t is

V

(
z(2)t

)
=A(2)V

(
z(2)t

)(
A(2)

)′+B(2)V
(
ξ
(2)
t

)(
B(2)

)′
,

because z(2)t and ξ (2)t+1 are uncorrelated as εt+1 is independent across time. Appendix A.4 explains

how to calculate V

(
ξ
(2)
t

)
. Once V

(
ξ
(2)
t

)
is known, we solve for V

(
z(2)t

)
by standard methods

for discrete Lyapunov equations.
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Our procedure for computing V

(
z(2)t

)
differs slightly from the one in Kim et al. (2008). They

suggest using a second-order approximation to V

(
ξ
(2)
t

)
by letting the last n2

x elements in ξ (2)t be

zero. This eliminates all third- and fourth-order terms related to εt+1 and seems inconsistent with

the fact that A(2)⊗A(2) in vec
(

A(2)V
(

z(2)t

)(
A(2)

)′)=(A(2)⊗A(2)
)
vec
(
V

(
z(2)t

))
contains

third- and fourth-order terms. We prefer to compute V

(
ξ
(2)
t

)
without further approximations,

implying that V

(
z(2)t

)
corresponds to the sample moment in a long simulation of the pruned

state-space system.
The variance of the combined first- and second-order effects for the state variables is obtained

by taking the variance of xs
t +xf

t , that is

V

(
xs

t +xf
t

)
=V

(
xf

t

)
+V

(
xs

t
)+Cov

(
xf

t ,x
s
t

)
+Cov

(
xs

t ,x
f
t

)
.

The auto-covariances for z(2)t are Cov
(

z(2)t+l,z
(2)
t

)
=(A(2))l V(z(2)t

)
for l =1,2,3,... because

z(2)t and ξ (2)t+l are uncorrelated for l =1,2,3,..., given that εt+1 is independent across time.
The closed-form expressions for all corresponding unconditional moments related to ys

t follow

directly from the linear relationship between ys
t and z(2)t in (17). That is,

E
[
ys

t
]=C(2)E

[
z(2)t

]
+d(2), V

[
ys

t
]=C(2)V[zt]

(
C(2)

)′
, and

Cov
(
ys

t+l,y
s
t
)=C(2)Cov

(
z(2)t+l,z

(2)
t

)(
C(2)

)′
for l =1,2,3,...

The representation in (15) and (17) allows the derivation of additional statistical properties for
the pruned state-space system. If the system is stable, the system has finite unconditional third and
fourth moments if and only if ξ (2)t+1 has finite unconditional third and fourth moments, which is
the case if and only if εt+1 has finite unconditional sixth and eighth moments; see Appendix A.5.

4.2. Third-order approximation

As we did for the second-order approximation, we start by deriving a more compact representation
for the pruned state-space system than the one in Section 3.2. We define

z(3)t ≡
[(

xf
t

)′ (
xs

t
)′ (xf

t ⊗xf
t

)′ (
xrd

t

)′ (
xf

t ⊗xs
t

)′ (
xf

t ⊗xf
t ⊗xf

t

)′ ]′
,

where the first part reproduces z(2)t and the last three components denote third-order effects. The

law of motion for xrd
t was derived in Section 3.2, and recursions for xf

t ⊗xs
t and xf

t ⊗xf
t ⊗xf

t

follow from (5) and (7). Hence, the law of motion for xf
t , xs

t , and xrd
t in (5), (7), and (12),

respectively, can be represented by the linear law of motion in z(3)t

z(3)t+1 =A(3)z(3)t +B(3)ξ (3)t+1 +c(3). (18)

We also have that the control variables are linear in z(3)t as

yrd
t =C(3)z(3)t +d(3). (19)

The expressions for A(3), B(3), ξ (3)t+1, c(3), C(3), and d(3) are provided in Appendix A.6.
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Appendix A.7 shows that the system in (18) is stable if and only if all the eigenvalues of
A(3) have modulus less than one. This follows from the fact that the new component of the state
vector xrd

t is constructed from stable processes and its autoregressive component is also stable.
The stability of xrd

t relies on σ being treated as a variable in the pruned state-space system.
If, instead, we had interpreted σ as a constant and included the term 3

6 hσσxσ
2xrd

t in the law

of motion for xrd
t+1, then xrd

t+1 would have the autoregressive matrix hx + 3
6 hσσxσ

2, which may
imply eigenvalues with modulus greater than one even when hx is stable. The stability of (18)
implies that the system has finite unconditional second moments, which is equivalent to εt+1
having finite unconditional sixth moments; see Appendix A.8.

The next step is to compute the first and second unconditional moments. The ξ (3)t+1 in (18) is

a function of xf
t , xs

t , εt+1, εt+1 ⊗εt+1, and εt+1 ⊗εt+1 ⊗εt+1. Thus, E

[
ξ
(3)
t+1

]
=0 and E

[
z(3)t

]
=(

I3nx+2n2
x+n3

x
−A(3)

)−1
c(3). It is interesting to explore the value of E

[
xrd

t

]
as it may change the

mean of the state variables. From (12), we have

E

[
xrd

t

]
=(Inx −hx

)−1
(

HxxE

[
xf

t ⊗xs
t

]
+ 1

6
HxxxE

[
xf

t ⊗xf
t ⊗xf

t

]
+ 1

6
hσσσ σ 3

)
,

and simple algebra gives E

[
xf

t ⊗xs
t

]
=
(

In2
x
−(hx ⊗hx)

)−1(
hx ⊗ 1

2 Hxx

)
E

[
xf

t ⊗xf
t ⊗xf

t

]
and

E

[
xf

t ⊗xf
t ⊗xf

t

]
=
(

In3
x
−(hx ⊗hx ⊗hx)

)−1
(ση⊗ση⊗ση)E[εt+1 ⊗εt+1 ⊗εt+1

]
. Adding the

mean for the first-, second- and third-order effects, we obtain E

[
xf

t

]
+E

[
xs

t
]+E

[
xrd

t

]
.

If we next consider the case where εt+1 has symmetric probability distributions, then

E
[
εt+1 ⊗εt+1 ⊗εt+1

]=0, which in turn implies E

[
xf

t ⊗xf
t ⊗xf

t

]
=0 and E

[
xf

t ⊗xs
t

]
=0.

Furthermore, based on the results in Andreasen (2012), hσσσ and gσσσ are also zero when εt+1

has a symmetric probability distribution. Thus, E

[
xrd

t

]
=0 and the unconditional mean of the

state vector is not further corrected by the third-order effects when εt+1 has zero third moments.
A similar property holds for the control variables because they are a linear function of xrd

t ,

xf
t ⊗xs

t , and xf
t ⊗xf

t ⊗xf
t . This result is useful when calibrating or estimating DSGE models with

symmetric probability distributions. On the other hand, if one or several components of εt+1 have

non-symmetric probability distributions, then hσσσ and gσσσ may be non-zero and E

[
xrd

t

]
�=0,

implying that the unconditional mean has an additional uncertainty correction compared to a
second-order approximation.

Let us now consider the unconditional second moments. The expression for the variance–
covariance matrix of z(3)t is slightly more complicated than the one for z(2)t because z(3)t is

correlated with ξ (3)t+1. This correlation arises from terms of the form xf
t ⊗εt+1 ⊗εt+1 in ξ (3)t+1 that

are correlated with elements in z(3)t . Hence,

V

(
z(3)t

)
= A(3)V

(
z(3)t

)(
A(3)

)′+B(3)V
(
ξ
(3)
t

)(
B(3)

)′

+A(3)Cov
(

z(3)t ,ξ
(3)
t+1

)(
B(3)

)′+B(3)Cov
(
ξ
(3)
t+1,z

(3)
t

)(
A(3)

)′
.
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The expressions for V

(
ξ
(3)
t

)
and Cov

(
ξ
(3)
t+1,z

(3)
t

)
are provided in Appendix A.8. The variance

of the combined first-, second- and third-order effects for the state variables is given by

V

(
xs

t +xf
t +xrd

t

)
= V

(
xf

t

)
+V

(
xs

t
)+V

(
xrd

t

)
+Cov

(
xf

t ,x
s
t

)
+Cov

(
xf

t ,x
rd
t

)
+Cov

(
xs

t ,x
f
t

)
+Cov

(
xs

t ,x
rd
t

)
+Cov

(
xrd

t ,x
f
t

)
+Cov

(
xrd

t ,x
s
t

)
.

The auto-covariances for z(3)t are

Cov
(

z(3)t+s,z
(3)
t

)
=
(

A(3)
)s

V

[
z(3)t

]
+
∑s−1

j=0

(
A(3)

)s−1−j
B(3)Cov

(
ξ
(3)
t+1+j,z

(3)
t

)
for s=1,2,3,...

The closed-form expressions for all corresponding unconditional moments related to yrd
t

follow from the linear relationship between yrd
t and z(3)t in (19) and are given by E

[
yrd

t

]
=

C(3)E
[
z(3)t

]
+d(3), V

[
yrd

t

]
=C(3)V

[
z(3)t

](
C(3)

)′
, and

Cov
(

yrd
t+l,y

rd
t

)
=C(3)Cov

(
z(3)t+l,z

(3)
t

)(
C(3)

)′
for l =1,2,3,..

Finally, the representation in (18) and (19) of the pruned state-space system allow us to
derive additional properties for the pruned state-space system. For instance, if the system is
stable, the system has finite unconditional third and fourth moments if and only if ξ (3)t+1 has finite

unconditional third and fourth moments. For a stable system, ξ (3)t+1 has finite unconditional third
and fourth moments if and only if εt+1 has finite unconditional ninth and twelfth moments; see
Appendix A.9.

5. GENERALIZED IMPULSE RESPONSE FUNCTIONS

Another fruitful way to study the properties of DSGE models is to look at their IRFs. For
the first-order approximation, these functions have simple expressions where the effects of
shocks are scalable, symmetric, and independent of the state of the economy. For higher-order
approximations, no closed-form expressions currently exist for these functions and simulation
is, therefore, required. This section shows that the pruned state-space system allows us to derive
closed-form solutions for these functions and avoid the use of simulation.

We consider the generalized impulse response function (GIRF) proposed by Koop et al.
(1996). The GIRF for any variable in the model var (either a state or control variable) in period
t+l following a disturbance to the ith shock of size νi in period t+1 is defined as

GIRFvar (l,νi,wt)=E
[
vart+l |wt,εi,t+1 =νi

]−E
[
vart+l |wt

]
,

where wt denotes the required state variables in period t. As we will see below, the content of wt
depends on the approximation order.13 Using this definition, the GIRFs for the first-order effects

13. The expressions we derive below for the GIRFs may also be used for studying the joint effects of more than
one disturbance to the economy. Further details are provided in the Online Appendix.



[15:40 4/8/2017 rdx037.tex] RESTUD: The Review of Economic Studies Page: 13 1–49

ANDREASEN ET AL. PRUNED STATE-SPACE SYSTEM 13

have the well-known expressions

GIRFxf (l,νi)=E

[
xf

t+l |xf
t ,εi,t+1 =νi

]
−E

[
xf

t+l |xf
t

]
=hl−1

x σην (20)

and GIRFyf (l,νi)=gxGIRFxf (l,νi), where ν has dimension nε×1, ν(i,1)=νi, and ν(k,1)=0
for k �= i. Here, GIRFxf and GIRFyf are scalable, symmetric, and independent of the state of the

economy because the state vector xf
t enters symmetrically in the two conditional expectations

for computing each of these GIRFs. Momentarily, we will see how the GIRFs for second- and
third-order effects will not be scalable, symmetric, and independent of the state of the economy.

5.1. Second-order approximation

For the second-order effects xs
t , we have from (7) that

xs
t+l =hl

xxs
t +

l−1∑
j=1

hl−1−j
x

1

2
Hxx

(
xf

t+j ⊗xf
t+j

)
+ 1

2
hσσ σ 2

l−1∑
j=0

hl−1−j
x . (21)

The GIRF for xf
t ⊗xf

t is derived in Appendix A.10, showing that

GIRFxf ⊗xf

(
l,νi,x

f
t

)
= hl

xxf
t ⊗hl−1

x σην+hl−1
x σην⊗hl

xxf
t

+
(

hl−1
x ⊗hl−1

x

)
(σην⊗σην+�), (22)

where
�≡((ση(I−S)⊗ση(I−S))−(ση⊗ση))vec(I). (23)

Here, S is an nε×nε diagonal matrix with S(i,i)=1 and S(k,k)=0 for k �= i. Using this expression
and (21), we get the GIRF for the second-order effects

GIRFxs

(
l,νi,x

f
t

)
=

l−1∑
j=1

hl−1−j
x

1

2
HxxGIRFxf ⊗xf

(
j,νi,x

f
t

)
. (24)

The expressions in (22) to (24) reveal three implications about the GIRF for the second-order

effects. First, it is not scalable as GIRFxf ⊗xf

(
l,τ×νi,x

f
t

)
�= τ×GIRFxf ⊗xf

(
l,νi,x

f
t

)
for τ ∈R.

Second, the term (σην⊗σην) means that the GIRF is not symmetric in positive and negative
shocks. Third, it depends on the first-order effects of the state variables. Adding the GIRFs for the
first- and second-order effects in (20) and (24), we obtain the pruned GIRF for the state variables
in a second-order approximation.

Finally, the pruned GIRF for the control variables is easily derived from (9) and previous
results

GIRFys

(
l,νi,x

f
t

)
= gx

(
GIRFxf

(
l,νi,x

f
t

)
+GIRFxs

(
l,νi,x

f
t

))
+1

2
GxxGIRFxf ⊗xf

(
l,νi,x

f
t

)
.

Another interesting result from our analytical expressions relates to the IRFs in a linearised
solution for a positive or negative one-standard-deviation shock computed at the steady state.
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As shown in Appendix A.11, these IRFs coincide with the GIRFs in a pruned second-order

approximation because GIRFxf ⊗xf

(
j,νi,x

f
t

)
=0, implying that these IRFs in a linearised solution

are actually second-order accurate.

5.2. Third-order approximation

Using (12), we first note that for the third-order effects xrd
t

xrd
t+l = hl

xxrd
t +

l−1∑
j=0

hl−1−j
x

[
Hxx

(
xf

t+j ⊗xs
t+j

)
+ 1

6
Hxxx

(
xf

t+j ⊗xf
t+j ⊗xf

t+j

)]

+
l−1∑
j=0

hl−1−j
x

[
3

6
hσσxσ

2xf
t+j +

1

6
hσσσ σ 3

]
.

Simple algebra implies

GIRFxrd

(
l,νi,

(
xf

t ,x
s
t

))
=

l−1∑
j=1

hl−1−j
x HxxGIRFxf ⊗xs

(
j,νi,

(
xf

t ,x
s
t

))

+
l−1∑
j=1

hl−1−j
x

1

6
HxxxGIRFxf ⊗xf ⊗xf

(
j,νi,x

f
t

)

+
l−1∑
j=1

hl−1−j
x

3

6
hσσxσ

2GIRFxf (j,νi).

All terms are known except for GIRFxf ⊗xs

(
j,νi,

(
xf

t ,x
s
t

))
and GIRFxf ⊗xf ⊗xf

(
j,νi,x

f
t

)
, which

are derived in Appendix A.12. As was the case for the second-order effect, the GIRF for the
third-order effect is not scalable, not symmetric, and depends on the first-order effects of the

state variables xf
t . In addition, the GIRF for the third-order effects also depends on xs

t . Adding
the GIRF for the first-, second-, and third-order effects, we obtain the pruned GIRF for the state
variables in a third-order approximation.

The pruned GIRF for the control variables in a third-order approximation is

GIRFyrd

(
l,νi,

(
xf

t ,x
s
t

))
= gx

(
GIRFxf (l,νi)+GIRFxs

(
l,νi,x

f
t

))
+gxGIRFxrd

(
l,νi,

(
xf

t ,x
s
t

))
+1

2
Gxx

(
GIRFxf ⊗xf

(
l,νi,x

f
t

)
+2GIRFxf ⊗xs

(
l,νi,

(
xf

t ,x
s
t

)))
+1

6
GxxxGIRFxf ⊗xf ⊗xf

(
l,νi,x

f
t

)
+ 3

6
gσσxσ

2GIRFxf (l,νi), (25)

where all terms are known.
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5.3. Conditional impulse response functions

Given that the expressions for the GIRFs in Sections 5.1 and 5.2 depend on the values of the
state variables, we can use them to analyse how the responses to shocks depend on the business
cycle. For example, in a simple stochastic neoclassical growth model, the economy may respond
differently to a positive technological shock when capital is high than when it is low. The challenge
is that in most DSGE models, the values of the state variables are often hard to interpret and
hence it is difficult to assign them relevant values, except for the obvious benchmark given by
the unconditional mean. To address this challenge, we suggest conditioning the GIRFs on the set
A with a clear economic interpretation, such as the economy being in a recession (i.e. negative
output growth). More concretely, consider a conditional GIRF of the form

GIRFvar (l,νi,A)=
∫

1A(wt)f (wt)GIRFvar (l,νi,wt)dwt, (26)

where 1A(wt) is an indicator function and f (wt) is the unconditional density of wt . Note that wt

in (26) may contain
(

xf
t ,x

s
t

)
and sufficient lags as required for evaluating 1A(wt). The integral

in (26) can be evaluated by Monte Carlo integration, where draws of the states are obtained from
a long simulated sample path of the pruned state-space system. The advantage of a conditional
GIRF is that it is defined on the set A with a clear economic interpretation, in contrast to the
GIRFs provided in Sections 5.1 and 5.2.

An example illustrates the procedure. Imagine we are working with the stochastic neoclassical
growth model and we want to calculate the GIRF of yrd

t conditional on output growth being above

a given threshold, say, 2% annualized. Then A is the set of
(

xf
t ,x

s
t ,x

f
t−1,x

s
t−1

)
, which implies

that annualized output growth in period t is above 2%.

6. AN APPLICATION

We now present an application that illustrates some of the tools that our article makes available.
We postulate a New Keynesian model with two novel features. First, we introduce a financial
intermediary that trades short- and long-term government bonds. The intermediary generates
a wedge between the policy rate chosen by the monetary authority and the interest rate faced
by households. This wedge depends on the time-variation in the conditional second moments
of the stochastic discount factor. A similar premium appears in models with a banking sector
due to steady-state frictions (Bernanke et al., 1999; Gertler and Karadi, 2011). Thus, our model
combines the macro-finance literature focusing on stochastic discount factors with the recent
work on financial intermediation in DSGE models. Our second innovation is to consider a central
bank that sets the policy rate based not only on the inflation and output gaps, but also on a measure
of term premia. This extension is motivated by the recent efforts of central banks to lower term
premia through large asset purchases (Gagnon et al., 2011). In summary, our model displays two
feedback effects from long-term bonds to the real economy: (1) a wedge between the policy rate
and the interest rate faced by households and (2) a policy rate that depends on a measure of
term premia. Each of these feedback effects helps our model to overcome the counterintuitive
result of Tallarini (2000) that real allocations are essentially unaffected by the amount of risk in
the economy. We also note that these features create a richer environment for monetary policy
than the standard New Keynesian model and make our application of relevance on its own. We
proceed by outlining the model in Sections 6.1–6.5 and describing our solution and estimation
method in Sections 6.6 and 6.7, respectively.
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6.1. Households

We consider a representative household with recursive preferences as in Epstein and Zin (1989).
Following Rudebusch and Swanson (2012), we write the value function Vt of the household as

Vt ≡

⎧⎪⎨⎪⎩ ut +β
(
Et

[
V 1−φ3

t+1

]) 1
1−φ3 if ut>0 for all t

ut −β
(
Et

[(−Vt+1
)1−φ3

]) 1
1−φ3 if ut<0 for all t

, (27)

where Et is the conditional expectation given information in period t and β∈(0,1) is the discount
factor. For higher values of φ3 ∈R\{1}, these preferences imply higher levels of risk aversion
if the utility kernel ut is always positive, and vice versa for ut<0.14 When φ3 �=0, Epstein–
Zin preferences disentangle risk aversion from the intertemporal elasticity of substitution (IES);
otherwise, (27) simplifies to standard expected utility.

The utility kernel displays separability between consumption ct and hours worked ht

ut ≡dt

[
1

1−φ2

((
ct −bct−1

z∗
t

)1−φ2

−1

)
+φ0

(1−ht)
1−φ1

1−φ1

]
, (28)

where b controls the degree of internal habit formation.15 The variable dt ≡exp
{
σd εd ,t

}
with

εd ,t ∼NID(0,1) is a preference shock. The AR(1) term in dt is omitted to ensure that variations
in long-term yields and term premia are primarily explained in our model by consumption and
inflation dynamics and not by persistent preference shocks. We simultaneously include habit
formation and Epstein–Zin preferences because the New Keynesian model needs both to jointly
match macro and financial moments (see Hordahl et al., 2008; Binsbergen et al., 2012).

The budget constraint at time t reads

ct + it
ϒt

+bt +Tt =wtht +rk
t kt +

bt−1exp
{

rb
t−1

}
πt

+divh
t . (29)

Resources are spent on consumption, investment it, a one-period deposit bt in the financial
intermediary at the net nominal risk-free deposit rate rb

t , and a lump-sum tax Tt . The variable ϒt
denotes a deterministic trend in the real relative price of investment: logϒt+1 = logϒt +logμϒ,ss.
Letting wt be the real wage and rk

t the real price of capital kt , resources consist of labour income
wtht , income from capital services sold to firms rk

t kt , real returns from deposits in the previous
period (where πt ≡Pt/Pt−1 is gross inflation), and dividends to households divh

t . These dividends
come from the profits of the monopolistic competitors and the profits of the financial intermediator.
Since firms and the financial operator could operate at a loss, these dividends may be negative.

The law of motion for kt is

kt+1 =(1−δ)kt +it − κ

2

(
ii
kt

−ψ
)2

kt, (30)

where κ≥0 introduces capital adjustment costs as in Jermann (1998). The constant ψ ensures
that these adjustment costs are zero along the balanced growth path of the economy.

14. As shown in Table 1, for all estimated models, the steady-state value of ut , uss, is substantially below zero.
15. The constant −1/(1−φ2) guarantees a stable level of ut and Vt in the steady state when φ2 is close to one.

Utility from habit-adjusted consumption is expressed relative to the deterministic trend in the economy z∗
t (to be defined

later) to guarantee the existence of a balanced growth path.



[15:40 4/8/2017 rdx037.tex] RESTUD: The Review of Economic Studies Page: 17 1–49

ANDREASEN ET AL. PRUNED STATE-SPACE SYSTEM 17

TABLE 1
Estimation results

No feedback With feedback

M0 MFB MRRA
FB MFB,Taylor MRRA

FB,Taylor

β 0.9995
(0.0001)

0.9972
(0.0006)

0.9970
(0.0006)

0.9974
(0.0007)

0.9969
(0.0004)

b 0.6720
(0.0526)

0.6973
(0.0363)

0.7054
(0.0413)

0.7094
(0.0373)

0.7152
(0.0257)

hss 0.3427
(0.0011)

0.3395
(0.0008)

0.3392
(0.0006)

0.3396
(0.0008)

0.3373
(0.0013)

φ2 0.9757
(0.2668)

0.7082
(0.1307)

0.7387
(0.1824)

0.6097
(0.1707)

0.4753
(0.0906)

RRA 615.7
(26.96)

28.78
(24.10)

5 29.323
(27.8351)

5

κ 5.3986
(0.8263)

10.129
(1.1215)

11.828
(1.3219)

9.5938
(1.3390)

10.714
(1.4113)

α 0.8101
(0.0066)

0.7951
(0.0093)

0.8349
(0.0081)

0.7923
(0.0093)

0.7692
(0.0121)

ρr 0.6491
(0.0288)

0.8585
(0.0219)

0.7944
(0.0411)

0.8642
(0.0240)

0.8780
(0.0296)

βπ 1.2668
(0.1512)

2.0891
(0.1674)

3.0414
(0.2290)

2.0778
(0.1683)

3.1426
(0.4243)

βy 0.0315
(0.0257)

0.2246
(0.0467)

0.2786
(0.0337)

0.2034
(0.0504)

0.2899
(0.0543)

μϒ,ss 1.0012
(0.0011)

1.0012
(0.0013)

1.0010
(0.0013)

1.0012
(0.0013)

1.0007
(0.0010)

μz,ss 1.0052
(0.0005)

1.0053
(0.0006)

1.0054
(0.0005)

1.0054
(0.0006)

1.0053
(0.0005)

ρa 0.7450
(0.0557)

0.7918
(0.0216)

0.7622
(0.0241)

0.7855
(0.0226)

0.6691
(0.0365)

ρG 0.8033
(0.0950)

0.8122
(0.0497)

0.8545
(0.0535)

0.8325
(0.0505)

0.8281
(0.0401)

gss/yss 0.2062
(0.0029)

0.2071
(0.0029)

0.2071
(0.0031)

0.2083
(0.0034)

0.2180
(0.0016)

σa 0.0161
(0.0020)

0.0121
(0.0018)

0.0146
(0.0017)

0.0124
(0.0017)

0.0131
(0.0016)

σG 0.0422
(0.0122)

0.0534
(0.0105)

0.0479
(0.0104)

0.0511
(0.0106)

0.0540
(0.0075)

σd 0.0131
(0.0020)

0.0093
(0.0015)

0.0094
(0.0018)

0.0083
(0.0019)

0.0062
(0.0011)

πss 1.0121
(0.0006)

1.0118
(0.0005)

1.0104
(0.0005)

1.0127
(0.0009)

1.0181
(0.0012)

ω − 0.8542
(0.1632)

0.9906
(0.0054)

0.8505
(0.1795)

0.9909
(0.0070)

βxhr − − −0.1721
(0.1664)

−1.5829
(0.272)

Memo
IES 0.053 0.062 0.056 0.065 0.080
uss −2.273 −1.766 −1.837 −1.620 −1.441
φ3 −1466.0 −83.05 −13.04 −94.00 −17.44

The reported estimates are from the second step in GMM using the optimal weighting matrix with ten lags in the Newey–
West estimator, with standard errors shown in parenthesis. For MRRA

FB and MRRA
FB,Taylor , the value of the RRA is restricted

to five and not estimated.

6.2. The financial intermediary

The representative household makes one-period deposits bt in a perfectly competitive financial
intermediary, which invests these funds in short- and long-term government bonds. The household
may overdraw this deposit (i.e. bt<0), in which case the financial intermediary may short the
bonds.

We make two assumptions about how the financial intermediary operates. First, the financial
intermediary invests a fraction ω∈ [0,1] of the deposits it receives in bonds of maturity L>1 and
the remaining fraction 1−ω in one-period bonds. We set L to 10 years, but other maturities could
be considered. The value ofω is determined by factors exogenous to the model. In our estimation,
we will treat ω as a free parameter to be inferred from the data.
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Second, the financial intermediary is risk neutral. This assumption, together with free entry
and perfect competition, means that the intermediary pays a deposit rate rb

t equal to the ex-ante
holding period return on the invested bond portfolio

rb
t ≡(1−ω)×hrt,1 +ω×hrt,L. (31)

To parse this expression, let the ex-ante holding period return on the kth bond be

hrt,k ≡Et
[
logPt+1,k−1 −logPt,k

]
, (32)

where Pt,k is the nominal price in period t of a zero-coupon bond maturing in period t+k. The
excess holding period return is xhrt,k ≡hrt,k −rt , where rt is the one-period nominal policy rate
set by the central bank. Since hrt,1 =rt and xhrt,1 =0, we get

rb
t ≡(1−ω)×hrt,1 +ω×hrt,L =rt +ω×xhrt,L. (33)

To understand (33), suppose for a moment that ω=0. In this case, the financial intermediary
only holds the one-period bond and (33) simplifies to rb

t =rt . Hence, our framework recovers the
specification in most New Keynesian models where the deposit rate equals the one-period policy
rate set by the central bank. When ω>0, there is a feedback effect from long-term bonds to the
real economy as the excess holding period return affects rb

t and the household’s consumption
decision. For instance, an increase in xhrt,L due to a higher term premium during a recession will
raise the deposit rate and encourage the household to postpone consumption. Given that xhrt,L is
non-zero because of uncertainty, this feedback effect from long-term bonds to the real economy
operates through precautionary saving. We will exploit this point below to derive an efficient
perturbation solution to our model.

The price of government bonds with a maturity exceeding one period is determined in a
standard way using the household stochastic discount factor

Pt,k =Et

[
β
λt+1

λt

1

πt+1
Pt+1,k−1

]
, (34)

for k =2,3...,K with Pt,1 =exp{−rt}. The nominal yield curve with continuous compounding is
then given by rt,k =− 1

k logPt,k for k =2,3,...,K.
To keep the model simple, we impose the previous assumptions without explicit microfounda-

tions. However, extra effort and heavier notation could flesh out some of the structure behind them.
For example, with respect toω, regulation forces financial institutions to keep large shares of their
portfolios in short maturities, regardless of their preferred investment strategies. Endogenizing
the factors determining ω is beyond the scope of this article.

With respect to bond pricing, we could formulate a segmented markets model where the
household can trade in bonds with a maturity exceeding one period, but it cannot invest in a one-
period bond or trade in longer maturity bonds to replicate a one-period bond. Nevertheless, the
household still requires deposits in the financial intermediary for liquidity services (i.e. payments
are settled through the deposit account). In this setup, the representative household will price
bonds using (34) for k =2,3...,K. See Chien et al. (2014) for an example of a general framework
for writing such a model. Market segmentation can be motivated by the observation that large
financial institutions bid up the price of one-period bonds to use them for repo collateral or other
transaction services (see also the next paragraph). The no one-period bond replication can occur
if the transaction costs (including tax obligations) of short-term bond trading are high.
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Finally, as in much of the literature (see, e.g. Binsbergen et al. 2012), the pricing condition
for the one-period bond within our model is entirely determined by the policy rate set
by the monetary authority. This assumption is motivated by the crucial role of liquidity
considerations in the demand for the one-quarter bond, which suppress its implied yield
(Krishnamurthy and Vissing-Jorgensen, 2012). This effect is not present if the pricing condition
(34) is used for k =1.

Fisher (2015) provides a structural interpretation of a similar environment by introducing
a liquidity demand for short-term Treasuries. Furthermore, Fisher shows how such a
microfoundation does not materially affect the predictions of the more reduced-form model.

Our framework is also related to the risk-premium shocks in Smets and Wouters (2007),
where an exogenous shock drives a wedge between the policy rate and the interest rate faced
by the households. When equation (33) is substituted into the consumption Euler equation,

that is, Et

[
βλt+1exp

{
rb
t

}
/πt+1

]
=λt with λt , denoting the marginal utility of habit-adjusted

consumption, we obtain a similar wedge, except that our wedge is endogenously generated. Also,
if we were to follow Smets and Wouters (2007) and use a log-linear approximation to our model,
then xhrt,L =0 for all t and (33) would reduce to the specification where rb

t =rt , even whenω>0.

6.3. Firms

A perfectly competitive representative firm produces final output yt by aggregating a continuum

of intermediate goods yi,t using the technology yt =
(∫ 1

0 y
η−1
η

i,t di

) η
η−1

with η>1. If we denote Pi,t

as the price of the ith good, we can find the demand function yi,t =
(

Pi,t
Pt

)−η
yt , with aggregate

price level Pt ≡
[∫ 1

0 P1−η
i,t di

] 1
1−η .

The intermediate good i is produced by a monopolistic competitor given yi,t =
atkθi,t

(
zthi,t

)1−θ . Here, zt is a deterministic trend that follows logzt+1 = logzt +logμz,ss, and

logat+1 =ρa logat +σaεa,t+1 where εa,t ∼NID(0,1). We define z∗
t ≡ϒ

θ
1−θ

t zt , which denotes
the technological trend in the economy.

The intermediate firms maximize the net present value of real profit with respect to capital,
labour, and prices given a nominal rigidity. We consider price-setting à la Calvo (1983), where
contracts expire with probability 1−α in each period. Whenever a contract expires, firms set their
optimal nominal prices, which otherwise are equal to past prices, that is, Pi,t =Pi,t−1.

6.4. Monetary and fiscal policy

A central bank sets the policy rate rt based on a desire to stabilize the inflation gap log(πt/πss)

and the output gap log
(
yt/
(
z∗
t Yss

))
. Here, πss refers to steady-state inflation. The output gap is

measured in terms of deviation from the deterministic trend in output, which equals z∗
t times

production in the normalized steady state Yss.
Since in our model rb

t depends on xhrt,L, the central bank may also find it useful to account for
the latter when setting its policy rate. For instance, a central bank may consider a larger reduction
in rt to offset the impact from a negative shock to economic activity and a subsequent increase
in xhrt,L than would be required with xhrt,L =0. More concretely, we postulate that monetary
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policy follows an augmented Taylor rule

rt = (1−ρr)rss +ρrrt−1 +(1−ρr)

(
βπ log

(
πt

πss

)
+βy log

(
yt

z∗
t Yss

))
+(1−ρr)βxhr

(
xhrt,L −E

[
xhrt,L

])
, (35)

where we omit monetary policy shocks as the literature has documented that they have a tiny
effect on term premia.16

When implementing (35), we approximate E
[
xhrt,L

]
by Et

[
(1−γ )∑∞

l=0γ
lxhrt+l,L

]
≡

Xt,L with γ =0.9999. This variable has the convenient representation Xt,L =(1−γ )xhrt,L +
γEt

[
Xt+1,L

]
. In contrast, the steady-state value of xhrt,L equals zero and is a poor approximation

of E
[
xhrt,L

] �=0. Finally, if we were to solve our model by a log-linearisation, then xhrt,L =0 for
all t and (35) would reduce to the standard Taylor rule even if βxhr �=0.

Government consumption gt ≡Gtz∗
t grows with the economy as in Rudebusch and Swanson

(2012), where

log

(
Gt+1

Gss

)
=ρG log

(
Gt

Gss

)
+σGεG,t+1

and εG,t+1 ∼NID(0,1). Government consumption and the service on government debt are paid
with lump-sum taxes. Given that a version of Ricardian equivalence holds in our economy, we
do not need to specify the timing of these taxes and simply write the resource constraint of the
economy as yt =ct +itϒ

−1
t +gt . Also because of Ricardian equivalence, it is always possible for

the government to issue the required number of bonds to clear the bond market (although, in
equilibrium, the total amount of deposits is zero and those issuances are therefore not required).

6.5. Model aggregation

The aggregated resource constraint in the goods market is atkθt (ztht)
1−θ =st+1yt , where st is the

price dispersion index. The dynamic of this endogenous state variable is

st+1 =(1−α)p̃−η
t +απηt st, (36)

where p̃t ≡ P̃t/Pt and P̃t denotes the optimal nominal price in period t. The relation between
inflation and the newly optimized prices is

1=(1−α)p̃1−η
t +απη−1

t . (37)

There is an alternative, yet equivalent, representation of our model with complete markets
described in Appendix A.13. In that representation of the model, the households do not need to
rely on the financial intermediary to invest their savings in government bonds, but the Taylor rule
depends instead on ω∗xhrt,L and ω∗ρr ∗xhrt−1,L.

6.6. An efficient perturbation approximation

To solve the model, we first induce stationarity by eliminating trending variables with
appropriate transformations; see Appendix A.14. The desired policy functions that characterize

16. This is illustrated in Rudebusch and Swanson (2012), who also show that it is the systematic part of monetary
policy that has a large impact on term premia. Below, we report a similar finding.
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the equilibrium dynamics of the model are then obtained by employing a third-order perturbation
approximation. We require at least a third-order approximation to generate variation in xhrt,L
and capture the feedback effects from long-term government bonds to the real economy. Our
quarterly model with L set to reflect the 10-year yield has seven state variables and fifty-four
control variables. The large number of control variables is required to compute all bond prices
within the 10-year maturity range.

The standard approach to efficiently compute a higher-order perturbation approximation to
DSGE models with a yield curve exploits the fact that bond prices beyond the policy rate do not
affect allocations and prices (Binsbergen et al., 2012; Andreasen and Zabczyk, 2015). Taking
advantage of that property, the models are approximated by a two-step procedure, where the first
step solves the model without bond prices exceeding one period, after which, in a second step, all
remaining bond prices are computed recursively based on (34). This two-step procedure reduces
the size of the simultaneous equation systems to be solved and, therefore, substantially reduces
the computational burden of the approximation.

We cannot apply this two-step procedure to our model whenω>0 orβxhr �=0 because the long-
term bond price affects the deposit rate rb

t and the policy rate through xhrt,L and, hence, allocations
and prices. Fortunately, the terms associated with the perfect foresight solution of our model —
that is (gx,Gxx,Gxxx) and (hx,Hxx,Hxxx)— can be found with the standard two-step procedure
even whenω>0 or βxhr �=0 because xhrt,L is equal to zero under perfect foresight. Once we have
computed these terms, we only need to find the derivatives involving the perturbation parameter
σ using the full model. This three-step procedure is formally described in Appendix A.15 and
constitutes a new numerical contribution to the literature. Our three-step procedure allows us to
compute a third-order solution to our model in just 3.7 seconds, whereas it takes 6.2 seconds when
using the standard one-step perturbation algorithm of Binning (2013). This 40% improvement in
speed greatly facilitates the estimation, as the perturbation approximation must be computed for
many different parameter values.17

6.7. Data and moments for GMM

We employ the following quarterly time series to estimate our model: (1) consumption growth
�ct , (2) investment growth �it , (3) inflation πt , (4) the one-quarter nominal yield rt , (5) the
10-year nominal yield rt,40, (6) the 10-year ex post excess holding period return xhrt,40 ≡
log
(
Pt,39/Pt−1,40

)−rt−1, (7) the log ratio of government spending to GDPlog(gt/yt), and (8) the
log of hours loght . The short- and long-term yields capture the slope of the yield curve, whereas
the excess holding period return is included as a noisy proxy for the 10-year term premium. All
series are stored in datat with dimension 8×1. Our sample goes from 1961.Q3 to 2007.Q4. The
end date is set to avoid the complications created by the zero lower bound of the nominal interest
rate. See Appendix A.16 for a description of the data series.

We want to explore whether our model can match the mean, the variance, the contemporaneous
covariances, and the persistence in the data. Hence, we let

qt≡

⎡⎢⎢⎢⎢⎣
datat

diag
(
datatdata′

t
)

vech
(

d̃atat d̃ata′
t

)
diag

(
datatdata′

t−1

)
⎤⎥⎥⎥⎥⎦, (38)

17. These computations are done in Matlab 2014a on a Fujitsu laptop with an Intel(R) Core(TM) i5-4200M CPU
@ 2.50 GHz.
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where diag(·) denotes the diagonal elements of a matrix and d̃atat refers to the first six elements
of datat . We omit moments on the contemporaneous correlation relating to log(gt/yt) and loght
due to the parsimonious specification of government spending and the labor market in our model.
Letting θ contain the structural parameters, our GMM estimator is given by

θ̂GMM =argmin
θ∈�

(
1

T

∑T

t=1
qt −E[qt (θ)]

)′
W
(

1

T

∑T

t=1
qt −E[qt (θ)]

)
.

Here, W is a positive definite weighting matrix and E

[
qt

(
θ
)]

contains the model-implied

moments computed in closed form using the above formulas. We use the conventional two-step

implementation of GMM by letting WT =diag
(

Ŝ−1
mean

)
in a preliminary first step to obtain θ̂ step1,

where Ŝmean denotes the long-run variance of 1
T

∑T
t=1qt when re-centered around its sample

mean. Our final estimates θ̂ step2 are obtained using the optimal weighting matrix WT = Ŝ−1
θ step1 ,

where Ŝθ step1 denotes the long-run variance of our moments re-centered around E

[
qt

(
θ̂ step1

)]
.

The long-run variances in both steps are estimated by the Newey–West estimator using 10 lags,
but our results are robust to using more lags.

We estimate all structural parameters in our model except for a few poorly identified ones. We
let δ=0.025 and θ=0.36 as typically considered for the U.S. economy. We also impose η=6 to
get an average markup of 20%, and we let φ1 =4 to obtain a Frisch labour supply elasticity in
the neighborhood of 0.5.18

7. RESULTS

7.1. Estimation results I: the benchmark model

As a benchmark, we first estimate our model without feedback effects from long-term bonds by
imposing ω=0 and βxhr =0. We call this version of the model M0. The estimated parameters
in Table 1 are standard, with large investment adjustment costs

(
κ̂=5.40

)
, little curvature in

the utility of consumption
(
φ̂2 =0.98

)
, and sizeable habits

(
b̂=0.67

)
. The latter implies a low

steady-state intertemporal elasticity of substitution (IESss =0.053), which in the presence of
internal habits is

IESss = 1

φ2

⎡⎣
(

1− b
μz∗,ss

)(
μz∗,ss −βb

)
μz∗,ss +bβ+βb2μ−1

z∗,ss

⎤⎦, (39)

or IESss ≈ 1
φ2

(1−b)2

1+b+b2 with μz∗,ss ≈1 and β≈1. As in much of the macro-finance literature, we

find extreme relative risk aversion (R̂RA=615.7), even when accounting for a variable labour
supply as in Swanson (2012). Using the formulae provided in Swanson (2013), (28) implies

RRA= φ2

1−bμ−1
z∗,ss

1−βb + φ2
φ1

Wss(1−hss)
Css

+φ3
1−φ2

1−bμ−1
z∗,ss

1−βb −
(

1−bμ−1
z∗,ss

)φ2

1−βb Cφ2−1
ss + Wss(1−hss)

Css

1−φ2
1−φ1

, (40)

18. The Frisch labour supply in our model is 1
φ1

(
1

hss
−1
)

and hence is affected by the steady-state labour supply

hss, which is close to 1/3 (Table 1).
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where Wss and Css are the real wage and consumption in the normalized steady state.19

Our estimated level of risk aversion is clearly too high to be consistent with the micro-
evidence. For instance, Barsky et al. (1997) find an RRA between 3.8 and 15.7 in surveys, and
Mehra and Prescott (1985) argue that a plausible level of relative risk aversion should not exceed
10. We also find moderate nominal frictions, with prices being re-optimized roughly every fifth
quarter

(
α̂=0.81

)
, and a central bank assigning more weight to stabilize inflation than output

(β̂π =1.27 versus β̂y =0.03), subject to smoothing changes in the policy rate (ρ̂r =0.65).
Table 2 shows that M0 matches all means, in particular the short- and long-term interest

rates of 5.6% and 7.0%, respectively. We only match the mean inflation rate of 3.8% due
to a large precautionary saving correction that lowers the annual steady-state inflation rate of
4logπss =4.8% to obtain a model-implied inflation rate of 3.4%. M0 also successfully matches
the variability in the data (except for a too low standard deviation in the 10-year excess holding
period return), the first-order autocorrelations, and the contemporaneous correlations.

The implied term premia in M0 are particularly interesting. As in Rudebusch and Swanson
(2012), we define term premia as TPt,k =rt,k − r̃t,k , where r̃t,k is the yield-to-maturity on a zero-

coupon bond P̃t,k under a risk-neutral valuation, that is, P̃t,k =e−rt Et

[
P̃t+1,k−1

]
. The mean

of the 10-year term premium TPt,40 in M0 is 145 basis points, which is close to the average
slope of the yield curve (139 basis points) that serves as an observable proxy for the average
term premium. The standard deviation of the 10-year term premium in M0 is 116 basis points.
This is in line with the variability in the 10-year term premium obtained in Gaussian affine term
structure models for our sample: (1) the three- and four-factor models of Andreasen and Meldrum
(2014) with bias-adjusted factor dynamics have a standard deviation of 105 and 115 basis points,
respectively, and (2) the five-factor model of Adrian et al. (2013) has a standard deviation of
121 basis points. Finally, the variation in TPt,k within M0 is also consistent with another noisy
measure of term premia variability, namely the standard deviation of the slope for the 10-year
yield curve, which equals 139 basis points.

7.2. Understanding the volatility of the term premium

Although high risk aversion increases the mean term premium, it does not necessarily imply a
highly volatile term premium. Instead, the volatility of TPt,40 is directly related to the degree of
heteroscedasticity in the stochastic discount factor Mt,t+1 ≡βλt+1/

(
λtπt+1

)
, that is, the variation

of Vt
(
Mt,t+1

)
. Since the three shocks in our model are homoscedastic, M0 must be generating

endogenous heteroscedasticity in Mt,t+1. But what is the source of this large heteroscedasticity?
Consider the effect of the price dispersion index st . Combining (36) and (37), we get

st+1 =(1−α) 1
1−η
[
1−απη−1

t

] η
η−1 +απηt st,

which is highly non-linear to ensure st ≥1, as shown by Schmitt-Grohe and Uribe (2007). The first
term in the expression for st+1 does not generate much heteroscedasticity with 1−απη−1

t being
well below one given our estimates. The second term απ

η
t st , on the other hand, may generate

extreme levels of heteroscedasticity because st ≥1 and we generally also have πt ≥1. In addition,
the degree of heteroscedasticity is increasing in the mean of both variables. A higher value of πss

19. Household wealth is measured by the present value of lifetime consumption in (40). Given that Wss and Css are
unaffected by φ3, we use (40) to back out the value of φ3 for a given value of the RRA. See also Rudebusch and Swanson
(2012) for a discussion of why M0 requires high risk aversion to match post-war U.S. data.
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TABLE 2
Model fit

No feedback With feedback

Data M0 MFB MRRA
FB MFB,Taylor MRRA

FB,Taylor

Means
�ct ×100 2.439 2.350 2.376 2.367 2.404 2.283
�it ×100 3.105 2.847 2.852 2.756 2.867 2.547
πt ×100 3.757 3.404 3.348 3.308 3.314 3.484
rt ×100 5.605 5.567 5.505 5.433 5.483 5.576
rt,40 ×100 6.993 6.924 6.937 6.817 6.860 6.989
xhrt,40 ×100 1.724 2.090 1.519 1.403 1.466 1.442
log(gt/yt) −1.575 −1.578 −1.576 −1.577 -1.576 −1.579
loght −1.084 −1.083 −1.083 −1.083 −1.083 −1.083

Stds (in pct)
�ct 2.685 2.701 2.669 2.620 2.698 2.680
�it 8.914 8.687 8.941 8.566 8.921 8.700
πt 2.481 2.669 2.723 2.540 2.702 2.665
rt 2.701 2.520 2.558 2.508 2.527 2.598
rt,40 2.401 2.282 2.055 2.134 2.056 2.134
xhrt,40 22.978 12.930 13.088 9.763 12.704 9.116
loggt/yt 8.546 8.264 9.330 9.944 9.502 10.192
loght 1.676 2.396 1.855 2.260 1.801 1.924

Auto-correlations
corr(�ct ,�ct−1) 0.254 0.238 0.326 0.342 0.347 0.359
corr(�it ,�it−1) 0.506 0.355 0.125 0.078 0.141 0.125
corr(πt ,πt−1) 0.859 0.824 0.877 0.912 0.863 0.786
corr(rt ,rt−1) 0.942 0.966 0.989 0.974 0.989 0.978
corr

(
rt,40,rt−1,40

)
0.963 0.989 0.987 0.993 0.987 0.994

corr
(
xhrt,40,xhrt−1,40

) −0.024 −0.006 −0.005 −0.005 −0.006 −0.006
corr(loggt/yt ,loggt−1/yt−1) 0.9922 0.888 0.855 0.895 0.871 0.874
corr(loght ,loght−1) 0.792 0.543 0.561 0.609 0.536 0.471
corr(�ct ,�it) 0.594 0.518 0.518 0.546 0.529 0.568
corr(�ct ,πt) −0.362 −0.313 −0.304 -0.225 −0.318 −0.304
corr(�ct ,rt) −0.278 −0.212 −0.183 -0.210 −0.187 −0.193
corr

(
�ct ,rt,40

) −0.178 −0.111 −0.135 -0.107 −0.141 −0.114
corr

(
�ct ,xhrt,40

)
0.271 0.495 0.371 0.482 0.356 0.475

corr(�it ,πt) −0.242 −0.452 −0.343 -0.219 −0.362 −0.409
corr(�it ,rt) −0.265 −0.151 −0.104 -0.098 −0.101 −0.086
corr

(
�it ,rt,40

) −0.153 −0.057 −0.052 -0.044 −0.051 −0.035
corr

(
�it ,xhrt,40

)
0.021 0.706 0.249 0.630 0.253 0.711

corr(πt ,rt) 0.628 0.938 0.838 0.898 0.832 0.793
corr

(
πt ,rt,40

)
0.479 0.822 0.892 0.906 0.880 0.829

corr
(
πt ,xhrt,40

) −0.249 −0.379 −0.203 -0.209 −0.198 −0.235
corr

(
rt ,rt,40

)
0.861 0.847 0.831 0.821 0.830 0.821

corr
(
rt ,xhrt,40

) −0.233 −0.150 −0.069 −0.124 −0.063 −0.123
corr

(
rt,40,xhrt,40

) −0.121 −0.053 −0.114 −0.073 −0.107 −0.064

All variables are expressed in annualised terms, except for log(gt/yt) and loght .

increasesπt, but also the steady state of st , given that ∂sss/∂πss ≥0 forπss ≥1. Figure 1 illustrates
this effect by plotting a sample path from M0 with positive steady-state inflation

(
πss = π̂GMM

ss
)

and one without (πss =1). Whenπss>1 (left panels), we see more extreme observations and hence
more heteroscedasticity than when πss =1 (right panels). Note also how the capital stock and the
price dispersion whenπss>1 attain very low and high values, respectively, just before observation
9,000, at which point the unpruned state-space system explodes. A similar divergence in the
sample path does not appear for πss =1, where the two approximations induce nearly identical
time series. Thus, positive steady-state inflation serves as a channel to generate heteroscedasticity
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Figure 1

Simulated sample path.

The capital stock, the price dispersion index, and the inflation rate are expressed in deviation from the deterministic steady state, whereas
consumption growth is de-meaned. Unless stated otherwise, all parameters are from M0. All variables are expressed at a quarterly level
(we only display every fourth observation in each of the series to facilitate the plotting).

in st and, hence, variation in Vt
(
Mt,t+1

)
, as required to produce the volatile 10-year term premium

in our model.20

20. Swanson (2015) also emphasizes the importance of the price dispersion index as a source of heteroscedasticity
in the New Keynesian model, but without pointing out the importance of positive steady-state inflation.
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The first column in Table 4 shows the large effect of this channel. The standard deviation
of the 10-year term premium falls from 116 basis points with π̂GMM

ss to just 1.42 basis points
when πss =1.00. To further analyse the effects of πss>1, we decompose risk premia into the
market price of risk MPRt times the quantity of risk. As in Cochrane (2001), we let MPRt =
Vt
(
Mt,t+1

)
/Et

[
Mt,t+1

]
, implying that the quantity of risk QoRt,k equals TPt,k/MPRt . Table 4

shows that omitting positive steady-state inflation lowers the standard deviation in the MPRt by
a factor of 100, whereas the standard deviation of QoRt,k falls by a factor of 105. Hence, πss>1
causes a volatile term premium in our model mainly by increasing the variability in the quantity
of risk. Table 4 shows that πss>1 also affects the mean term premium, which falls from 145
basis points to just 32 basis points when πss =1.00, although the RRA equals 615.7! This fall is
due to a reduction in the mean of Vt

(
Mt,t+1

)
, which lowers the MPRt , whereas the level for the

QoRt,k is nearly unaffected.
Thus, accounting for positive steady-state inflation serves as a key new channel to

endogenously generate heteroscedasticity in the New Keynesian model and produce a 10-
year term premium with the desired level and variability. Importantly, an unpruned third-order
approximation to our model results in explosive sample paths and is unable to “detect” this novel
channel, which we uncover by using our pruning scheme for a third-order perturbation.

7.3. Estimation results II: the first feedback effect

Our next step is to introduce the first feedback effect from long-term bonds by allowing ω≥0,
while still maintaining that the central bank does not respond to the excess holding period
return (βxhr =0). We call this version of the model MFB. Table 1 shows that the financial
intermediary is estimated to allocate a large fraction of its investments to long-term bonds with
ω̂=0.85.Astandard t−test rejects the null hypothesis ofω=0 at conventional significance levels,
which provides support for our first feedback channel. Another important property of MFB is
the estimated RRA, which is only 28.8, and thus much lower than in M0. For the remaining
parameters, we find minor changes compared to M0, except for the policy rule and investment
adjustment costs.

Table 2 shows that MFB fits the considered moments despite its lower risk aversion. To
quantify the performance of MFB compared to M0, Table 3 reports objective functions from our
two-step GMM procedure. Only the objective functions from the first step use the same weighting
matrix and are, therefore, comparable across models. They show that MFB fits the data better
than M0 (14.676 versus 16.929).21

However, risk aversion in MFB is estimated very imprecisely with a large standard error of
24, and it is likely that the RRA can be lowered further with only a minor reduction in the goodness
of fit. Consistent with the micro-evidence provided in Barsky et al. (1997), we restrict the RRA to
5 and re-estimate our model with the first feedback effect. Table 2 verifies our conjecture as this
restricted model MRRA

FB with low risk aversion provides nearly the same fit as the unrestricted
model. In particular, MRRA

FB matches the slope of the yield curve, while simultaneously fitting
key moments for the five macro variables. We also note from Table 3 that MRRA

FB provides
a better overall fit to the data than M0. Here, we report the P-value from the J -test for model
misspecification, showing that we are unable to reject MRRA

FB (and all the other models). However,
this finding should be interpreted with caution as the J - test has low power due to our short sample
(T =186). Finally, MRRA

FB has a realistic 10-year term premium with a mean of 146 basis points
and a standard deviation of 91 basis points, as seen from Table 4.

21. The estimates in step 1 are very similar to those reported for step 2 in Table 1, implying that the objective
functions in step 1 serve as a good metric for model comparison.
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TABLE 3
Model specification test

No feedback With feedback

M0 MFB MRRA
FB MFB,Taylor MRRA

FB,Taylor

Objective function: Qstep1 16.929 14.676 16.868 14.674 16.558
Objective function: Qstep2 0.0887 0.0865 0.0835 0.0847 0.0863
Number of moments 39 39 39 39 39
Number of parameters 19 20 19 21 20
P-value 0.685 0.651 0.745 0.610 0.654

The objective function in step 1, Qstep1, is computed with the weighting matrix WT =diag
(

Ŝ−1
mean

)
, where Ŝmean denotes

the variance of the sample moments as computed by the Newey–West estimator using ten lags. The objective function in
step 2, Qstep2, is computed using the optimal weighting matrix with ten lags in the Newey–West estimator. The P-value
is for the J -test for model misspecification based on the objective function in step 2.

TABLE 4
Decomposing the 10-year term premium

TPt,40 Vt
(
Mt,t+1

)
Market price of risk Quantity of risk

Means (πss = π̂GMM
ss )

M0 145.20 0.0321 0.0327 0.2881
MFB 151.45 0.0011 0.0012 3.2220
MRRA

FB 145.66 2.17×10−4 2.21×10−4 16.6781
MFB,Taylor 145.10 0.0011 0.0012 3.0662
MRRA

FB,Taylor 144.80 1.34×10−4 1.37×10−4 19.2431

Means (πss =1.00)
M0 32.19 0.0030 0.0030 0.2702
MFB 39.55 0.0003 0.0003 3.1839
MRRA

FB 88.95 1.17×10−4 1.18×10−4 18.8987
MFB,Taylor 36.84 3.01×10−4 3.03×10−4 3.0578
MRRA

FB,Taylor 85.22 6.88×10−5 6.94×10−5 30.9294

Stds (πss = π̂GMM
ss )

M0 115.88 0.0503 0.0515 137.86
MFB 118.40 0.0012 0.0013 583.31
MRRA

FB 91.12 1.37×10−4 1.41×10−4 359.01
MFB,Taylor 117.18 0.0013 0.0013 339.50
MRRA

FB,Taylor 124.67 1.03×10−4 1.06×10−4 3948.46

Stds (πss =1.00)
M0 1.42 3.39×10−4 3.55×10−4 0.0219
MFB 1.16 2.76×10−5 2.88×10−5 0.2189
MRRA

FB 5.35 1.05×10−5 1.09×10−5 0.7277
MFB,Taylor 1.00 2.67×10−5 2.78×10−5 0.2119
MRRA

FB,Taylor 3.25 7.28×10−6 7.50×10−6 2.3241

Moments for the 10-year term premium TPt,40 are reported in annualised basis points, whereas moments for the remaining
variables are at a quarterly frequency and unscaled. Moments for the quantity of risk cannot be computed directly by
the perturbation method (because Vt

(
Mt,t+1

)
and, hence, the market price of risk is zero in the steady state). Thus, we

compute these moments from simulated sample paths of 1,000,000 observations for TPt,40 and the market price of risk.

Thus, our first feedback effect goes a long way in resolving the bond risk premium
puzzle described in Rudebusch and Swanson (2008) without postulating highly risk-averse
households as in much of the existing literature (see Andreasen, 2012; Binsbergen et al., 2012;
Rudebusch and Swanson, 2012, among others).
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7.4. Understanding the first feedback effect

We now explore the mechanisms that enable MFB and MRRA
FB to generate a large and variable

term premium without relying on high risk aversion. Suppose xhrt,L>0 for ω=0 and consider
increasing ω to some positive value less than one. This increase in ω lowers Et

[
Mt,t+1

]
as

Et
[
Mt,t+1

]=e−rt−ω×xhrt,L and, hence, the current bond price because

Pt,L =Et
[
Mt,t+1

]
Et
[
Pt+1,L−1

]+Covt
(
Mt,t+1,Pt+1,L−1

)
.

This fall in Pt,L increases xhrt,L according to (32). But a higher xhrt,L induces a further fall in
Et
[
Mt,t+1

]
and the current bond price Pt,L, which generates an even larger increase in xhrt,L.

That is, ω>0 causes a feedback multiplication effect that amplifies the level and variability in
xhrt,L. A way to see this feedback loop is to use a first-order approximation of the logarithmic
and exponential function in (32) to obtain (see Appendix A.17):

xhrt,L ≈ 1

1−ωEt[Pt+1,L−1]
Pss,L−1

[(
Et
[
Pt+1,L−1

]
Pss,L−1

−1

)
(rt −rss)−Covt

(
Mt,t+1

Mss,ss+1
,

Pt+1,L−1

Pss,L−1

)]
.

(41)

The first term in (41) is the risk-neutral component of xhrt,L, whereas Covt

(
Mt,t+1

Mss,ss+1
,

Pt+1,L−1
Pss,L−1

)
is the required compensation by the risk-averse household for carrying risk. The expression in

(41) demonstrates that both terms in xhrt,L are amplified by the factor 1/
(

1−ωEt[Pt+1,L−1]
Pss,L−1

)
when ω>0. Hence, our model requires lower volatility in Mt,t+1 and, correspondingly, lower
risk aversion, to match short- and long-term interest rates. Finally, extending the expression for
the term premium in Rudebusch and Swanson (2012) to our model, it follows that

TPt,k ≈ − 1

kPss,k
Et

⎡⎣k−1∑
j=0

e

{
−∑j−1

m=0(rt+m+ω×xhrt+m,L)
}
Covt+j

(
Mt+j,t+j+1,Pt+j+1,k−j−1

)⎤⎦
− 1

kPss,k
Et

[
e

{
−∑k−1

m=0ω×xhrt+m,L

}
−1

]
. (42)

This expression shows how a higher level and variability in xhrt,L translates into a larger and
more volatile term premium.

To illustrate the magnitude of the multiplication effect from long-term bonds on term premia,
we momentarily set ω=0 in MRRA

FB , whereas all remaining parameters are as reported in Table 1.
Omitting the first feedback channel reduces the mean of the 10-year term premium from 146 to 10
basis points and lowers the standard deviation from 91 to 4 basis points. Table 4 documents that the
feedback channel from long-term bonds reduces the mean and standard deviation of Vt

[
Mt,t+1

]
by a factor of 100 in MFB and MRRA

FB compared to M0. This, in turn, leads to a similar reduction
in the corresponding moments for the MPRt . Hence, MFB and MRRA

FB generate a high and volatile
term premium by increasing the quantity of risk. As observed for M0, Table 4 shows that πss>1
is essential for MFB and MRRA

FB to generate the desired level and variability of the term premium
even with the first feedback effect from long-term bonds. Hence, it would be hard to discover this
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Figure 2

GIRFs: technology shock.

GIRFs following a positive one-standard-deviation shock to technology. The GIRFs are computed at the unconditional mean of the states
using the estimated parameters for MRRA

FB,Taylor . All GIRFs are expressed in deviation from the steady state, except for the excess holding

period return and term premium, which are expressed in annualised basis points from their unconditional means.

novel feedback effect without our pruning method, as an unpruned state-space system induces
explosive sample paths when πss>1.

7.5. Estimation results III: the first and second feedback effects

We now introduce our second feedback effect from long-term bonds by allowing the central bank
to respond to the variation in xhrt,L, which is closely related to term premia as shown in (41)
and (42). That is, we let βxhr �=0 and refer to this model as MFB,Taylor . Table 1 shows that this

second feedback effect from long-term bonds has a small effect in the model as β̂xhr =−0.17, a
point estimate not sufficiently far from zero to be statistically significant. However, our second
feedback effect is larger when the RRA is restricted to 5 in MRRA

FB,Taylor . Here, β̂xhr =−1.58 and

the response of the central bank to xhrt,L is now significant given a standard error of 0.27 for β̂xhr .
That is, the model implies a reduction in the policy rate when term premia and xhrt,L increase, as
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Figure 3

GIRFs: government shock.

GIRFs following a positive one standard deviation shock to government spending. The GIRFs are computed at the unconditional mean
of the states using the estimated parameters for MRRA

FB,Taylor . All GIRFs are expressed in deviation from the steady state, except for the

excess holding period return and term premium, which are expressed in annualised basis points from their unconditional means.

the central bank tries to offset the rise in the deposit rate with a lower policy rate. Although we end
our sample in 2007.Q4, this finding is consistent with monetary policy during the recent financial
crisis, where the Federal Reserve undertook vigorous policy measures to stimulate economic
activity in response to elevated levels of term premia.

Table 2 shows that MRRA
FB,Taylor matches most of the moments considered, in particular all

mean values and the slope of the yield curve. Table 3 documents how MRRA
FB,Taylor outperforms

both MRRA
FB and M0 in terms of overall goodness of fit, although MFB,Taylor with unrestricted

risk aversion does somewhat better than MRRA
FB,Taylor . The term premium is consistent with

empirical moments, as MRRA
FB,Taylor generates a 10-year term premium with a mean of 145 basis

points and a standard deviation of 125 basis points (Table 4). As before, πss>1 is essential for
MFB,Taylor and MRRA

FB,Taylor to generate the desired level and variability in the term premium by
activating the two feedback effects from long-term bonds to the real economy considered in this
article.
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Figure 4

GIRFs: preference shock.

GIRFs following a positive one standard deviation shock to preferences. The GIRFs are computed at the unconditional mean of the states
using the estimated parameters for MRRA

FB,Taylor . All GIRFs are expressed in deviation from the steady state, except for the excess holding

period return and term premium, which are expressed in annualised basis points from their unconditional means.

7.6. GIRFs and conditional GIRFs

We now report the GIRFs following positive one-standard-deviation shocks in MRRA
FB,Taylor to

technology, government spending, and preferences (Figures 2–4). These functions are computed
for a log-linearized solution and a third-order approximation using (25) with the relevant state
variables at their unconditional means. Since all the GIRFs have the expected pattern, we direct
attention to the effects of higher-order terms, that is, the differences between the marked and
unmarked lines. Shocks to technology and government spending have substantial non-linear
effects on consumption and investment, mainly because these shocks generate considerable
variation in the ex ante excess holding period return and the term premium. This finding reveals
that higher-order effects, and hence the amount of risk in the economy, affect real allocations
in our model and, therefore, overturns the result of Tallarini (2000) that risk does not matter for
these allocations.

A key advantage of computing second- and third-order approximations is that we can analyse
the effects of different shocks conditional on the state of the economy. This is illustrated in
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Figure 5

Conditional GIRFs: expansions vs. recessions.

GIRFs following a positive one standard deviation shock to technology using the estimated parameters for MRRA
FB,Taylor . The state values

representing recessions are defined from episodes in a simulated sample path with negative output growth in the current and the previous
two periods; otherwise, the economy is in expansion. The GIRFs are computed as the average across 500 draws from expansions and
recessions. All GIRFs are expressed in deviation from the steady state, except for the excess holding period return and term premium,
which are expressed in annualised basis points from their unconditional means.

Figure 5, where we show how the response of consumption, investment, and rt,40 to a positive
one-standard-deviation shock to technology is larger when the economy is in a recession than
when it is not.22 When the economy is in a recession, consumption and capital tend to be low, and
hence the marginal utility of extra consumption and the marginal return of additional investment
are higher than usual. A similar exercise is done in Figure 6, except that now we compare the
situation where we condition on high versus low inflation.23 When inflation is high, consumption,
investment, and interest rates respond more vigorously than when inflation is low. Nominal
rigidities are particularly damaging when inflation is high, since firms that are not able to change

22. We define a recession as negative output growth in the current and previous two periods. Otherwise, the economy
is in expansion.

23. We define the high inflation regime as episodes where πt is larger than the mean of inflation plus two standard
deviations; otherwise, the economy is in a low inflation regime. The conditional GIRFs for government spending and
preference shocks are omitted in the interest of space.
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Figure 6

Conditional GIRFs: high vs. low inflation.

GIRFs following a positive one standard deviation shock to technology using the estimated parameters for MRRA
FB,Taylor . The state values

representing high inflation are defined from episodes with inflation larger than the mean of inflation plus two standard deviations in a
simulated sample path; otherwise, the economy is in a low inflation regime. The GIRFs are computed as the average across 500 draws
from regimes of high and low inflation. All GIRFs are expressed in deviation from the steady state, except for the excess holding period
return and term premium, which are expressed in annualised basis points from their unconditional means.

their prices are far from their optimal unconstrained price.Apositive productivity shock translates
into lower inflation through lower marginal costs and, hence, alleviates some of these pernicious
effects of nominal rigidities. When inflation is low, nominal rigidities are less of a constraint on
firm behaviour and a positive technology shock is, therefore, less useful for firms. The asymmetries
in responses to shocks reported in Figures 5 and 6 document how the methods we present in our
article allow researchers to probe deeper into the behaviour of their models and uncover economic
mechanisms that would have otherwise remained hidden.

8. CONCLUSION

This article extends the pruning method by Kim et al. (2008) to third- and higher-order
approximations, with special attention devoted to models solved up to third order. Conditions for
the existence of first and second unconditional moments are derived, and their values are provided
in closed form. The existence of higher-order unconditional moments in the form of skewness and
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kurtosis is also established. We also analyse GIRFs and provide simple closed-form expressions
for these functions.

Our findings are significant as most of the existing moment-based estimation methods for
linearized DSGE models now carry over to non-linear approximations. For approximations up to
third order, this includes GMM estimation based on first and second unconditional moments and
matching model-implied GIRFs to their empirical counterparts. When simulations are needed,
our analysis also provides a foundation for indirect inference and SMM. These results are also
relevant for Bayesian inference, as the moment conditions in optimal GMM estimation may be
used to build a limited information likelihood function.

To illustrate one of these new estimation methods, we revisit the term structure implications
of the New Keynesian model. We first demonstrate a new channel to amplify the level and time
variation in term premia by accounting for positive steady-state inflation. Given this more realistic
term premium, we then introduce two feedback effects from long-term bonds to the real economy,
and we show that they enable the New Keynesian model to generate a high and variable term
premium with the same low risk aversion as found in the micro-evidence. Our pruning scheme
has greatly facilitated the discovery of these new channels and, hence, helped us to address the
long-standing bond premium puzzle.

A. APPENDIX

A.1. Pruned state-space beyond third order

The pruned state-space system for the kth-order approximation based on the kth-order Taylor series expansions of g(xt ,σ )

and h(xt ,σ ) is obtained by: (1) decomposing the state variables into first-, second-, ... , and kth-order effects, (2) setting
up laws of motion for the state variables capturing only first-, second-, ... , and kth-order effects, and (3) constructing
the expression for control variables by preserving only effects up to kth-order. In comparison, the unpruned state-space
system for the kth-order approximation is given by the kth-order Taylor series expansions of g(xt ,σ ) and h(xt ,σ ).

A.2. Coefficients for the pruned state-space system at second order

A(2)≡
⎡⎢⎣ hx 0 0

0 hx
1
2 Hxx

0 0 hx ⊗hx

⎤⎥⎦,

B(2)≡
⎡⎢⎣ ση 0 0 0

0 0 0 0

0 ση⊗ση ση⊗hx hx ⊗ση

⎤⎥⎦,

c(2)≡
⎡⎢⎣ 0

1
2 hσσ σ 2

(ση⊗ση)vec
(
Ine

)
⎤⎥⎦,

C(2)≡[ gx gx
1
2 Gxx

]
,

and

d(2)≡ 1

2
gσσ σ 2.
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A.3. Second order: stability

First, note that all eigenvalues of A(2) are strictly less than one. To see this, we work with

p(λ) =
∣∣∣A−λI2nx+n2

x

∣∣∣
=
∣∣∣∣∣∣
⎡⎣ hx −λInx 0nx×nx 0nx×n2

x

0nx×nx hx −λInx
1
2 Hxx

0n2
x×nx

0n2
x×nx

hx ⊗hx −λIn2
x

⎤⎦∣∣∣∣∣∣
=
∣∣∣∣ B11 B12

B21 B22

∣∣∣∣
= |B11||B22|,

where we let

B11 ≡
[

hx −λInx 0nx×nx

0nx×nx hx −λInx

]
,

B12 ≡
[

0nx×n2
x

1
2 Hxx

]
,

B21 ≡
[

0n2
x×nx

0n2
x×nx

]
,

and

B22 ≡hx ⊗hx −λIn2
x

and we use the fact that ∣∣∣∣U C
0 Y

∣∣∣∣=|U||Y|,

where U is an m×m matrix and Y is an n×n matrix. Hence,

p(λ)=
∣∣∣∣[ hx −λInx 0nx×nx

0nx×nx hx −λInx

]∣∣∣∣∣∣∣hx ⊗hx −λIn2
x

∣∣∣= ∣∣hx −λInx

∣∣∣∣hx −λInx

∣∣∣∣∣hx ⊗hx −λIn2
x

∣∣∣.
The eigenvalues are determined from

∣∣hx −λInx

∣∣=0 or
∣∣∣hx ⊗hx −λIn2

x

∣∣∣=0. The absolute values of all eigenvalues

of the first problem are strictly less than one by assumption. That is, |λi|<1 i=1,2,...,nx . This is also the case for the
second problem because the eigenvalues of hx ⊗hx are λiλj for i=1,2,...,nx and j=1,2,...,nx .

A.4. Second order: unconditional second moments

For the variance, we have

V

(
z(2)t+1

)
=A(2)

V

(
z(2)t

)(
A(2)

)′ +B(2)V
(
ξ
(2)
t+1

)(
B(2)

)′

as

E

[
z(2)t

(
ξ
(2)
t+1

)′]=E

⎡⎢⎢⎣
xf

t ε
′
t+1 xf

t (εt+1 ⊗εt+1 −vec(Ine))
′

xs
t ε

′
t+1 xs

t (εt+1 ⊗εt+1 −vec(Ine))
′(

xf
t ⊗xf

t

)
ε′

t+1

(
xf

t ⊗xf
t

)
(εt+1 ⊗εt+1 −vec(Ine))

′

xf
t

(
εt+1 ⊗xf

t

)′
xf

t

(
xf

t ⊗εt+1

)′

xs
t

(
εt+1 ⊗xf

t

)′
xs

t

(
xf

t ⊗εt+1

)′(
xf

t ⊗xf
t

)(
εt+1 ⊗xf

t

)′ (
xf

t ⊗xf
t

)(
xf

t ⊗εt+1

)′

⎤⎥⎥⎥⎦=0.
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Now, we only need to compute V

(
ξ
(2)
t+1

)
:

V

(
ξ
(2)
t+1

)
= E

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

εt+1

εt+1 ⊗εt+1 −vec
(
Ine

)
εt+1 ⊗xf

t

xf
t ⊗εt+1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

εt+1

εt+1 ⊗εt+1 −vec
(
Ine

)
εt+1 ⊗xf

t

xf
t ⊗εt+1

⎤⎥⎥⎥⎦
′⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Ine E

[
εt+1 (εt+1 ⊗εt+1)

′]
E
[
(εt+1 ⊗εt+1)ε

′
t+1

]
E

[(
εt+1 ⊗εt+1 −vec

(
Ine

))(
εt+1 ⊗εt+1 −vec

(
Ine

))′]
0 0
0 0

0 0
0 0

E

[(
εt+1 ⊗xf

t

)(
εt+1 ⊗xf

t

)′]
E

[(
εt+1 ⊗xf

t

)(
xf

t ⊗εt+1

)′]
E

[(
xf

t ⊗εt+1

)(
εt+1 ⊗xf

t

)′]
E

[(
xf

t ⊗εt+1

)(
xf

t ⊗εt+1

)′]

⎤⎥⎥⎥⎥⎥⎥⎦.

This variance is finite when εt+1 has a finite fourth moment. All elements in this matrix can be computed element-
by-element.

A.5. Second order: unconditional third and fourth moments

We consider the system xt+1 =a+Axt +vt+1, where A is stable and vt+1 are mean-zero innovations. Thus, the pruned
state-space representation of DSGE models belong to this class. For notational convenience, the system is expressed in
deviation from its mean as a=(I−A)E[xt ]. Therefore

xt+1 =(I−A)E[xt ]+Axt +vt+1 ⇒
xt+1 −E[xt ]=A(xt −E [xt ])+vt+1 ⇒

zt+1 =Azt +vt+1.

We then have

zt+1 ⊗zt+1 = (Azt +vt+1)⊗(Azt +vt+1)

= Azt ⊗Azt +Azt ⊗vt+1 +vt+1 ⊗Azt +vt+1 ⊗vt+1,

zt+1 ⊗zt+1 ⊗zt+1 = Azt ⊗Azt ⊗Azt +Azt ⊗Azt ⊗vt+1

+Azt ⊗vt+1 ⊗Azt +Azt ⊗vt+1 ⊗vt+1

+vt+1 ⊗Azt ⊗Azt +vt+1 ⊗Azt ⊗vt+1

+vt+1 ⊗vt+1 ⊗Azt +vt+1 ⊗vt+1 ⊗vt+1

and

zt+1 ⊗zt+1 ⊗zt+1 ⊗zt+1 = Azt ⊗Azt ⊗Azt ⊗Azt +Azt ⊗Azt ⊗Azt ⊗vt+1

+Azt ⊗Azt ⊗vt+1 ⊗Azt +Azt ⊗Azt ⊗vt+1 ⊗vt+1

+Azt ⊗vt+1 ⊗Azt ⊗Azt +Azt ⊗vt+1 ⊗Azt ⊗vt+1

+Azt ⊗vt+1 ⊗vt+1 ⊗Azt +Azt ⊗vt+1 ⊗vt+1 ⊗vt+1

+vt+1 ⊗Azt ⊗Azt ⊗Azt +vt+1 ⊗Azt ⊗Azt ⊗vt+1

+vt+1 ⊗Azt ⊗vt+1 ⊗Azt +vt+1 ⊗Azt ⊗vt+1 ⊗vt+1

+vt+1 ⊗vt+1 ⊗Azt ⊗Azt +vt+1 ⊗vt+1 ⊗Azt ⊗vt+1

+vt+1 ⊗vt+1 ⊗vt+1 ⊗Azt +vt+1 ⊗vt+1 ⊗vt+1 ⊗vt+1.
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Thus, to solve for E[zt+1 ⊗zt+1 ⊗zt+1], the innovations need to have a finite third moment. At second
order, vt+1 depends on εt+1 ⊗εt+1, meaning that εt+1 must have a finite sixth moment. Similarly, to solve for
E[zt+1 ⊗zt+1 ⊗zt+1 ⊗zt+1], the innovations need to have finite fourth moments. At second order, vt+1 depends on
εt+1 ⊗εt+1, meaning that εt+1 must have a finite eighth moment.

A.6. Coefficients for the pruned state-space system at third order

A(3)≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hx 0 0 0 0 0
0 hx

1
2 Hxx 0 0 0

0 0 hx ⊗hx 0 0 0
3
6 hσσxσ

2 0 0 hx Hxx
1
6 Hxxx

hx ⊗ 1
2 hσσ σ 2 0 0 0 hx ⊗hx hx ⊗ 1

2 Hxx

0 0 0 0 0 hx ⊗hx ⊗hx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

B(3)≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ση 0 0 0
0 0 0 0
0 ση⊗ση ση⊗hx hx ⊗ση
0 0 0 0

ση⊗ 1
2 hσσ σ 2 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ση⊗hx ση⊗ 1
2 Hxx 0 0

0 ση⊗hx ⊗hx hx ⊗hx ⊗ση hx ⊗ση⊗hx

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

hx ⊗ση⊗ση ση⊗hx⊗ση ση⊗ση⊗hx ση⊗ση⊗ση

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

ξ
(3)
t+1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt+1

εt+1 ⊗εt+1 −vec
(
Ine

)
εt+1 ⊗xf

t

xf
t ⊗εt+1

εt+1 ⊗xs
t

εt+1 ⊗xf
t ⊗xf

t

xf
t ⊗xf

t ⊗εt+1

xf
t ⊗εt+1 ⊗xf

t

xf
t ⊗εt+1 ⊗εt+1

εt+1 ⊗xf
t ⊗εt+1

εt+1 ⊗εt+1 ⊗xf
t(

εt+1 ⊗εt+1 ⊗εt+1
)−E

[(
εt+1 ⊗εt+1 ⊗εt+1

)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c(3)≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0nx×1
1
2 hσσ σ 2

(ση⊗ση)vec
(
Ine

)
1
6 hσσσ σ 3

0n2
x×1

(ση⊗ση⊗ση)E[(εt+1 ⊗εt+1 ⊗εt+1
)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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C(3)≡[ gx + 3
6 gσσxσ

2 gx
1
2 Gxx gx Gxx

1
6 Gxxx

]
,

and
d(3)≡ 1

2 gσσ σ 2 + 1
6 gσσσ σ 3.

A.7. Third order: stability

To prove stability:

p(λ)= ∣∣A(3)−λI
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

⎡⎢⎢⎢⎢⎢⎢⎣

hx−λI 0 0 0 0 0
0 hx−λI 1

2 Hxx 0 0 0
0 0 hx ⊗hx−λI 0 0 0

3
6 hσσxσ

2 0 0 hx−λI Hxx
1
6 Hxxx

hx ⊗ 1
2 hσσ σ 2 0 0 0 hx ⊗hx−λI hx ⊗ 1

2 Hxx
0 0 0 0 0 hx ⊗hx ⊗hx−λI

⎤⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣[B11 B12

B21 B22

]∣∣∣∣,
where

B11 ≡
⎡⎢⎣hx−λI 0 0

0 hx−λI 1
2 Hxx

0 0 hx ⊗hx−λI

⎤⎥⎦ B12 ≡
⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦,

B21 ≡
⎡⎢⎣

3
6 hσσxσ

2 0 0

hx ⊗ 1
2 hσσ σ 2 0 0

0 0 0

⎤⎥⎦ B22 ≡
⎡⎢⎣hx−λI Hxx

1
6 Hxxx

0 hx ⊗hx−λI hx ⊗ 1
2 Hxx

0 0 hx ⊗hx ⊗hx−λI

⎤⎥⎦,
=|B11||B22|

=|hx −λI||hx −λI||hx ⊗hx −λI||B22|
(using the result from the proof in Appendix A.3)

=|hx −λI||hx −λI||hx ⊗hx −λI||hx −λI||hx ⊗hx−λI||hx ⊗hx ⊗hx−λI|
(using the rule on block determinants repeatedly on B22).

The eigenvalue λ solves p(λ)=0, which implies:

|hx−λI|=0 or |hx ⊗hx−λI|=0 or |(hx ⊗hx ⊗hx)−λI|=0.

The absolute values of all eigenvalues of the first problem are strictly less than one by assumption. That is |λi|<1,
i=1,2,...,nx . This is also the case for the second problem, because the eigenvalues of hx ⊗hx are λiλj for i=1,2,...,nx

and j=1,2,...,nx . The same argument ensures that the absolute values of all eigenvalues of the third problem are also
less than one. This shows that all eigenvalues of A(3) have modulus less than one.

A.8. Third order: unconditional second moments

For the variance, we have

V

[
z(3)t+1

]
= A(3)V

[
z(3)t

](
A(3)

)′+B(3)V
[
ξ
(3)
t+1

](
B(3)

)′

+A(3)Cov
[
z(3)t ,ξ

(3)
t+1

](
B(3)

)′+B(3)Cov
[
ξ
(3)
t+1,z

(3)
t

](
A(3)

)′
.

Contrary to a second-order approximation, Cov
[
ξ
(3)
t+1,z

(3)
t

]
�=0. This is seen as follows:
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E

[
z(3)t

(
ξ
(3)
t+1

)′]=E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xf
t

xs
t

xf
t ⊗xf

t

xrd
t

xf
t ⊗xs

t

xf
t ⊗xf

t ⊗xf
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×
[
ε′t+1

(
εt+1 ⊗εt+1 −vec

(
Ine

))′ (
εt+1 ⊗xf

t

)′ (
xf

t ⊗εt+1

)′ (
εt+1 ⊗xs

t
)′ (
εt+1 ⊗xf

t ⊗xf
t

)′

(
xf

t ⊗xf
t ⊗εt+1

)′ (
xf

t ⊗εt+1 ⊗xf
t

)′ (
xf

t ⊗εt+1 ⊗εt+1

)′ (
εt+1 ⊗xf

t ⊗εt+1

)′(
εt+1 ⊗εt+1 ⊗xf

t

)′ ((
εt+1 ⊗εt+1 ⊗εt+1

)−E
[(
εt+1 ⊗εt+1 ⊗εt+1

)])′ ]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0n2
x×ne

0n2
x×n2

e
0n2

x×nenx
0n2

x×nxne
0n2

x×nxne
0n2

x×nen2
x

0n2
x×n2

xne
0n2

x×n2
xne

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0n2
x×ne

0n2
x×n2

e
0n2

x×nenx
0n2

x×nxne
0n2

x×nxne
0n2

x×nen2
x

0n2
x×n2

xne
0n2

x×n2
xne

0n3
x×ne

0n3
x×n2

e
0n3

x×nenx
0n3

x×nxne
0n3

x×nxne
0n3

x×nen2
x

0n3
x×n2

xne
0n3

x×n2
xne

R1,1 R1,2 R1,3 0nx×n3
e

R2,1 R2,2 R2,3 0nx×n3
e

R3,1 R3,2 R3,3 0n2
x×n3

e

R4,1 R4,2 R4,3 0nx×n3
e

R5,1 R5,2 R5,3 0n2
x×n3

e

R6,1 R6,2 R6,3 0n3
x×n3

e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=[0 R 0

]
.

The R matrix can easily be computed element-by-element. To compute V

[
ξ
(3)
t+1

]
, we consider

E

[
ξ
(3)
t+1

(
ξ
(3)
t+1

)′]=E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt+1

εt+1 ⊗εt+1 −vec
(
Ine

)
εt+1 ⊗xf

t

xf
t ⊗εt+1

εt+1 ⊗xs
t

εt+1 ⊗xf
t ⊗xf

t

xf
t ⊗xf

t ⊗εt+1

xf
t ⊗εt+1 ⊗xf

t

xf
t ⊗εt+1 ⊗εt+1

εt+1 ⊗xf
t ⊗εt+1

εt+1 ⊗εt+1 ⊗xf
t(

εt+1 ⊗εt+1 ⊗εt+1
)−E

[(
εt+1 ⊗εt+1 ⊗εt+1

)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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×
[
ε′t+1

(
εt+1 ⊗εt+1 −vec

(
Ine

))′ (
εt+1 ⊗xf

t

)′ (
xf

t ⊗εt+1

)′ (
εt+1 ⊗xs

t
)′ (
εt+1 ⊗xf

t ⊗xf
t

)′

(
xf

t ⊗xf
t ⊗εt+1

)′ (
xf

t ⊗εt+1 ⊗xf
t

)′ (
xf

t ⊗εt+1 ⊗εt+1

)′ (
εt+1 ⊗xf

t ⊗εt+1

)′(
εt+1 ⊗εt+1 ⊗xf

t

)′ ((
εt+1 ⊗εt+1 ⊗εt+1

)−E
[(
εt+1 ⊗εt+1 ⊗εt+1

)])′ ]
.

Note that V

[
ξ
(3)
t+1

]
contains (εt+1 ⊗εt+1 ⊗εt+1) squared, meaning that εt+1 must have a finite sixth moment for

V

[
ξ
(3)
t+1

]
to be finite. Again, all elements in V

[
ξ
(3)
t+1

]
can be computed element-by-element. For further details, we refer to

the article’s Online Appendix, which also discusses how V
[
ξ
(3)
t+1

]
can be computed in a more memory-efficient manner.

For the auto-covariance, we have

Cov
(

z(3)t+1,z
(3)
t

)
= Cov

(
c(3)+A(3)z(3)t +B(3)ξ (3)t+1,z

(3)
t

)
= A(3)Cov

(
z(3)t ,z(3)t

)
+B(3)Cov

(
ξ
(3)
t+1,z

(3)
t

)
and

Cov
(

z(3)t+2,z
(3)
t

)
= Cov

(
c(3)+A(3)z(3)t+1 +B(3)ξ (3)t+2,z

(3)
t

)
= Cov

(
c(3)+A(3)

(
c(3)+A(3)z(3)t +B(3)ξ (3)t+1

)
+B(3)ξ (3)t+2,z

(3)
t

)
= Cov

(
c(3)+A(3)c(3)+

(
A(3)

)2
z(3)t +A(3)B(3)ξ (3)t+1 +B(3)ξ (3)t+2,z

(3)
t

)
= Cov

((
A(3)

)2
z(3)t ,z(3)t

)
+Cov

(
A(3)B(3)ξ (3)t+1,z

(3)
t

)
+Cov

(
B(3)ξ (3)t+2,z

(3)
t

)
=
(

A(3)
)2

Cov
(

z(3)t ,z(3)t

)
+A(3)B(3)Cov

(
ξ
(3)
t+1,z

(3)
t

)
+B(3)Cov

(
ξ
(3)
t+2,z

(3)
t

)
.

So, for s=1,2,3...

Cov
(

z(3)t+s,z
(3)
t

)
=
(

A(3)
)s

V

[
z(3)t

]
+
∑s−1

j=0

(
A(3)

)s−1−j
B(3)Cov

(
ξ
(3)
t+1+j,z

(3)
t

)
and we therefore only need to compute Cov

(
ξ
(3)
t+1+j,z

(3)
t

)
:

E

[
z(3)t

(
ξ
(3)
t+1+j

)′]=E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xf
t

xs
t

xf
t ⊗xf

t

xrd
t

xf
t ⊗xs

t

xf
t ⊗xf

t ⊗xf
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×
[
ε′t+1+j

(
εt+1+j ⊗εt+1+j −vec

(
Ine

))′ (
εt+1+j ⊗xf

t+j

)′(
xf

t+j ⊗εt+1+j

)′ (
εt+1+j ⊗xs

t+j

)′ (
εt+1+j ⊗xf

t+j ⊗xf
t+j

)′(
xf

t+j ⊗xf
t+j ⊗εt+1+j

)′ (
xf

t+j ⊗εt+1+j ⊗xf
t+j

)′
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xf

t+j ⊗εt+1+j ⊗εt+1+j

)′ (
εt+1+j ⊗xf

t+j ⊗εt+1+j

)′(
εt+1+j ⊗εt+1+j ⊗xf

t+j

)′ ((
εt+1+j ⊗εt+1+j ⊗εt+1+j

)−E
[(
εt+1 ⊗εt+1 ⊗εt+1

)])′ ]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0n2
x×ne

0n2
x×n2

e
0n2

x×nenx
0n2

x×nxne
0n2

x×nxne
0n2

x×nen2
x

0n2
x×n2

xne
0n2

x×n2
xne

0nx×ne 0nx×n2
e

0nx×nenx 0nx×nxne 0nx×nxne 0nx×nen2
x

0nx×n2
xne

0nx×n2
xne

0n2
x×ne

0n2
x×n2

e
0n2

x×nenx
0n2

x×nxne
0n2

x×nxne
0n2

x×nen2
x

0n2
x×n2

xne
0n2

x×n2
xne

0n3
x×ne

0n3
x×n2

e
0n3

x×nenx
0n3

x×nxne
0n3

x×nxne
0n3

x×nen2
x

0n3
x×n2

xne
0n3

x×n2
xne

Rj
1,1 Rj

1,2 Rj
1,3 0nx×n3

e

Rj
2,1 Rj

2,2 Rj
2,3 0nx×n3

e

Rj
3,1 Rj

3,2 Rj
3,3 0n2

x×n3
e

Rj
4,1 Rj

4,2 Rj
4,3 0nx×n3

e

Rj
5,1 Rj

5,2 Rj
5,3 0n2

x×n3
e

Rj
6,1 Rj

6,2 Rj
6,3 0n3

x×n3
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=[ 0 Rj 0

]
.

The matrix Rj can then be computed element-by-element. For further details, see the article’s Online Appendix.

A.9. Third order: unconditional third and fourth moments

The proof proceeds as for a second-order approximation except that, at third order, vt+1 also depends on εt+1 ⊗εt+1 ⊗εt+1.
Hence, unconditional third moments exist if εt+1 has a finite ninth moment, and the unconditional fourth moment exists
if εt+1 has a finite twelfth moment.

A.10. GIRFs: second order

We first note that

xf
t+l ⊗xf

t+l =
(

hl
xxf

t +
l∑

j=1
hl−j

x σηεt+j

)
⊗
(

hl
xxf

t +
l∑

j=1
hl−j

x σηεt+j

)

=hl
xxf

t ⊗hl
xxf

t +hl
xxf

t ⊗
l∑

j=1
hl−j

x σηεt+j

+
l∑

j=1
hl−j

x σηεt+j ⊗hl
xxf

t +
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j.

Next, let

x̃f
t+l ⊗ x̃f

t+l =hl
xxf

t ⊗hl
xxf

t +hl
xxf

t ⊗
l∑

j=1
hl−j

x σηδt+j +
l∑

j=1
hl−j

x σηδt+j ⊗hl
xxf

t

+
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j,

where we define δt+j such that δt+1 =ν+(I−S)εt+1 and δt+j =εt+j for j �=1. This means

GIRFxf ⊗xf

(
l,νi,x

f
t

)
=E

[
xf

t+l ⊗xf
t+l |xf

t ,εi,t+1 =νi

]
−E

[
xf

t+l ⊗xf
t+l |xf

t

]
=E

[
x̃f

t+l ⊗ x̃f
t+l |xf

t

]
−E

[
xf

t+l ⊗xf
t+l |xf

t

]
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=E[hl
xxf

t ⊗hl−1
x σηδt+1 +hl−1

x σηδt+1 ⊗hl
xxf

t

+
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j

−
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j|xf
t ]

=E[hl
xxf

t ⊗hl−1
x ση

(
ν+(I−S)εt+1

)+hl−1
x ση

(
ν+(I−S)εt+1

)⊗hl
xxf

t

+
(

hl−1
x ση

(
ν+(I−S)εt+1

)+ l∑
j=2

hl−j
x σηεt+j

)

⊗
(

hl−1
x ση

(
ν+(I−S)εt+1

)+ l∑
j=2

hl−j
x σηεt+j

)

−
(

hl−1
x σηεt+1 +

l∑
j=2

hl−j
x σηεt+j

)
⊗
(

hl−1
x σηεt+1 +

l∑
j=2

hl−j
x σηεt+j

)
|xf

t ]

=hl
xxf

t ⊗hl−1
x σην+hl−1

x σην⊗hl
xxf

t +hl−1
x σην⊗hl−1

x σην

+
(

hl−1
x ⊗hl−1

x

)(
E
[
ση(I−S)εt+1 ⊗ση(I−S)εt+1

]−E
[
σηεt+1 ⊗σηεt+1

])
.

With E[ση(I−S)εt+1 ⊗ση(I−S)εt+1]=(ση(I−S)⊗ση(I−S))vec(I) and E
[
σηεt+1 ⊗σηεt+1

]
= (ση⊗ση)vec(I)

we then obtain (22).

A.11. Second-order accuracy of linear IRFs

Let xf
t =0 and suppose ν(i,1)=±1 and ν(j,1)=0 for i �= j. These assumptions imply

σην⊗σην+�=σην⊗σην+((ση(I−S)⊗ση(I−S))−(ση⊗ση))vec(I)

=(ση⊗ση){S⊗S+((I−S)⊗(I−S))−I⊗I}vec(I)

=(ση⊗ση){2(S⊗S)−I⊗S−S⊗I}vec(I)

because ν⊗ν=(S⊗S)vec(I) and In2
e
=I⊗I, where I has dimension ne ×ne. Next, let Di (i,i)=1 with all remaining

elements of Di equal to zero. Hence, I can be written as I=∑nε
j=1 Dj and S=Di . This implies

σην⊗σην+�=(ση⊗ση)

⎧⎪⎪⎨⎪⎪⎩−
nε∑

j=1
i �=j

Dj ⊗Di −
nε∑

j=1
i �=j

Di ⊗Dj

⎫⎪⎪⎬⎪⎪⎭vec

( nε∑
k=1

Dk

)

=(ση⊗ση)

⎧⎪⎪⎨⎪⎪⎩−
nε∑

j=1
i �=j

nε∑
k=1

(
Dj ⊗Di

)
vec(Dk)−

nε∑
j=1
i �=j

nε∑
k=1

(
Di ⊗Dj

)
vec(Dk)

⎫⎪⎪⎬⎪⎪⎭
=(ση⊗ση)

⎧⎪⎪⎨⎪⎪⎩−
nε∑

j=1
i �=j

nε∑
k=1

vec
(
DiDkDj

)− nε∑
j=1
i �=j

nε∑
k=1

vec
(
DjDkDi

)⎫⎪⎪⎬⎪⎪⎭
=0

because DiDk Dj is only different from the zero matrix when i=k = j, but we have i �= j. Thus, GIRFxf ⊗xf

(
l,νi,x

f
t

)
=0

and GIRFxs

(
l,νi,x

f
t

)
=0, which proves that GIRFs in a pruned second-order approximation reduce to the IRFs in a

linearized solution when xf
t =0 and ν specified as above.
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A.12. GIRFs: third order

Deriving GIRFxf ⊗xf ⊗xf

(
j,ν,xf

t

)
. We first note that

xf
t+l ⊗xf

t+l ⊗xf
t+l

=hl
xxf

t ⊗hl
xxf

t ⊗hl
xxf

t +hl
xxf

t ⊗
l∑

j=1
hl−j

x σηεt+j ⊗hl
xxf

t

+
l∑

j=1
hl−j

x σηεt+j ⊗hl
xxf

t ⊗hl
xxf

t +
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j ⊗hl
xxf

t

+hl
xxf

t ⊗hl
xxf

t ⊗
l∑

j=1
hl−j

x σηεt+j +hl
xxf

t ⊗
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j

+
l∑

j=1
hl−j

x σηεt+j ⊗hl
xxf

t ⊗
l∑

j=1
hl−j

x σηεt+j +
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j ⊗
l∑

j=1
hl−j

x σηεt+j.

Using the definition of δt+j from Appendix A.10, we have

x̃f
t+l ⊗ x̃f

t+l ⊗ x̃f
t+l =hl

xxf
t ⊗hl

xxf
t ⊗hl

xxf
t +hl

xxf
t ⊗

l∑
j=1

hl−j
x σηδt+j ⊗hl

xxf
t

+
l∑

j=1
hl−j

x σηδt+j ⊗hl
xxf

t ⊗hl
xxf

t

+
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j ⊗hl
xxf

t

+hl
xxf

t ⊗hl
xxf

t ⊗
l∑

j=1
hl−j

x σηδt+j

+hl
xxf

t ⊗
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j

+
l∑

j=1
hl−j

x σηδt+j ⊗hl
xxf

t ⊗
l∑

j=1
hl−j

x σηδt+j

+
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j ⊗
l∑

j=1
hl−j

x σηδt+j.

Simple algebra gives

GIRFxf ⊗xf ⊗xf

(
j,νi,x

f
t

)
=E

[
Qxf

t+l ⊗ x̃f
t+l ⊗Qxf

t+l |xf
t

]
−E

[
xf

t+l ⊗xf
t+l ⊗xf

t+l |xf
t

]
=hl

xxf
t ⊗hl−1

x σην⊗hl
xxf

t

+hl−1
x σην⊗

((
hl

x ⊗hl
x

)(
xf

t ⊗xf
t

))
+
((

hl
x ⊗hl

x

)(
xf

t ⊗xf
t

))
⊗hl−1

x σην

+
(

hl−1
x ⊗hl−1

x

)
[(σην⊗σην)+�]⊗hl

xxf
t

+hl
xxf

t ⊗
(

hl−1
x ⊗hl−1

x

)
[(σην⊗σην)+�]

+hl−1
x σην⊗hl

xxf
t ⊗hl−1

x σην

+
(

hl−1
x ση(I−S)⊗hl

xxf
t ⊗hl−1

x ση(I−S)−hl−1
x ση⊗hl

xxf
t ⊗hl−1

x ση
)

vec(I)
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+
(

hl−1
x σην⊗hl−1

x ση(I−S)⊗hl−1
x ση(I−S)

)
vec(I)

+
(

hl−1
x ση(I−S)⊗hl−1

x ση(I−S)⊗hl−1
x σην

)
vec(I)

+
((

hl−1
x ση(I−S)⊗hl−1

x σην
)
⊗hl−1

x ση(I−S)
)

vec(I)

+
{

hl−1
x ση(I−S)⊗hl−1

x ση(I−S)⊗hl−1
x ση(I−S)

}
m3(εt+1,εt+1,εt+1

)
+

l∑
j=2

hl−1
x σην⊗

(
hl−j

x ση⊗hl−j
x ση

)
vec(I)

+
l∑

j=2

(
hl−j

x ση⊗hl−j
x ση

)
vec(I)⊗hl−1

x σην

+
l∑

j=2

(
hl−j

x ση⊗hl−1
x σην⊗hl−j

x ση
)

vec(I)

−
(

hl−1
x ση⊗hl−1

x ση⊗hl−1
x ση

)
m3(εt+1,εt+1,εt+1

)
,

where m3(εt+1,εt+1,εt+1
)

has dimension n3
e ×1 and contains all the third moments of εt+1.

Deriving GIRFxf ⊗xs

(
j,ν,

(
xf

t ,x
s
t

))
. Using the law of motion for xf

t ⊗xs
t , we first note that

xf
t+l ⊗xs

t+l =(hx ⊗hx)
l
(

xf
t ⊗xs

t

)
+

l−1∑
j=0
(hx ⊗hx)

l−1−j
(
hx ⊗ 1

2 Hxx
)(

xf
t+j ⊗xf

t+j ⊗xf
t+j

)

+
l−1∑
j=0
(hx ⊗hx)

l−1−j
(

hx ⊗ 1
2 hσσ σ 2

)
xf

t+j

+
l−1∑
j=0
(hx ⊗hx)

l−1−j
(
ση⊗ 1

2 hσσ σ 2
)
εt+1+j

+
l−1∑
j=0
(hx ⊗hx)

l−1−j (ση⊗hx)
(
εt+1+j ⊗xs

t+j

)
+

l−1∑
j=0
(hx ⊗hx)

l−1−j
(
ση⊗ 1

2 Hxx

)(
εt+1+j ⊗xf

t+i ⊗xf
t+j

)
Using the definition of δt+j from Appendix A.10, we obtain

x̃f
t+l ⊗ x̃s

t+l =(hx ⊗hx)
l
(

xf
t ⊗xs

t

)
+

l−1∑
j=0
(hx ⊗hx)

l−1−j
(

hx ⊗ 1
2 Hxx

)(
x̃f

t+j ⊗ x̃f
t+j ⊗ x̃f

t+j

)
+

l−1∑
j=0
(hx ⊗hx)

l−1−j
(

hx ⊗ 1
2 hσσ σ 2

)
Qxf

t+j

+
l−1∑
j=0
(hx ⊗hx)

l−1−j
(
ση⊗ 1

2 hσσ σ 2
)
δt+1+j

+
l−1∑
j=0
(hx ⊗hx)

l−1−j (ση⊗hx)
(
δt+1+j ⊗ x̃s

t+j

)
+

l−1∑
j=0
(hx ⊗hx)

l−1−j
(
ση⊗ 1

2 Hxx

)(
δt+1+j ⊗ x̃f

t+j ⊗ x̃f
t+j

)
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Simple algebra then implies

GIRFxf ⊗xs

(
j,νi,

(
xf

t ,x
s
t

))
=

l−1∑
j=1
(hx ⊗hx)

l−1−j
(

hx ⊗ 1
2 Hxx

)
GIRFxf ⊗xf ⊗xf

(
j,νi,x

f
t

)
+

l−1∑
j=1
(hx ⊗hx)

l−1−j
(

hx ⊗ 1
2 hσσ σ 2

)
GIRFxf (j,νi)

+(hx ⊗hx)
l−1
(
σην⊗

(
hxxs

t + 1
2 Hxx

(
xf

t ⊗xf
t

)
+ 1

2 hσσ σ 2
))

A.13. An alternative interpretation

The deposit rate rb
t only enters in equations (6), (12), and (15) of the model summary in Appendix A.14. But note that

rt =rb
t −ω×xhrt,L and when substituted into the Taylor rule we get

rb
t = (1−ρr)rss +ρrrb

t−1 +(1−ρr)

(
βπ log

(
πt

πss

)
+βy log

(
yt

z∗
t Yss

))
+ω×xhrt,L −ρrω×xhrt−1,L +(1−ρr)βxhr

(
xhrt,L −Xt,L

)
.

Given this substitution, rb
t only enters in equations (6) and (15) of the model summary in Appendix A.14. This implies

that our model is equivalent to a standard New Keynesian model with market completeness, but with a Taylor rule for rb
t

that depends on past and current values of the excess holding period return on the long bond.

A.14. Making the DSGE model stationary

We eliminate all trending variables in the model by adopting the transformation Ct ≡ ct
z∗
t

, Rk
t ≡ϒt rk

t , Qt ≡ϒtqt , It ≡ it
ϒt z∗

t
,

Wt ≡ wt
z∗
t

, Yt ≡ yt
z∗
t

, Kt+1 ≡ kt+1

ϒ

1
1−θ

t zt

= kt+1
ϒt z∗

t
, and �t ≡ λt

mt(z∗
t )

−1 . Here qt is the Lagrangian multiplier for the law of motion

for capital and mt for the value function in equation (27); see Rudebusch and Swanson (2012). Hence, μλ,t+1 ≡ λt+1
λt

=
�t+1
�t

μ−1
z∗,t+1

(
Et

[
V 1−φ3

t+1

]) φ3
1−φ3 V −φ3

t+1 , and the value of ψ that eliminates capital adjustment costs in the steady state is

therefore given by ψ≡ Iss
Kss
μϒ,ssμz∗,ss.

The transformed equilibrium conditions are summarized below. From these equilibrium conditions, it is
straightforward to derive a closed-form solution for the steady state of the model.

Eq. The Households

1 Vt =
[

dt
1−φ2

((
Ct −bCt−1μ

−1
z∗,t

)1−φ2 −1

)
+dtφ0

(1−ht)
1−φ1

1−φ1

]
+β

(
Et

[
V 1−φ3

t+1

]) 1
1−φ3

2 �t =dt

(
Ct −bCt−1μ

−1
z∗,t

)−φ2

−bβEt

⎡⎢⎣
⎛⎝[

Et

[
V

1−φ3
t+1

]] 1
1−φ3

Vt+1(s)

⎞⎠φ3

dt+1

(
Ct+1 −bCtμ

−1
z∗,t+1

)−φ2 (
μz∗,t+1

)−1

⎤⎥⎦
3 Qt =Et

βμλ,t+1
μϒ,t+1

[Rk
t+1 +Qt+1(1−δ)−Qt+1

κ
2

(
It+1
Kt+1

μϒ,t+1μz∗,t+1 − Iss
kss
μϒ,ssμz∗,ss

)2

+Qt+1κ
(

It+1
Kt+1

μϒ,t+1μz∗,t+1 − Iss
kss
μϒ,ssμz∗,ss

)
It+1
Kt+1

μϒ,t+1μz∗,t+1]
4 dtφ0(1−ht)

−φ1 =�tWt

5 1=Qt

(
1−κ

(
It
kt
μϒ,tμz∗,t − Iss

Kss
μϒ,ssμz∗,ss

))
6 1=Et

[
βμλt+1

exp
{
rb

t

}
πt+1

]
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The Firms
7 mctatθμϒ,tμ

1−θ
z,t Kθ−1

t h1−θ
t =Rk

t

8 mct (1−θ)atμ
−θ
1−θ
ϒ,t μ

−θ
z,t Kθt h−θ

t =Wt

9 (η−1)
η X 2

t =Ytmctp̃
−η−1
t +Et

[
αβμλ,t+1

(
p̃t

p̃t+1

)−η−1( 1
πt+1

)−η
(η−1)
η X 2

t+1μz∗,t+1

]
10 X 2

t =Ytp̃
−η
t +Et

[
αβμλ,t+1

(
p̃t

p̃t+1

)−η( 1
πt+1

)1−η
X 2

t+1μz∗,t+1

]
11 1=(1−α)p̃1−η

t +α
(

1
πt

)1−η

The Financial Intermediary
12 rb

t =rt +ω×xhrt,L

13 Pt,1 = 1
exp{rt}

14 Pt,k =Et

[
βμλ,t+1

1
πt+1

Pt+1,k−1

]
for k =2,3,...,K

15 xhrt,k ≡Et
[
logPt+1,k−1 −logPt,k

]−rt for k =2,3,...,K

The Central Bank

16 rt =rss(1−ρr)+ρrrt−1 +(1−ρr)
(
βπ log

(
πt
πss

)
+βy log

(
Yt
Yss

))
+(1−ρr)βxhr

(
xhrt,L −Xt,L

)
17 Xt,L =(1−γ )xhrt,L +γEt

[
Xt+1,L

]
Other relations

18 at

(
Ktμ

−1
1−θ
ϒ,t μ

−1
z,t

)θ
h1−θ

t =Ytst+1

19 st+1 =(1−α)p̃−η
t +απηt st

20 Kt+1 =(1−δ)Kt
(
μϒ,tμz∗,t

)−1 +It

−Kt
(
μϒ,tμz∗,t

)−1 κ
2

(
Ii
Kt
μϒ,tμz∗,t − Iss

Kss
μϒ,ssμz∗,ss

)2

21 Yt =Ct +It +gt

22 μz∗,t ≡μθ/(1−θ)
ϒ,t μz,t

Exogenous processes
23 log

(
μz,t

)= log
(
μz,ss

)
and zt+1 ≡ztμz,t+1 (i.e. a deterministic trend)

24 log
(
μϒ,t

)= logμϒ,ss and ϒt+1 ≡ϒtμϒ,t+1 (i.e. a deterministic trend)
25 logat+1 =ρa logat +σaεa,t+1

26 log
(

Gt+1
Gss

)
=ρG log

(
Gt
Gss

)
+σGεG,t+1

27 logdt+1 =σd εd ,t+1

A.15. An efficient perturbation approximation

To formally present our efficient perturbation approximation, consider the decomposition yt ≡
[ (

ymacro
t

)′ (ybonds
t

)′ ] and

similarly for all derivatives of g(xt ,σ ). Here, ymacro
t refers to the control variables needed to solve the model without

feedback effects from long-term bond prices to the real economy (when ω=0 and βxhr =0), whereas ybonds
t denotes the

remaining variables related to pricing government bonds and computing excess holding period returns. Our three-step
perturbation approximation is

Step 1:Solve for
(
gmacro

x ,Gmacro
xx ,Gmacro

xxx
)

and (hx,Hxx,Hxxx) by a standard perturbation algorithm using a version of our
model without feedback effects from government bonds to the real economy. This version of our model has only eleven
control variables and eighteen equations and is solved using the Matlab codes of Binning (2013).

Step 2:Use the perturbation algorithm of Andreasen and Zabczyk (2015) to recursively solve for
(
gbonds

x ,Gbonds
xx ,Gbonds

xxx
)
,

given the derivatives obtained in Step 1.
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Step 3:With the derivatives obtained in Steps 1 and 2, solve for (gσσ ,gσσx,gσσσ ) and (hσσ ,hσσx,hσσσ ) by the standard
perturbation algorithm when using the full model with fifty-four control variables and sixty-one equations.

To maximize the efficiency of our perturbation algorithm, steps 2 and 3 are computed using a FORTRAN
implementation accessible via MEX files in Matlab.

A.16. Data for the application

We use data from the Federal Reserve Bank of St. Louis covering the period 1961.Q3 to 2007.Q4, giving a total of 186
observations. The annualized growth rate in consumption is calculated from real consumption expenditures (PCECC96).
The series for real private fixed investment (FPIC96) is used to calculate the growth rate in investment. Both growth
rates are expressed in per capita terms based on the total population in the U.S. The ratio of government spending to
output is computed as government consumption expenditures and investments divided by gross domestic production. The
annual inflation rate is for consumer prices. The 3-month nominal interest rate is measured by the rate in the secondary
market (TB3MS), and the 10-year nominal rate is from Gürkaynak et al. (2007). As in Rudebusch and Swanson (2012),
observations for the 10-year interest rate from 1961.Q3 to 1971.Q3 are calculated by extrapolation of the estimated
curves in Gürkaynak et al. (2007). All moments related to interest rates are expressed in annualized terms. Finally, we
use average weekly hours of production and non-supervisory employees in manufacturing (AWHMAN) as provided by
the Bureau of Labor Statistics. The series is normalized by dividing it by five times 24 hours, giving a mean level of 0.34.

A.17. Approximate expression for excess holding period return

First,

xhrt,L =Et
[
log
(
Pt+1,L−1

)−log
{
Et
[
Mt,t+1

]
Et
[
Pt+1,L−1

]+Covt
(
Mt,t+1,Pt+1,L−1

)}]−rt .

To first order,

log(xt +yt)≈ log(xss +yss)+ 1

xss +yss
(xt −xss)+ 1

xss +yss
(yt −yss)

and let xt =Et
[
Mt,t+1

]
Et
[
Pt+1,L−1

]
and yt =Covt

(
Mt,t+1,Pt+1,L−1

)
, implying that xt +yt =Pt,L.

Hence,

xhrt,L ≈Et
[
log
(
Pt+1,L−1

)]−logPss,L − 1
Pss,L

(
Et
[
Mt,t+1

]
Et
[
Pt+1,L−1

]−Mss,ss+1Pss,L−1
)

− 1
Pss,L

Covt
(
Mt,t+1,Pt+1,L−1

)−rt

=Et
[
log
(
Pt+1,L−1

)]−logPss,L − Et[Pt+1,L−1]
Pss,L

e−rt−ω×xhrt,L +1− Covt(Mt,t+1,Pt+1,L−1)
Pss,L

−rt

≈Et

[
log
(

Pt+1,L−1
Pss,L

)]
− Et[Pt+1,L−1]

Pss,L

(
e−rss

(
1−rt −ω×xhrt,L +rss

))− Covt(Mt,t+1,Pt+1,L−1)
Pss,L

+1−rt

as

Et
[
Mt,t+1

]=e−rt−ω×xhrt,L ,Pss,L =Mss,ss+1Pss,L−1

and

e−rt−ω×xhrt,L ≈e−rss
(
1−rt −ω×xhrt,L +rss

)
.

Finally, using log
(

Pt+1,L−1
Pss,L−1

)
≈ Pt+1,L−1

Pss,L−1
−1, we obtain (41).
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