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Abstract

In the long run, we are all dead. Nonetheless, even when investigating short-run dynamics,

models require boundary conditions on long-run, forward-looking behavior (e.g., transver-

sality and no-bubble conditions). In this paper, we show how deep learning approximations

can automatically fulfill these conditions despite not directly calculating the steady state,

balanced growth path, or ergodic distribution. The main implication is that we can solve for

transition dynamics with forward-looking agents, confident that long-run boundary condi-

tions will implicitly discipline the short-run decisions, even converging towards the correct

equilibria in cases with steady-state multiplicity. While this paper analyzes benchmarks

such as the neoclassical growth model, the results suggest deep learning may let us calcu-

late accurate transition dynamics with high-dimensional state spaces, and without directly

solving for long-run behavior.
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1 Introduction

But this long run is a misleading guide to current affairs. In the long run we are all

dead—J.M. Keynes, A Tract on Monetary Reform (1923), p. 65.

Computing the solution of dynamic equilibrium models usually requires ensuring that some

economic assumption that rules out an explosive solution (e.g., transversality or no-bubble condi-

tions) holds. These assumptions are variations of “boundary conditions” in ordinary and partial

differential equations but motivated by the forward-looking behavior of economic agents. How

these conditions appear and their concrete form varies from model to model. Still, they are

always present, whether we are solving the deterministic or stochastic version of the model or

formulating the problem in a sequential or recursive structure. Without these conditions, dy-

namic optimization problems are not well-posed and have a multiplicity of solutions, many of

which imply unplausible descriptions of economic behavior.

Unfortunately, these forward-looking boundary conditions are a fundamental limitation when

we want to increase the model’s dimensionality (e.g., raising the number of state variables). With-

out forward-looking boundary conditions, we could compute large models written in a sequential

setup by solving the associated initial value problem or simulating backward-looking recursive

stochastic difference equations. In fact, researchers in natural sciences and engineering routinely

solve stochastic differential equations with initial values in the millions of equations.

Why do boundary conditions make life difficult? Because they force us to solve the model

over a wide range of possible values of the state variables. For example, conditions for recursive

formulations manifest as requiring accurate solutions for arbitrary values of the state variables,

even though one may only care about the solution from a single initial condition.1

But the fact that we might only care about the dynamics of the economy given some initial

conditions suggests an alternative: Can we avoid calculating the steady state, balanced growth

path (BGP), or stationary distribution of the model, which are never reached, and still have

accurate short/medium-run dynamics disciplined, in their economic behavior, by the boundary

conditions? If the answer is yes, we can bypass the most complicated part of solving a dynamic

model, which opens the door to the solution of vastly more complicated macroeconomic models

with transitional dynamics, endogenous growth, aggregate shocks, and agent distributions.

The contribution of our paper is to show how, why, and when deep learning solutions to

macroeconomic models let us achieve this tradeoff. More precisely, we will document numeri-

cally and provide theoretical explanations of how the minimum-norm solutions delivered by deep

learning automatically fulfill the long-run boundary conditions for forward-looking agents re-

quired in many dynamic models. In other words, deep learning allows us to emphasize accurate

1Recall that, in a recursive formulation, we compute the value and policy functions for all values of the state
variables, regardless of whether or not the equilibrium dynamics of the economy will travel through those values.
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short/medium-run dynamics and worry less about precision in the long run, while still ensuring

that agent decisions are disciplined asymptotically.

Since we want to understand when and why this happens, we investigate this tradeoff with

standard benchmark models in macroeconomics, the linear asset pricing and the neoclassical

growth models, rather than jumping to complicated models where the state-of-the-art algorithms

are heuristic. Both the linear asset pricing and the neoclassical growth models are well under-

stood, can be analyzed theoretically, and have benchmark numerical solutions. Furthermore, we

can study cases with multiple steady states in a variation of the neoclassical growth model. Even

in the presence of this multiplicity in long-run boundaries, deep learning will impose the correct

short-run behavior without requiring any information about multiplicity. Finally, we show how

our theoretical understanding of why these techniques work helps in designing deep learning ar-

chitectures that solve for the short-term dynamics in the presence of a long-run BGP, despite

neither providing any information to the architecture to suggest a BGP exists nor training it on

grid points that would make it clear the geometric convergence to the BGP.

The “inductive bias” of deep learning. Collocation/interpolation-style solution methods

for dynamic equilibrium models, the canonical global solution methods in macroeconomics, follow

a straightforward template. First, the researcher chooses a parametric class of approximating

functions on some compact region of the state space and a corresponding set of points one wishes

to fit the approximation exactly (e.g., Chebyshev polynomials for the investment policy and

Chebyshev collocation nodes as the grid points). Next, the researcher solves a system of equations

for all the model equations (e.g., optimality conditions, budget and resource constraints, etc.),

usually organized as residuals, at the grid points to find the coefficients for the approximating

function. When there are more coefficients than grid points, the problem is underdetermined.

Still, one can numerically minimize the sum of the squared residuals by interpolating (i.e., achieve

zero residuals at all grid points). In those cases, many combinations of parameters yield zero

residuals and interpolate the grid points.2

The methods that we employ in this paper follow that same approach, but rather than ap-

proximating with polynomials, we use flexible “deep learning”-style functional forms (e.g., neural

networks).3 The first defining feature of deep learning is massive over-parameterization, where

the number of coefficients of the class of approximations is often orders of magnitude more than

the number of grid points.

2In the case of sequential formulations, the grid points could be points in time. In continuous time, there is a
tight connection between finite-difference solutions to differential equations, interpolation, and quadrature.

3In this paper, we do not need to radically change the algorithm from the familiar collocation template because
we are analyzing low-dimensional models. Consequently, we can choose grid points without concerns about whether
we are covering relevant regions of the state space. High-dimensional models require algorithms to find appropriate
grid points for the fitting process. See Ebrahimi Kahou et al. (2021) for one variation that uses symmetry to
simplify the number of required grid points in high dimensions.
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The second defining feature of deep learning, especially important in higher dimensions, is

that the functional approximations are organized into nested layers (i.e., “deep”) rather than

the flat structure of polynomials or splines. Given the models in this paper are low-dimensional,

the details of the approximation class are less important (unlike in Ebrahimi Kahou et al., 2021,

where a core contribution is a design that enforces symmetry and enables high-dimensional expec-

tations). While “neural networks” is a broad term encompassing everything from linear functions

to complicated functions used in computer vision, experience shows they are usually better with

more structure, nested layers of function composition, and many parameters.4 Deep nesting al-

lows for exponential growth in the representations of the inputs to the network while having only

a linear growth in computational cost.

While the algorithms used in collocation and deep learning might seem narrowly focused

on fitting the function at the grid points, this is just a means to an end. The goal is not

interpolation at the grid points (which are usually a measure-zero subset of the state space) but

rather generalization performance of the function across much larger regions of the state space

(e.g., some expected value of residuals over the domain).

To understand why deep learning generalizes well, one must look beyond the structure of

the approximation class (i.e., the nested layers of activation functions). Instead, the key behind

good generalization performance lies in the optimizers that minimize residuals. Computer science

researchers have shown that an essential ingredient responsible for the empirical success of deep

learning is its use of gradient-based optimization algorithms.5 These include a variety of methods

familiar to economists (e.g., LBFGS and gradient descent) as well as algorithms essential when

there are a huge number of grid points (e.g., stochastic gradient descent and ADAM).

Why does combining a massive number of parameters and a class of gradient-based optimiza-

tion lead to good generalization performance rather than overfitting and multiplicity? Because,

in this situation, theory and practice show us that we have an “inductive” bias towards simple

smooth interpolating solutions (see Belkin, 2021, for details and a discussion of how an appropri-

ate sense of functional smoothness means the “simplest” function). Furthermore, in many cases,

the algorithm will reliably converge to a unique solution.6 In other words, this (roughly) unique

solution satisfies has a built-in Occam’s Razor: it is the interpolating solution that maximizes

4An example for approximating f : R → R would be a collection of coefficients θ ≡ {b1,W1, b2,W2, b3,W3, b4}
and f̂(x; θ) = tanh(tanh(tanh(W1 ·x+b1) ·W2+b2) ·W3+b3)+b4 where tanh(·) is applied pointwise, b1 ∈ R,W1 ∈
RN×1, b2 ∈ RN ,W2 ∈ RN×N ,W3 ∈ RN×1, b3 ∈ R, and b4 ∈ R. The number of nested functions (i.e., layers), the
sizes of the vectors within those (i.e., nodes), and the particular nonlinear functions like tanh (i.e., what they call
activation functions) are all flexible. Many variations exist that exploit problem structure (e.g., one may want to
exponentiate the last layer to ensure it is always positive).

5The role of deep-learning frameworks, such as JAX or PyTorch, is to provide a flexible environment for
specifying different approximations and compute gradients to aid optimization algorithms that minimize residuals
(see Childers et al., 2022, for a broader discussion of automatic differentiation for economists).

6There is a continuum of possible coefficients that achieve the same interpolating solution up to numerical
accuracy. Uniqueness here refers to the approximating functions using those coefficients, not the coefficients
themselves.
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functional smoothness.

Formally, deep learning tends to choose the interpolating solution with the minimum norm,

where the norm is such that the smoothest functions subject to interpolating the grids have

the smallest norms.7 Not only do these smooth solutions generalize much better, but they also

minimize residuals faster and more reliably. We will explore these concepts more rigorously in

Section 6.8

The inductive bias is the core of our argument, and it appears even if we have a massive

degree of multiplicity in the possible functions that could interpolate the grid points. If one solves

the problem with completely different initial conditions for the coefficients, the approximating

function will end up often numerically indistinguishable, albeit with different coefficients. That is,

deep learning usually converges to roughly the same approximation despite the risks of overfitting

and multiplicity. Importantly, this approximation leads to good generalization within our models.

Since the inductive bias of deep learning is frequently aligned with the functions that generalize

best for models in macroeconomics (which also tend to be simple and smooth), we can beget

accurate solutions across large regions of a state space with very few grid points.

At a fundamental level, nothing in the previous paragraphs should be mysterious to economists,

since there is a deep connection between the inductive bias and a classic literature in economics:

turnpike theory (McKenzie, 1976). We will argue now that the inductive bias gives a solution

that satisfies a stronger turnpike result, an “on-ramp” result.

Turnpikes and on-ramps. Turnpike theorems teach us that models with finite but long hori-

zons usually have the same properties as infinite-horizon models. Consider the problem of driving

from the Vancouver School of Economics at the University of British Columbia to the department

of economics at the University of Pennsylvania in Philadelphia. We can think about this trip as

consisting of three segments: the leg from the origin to the on-ramp of the turnpike, the travel

along the turnpike itself (where one would spend almost the entire drive because it is the lowest-

cost path between the cities), and the choice of the off-ramp and travel to the destination. A

critical insight of turnpike theory is that if we are primarily interested in the short- and medium-

run dynamics of travel starting at Vancouver, we can ignore the details of what to do when we

arrive in Philadelphia. Instead, first focus on finding what the solution would look like if we drove

on the turnpike forever (i.e., calculate the stationary solution and policies for the infinite-horizon

problem); next, solve the transition dynamics to get from the University of British Columbia to

the turnpike (i.e., the transitional dynamics using the turnpike as a boundary condition), and

7This phenomenon also occurs with OLS whenever the model is underdetermined (see Liang and Rakhlin,
2020). The intuition in the case of OLS is that these methods choose among the interpolating solutions those
with the minimum L2 norm, which can be interpreted as finding the equivalent solution to a ridge regression with
an asymptotically vanishing regularization penalty.

8See Belkin et al. (2019) for a readable survey of the “double-descent” phenomenon and how it corrects the
classic variance-bias tradeoff in statistics.
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ignore the destination dynamics completely. Hence, we have simplified the problem by avoiding

the need to work through the details of which off-ramp and local roads to take in Philadelphia

by solving an infinite-horizon problem where we drive on the turnpike forever. While it is often

proven with deterministic, representative agent models, the basic intuition of turnpike theory is

robust: the present discounted value of optimal behavior at the end of the problem is trivially

small when the time horizon is sufficiently long and, thus, “getting it right at the end” is close to

irrelevant.9 Expanding on the turnpike narrative: even if you need to switch drivers when they

are tired, change lanes when there are random traffic arrivals, and occasional pit stops—most

driving will be local to a tight ergodic distribution.10 Similarly, even if the turnpike is a hill with

exponentially growing altitude (i.e., a BGP in a growth model), one needs to stay on it.

But while turnpike theory simplifies models by avoiding solving for the dynamics from the off-

ramp to the destination, it still requires calculating the steady state, BGP, or ergodic distribution

of the infinite-horizon problem to find the dynamics local to the origin. Also, one must solve for

the policies and decisions along the turnpike. One needs to characterize the direction one drives,

the policy for changing lanes in traffic, and the frequency of coffee breaks and ensure that the

policy does not accidentally explode off of the turnpike. Even after characterizing this fragile

steady state, BGP, or ergodic distribution, one needs to use it as a boundary condition to solve

the transitional dynamics of the first leg of the journey, from the origin to the on-ramp.

Returning to our paper, our main contribution is to take the spirit of the turnpike theory one

step further. Rather than just ignoring the dynamics local to the destination (i.e., the off-ramp),

deep learning allows us to avoid characterizing the travel or the location of the turnpike itself and

solely focus on the dynamics starting at the origin (i.e., solve models anticipating the on-ramp

will correctly lead to the turnpike). Loosely speaking, we have an “on-ramp result” instead of a

“turnpike” one.

Deep learning makes this “on-ramp result” possible because the location of the turnpike is

tightly connected with it being the stable solution to the agents’ optimization problems. As we

argued above, deep learning solutions have an inductive bias toward choosing simple and smooth

solutions, which are precisely the non-explosive solutions that satisfy the boundary conditions

disciplining forward-looking behavior. Hence, the solutions from deep learning are consistent by

construction with the features of the turnpike. Deep learning methods also pick which turnpike

to go to in the case of multiplicity because, if there are two turnpikes it could go to, the roads

9Indeed, finding the optimal path through the local roads in Philadelphia has next-to-no impact on the total
driving time between the University of British Columbia and the University of Pennsylvania. According to Google
Maps, local driving time in Philadelphia once off the highway only accounts for 5 minutes of a total of 45 hours
of driving.

10For instance, see Marimón (1989) for establishing a turnpike theorem in stochastic equilibrium growth models.
More recently, Maliar et al. (2020) use turnpike theorems to propose a method for solving non-stationary Markov
models such as the stochastic neoclassical growth model with labor-augmenting technological progress, a stochastic
version of the non-stationary model we solve later in this paper. Also, many methods for solving OLG models
have a turnpike flavor, such as in Auerbach et al. (1987).
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to the “closest” turnpike are also the shortest.11 Deep learning finds the appropriate roads to a

BGP turnpike if one sets up the approximation to consider exponential scaling: the smoothest

path is the one with the correct BGP rate and the smoothest detrended trajectories. The wrong

BGP would lead to explosive trajectories that are eliminated by the inductive bias.

Literature. While there are many uses of machine learning in economics, such as in creating

new data sources from text and images (e.g., Shen et al., 2021, and Gentzkow et al., 2019)

and econometrics (e.g., Athey and Imbens, 2019), in this paper, we narrowly focus on solutions

to standard macroeconomic models in the most traditional sense and without any behavioral

approximations (e.g., not using Krusell and Smith, 1998,-style approximations or and model-free

reinforcement learning such as in Calvano et al., 2020).

Within macroeconomics, there is an active literature solving dynamic models with machine

learning that can be traced back to Duffy and McNelis (2001). Some more recent papers that

solve the full model rather than a behavioral approximation of it are Azinovic et al. (2022),

Ebrahimi Kahou et al. (2021), Duarte (2018), and some of the examples in Maliar et al. (2021).

Other papers make tradeoffs between solving the full model and making behavioral assumptions,

such as Fernández-Villaverde et al. (2019), which uses deep learning with a Krusell and Smith

(1998)-style behavioral assumption, and some of the examples in Maliar et al. (2021) which use a

large number of discrete agents to approximate the evolution equation of the distribution. None

of these papers directly impose transversality conditions, nor do they calculate the stationary

distribution analytically. Since transversality conditions are necessary for these models to be well-

posed, it is unclear which interpolating solution each algorithm would converge to. In particular,

many solutions have Euler or Bellman residuals approximately zero and do not fulfill long-run

forward-looking behavior and stability (see Section 5 for examples). Our paper provides insights

on which interpolating solution those papers might converge towards and how to design the

deep learning approximations to ensure the correct solution is attained. Our results can help

explain why the solutions find the correct solution despite not directly imposing transversality in

high-dimensional models with closed-form baselines, such as Ebrahimi Kahou et al. (2021).

Outline. The rest of the paper is organized as follows. Section 2 provides an introductory

example with the canonical linear asset pricing, showing both numerically and theoretically why

deep learning methods converge to the solution fulfilling the no-bubble condition even when

ill-posed. Section 3 continues these examples by analyzing the sequential formulation of the

neoclassical growth model, where forward-looking behavior requires a transversality condition to

be well-specified. There, we show how deep learning leads to solutions that automatically fulfill

11However, unlike models calculating eigenvalues that can sharply characterize the basins of attraction for each
turnpike, when starting at a point where the two highways are close to equidistant, these methods may become
confused and take some wrong turns before ending up at the wrong steady-state.
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transversality despite not directly solving for the steady state, even in cases with steady-state

multiplicity and non-stationarity. The case with saddle paths is analyzed in Section 4, which

deals with the recursive formulation of the neoclassical growth model (with clear extensions to

the stochastic case). We show in Section 5 how transversality conditions may be violated even

with low Euler or Bellman residuals. We wrap up with Section 6 elaborating on the theoretical

connections to the deep learning literature and offering some final remarks.

2 Linear asset pricing

We start our investigation with a linear asset pricing model in sequential form. This classic

model illustrates the connection between the implicit bias of over-parameterized functions and

forward-looking boundary conditions.

Consider an asset that pays a dividend stream with a linear form:

y(t+ 1) = c+ (1 + g)y(t)

y0 given.

where c ≥ 0, g ≥ −1 and t = 0, . . . ,∞.

Although this problem is discrete in nature, we use a function notation (e.g., y(t) instead

of yt). In order to solve sequential models of this sort we embed the discrete solution within a

continuous function. For instance, we use deep neural networks to represent p : R+ → R instead

of p : N → R. However, we still evaluate p(t) at integer values. This approach is desirable for

a couple of reasons. First, from a practical perspective, deep neural networks are defined on a

continuous domain. Second, it enables us to use sparse grids, which can be used to assess the

interpolation and extrapolation performance of the solutions.

We rewrite this problem as a linear space model:

x(t+ 1) = Ax(t)

y(t) = Gx(t),

where:

x(t) ≡
[
1 y(t)

]⊤
A ≡

[
1 0

c 1 + g

]
G ≡

[
0 1

]
.
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The price pf (t), based on the fundamentals, is the present discounted value of the dividend

stream:

pf (t) ≡
∞∑
j=0

βjy(t+ j) = G
(
I− βA

)−1
x(t), (1)

where β is the discount factor, and I is a two-dimensional identity matrix. Here, we assume

β ∈ (0, 1) and β(1 + g) < 1. The second assumption ensures the convergence of the infinite sum

in equation (1). We can also write the evolution of the price in a recursive way:

p(t) = Gx(t) + βp(t+ 1) (2)

x(t+ 1) = Ax(t) (3)

x0 given. (4)

Equation (2) tell us that the price of an asset that pays a stream of dividends {y(t + j)}∞j=0 is

equal to the dividend the agent receives at time t plus the discounted price of owning the asset at

time t + 1. Although for a given initial condition x0, the price based on the fundamentals pf (t)

satisfies equations (2)-(4), this system of equations do not form a well-posed problem and there

are infinitely many solutions of the form:

p(t) = pf (t) + ζβ−t. (5)

See Brunnermeier (2017) for a derivation of these solutions and their interpretation. The initial

condition x0, uniquely determines pf (t). However, ζ is not uniquely determined. In order to have

a well-posed problem, we require a no-bubble condition that eliminates any solution that grows

faster or at the same rate as β−t. With this condition, the well-posed problem becomes:

p(t) = Gx(t) + βp(t+ 1) (6)

x(t+ 1) = Ax(t) (7)

0 = lim
T→∞

βTp(T ) (8)

x0 given, (9)

where equation (8) is the no-bubble condition.12

2.1 Interpolating solution

In this setup, prices are a function of time. Hence, their domain is defined as X ≡ R+. As

a generalization of the collocation approach one can pick a space of parametric functions H(Θ),

12Sometimes the no-bubble condition is referred to as the transversality condition, see Brunnermeier (2017).
However, to avoid confusion we reserve that term for the neoclassical growth model.
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where Θ ≡ {θ1, . . . , θM} represents the set of parameters. For instance, in a standard collocation

methodH(Θ) can be the space of Chebyshev polynomials of degreeM . The interpolating function

p(·; θ) : X → R belongs to H(Θ). In order to represent the domain X, one can pick a finite set of

grid points X̂ ⊂ X. For instance, in a standard Chebyshev collocation, X̂ is the set of Chebyshev

nodes. Generally, for sequential models such as this, the grid is a set of points in time:

X̂ ≡ {t1, . . . , tN}.

The no-bubble condition is a boundary condition at infinity. One can approximate infinity

by choosing a very large point in time, denoted by T . Usually, T is much larger than the largest

point in X̂ (i.e. T ≫ tN). Given a space of parametric functions H(Θ), a grid X̂, and a very

large point in time T , one can find the interpolating price function by solving:

min
θ∈Θ

[
1

|X̂|

∑
t∈X̂

(p(t; θ)−Gx(t)− βp(t+ 1; θ))2 +
(
βTp(T ; θ)

)2︸ ︷︷ ︸
Is this necessary?

]
, (10)

where x(t) is evaluated by the law of motion for xL

x(t) = Atx0 for t ∈ X̂. (11)

The first term in the minimization represents the residuals of the recursive formulation for the

prices (i.e., equation 6) and the second term is a finite approximation of the no-bubble condition

(i.e., equation 8).

In a standard collocation method, where the number of parameters is equal to the number

of grid points, this problem can be solved exactly as a system of equations with a boundary

condition at T . Since the interpolating solution depends on T , the solutions the minimization

problem described in (10) defines a sequence of solutions indexed by T .

Choice of X̂: In high-dimensional cases the choice of X̂ is very crucial, however in this paper

we focus on low-dimensional cases. Although this choice is not very crucial for this study, we

provide the results for different grids. In this paper we are interested in the generalization power

of the solutions. Therefore, we also evaluate the solutions outside of X̂. For instance, in sequential

models we are interested in the behavior of the solutions for t > tN .

Is the no-bubble condition necessary? As discussed before, without the no-bubble condi-

tion the linear asset pricing model has infinitely many solutions of the form expressed in equation

(5). Each solution corresponds to a different value for ζ. Therefore, in the absence of the second

term (finite approximation of the no-bubble condition), the optimization problem described in
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(10), has infinitely many solutions that achieve the zero of the objective function.

In the next section we establish how using over-parameterized functions, where the number

of parameters is larger than the number of grid points, yields convergence to the solution based

on the fundamentals without worrying about the no-bubble condition.

Therefore, using over-parameterized functions we can drop the approximate no-bubble con-

dition and solve

min
θ∈Θ

1

|X̂|

∑
t∈X̂

(p(t; θ)−Gx(t)− βp(t+ 1; θ))2 , (12)

to obtain an interpolating solution that satisfies the no-bubble condition.

2.2 Minimum norm interpretation and no-bubble condition

In this paper we use a space of over-parameterized functions (i.e., deep neural networks)

to solve the minimization problem described in (12). An over-parameterized function p(t; θ) is

characterized by M parameters {θ1, . . . , θM} where M is larger then the number of grid points,

i.e., M > N . In practice the number of parameters is much larger than the number of grid points.

Since M ≫ N , over-parameterized functions and their corresponding optimization algorithms

provide exact interpolating solutions. For these solutions the objective function attains a zero

value.

Since the number of parameters is much larger than the number of grid points, there are too

many degrees of freedom. Therefore, there are many arrangements of the parameters that can

achieve an exact interpolation. It has been observed and in some cases proved that the optimiza-

tion algorithms used in over-parameterized interpolation problems have an implicit bias toward

a specific class of functions. Recently, it has been proposed that this property can be interpreted

as minimizing a new objective function on the space of parametric functions H(Θ) subject to

exact interpolation at all the points on the grid. We call this minimum norm interpretation of the

solutions of an over-parameterized interpolation. Section 6 provides a comprehensive background

and discussion on this robust phenomena.

The minimum norm interpretation of the solutions of the minimization problem described in

(10) for the liming case of T → ∞ can be written as

min
p(·;θ)∈H(Θ)

∥p(·; θ)∥S (13)

s.t. p(t; θ)−Gx(t; θ)− βp(t+ 1; θ) = 0 for t ∈ X̂ (14)

0 = lim
T→∞

βTp(T ; θ) (15)

where H(Θ) is a space of over-parameterized functions, X̂ is a set of points in time (i.e., X̂ =
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{t1, . . . , tN}), and x(t) is evaluated by the exogenous law of motion x(t + 1) = Ax(t), given the

initial condition x0.

What is the this new objective function? The new objective function ∥·∥S is a semi-norm13

from a space functions (for this case H(Θ)) to real numbers satisfying the following assumption

Assumption 1. Let Ψ1 and Ψ2 be two differentiable function from a compact space X in R to

R such that ∫
X

∣∣∣∣dΨ1

ds

∣∣∣∣2 ds > ∫
X

∣∣∣∣dΨ2

ds

∣∣∣∣2 ds (16)

then

∥Ψ1∥S > ∥Ψ2∥S. (17)

Moreover, since ∥ · ∥S is a semi-norm, it satisfies the triangle inequality

∥Ψ1 +Ψ2∥S ≤ ∥Ψ1∥S + ∥Ψ2∥S. (18)

This is an assumption on the implicit bias of the over-parameterized interpolation and their

optimization algorithms. Intuitively, this assumption states that among two interpolating solu-

tions on a domain X the bias is toward the one with smaller derivatives. In other words, the bias

is toward the smoother one. Through the rest of the paper we assume Assumption 1 holds. See

Section 6 for a discussion of the validity of this assumption and recent advances in the statistics

and optimization theory regarding this assumption.

As shown in equation (5) any solution that violates the no-bubble condition is associated with

a non-zero ζ. In the following proposition we establish that minimizing ∥·∥S automatically makes

the no-bubble condition redundant. Intuitively, due to the explosive term β−t (0 < β < 1), all

the solutions that contain a bubble term (ζ > 0) have bigger derivatives than the fundamental

price pf (t). More formally for any compact interval of the form [0, T ]∫ T

0

∣∣∣∣dpdt
∣∣∣∣2 dt > ∫ T

0

∣∣∣∣dpfdt
∣∣∣∣2 dt (19)

We only focus on prices that are positive for all t, this excludes solutions with ζ < 0.

13For a given space of function H, a semi-norm ∥ · ∥S : H → R is a mapping that for all functions ψ1 and ψ2 in
H satisfies

1. Triangle inequality: ∥ψ1 + ψ2∥S ≤ ∥ψ1∥S + ∥ψ2∥S , and

2. Absolute homogeneity: ∥γψ1∥S = |γ|∥ψ1∥S for all γ ∈ R.
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Proposition 1. Let P be the set of all the solutions of equations (6) and (7) for a given x0

P ≡ {p(t) : p(t) = pf (t) + ζβ−t,∀ζ ∈ R+}, (20)

where pf (t) is defined by equation (1). Let ∥ · ∥S be a norm that satisfies Assumption 1, then

argmin
p∈P

∥p∥S = pf . (21)

In other words the minimum of ∥p∥S is attained when ζ = 0.

Proof. Since ζ ≥ 0, then by the triangle inequality and Assumption 1

∥pf∥S ≤ ∥p∥S ≤ ∥pf∥S + ζ∥β−t∥S. (22)

This proposition establishes that the price based on the fundamentals has the lowest semi-

norm.14 Therefore, over-parameterized interpolating solutions have a bias toward pf (t) on X̂ and

automatically satisfy the no-bubble condition. Therefore, the optimization problem described

in (12) is enough to find the price based on the fundamentals without imposing any explicit

regularity regarding the long run behavior.

2.3 Results

Figure 1 shows the result of the minimization problem described in (12) for β = 0.9, c = 0.01,

g = −0.1, and y0 = 0.08. In this experiment X̂ = {0, 1, 2, . . . , 29} and X̂test = {0, 1, 2, ..., 49}.
We approximate the price p(t; θ) using a deep neural network with four hidden layers, each

with 128 nodes. Each hidden layer uses Tanh and the output layer uses Sofplus as activation

functions. The dashed vertical lines separate the interpolation from the extrapolation region.

To be more specific, the interpolation region is the defied as X̂ and the extrapolation as the

points in X̂test that are not in X̂. The left panel shows the price paths. The price based on the

fundamentals, denoted by pf (t), is calculated using equation (1), and p̂(t) shows the approximate

path (or approximate solution). More specifically, p̂(t) ≡ p(t; θ∗), where

θ∗ ≡ argmin
θ∈Θ

∑
t∈X̂

(p(t; θ)−Gx(t)− βp(t+ 1; θ))2 .

14What is required in this proof is triangle inequality and an innocuous assumption that if p(t) > pf (t) for all
t ∈ X then

∥p∥S > ∥pf∥S . (23)

Therefore, Assumption 1 is strong for this proof and can be relaxed.
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The right panel shows the relative error between the approximate price and price base on the

fundamentals defined as

εp(t) ≡
p̂(t)− pf (t)

pf (t)
for t ∈ X̂test. (24)
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Figure 1: Comparison between the price based on the fundamentals and the price approximated
by a deep neural network for the sequential linear asset pricing model. In the left panel, the
solid curve shows the approximate price and the dashed curve shows the price based on the
fundamentals. The right panel shows the relative errors between the approximate price path and
the price based on the fundamentals. The dashed vertical lines separate the interpolation from
the extrapolation region.

The results of this experiment are multi-fold. First, we can achieve an accurate solution

based on the fundamentals and eliminate bubble solutions simply by relying on the implicit bias

of deep neural networks. Second, within the grid points X̂, the short and medium run dynamics

are accurate and it is not impaired by the long run errors (at most −0.05% relative error). Third,

the extrapolation errors are very small which can be explained by the smoothness imposed by

deep neural networks and the choice of X̂. Here, we used a large time horizon in X̂, i.e., tN = 29.

The prices in the last few points of the grid are very close to its asymptotic value. Therefore,

the deep neural network learns that for large values of t the price is almost a constant and stays

very close to that value even outside of X̂.

Contiguous vs. Sparse Grid There is a common belief that deep neural networks are only

suitable for high-dimensional environments with an abundance of data (grid points). In this

experiment we show that they can be very useful when there is the grid contains few points.

14



0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: p(t)

pf(t)
p(t): Contiguous
p(t): train(Grid 1)
p(t): train(Grid 2)

0 10 20 30 40 50

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005
p(t): Contiguous

p(t): train(Grid 1)

p(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: p(t)

pf(t)
p(t): Contiguous
p(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004
Relative errors: p(t)

0.985

0.990

0.985

0.990

Figure 2: Comparison between the contiguous grid and two sparse grids for the se-
quential linear asset pricing model. The first sparse grid is defined as X̂(Grid1) ≡
{0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29} and the second sparse grid is defined as X̂(Grid2) ≡
{0, 1, 4, 8, 12, 16, 20, 24, 29}. The top panels show the results for price paths for one seed. The
bottom panels show the median of the approximate price paths and the relative errors for the
contiguous grid and X̂(Grid 2). The shaded regions show the 10th and the 90th percentiles. The
left panels provide a comparison between the approximate price paths and the price based on the
fundamentals. The right panels show the relative errors between the approximate price paths
and the price based on the fundamentals. The dashed vertical lines separate the interpolation
from the extrapolation region.

Figure 2 shows the results of previous experiment with two different sparse grids for X̂.

The first grid contains 11 points and is defined as X̂(Grid 1) ≡ {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}.
The second grid contains 9 points and is defined as X̂(Grid 2) ≡ {0, 1, 4, 8, 12, 16, 20, 24, 29}.
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The contiguous grid is the same as the previous experiment, X̂ = {0, 1, 2, . . . , 29} denoted by

Contiguous. The top-left panel shows the price paths for these grids. p̂(t) : Contiguous shows the

approximate price path for X̂, p̂(t) : X̂(Grid 1) shows the approximate price path for X̂(Grid 1),

and p̂(t) : X̂(Grid 2) shows the approximate price path for X̂(Grid 2). The top-right panel shows

the relative errors between the approximate price paths and the price based on the fundamentals.

εp(t) : Contiguous shows the relative errors for the contiguous grid, εp(t) : X̂(Grid 1) shows the

relative errors for X̂(Grid 1), and εp(t) : X̂(Grid 2) shows the relative errors for X̂(Grid 2).

In the top panels we use only one random initialization (one random seed) of the deep neural

network to generate the results.

We solve the minimization problem described in (12) for 100 times. Each time with a different

random initialization of the parameters of the deep neural network. We report the median, the

10th, and the 90the percentiles of the results.

The solid curves in the bottom-left panel show the median of price paths for the contiguous

grid and X̂(Grid 2), the shaded regions show the 10th and the 90th percentiles of the approximate

price paths. The solid curves in the bottom-right panel show the median of the relative errors for

the contiguous grid and X̂(Grid 2), the shaded regions show the 10th and the 90th percentiles

of the relative errors. The dashed vertical lines separate the interpolation from the extrapolation

region.

These results show that the contiguous grid outperforms both sparse grids. However, the

results for both sparse grids are very accurate (at most relative error of −0.35 %). As expected,

the most sparse grid has higher relative errors. It is worth mentioning that convergence to the

price based on the fundamentals is not sensitive to the grid size. Therefore, it can be a promising

avenue for methods of adaptive sample selection in high-dimensional problems. These results

also show robustness to random initialization of the deep neural networks for both contiguous

and sparse grid. This confirms the implicit bias in deep neural networks, which in this case the

bias is toward the price based on the fundamentals.

Positive growth in dividends (g > 0) : In the last two experiments we assumed that

the dividends follow a stationary process. In this experiment we show that exploiting a priori

economic knowledge combined with the implicit bias, our method can deal with cases where

no stationary solution exists. In this case we know the price based on the fundamentals grows

exponentially, this economic knowledge can be flexibly implemented in the design of the function

space H(Θ). In the case of g > 0 and c = 0, the fundamental price grows with the rate g. In this

experiment we use this information to construct an approximating function of the form

p̂(t; θ) = eϕtNN(t; θ1) (25)
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where θ ≡ {ϕ, θ1}, NN(·; θ1) is a deep neural network, and ϕ is a single parameter that needs to

be found in the optimization process.

Again for this experiment, we solve the minimization problem described in (12) for 100 times.

Each time with a different random initialization of the parameters of the deep neural network.

We report the median, the 10th, and the 90the percentiles of the results.
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Figure 3: Comparison between the price based on the fundamentals and the price approximated
by a deep neural network for the sequential linear asset pricing model with growing dividends
(g = 0.02). The solid curve in the left panel shows the median of the approximate price paths
over, the dashed curve shows the price based on the fundamentals. The solid curve in the right
panel shows the median of the relative errors between the approximate price paths and the price
based on the fundamentals. The shaded regions show the 10th and the 90th percentiles. The
dashed vertical lines separate the interpolation from the extrapolation region.

Figure 3 shows the results for sequential linear asset pricing model with growing dividends

(i.e., c = 0, g = 0.02). We use the same deep neural network we utilized in the first experiment.

The only difference is the additional exponential term. In the left panel, the solid curve, denoted

by p̂(t), shows the median of the approximate price paths over, the dashed curve, denoted by

pf (t), shows the solution based on the fundamentals. The shaded region shows the 10th and

the 90th percentiles of the approximate price paths. The right panel shows the median of the

relative errors between the approximate price paths and the price based on the fundamentals.

The shaded region shows the 10th and the 90th percentiles of the the relative errors. The dashed

vertical lines separate the interpolation from the extrapolation region.

These results show that the long run errors do not impair the short and medium run accuracy

even in the presence of growing dividends. It is worth noting if interpolation is the object of

interest (left of the dashed lines) the same result can be obtained without building the exponential

term in the approximating function. However, if extrapolation (right of the dashed lines) is the
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object of interest, using economic intuition can dramatically enhance the generalization power

(less than 0.5% relative error after 20 periods). Moreover, the algorithm learns the growth rate

accurately. See Figure 19 and the discussion in Appendix A.1 for a detailed treatment of the

approximate growth rate.

In this case, we used the correct information about the functional form of the growth in

the price path. However, in more complicated dividend processes, when the growth in prices is

unknown, it is possible to misspecify the functional form of the growth. Figure 20 in Appendix A.2

confirms that even in the presence of functional misspecification long run errors do not impair

the accuracy of short and medium run dynamics.

3 Neoclassical growth model: Sequential form

Another form of forward-looking boundary condition at infinity that appears frequently in

dynamic economic models is the transversality condition. In these models the transversality con-

dition is a necessary condition for optimality (see Ekeland and Scheinkman (1986), and Kami-

higashi (2005)). In this section we focus on the sequential version of the neoclassical growth

model.

Setup: Consider an agent maximizing discounted utility of consumption
∑∞

t=0 β
tu
(
c(t)
)
. The

agent has access to a production technology z1−αf(k), where z is the total factor productivity

and k is the capital. Capital depreciates at rate δ ∈ [0, 1]. The agent’s optimization problem can

be written as

max
c(t),k(t+1)

∞∑
t=0

βtu
(
c(t)
)

(26)

s.t. k(t+ 1) = z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− c(t) (27)

z(t+ 1) = (1 + g)z(t) (28)

k(t) ≥ 0 (29)

0 = lim
T→∞

βTu′(c(T ))k(T + 1) (30)

k0, z0 given . (31)

The problem described above is the standard neoclassical growth problem. Here we focus on

the constant relative risk aversion utilities u(c) = c1−σ

1−σ
, and production function of the form

f(k) = kα. The first order conditions for this problem can be written as
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u′(c(t)) = βu′(c(t+ 1)
)[
z(t+ 1)1−αf ′(k(t+ 1)

)
+ (1− δ)

]
(32)

k(t+ 1) = f
(
k(t)

)
+ (1− δ)k(t)− c(t) (33)

where the first equation is the Euler equation and the second one is the feasibility condition.

Equations (32) and (33) do not form a well-posed problem. There are infinitely many solu-

tions {c(t), k(t)}∞t=0 that satisfy these equations. The transversality condition, described in (30),

uniquely determines the optimal solution.

Saddle path nature of the optimal solution: The optimal solution of this problem is a

saddle path and the steady state of the optimal solution is a saddle point. The saddle path

nature of the optimal solution makes the optimal path {k(t), c(t)} very sensitive to the choice of

the initial consumption (i.e. c(0)). Therefore, a small error in the choice of consumption at time

zero can lead to a solution that violate the transversality condition.

It is also worth noting that if an economy starts with zero capital (i.e. k = 0) this economy

stays at zero level of capital forever, therefore, k = 0 is a fixed point of this economy. However, it

is a repulsive fixed point. Therefore, for an economy that starts with any non-zero level of capital

there is no optimal path that takes the economy to k = 0. See the discussion and Figure 21 in

Appendix B.1 for analysis of our solution method for very small levels for initial conditions of

capital.

3.1 Interpolating solution

In this setup, capital functions (also consumption functions) are a function of time. Therefore,

their domain is defined as X ≡ R+. As a generalization of the collocation approach one can pick a

space of functions H(Θ), where Θ ≡ {θ1, . . . , θM} represents the set of parameters. For instance,

in a standard collocation method H(Θ) can be the space of Chebyshev polynomials of degree

M . The interpolating function k(·; θ) : X → R belongs to H(Θ). In order to represent the

domain X, one can pick a finite set of grid points X̂ ⊂ X. For instance, in a standard Chebyshev

collocation, X̂ is the set of Chebyshev nodes. Since this is a sequential model, similar to the

linear asset pricing model

X̂ ≡ {t1, . . . , tN}.

The Euler equation (i.e., equation (32)), the feasibility condition (i.e., equation (33)), the law of

motion for total factor productivity (i.e., equation (28)), and the transversality condition (i.e.,

(30)) combined with the initial conditions for capital and productivity form a system of equations.

However, the transversality condition is a boundary condition at infinity. One can approximate
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infinity by choosing a very large point in time, denoted by T . Usually, T is much larger that the

largest point in X̂ (i.e., T ≫ tN).

For a given capital function k(t; θ) ∈ H(Θ) we define the consumption function c(t; k(·; θ))
through the feasibility condition

c(t; k(·; θ)) ≡ f
(
k(t; θ)

)
+ (1− δ)k(t; θ)− k(t+ 1; θ). (34)

Given a space of parametric functions H(Θ), a grid X̂, and a very large point in time T , one

can find the interpolating capital function by solving the following optimization problem

min
θ∈Θ

[
1

|X̂|

∑
t∈X̂

(
u′(c(t; k(·; θ)))

u′
(
c(t+ 1; k(·; θ))

) − β
[
z(t+ 1)1−αf ′(k(t+ 1; θ)

)
+ (1− δ)

])2

+

(k(0; θ)− k0)
2 +

(
βTu′

(
c
(
T ; k(·; θ)

))
k(T + 1; θ)

)2

︸ ︷︷ ︸
Is this necessary?

]
(35)

where z(t) is evaluated by the law of motion for z

z(t) = (1 + g)tz0 for t ∈ X̂. (36)

The first term in the optimization problem represents the Euler residuals and the second term

is the residual for the initial condition. The second term ensures that the capital function at

time zero matches the initial level of capital. The third term is a finite approximation of the

transversality condition. The non-negativity of capital, k(t; θ) ≥ 0, can be built into H(Θ).

In a standard collocation method, where the number of parameters is equal to the number

of grid points, this problem can be solved exactly as a system of equations with a boundary

condition at T . It is worth nothing that the interpolating solution depend on T . Therefore, the

solutions of the minimization problem described in (35) defines a sequence of solutions indexed

by T .

Here, we only provide a framework for interpolation of the capital function. It is also possible

to interpolate both capital and consumption functions simultaneously. See Appendix B.3 for

more details.

The approach we introduced for solving sequential models in this paper has some similarities

with parametric path methods. These methods approximate the equilibrium paths with a family

of parametric functions, see Judd (2002). In these methods the convergence to a solution that

does not violate the transversality condition is baked into the approximating functions as an a
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priori economic knowledge. For instance, by design the approximating function approaches the

desired steady-state as time goes to infinity. Therefore, these methods require calculating the

steady-state for finding the approximate solution. However, ours does not require any knowledge

about the steady-state.15

Choice of X̂: Similar to the case of linear asset pricing model, the choice of X̂ is not very

crucial. However, we provide the results for different grids. We also evaluate the approximate

capital function outside of X̂ to study the generalization performance of the solutions.

Is the transversality condition necessary? Without the transversality condition the neo-

classical growth problem has infinitely many solutions. Equations (28),(32), and (33) form a

three-dimensional dynamical system with two initial conditions k0 and z0
16. Therefore, in the

absence of the third term (finite approximation of the transversality condition) the minimization

problem described in (35) has infinitely many solutions that minimize the objective function.

In Section 3.3 we establish how using over-parameterized functions (when M ≫ N) and their

optimization processes yield convergence to a solution that does not violate the transversality

condition. Intuitively, the solutions that violate the transversality condition have bigger deriva-

tives than the optimal solution. Therefore, using over-parameterized functions we can drop the

transversality condition and solve

min
θ∈Θ

[
1

|X̂|

∑
t∈X̂

(
u′(c(t; k(·; θ)))

u′
(
c(t+ 1; k(·; θ))

) − β
[
z(t+ 1)1−αf ′(k(t+ 1; θ)

)
+ (1− δ)

])2

+ (k(0; θ)− k0)
2

]
,

(37)

to obtain an interpolating solution that does not violate the transversality condition.17

15Judd (2002) uses Laguerre polynomials instead of the deep neural networks. The author uses an approximating
function with two terms. The first term is the parametric form to deal with the short and medium-run transition.
The second term, by design, becomes the dominant term (with an exponential rate) in the long-run and approaches
the steady-state.

16Given the initial level of capital k0, factor productivity z0, and an arbitrary c0 for the initial level of con-
sumption we can generate a set of solutions {k̃(t), c̃(t), z(t)} by iterating forward the Euler equation, feasibility
condition, and the law of motion for total factor productivity. By construction this set of solutions is a solution
for this system of equations. Therefore, there are infinitely many solutions each characterized by a different c0.

17In practice one can solve

min
θ∈Θ

[
1

|X̂|

∑
t∈X̂

λ1

(
u′
(
c(t; k(·; θ))

)
u′
(
c(t+ 1; k(·; θ))

) − β
[
z(t+ 1)1−αf ′

(
k(t+ 1; θ)

)
+ (1− δ)

])2

+ λ2 (k(0; θ)− k0)
2

]
,

where λ1 and λ2 are a pair of positive parameters that determine the importance of each residuals in the opti-
mization process. In our experiments, the results are not sensitive to the choice of these parameters so we can
choose equally weighted residuals (i.e., λ1 = λ2 = 1).
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3.2 Results
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Figure 4: Comparison between the value function iteration and approximate solution using a deep
neural network for the sequential neoclassical growth model. In the left panel the black solid line
shows the approximate capital path and the blue solid line shows the consumption path. The
dashed curves show the capital and consumption paths obtained by the value function iteration
method. The right panel shows the relative errors for both capital and consumption paths. The
dashed vertical lines separate the interpolation from the extrapolation region.

Figure 4 shows the result of the minimization problem described in (37) for β = 0.9, α =

0.33, δ = 0.1, g = 0, k0 = 0.4, and z0 = 1. In this experiment X̂ = {0, 1, 2, . . . , 29} and

X̂test = {0, 1, 2, ..., 49}. We approximate the capital path k(t; θ) using a deep neural network

with four hidden layers, each with 128 nodes. Each hidden layer uses Tanh and the output

layer uses Softplus as activation functions. The dashed vertical lines separate the interpolation

from the extrapolation region. The left panel shows the capital and consumption paths. The

benchmark solution is calculated using value function iteration method and are denoted by k(t)

and c(t).18 The approximate solutions (i.e., the approximate capital and consumption paths) are

denoted by k̂(t), and ĉ(t). More specifically, k̂(t) ≡ k(t; θ∗), where

θ∗ ≡ argmin
θ∈Θ

[
1

|X̂|

∑
t∈X̂

(
u′(c(t; k(·; θ)))

u′
(
c(t+ 1; k(·; θ))

) − β
[
z(t+ 1)1−αf ′(k(t+ 1; θ)

)
+ (1− δ)

])2

+

(k(0; θ)− k0)
2

]
,

18The value function iteration is also an approximation method, here we assume that value function iteration
method yields more accurate results than our method.
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and ĉ(t) is calculated using the consumption function defined in equation (34) for the capital

function k(t; θ∗), i.e., ĉ(t) ≡ c (t; k(·; θ∗)). The right panel shows the relative errors between the

approximate solutions and the solutions obtained by the value function iteration method defined

as

εc(t) ≡
ĉ(t)− c(t)

c(t)
for t ∈ X̂test (38)

εk(t) ≡
k̂(t)− k(t)

k(t)
for t ∈ X̂test. (39)

The results of this experiment are multi-fold. First, we can achieve an accurate solutions that

do not violate the transversality condition without imposing any long run constraint. Second,

the short and medium run dynamics are accurate and they are not impaired by the long run

errors (at most −0.05% relative error for capital). Third, the extrapolation errors are very small

which can be explained by the smoothness imposed by deep neural networks and the choice of

X̂. Here, we used a large time horizon in X̂, i.e., tN = 29. The capital path in the last few points

of the grid are very close to the steady state. Therefore, the deep neural network learns that for

large values of t the capital is almost a constant and stays very close to that value even outside

of X̂.

Contiguous vs. Sparse Grid Figure 5 shows the result of the previous experiment for two

different sparse grid for X̂. The first grid contains 11 points and is defined as X̂(Grid 1) ≡
{0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}. The second grid contains 9 points and is defined as X̂(Grid 2) ≡
{0, 1, 4, 8, 12, 16, 20, 24, 29}. The contiguous grid is the same as the previous experiment X̂ =

{0, 1, 2, . . . , 29}, denoted by Contiguous. The dashed vertical lines separate the interpolation

from the extrapolation region. The top-left panel shows the approximate capital paths for these

grids, denoted by k̂(t), versus the capital path generated by value function iteration method,

denoted by k(t). The top-right panel shows the relative errors between the approximate capital

paths and the capital path generated by the value function iteration method. In both top panels

we only use one random initialization (one random seed) of the deep neural network to generate

the results.

We solve the minimization problem described in (37) for 100 times. Each time with a different

random initialization of the parameters of the deep neural network. We report the median, the

10th, and the 90the percentiles of the results.

The bottom-left panel shows the capital paths obtained by value function iteration method,

denoted by k(t) and the median of the approximate capital paths for the contiguous grid and

X̂(Grid 2). The shaded regions show the 10th and the 90th percentiles of the approximate capital

paths. The bottom-right panel shows the median of relative errors between the approximate
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capital paths and the capital path obtained by value function iteration method for the contiguous

grid and X̂(Grid 2). The shaded regions show the 10th and the 90th percentiles of the relative

errors.

These results show that the contiguous grid outperforms both sparse grids. However, the

results for both sparse grids are very accurate (at most 0.01 % in relative errors). As expected the

most sparse grid has higher relative errors. It is worth mentioning that convergence to the optimal

solution is not sensitive to the grid size. Therefore, it can be a promising avenue for adaptive

optimization and sample selection in high-dimensional sequential problems. These results also

show robustness to random initialization of the deep neural networks in the optimization process

for both contiguous and sparse grid. This confirms the implicit bias in deep neural networks,

which in this case the bias is toward the optimal path for capital.

Far from the steady state: In the previous experiment we established that we can achieve

accurate short and medium run accuracy on sparse grids. However, in both grids we used a large

time horizon (i.e., tN = 29). After 29 periods the capital and consumption paths are very close to

their steady states. In this experiment we study whether the approximate solution has accurate

short run dynamics when using a medium time horizon for X̂ (e.g., tN ≈ 10).

Again for this experiment, we solve the minimization problem described in (37) for 100 times.

Each time with a different random initialization of the parameters of the deep neural network.

We report the median, the 10th, and the 90the percentiles of the results.

Figure 6 shows the results for the sequential neoclassical growth model with X̂ = {0, 1, . . . , 9}.
We used the same parameters and deep neural network as the previous experiments. The dashed

vertical lines separate the interpolation from the extrapolation region. The solid curve in the

top-left panel shows the median of the approximate capital paths, the dashed curve shows the

capital path obtained by the value function iteration method, and the shaded region shows the

10th and the 90th percentiles of the approximate capital paths. The solid curve in top-right panel

shows the median of the relative errors between the approximate capital paths and the capital

path obtained by the value function iteration method, the shaded region shows the 10th and the

90th percentiles of the relative errors. The solid curve in the bottom-left panel shows the median

of the approximate consumption paths, the dashed curve shows the consumption path obtained

by the value function iteration method, and the shaded region shows the 10th and the 90th

percentiles of the approximate consumption paths. The solid curve in bottom-right panel shows

the median of relative errors between the approximate consumption paths and the consumption

path obtained by the value function iteration method, the shaded region shows the 10th and the

90th percentiles of the relative errors.

These results show that we obtain solutions that do not violate the transversality condition

even when we use medium time horizons in X̂. Moreover, the long run errors do not impair
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Figure 5: Comparison between the value function iteration and approximate solution using a deep
neural network for the sequential neoclassical growth model. The first sparse grid is defined as
X̂(Grid 1) ≡ {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29} and the second sparse grid is defined as X̂(Grid 2) ≡
{0, 1, 4, 8, 12, 16, 20, 24, 29}. The top panels show the approximate capital paths and the relative
errors between the approximate capital path and the capital path obtained by the value function
iteration method, for X̂(Grid 1), X̂(Grid 2), and the contiguous grid. The bottom panels show
the median of the approximate capital paths and the median of relative errors for X̂(Grid 1),
X̂(Grid 2), and the contiguous grid. The shaded regions show the 10th and the 90th percentiles.
The dashed curves, denoted by k(t), show the capital and path obtained by the value function
iteration method. The dashed vertical line separates the interpolation from the extrapolation
region.

the accuracy of short run dynamics (less than 0.5% after 5 periods). Therefore, we get accurate

solutions when the capital and consumption paths are far from the steady state. This result is
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Figure 6: Comparison between the value function iteration and approximate solution using a
deep neural network for the sequential neoclassical growth model with a medium time horizon
(i.e., X̂ = {0, 1, . . . , 9}). The solid curves in the left panels show the median of the approximate
capital and consumption paths. The dashed curves show the capital and consumption paths
obtained by the value function iteration method. The solid curves in the right panels show the
median of the relative errors between the approximate solutions and solutions obtained by the
value function iteration method. The shaded regions show the 10th and the 90th percentiles.
The dashed vertical lines separate the interpolation from the extrapolation region.

robust to using very short time horizon in X̂ (i.e., tN = 4). See Figure 23 and the discussion in

Appendix B.4 for more details.

Balanced growth path (g > 0): In the last experiments we assumed that the total factor

productivity is constant and stationary. Here we show that exploiting a priori economic knowledge
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combined with the implicit bias of deep neural networks, our method can deal with models

where no stationary solution exists. Since the production function is homogeneous of degree

one, in the long run the capital path has a growth rate of g. This economic knowledge can be

implemented flexibly in the design of the function space H(Θ). In this experiment we construct

an approximating function of the following form

k̂(t; θ) = eϕtNN(t; θ1) (40)

where θ ≡ {ϕ, θ1}, NN(·; θ1) is a deep neural network, and ϕ is a single parameter that needs to

be found in the optimization process.

Again for this experiment, we solve the minimization problem described in (37) for 100 times.

Each time with a different random initialization of the parameters of the deep neural network.

We report the median, the 10th, and the 90the percentiles of the results.

Figure 7 shows the results for sequential neoclassical growth for non-stationary total factor

productivity (i.e., g = 0.02). We use the same deep neural network as before for NN(·; θ1) and
use the original grid, X̂ = {0, 1, 2, . . . , 29}. The only difference is the additional exponential

term. The solid curve in the top-left panel shows the median of the approximate capital paths

and the dashed curve shows the capital path obtained by the value function iteration method.

The shaded region shows the 10th and the 90th percentiles of the approximate capital paths. The

solid curve in the top-right panel shows the median of the relative errors between the approximate

capital paths and the capital path obtained by the value function iteration method. The shaded

region shows the 10th and the 90th percentiles of the relative errors. The solid curve in the

bottom-left panel shows the median of the approximate consumption paths, the dashed curve

shows the consumption path obtained by the value function iteration method. In this case the

10th and the 90th percentiles for the relative errors are so close to each other that they are

not visible in the plot. The solid curve in bottom-right panel shows the median of the relative

errors between the approximate consumption paths and the consumption path obtained by the

value function iteration method, the shaded region shows the 10th and the 90th percentiles of

the relative errors.

These results show that the long run errors do not impair the short and medium run accuracy

even in the presence of balanced growth path. It is worth noting if interpolation is the object of

interest (left of the dashed line) the same result can be obtained without building the exponential

term in the approximating function. However, if extrapolation (right of the dashed line) is the

object of interest, as shown in this results, using economic intuition can dramatically enhance

the generalization power (less than 0.03% relative errors in capital after 49 periods).

Here we used the correct information about the functional form of the growth in capital

and consumption paths. However, in cases where the production function is not homogeneous of

degree one or the total factor productivity follows a non-linear process, it is possible to misspecify
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Figure 7: Comparison between the value function iteration and approximate solution using a
deep neural network for the sequential neoclassical growth model with growth in total factor pro-
ductivity (i.e., g = 0.02). The solid curves in the left panels show the median of the approximate
capital and consumption paths. The dashed curves show the capital and consumption paths
obtained by the value function iteration method. The solid curves in the right panels show the
median of the relative errors between the approximate solutions and the solutions obtained by
the value function iteration method. The shaded regions show the 10th and the 90th percentiles.
The dashed vertical lines separate the interpolation from the extrapolation region.

the functional form of the growth. Figure 24 in Appendix B.5 confirms that even in the presence

of functional misspecification long run errors do not impair the accuracy of the short and medium

run dynamics. Moreover, the results shows that the solutions generalize well in the extrapolation

region.
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3.3 Minimum norm interpretation and transversality condition

In this section we provide the connection between minimum norm interpretation and the

transversality condition. We focus on the case of zero total factor productivity growth (i.e.,

g = 0 and z = 1).

The solutions that satisfy the Euler equation and feasibility condition (i.e. equations (32)-

(33)) and violate the transversality condition can be characterized by their asymptotic behavior.

Let {c̃(t), k̃(t)}∞t=0 be one of those solutions, then

lim
t→∞

c̃(t) = 0 (41)

lim
t→∞

k̃(t) = k̃max, (42)

where k̃max solves

δk̃max = f
(
k̃max

)
. (43)

Since the production function f is increasing and strictly concave, k̃max exists and is unique.

Moreover it is the stable fixed point for a dynamical system described by k(t + 1) = f
(
k(t)

)
+

(1− δ)k(t). For f(k) = kα

k̃max = δ
1

α−1 . (44)

Comparing k̃max with the steady state of the capital k∗ ≡
(
β−1+δ−1

α

) 1
α−1 , one can establish that

k̃max > k∗. (45)

The blue curves in Figure 8 show a set of paths for capital, consumption and marginal utility of

consumption (shadow prices), denoted by k̃(t), c̃(t), and u′(c̃(t)), that satisfy the Euler equation

and feasibility condition, and violate the transversality condition.19 The black curves, denoted by

k(t), c(t), and u′(c(t)), show the optimal paths for capital, consumption and marginal utility of

consumption. These paths satisfy the Euler equation, feasibility condition and the transversality

condition. The steady states for capital and consumption in the optimal solution are denoted by

k∗ and c∗. It is important to note that for this set of parameters k̃max

k∗
≈ 15.

The minimum norm interpretation of the solutions of the minimization problem described in

19The parameters we used are k0 = 0.4, β = 0.9, α = 0.33, and δ = 0.1.
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Figure 8: Comparison between the optimal solution and the solutions that violate the transver-
sality condition for k0 < k∗. The blue curves, denoted by k̃(t), c̃(t), and u′(c̃(t)), show a set of
capital, consumption, and marginal utility of consumption paths that violate the transversality
condition. The black curves denoted by k(t), c(t), and u′(c(t)) show the capital, consumption,
and marginal utility of consumption paths for the optimal solution. The steady states for capital
an consumption are denoted by k∗ and c∗.

(35) for the limiting case of T → ∞ can be written as

min
k(·;θ)∈H(Θ)

∥k(·; θ)∥S (46)

s.t. u′
(
c
(
t; k(·; θ)

))
= βu′

(
c
(
t+ 1; k(·; θ)

))[
f ′(k(t+ 1; θ)

)
+ 1− δ

]
for t ∈ X̂ (47)

k(0) = k0 (48)

0 = lim
T→∞

βTu′(c(T ; k(·; θ)))k(T + 1), (49)

where H(Θ) is a space of over-parameterized functions, X̂ is a set of points in time (i.e., X̂ =

{t1, . . . , tN}), the semi-norm ∥ · ∥S satisfies Assumption 1, and consumption function c
(
(t; k(·; θ)

)
is defined in equation (34).

As evident in Figure 8, for the case of k0 < k∗, any capital sequence that starts from k0

and violates the transversality condition converges to k̃max. Both capital paths k̃(t) and k(t)

increase monotonically. Starting from k0, k̃(t) must have bigger derivatives than k(t) to reach

k̃max. Therefore, the solutions that violate the transversality condition have bigger gradients.

More formally, let k̃(t) be a capital path violating the transversality condition and k(t) be the
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optimal solution, then in a compact space of the form [0, T ]

∫ T

0

∣∣∣∣∣dk̃dt
∣∣∣∣∣
2

dt >

∫ T

0

∣∣∣∣dkdt
∣∣∣∣2 dt. (50)

Therefore, by Assumption 1

∥k∥S < ∥k̃∥S. (51)

The solutions that violate the transversality condition have bigger semi-norms. In other words,

the interpolating solutions of a space of over-parameterized functions has a bias toward k(t) and

automatically satisfy the transversality condition. Therefore, the optimization described in (37)

is enough to find the optimal solution without imposing any explicit regularity regarding the long

run behavior.

It is important to note that when the transversality condition is violated the marginal utility

of consumption (shadow price) grows boundlessly (order of 107 after 100 periods). Alternatively,

one can use an over-parameterized function to approximate the shadow price. Since the optimal

solution has bounded shadow prices, it is easy to establish that20

∥u′(c)∥S < ∥u′(c̃)∥S. (52)

Since the difference between the derivatives of marginal utility of consumption for the solutions

that violate the transversality condition and the optimal solution is much larger than the differ-

ence between the derivatives of their corresponding capital paths, it is easier for the implicit bias

of over-parameterized functions to detect the optimal solution. Therefore, in practice approxi-

mating the marginal utility yields faster convergence to the optimal solution.

In this argument we focus on cases where the initial value of capital is below the steady state.

For cases where the initial condition is above the steady state the same argument can be made,

see Figure 22 and the discussion in Appendix B.2.

3.4 Neoclassical growth model with multiplicity of equilibria: sequen-

tial form

The sequential neoclassical growth model discussed and studied in Section 3 has only one

saddle fixed point characterized by (k∗, c∗), while the solutions that violate the transversality

condition approach a fixed point (k, c) = (k̃max, 0). Given that for regular parameters k̃max is

extremely larger that k∗, the semi-norm of the capital path that converges to k∗ is substantially

20For the case of shadow prices Assumption 1 can be relaxed. Because for all the semi-norms (and norms) we
are aware of, an unbounded function has a bigger semi-norm than a bounded function.
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smaller than those that violate the transversality condition. Therefore, it is easy for the implicit

bias to distinguish the difference between these two solutions and pick the optimal solution path.

However, a natural question that arise is: can the implicit bias of over-parameterized functions

distinguish the optimal path in the presence of multiplicity of steady states? Especially, when

the steady states are fairly close to each other.

In this section we address this question by studying the sequential neoclassical growth problem

with a convex-concave production function of the form

f(k) = amax{kα, b1k
α − b2}, (53)

where a, b1, b2 a are positive constants and b1 > 1. 21 This production function is continuous,

however, has a kink at
(

b2
b1−1

) 1
α . We embed this production function in the sequential setup of

neoclassical growth described in Section 3. Specifically, we solve the optimization illustrated in

(37) with this convex-concave production function. In this experiment we focus on constant total

factor productivity (i.e., z0 = 1 and g = 0).22

This problem has two steady states for capital

k∗
1 =

(
β−1 + δ − 1

aα

) 1
α−1

k∗
2 =

(
β−1 + δ − 1

ab1α

) 1
α−1

.

with the corresponding steady state for consumption c∗1 and c∗2.

Figure 9 shows the results for β = 0.9, α = 0.33, δ = 0.1, g = 0, z0 = 1, a = 0.5, b1 = 3,

b2 = 2.5, and k0 = {0.5, 1.0, 3.0, 4.0}. In this experiment X̂ = {0, 1, 2, . . . , 29} and X̂test =

{0, 1, 2, ..., 49}. We approximate the capital path using a deep neural network with four hidden

layers, each with 128 nodes. Hidden layers use Tanh and the output layer uses Softplus as

activation functions. The left panel shows the capital paths and the right panel shows the

corresponding consumption paths. The dashed vertical lines separate the interpolation from the

extrapolation region.

These results show that even in the presence of multiplicity of steady states, the implicit

bias picks up the right paths for capital and consumption in the vicinity of the steady states. It

is worth noting that when the initial capital is above k∗
2 or below k∗

1 the optimal solution has

the lowest semi-norm and the implicit bias of deep neural networks can accurately represent the

21See Skiba (1978) for a comprehensive and detailed treatment of this problem in a continuous time setup.
22In this experiment we use Adam optimizer instead of LBFGS. The Adam optimizer is more stable than

LBFGS. Due to Adam’s longer process of optimization (more optimization steps), the solution is exposed to more
implicit regularization, which is very desirable for this problem.
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Figure 9: The approximate capital and consumption paths for the sequential neoclassical growth
model with a convex-concave production function. The left panel shows the capital paths for
four levels of initial capital k0 ∈ {0.5, 1.0, 3.0, 4.0} and the right panel shows the corresponding
consumption paths. The dashed horizontal lines show the steady states of capital k∗

1 and k∗
2 and

the corresponding steady states for consumption c∗1 and c∗2. The dashed vertical line separates
the interpolation from the extrapolation region.

optimal solution.

Figure 10 shows the capital and consumption paths for a grid of initial conditions k0 ∈
[0.5, 1.75] and k0 ∈ [2.75, 4]. The top panel shows the capital paths and the bottom panel shows

the consumption paths. The dashed horizontal lines show the steady states of capital k∗
1 and

k∗
2 and the corresponding steady states for consumption c∗1 and c∗2. The dashed vertical lines

separate the interpolation from the extrapolation region.

These results show that solutions are robust to variations in the initial condition for capital

in the vicinity of the steady-states.

It is worth noting that the proposed method has two basins of attraction in the space of

initial levels of capital. There exists a critical point, where above that point all the capital paths

converge to the higher steady-state of capital (i.e. k∗
2) and below that point all the capital paths

converge to the lower steady-state of capital (i.e. k∗
1). We do not expect our solution method to

find a reliable solution in the vicinity of that critical point23. See the discussion in Appendix B.6

and Figure 25 for an analysis of the approximate solutions in the vicinity of the critical point.

23See Benjamin Moll’s lecture notes for a global treatment of this problem in a continuous time setup at
https://benjaminmoll.com/wp-content/uploads/2020/06/skiba.pdf.
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Figure 10: The approximate capital and consumption paths for the sequential neoclassical growth
model with convex-concave production function. The grid for the initial condition of capital is
from [0.5, 1.75] and [2.75, 4]. The top panel shows the capital paths and the bottom panel shows
the consumption paths. The dashed horizontal lines show the steady states of capital k∗

1 and k∗
2

and the corresponding steady states for consumption c∗1 and c∗2. The dashed vertical line separates
the interpolation from the extrapolation region.

3.5 Connection to turnpike theory

As discussed in the introduction, classic turnpike theorems provides conditions under which

the solution of a finite-horizon dynamic problem is close to the infinite-horizon version of the

problem. In particular, they emphasize how the dynamics local to a “destination” are not relevant

if most of the time will be spent local to a stationary solution (i.e., the turnpike). In our paper,

we are taking this further. Not only can we worrying about avoid local dynamics near the
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destination, but we can entirely focus on dynamics local to the origin—without even directly

characterizing the steady-state.

Deep learning solutions and the turnpike In this paper we do not specify any terminal

condition for the capital at the last point of the grid (i.e., tN) and let the problem to be ill-posed

and rely on the implicit bias of the deep neural networks to find the approximate path of the

finite-horizon problem. As shown in Figure 5 the approximate capital path fully stays close to

the path of infinite-horizon problem and does not deviate in the interpolation region. Moreover,

in the extrapolation region it stays on the turnpike (at most 0.03% relative error for capital). As

evident in Figure 6, these results are not sensitive to the time horizon used in X̂. The approximate

path for capital stays very close to the turnpike even when smaller time horizons are used (i.e.,

tN = 9). As shown in Figure 7 and Figure 13 these results hold for non-stationary neoclassical

growth model regardless of the functional specification of the growth. Therefore, deep learning

solutions have a strong tendency toward the turnpikes (infinite-horizon paths) because of their

implicit bias toward interpolating solutions with small derivatives.

4 The neoclassical growth model: Recursive form

The sequential models outlined in the previous sections can be very useful to study determin-

istic setups and MIT shocks. However, they are not suitable for dealing with continuous shocks,

such as shocks to total factor productivity. In this section we focus on the recursive version of

the neoclassical growth model.

Setup: The Bellman equation for the neoclassical growth model can be written as

v(k, z) =max
c,k′

{u(c) + βv(k′, z′)} (54)

s.t. k′ = z1−αf(k) + (1− δ)k − c (55)

z′ = (1 + g)z (56)

k′ ≥ 0, (57)

where k is the capital, c is the consumption, and z is the total factor productivity. Capital

depreciates with rate δ ∈ [0, 1], the agent discounts the future with β ∈ (0, 1). We focus on

the constant relative risk aversion utilities u(c) = c1−σ

1−σ
, and production function of the form

f(k) = kα.
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The Euler equation for the recursive form of the neoclassical growth model can be written as

u′(c) = βu(c′)
[
z′1−αf ′(k′) + 1− δ

]
, (58)

where k′ and c′, z′ are the capital, consumption and total factor productivity next period. Since

this is a recursive model, k′ and c are functions of capital k, and total factor productivity z,

therefore, the domain of interest is X ≡ R2
+. We are looking for functions k′(k, z) and c(k, z)

such that they satisfy the Euler equation and the feasibility condition. Moreover, the optimality of

the solution requires all the capital and consumption paths to satisfy the transversality condition

for all initial conditions in X

0 = lim
T→∞

βTu′ (cT (k0, z0)) k′T (k0, z0) for all (k0, z0) ∈ X, (59)

where k′T (k0, z0) and cT (k0, z0) are generated by iterating forward the optimal policy function

for capital k′(k, z), the consumption function c(k, z), and the law of motion for total factor

productivity up to the T th period for a given k0 and z0.

4.1 Interpolating solution

As a generalization of the collocation approach one can pick a space of parametric functions

H(Θ), where Θ ≡ {θ1, . . . ,ΘM} represents the parameters. For instance, in a standard collocation

method H(Θ) can be the space of two-dimensional Chebyshev polynomials with M parameters.24

The interpolating capital function k(·, ·; θ) : X → R belongs to H(Θ). In order to represent the

domain X, one can pick a finite set of grid points X̂ ⊂ X. For instance, in a standard Chebyshev

collocation, X̂ is the set of Chebyshev nodes. Since this is a two-dimensional recursive model

X̂ ≡ {k1, . . . , kNk
} × {z1, . . . , zNz}. (60)

This is a Cartesian product of sets of points in the capital and total factor productivity space.

The Euler equation (i.e., equation (58)), the feasibility condition (i.e, equation (55)), the law of

motion for the total factor productivity (i.e., equation (56)), and the transversality condition (i.e.,

equation (59)) form a system of equation. However, the transversality condition is a boundary

condition at infinity. One can approximate infinity by choosing a very large point in time, denoted

by T . In the recursive case, T should be large enough such that the optimal capital path is very

close to the steady state at time T .

For a given policy function for capital k′(k, z; θ) ∈ H(Θ) we define a consumption function

24Since this is a two-dimensional problem, one should adjust the Chebyshev polynomials and Chebyshev nodes.
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c(k, z; k′(·; θ)) through the feasibility condition

c
(
k, z; k′(·; θ)

)
≡ z1−αf(k) + (1− δ)k − k′(k, z; θ). (61)

.

Given a space of parametric functions H(Θ), a grid X̂, and a very large point in time T ,

one can find the interpolating policy function for capital by solving the following optimization

problem

min
θ∈Θ

[
1

|X̂|

∑
(k,z)∈X̂

(
u′(c(k, z; k′(·; θ)

))
u′
(
c
(
k′(k, z; θ), (1 + g)z; k′(·; θ)

)) − β
[(
(1 + g)z

)1−α
f ′(k′(k, z; θ)

)
+ (1− δ)

])2

+

1

|X̂|

∑
(k0,z0)∈X̂

(
βTu′

(
cT
(
k0, z0; k

′(·; θ)
))

k′T (k0, z0; θ))2

︸ ︷︷ ︸
Is this necessary?

]
. (62)

The first term in the optimization problem is the Euler residuals and the second term is a finite

approximation of the transversality condition. The non-negativity of k′(k, z; θ) can be built into

H(Θ).

Choice of X̂: Similar to the previous cases the choice of X̂ is not very crucial. However, we

provide results for different grids. We also evaluate the interpolating policy function for capital

outside of X̂ to study the generalization performance of the solutions.

In standard collocation methods, where the number of parameters is equal to the number

of grid points, this problem can be solved exactly as a system of equations with a boundary

condition at T . It is worth nothing that the interpolating solution depend on T . Therefore, the

minimization problem described in (62) defines a sequence of solutions indexed by T .

Is the transversality condition necessary? Without the transversality condition the recur-

sive version of the neoclassical growth has more than one solution. Therefore, in the absence of

the second term (finite approximation of the transversality condition) the minimization problem

described in (62) has more than one solutions that minimize the objective function. As noted by

Fernández-Villaverde et al. (2016), without explicitly imposing the transversality condition, it is

necessary to verify that solutions satisfy the transversality condition. This verification process is

done after solving the minimization problem by generating capital and consumption paths from

some initial conditions.

In section Section 4.3 we establish how using over-parameterized functions (M ≫ Nk×Nz) and

their optimization processes yield an interpolating solution that does not violate the transversality

condition. Intuitively, the policy functions for capital that leads to violation of the transversality
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condition have bigger derivatives than the optimal policy function for capital. With this result, we

do not need to be worried about the transversality condition. Therefore, using over-parameterized

functions we can drop the transversality condition and solve

min
θ∈Θ

1

|X̂|

∑
(k,z)∈X̂

(
u′(c(k, z; k′(·; θ)

))
u′
(
c
(
k′(k, z; θ), (1 + g)z; k′(·; θ)

)) − β
[(
(1 + g)z

)1−α
f ′(k′(k, z; θ)

)
+ (1− δ)

])2

,

(63)

to obtain an interpolating solution that does not violate the transversality condition.

4.2 Results

Generating capital and consumption paths: In the recursive version of the neoclassical

growth, the interpolating solution is a policy function for capital k′(k, z; θ∗), where

θ∗ ≡ argmin
θ∈Θ

1

|X̂|

∑
(k,z)∈X̂

(
u′(c(k, z; k′(·; θ)

))
u′
(
c
(
k′(k, z; θ), (1 + g)z; k′(·; θ)

)) − β
[(
(1 + g)z

)1−α
f ′(k′(k, z; θ)

)
+ (1− δ)

])2

.

Given k′(k, z; θ∗), we construct the consumption function c (k, z; k′(·; θ∗)) defined by (61). In

order to generate a capital path up to period t, we apply the interpolating policy function for

capital and the law of motion for total factor productivity t times from given initial conditions

k0 and z0. Similarly, a consumption path is constructed by applying the consumption function t

times.

This procedure provides a pair of approximate capital and consumption paths. In this section,

we solve the minimization problem described in (63) for 100 times. Each time with a different

random initialization (random seed) of the parameters of the deep neural network, then we gen-

erate a pair of capital and consumption paths. This procedure provides 100 pairs of approximate

capital and consumption paths. We report the median, the 10th and the 90th percentiles of

these paths. We also report the median, the 10th, and the 90th percentiles of the relative errors

between these approximate paths a the paths generated by the value function iteration method.

Figure 11 shows the result of the minimization problem described in (63) for β = 0.9, α = 0.33,

δ = 0.1, g = 0, k0 = 0.4, and z0 = 1. In this experiment we utilize a grid with 16 points between

k1 = 0.8 and kNk
= 2.5. We use a deep neural network with four hidden layers, each with 128

nodes. Each hidden layer uses Tanh and the output layer uses Softplus as activation functions.

The solid curve in the top-left panel, denoted by k̂(t), shows the median of the approximate

capital paths. The dashed curve, denoted by k(t), shows the capital path obtained by the value

function iteration method. The solid curve is accompanied with the 10th and the 90th percentiles

of the approximate capital paths. However, they are so close to each other that they are not
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Figure 11: Comparison between the value function iteration and approximate solution using
a deep neural network for the recursive neoclassical growth model. The left panels show the
median of the approximate capital and consumption paths, denoted by k̂(t) and ĉ(t). The dashed
curves, denoted by k(t) and c(t), show the capital and consumption paths obtained by the value
function iteration method. The right panels show the median of the relative errors between the
approximate paths and the paths obtained by the value function iteration method. The shaded
regions show the 10th and the 90th percentiles. The dashed curves in the right panels show the
relative errors for the parts of the approximate capital paths that lie outside of the interpolation
regions. The gray rectangle in the top-right panel shows the interpolation region.

visible in the plot. The gray rectangle shows the interpolation region, i.e., [0.8, 2.5]. The top-

right panel shows the median of the relative errors between the approximate capital paths and the

capital path obtained by the value function iteration method. The shaded region shows the 10th

and the 90th percentiles of the relative errors. The dashed part of the curve shows the median of
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relative errors in the extrapolation region (i.e., the parts of the approximate capital path outside

of [0.8, 2.5]) and the solid part shows the median of relative errors in the interpolation region

(i.e., the parts of the approximate capital path inside of [0.8, 2.5]). The solid curve, denoted by

ĉ(t), in the bottom-left panel shows the median of the approximate consumption paths. The

dashed curve shows the consumption path obtained by the value function iteration method. The

bottom-right panel shows the median of the relative errors between the approximate consumption

paths and the consumption path obtained by the value function iteration method. The shaded

region shows the 10th and the 90th percentiles of the relative errors. The dashed part of the curve

shows the median of relative errors for consumption where the corresponding levels of capital are

in the extrapolation region and the solid part shows the median of relative errors for consumption

where the corresponding levels of capital are in the interpolation region.

The results of this experiment are multi-fold. First, the implicit bias of deep neural networks

yields a solution that automatically satisfies the transversality condition. Second, the solutions are

accurate within X̂. Third, given the initial level of capital k0 = 0.4 lies outside of X̂ = [0.8, 2.5],

the generalization error are small (at most 5% for capital).

As stated in the original problem, the transversality condition should hold for all the initial

level of capital, Figure 26 in Appendix C.1 shows the results for different initial conditions of

capital both inside X̂ and outside X̂.

Far from the steady state: In the last experiment, the steady state for capital k∗ lies inside

of the interpolation region (i.e., k∗ ∈ [0.8, 2.5]). In this experiment we investigate whether we

can achieve accurate short run dynamics by using a local grid around the initial condition for

capital. More specifically, we use a grid X̂ = {k1, . . . , kNk
}, where kNk

< k∗.

Figure 12 shows the results for the recursive neoclassical growth using a local grid around the

initial level of capital k0 = 0.9. In this experiment we utilize a grid with 16 points between k1 = 0.8

and kNk
= 1.5. We use the same parameters and deep neural network as the previous experiment.

The solid curve in the top-left panel, denoted by k̂(t), shows the median of the approximate capital

paths. The dashed curve, denoted by k(t), shows the capital path obtained by the value function

iteration method. The shaded region shows the 10th and the 90th percentiles of the approximate

capital paths. The gray rectangle shows the interpolation region, i.e., [0.8, 1.5]. The top-right

panel shows the median of the relative errors between the approximate capital paths and the

capital path obtained by the value function iteration method. The shaded region shows the 10th

and the 90th percentiles of the relative errors. The dashed part of the curve shows the median of

relative errors in the extrapolation region (i.e., the parts of the approximate capital path outside

of [0.8, 1.5]) and the solid part shows the median of relative errors in the interpolation region (i.e.,

the parts of the approximate capital path inside of [0.8, 1.5]). The solid curve, denoted by ĉ(t), in

the bottom-left panel shows the median of the approximate consumption paths. The dashed curve
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shows the consumption path obtained by the value function iteration method. The shaded region

shows the 10th and the 90th percentiles of the approximate consumption paths. The bottom-

right panel shows the median of the relative errors between the approximate consumption paths

and the consumption path obtained by the value function iteration method. The shaded region

shows the 10th and the 90th percentiles of the relative errors. The dashed part of the curve

shows the median of relative errors for consumption where the corresponding levels of capital are

in the extrapolation region and the solid part shows the median of relative errors for consumption

where the corresponding levels of capital are in the interpolation region.

These results show that one can achieve accurate short run dynamics when the grid for capital

is locally defined around the initial capital and is far from the steady state. For the first few

periods the relative error for capital is less then 1%. Moreover, the relative errors stay bounded

do not grow excessively even after 20 periods.

Balanced growth path (g > 0): In this experiment we focus on the positive growth in total

factor productivity (i.e. g > 0). We partially use an a priori economic intuition that the solution

is homogeneous of degree one in z. We design the space of functions H(Θ) such that it contains

functions of the form

k̂′(k, z; θ) = zNN

(
k

z
, z; θ

)
, (64)

where NN(·, ·; θ) is a deep neural network. We say partially, because the correctly specified

functional form of a homogeneous of degree one is zNN
(
k
z
; θ
)
.

Figure 13 shows the results for recursive neoclassical growth for non-stationary total factor

productivity (i.e., g = 0.02). We use 16 points in for [0.8, 3.5] for capital, and 8 points in [0.8, 1.8]

for total factor productivity. The deep neural network NN(·, ·; θ) is the same as the first experi-

ment. The only difference is the linear term z.

The solid curve in the top-left panel, denoted by k̂(t), shows the median of the approximate

capital paths. The dashed curve, denoted by k(t), shows the capital path obtained by the value

function iteration method. The shaded region shows the 10th and the 90th percentiles of the

approximate capital paths. The top-right panel shows the median of the relative errors between

the approximate capital paths and the capital path obtained by the value function iteration

method. The shaded region shows the 10th and the 90th percentiles of the relative errors. The

dashed part of the curve shows the median of relative errors in the extrapolation region (i.e., the

parts of the approximate capital path outside of [0.8, 3.5]) and the solid part shows the median

of relative errors in the interpolation region (i.e., the parts of the approximate capital path inside

of [0.8, 3.5]). The solid curve, denoted by ĉ(t), in the bottom-left panel shows the median of the

approximate consumption paths. The dashed curve shows the consumption path obtained by

the value function iteration method. The solid curve is accompanied with the 10th and the 90th
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Figure 12: Comparison between the value function iteration and approximate solution using a
deep neural network for the recursive neoclassical growth model using a local grid around the
initial condition for capital X̂ = {0.8, . . . , 1.5}. The left panels show the median of the approxi-
mate capital and consumption paths, denoted by k̂(t) and ĉ(t). The dashed curves, denoted by
k(t) and c(t), show the capital and consumption paths obtained by the value function iteration
method. The right panels show the median of the relative errors between the approximate paths
and the paths obtained by the value function iteration method. The shaded regions show the
10th and the 90th percentiles. The dashed curves in the right panels show the relative errors for
the parts of the approximate capital path that lie outside of the interpolation regions. The gray
rectangle in the top-right panel shows the interpolation region.

percentiles of the approximate consumption paths. However, they are so close to each other that

they are not visible in the plot. The bottom-right panel shows the median of the relative errors

between the approximate consumption paths and the consumption path obtained by the value
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function iteration method. The shaded region shows the 10th and the 90th percentiles of the

relative errors. The dashed part of the curve shows the median of relative errors for consumption

where the corresponding levels of capital are in the extrapolation region and the solid part shows

the median of relative errors for consumption where the corresponding levels of capital are in the

interpolation region.

The results of this experiment are multi-fold. First, the implicit bias of deep neural networks

yields a solution that automatically satisfiesthe transversality condition. Second, the solutions

are accurate within X̂ (less than 1% relative error for capital in short and medium run). Third,

the solution generalizes well (less than 5% relative errors after 40 periods).

As stated in the original problem, the transversality condition should hold for all the initial

conditions in X, Figure 27 in Appendix C.1 shows the results for different initial conditions of

capital both inside and outside of the interpolation region.

4.3 Minimum norm interpretation and transversality condition

In this section we provide the connection between minimum norm interpretation and the

transversality condition for the case of recursive neoclassical growth. We focus on the case of

zero total factor productivity growth (i.e., g = 0 and z0 = 1).

As discussed in Section 3.3 the solutions that violate the transversality condition are associated

with a sequence of consumption that approaches zero and a sequence of capital that approaches

k̃max. Therefore, any policy function for capital k̃′(k) that solves the Euler equation and feasibility

condition, and violates the transversality condition, must have a fixed point at k̃max. Formally

k̃′
(
k̃max

)
= k̃max.

The optimal policy function for capital k′(k) has a fixed point at k∗ =
(
β−1+δ−1

α

) 1
α−1 . Formally

k′ (k∗) = k∗.

Given the fact that k̃max ≫ k∗, k̃ must intersect with 45 degree line way further to the right of

k∗.

In Figure 14 the blue curve, denoted by k̃′(k), shows a policy function for capital that violates

the transversality condition and the black curve, denoted by k′(k), shows the optimal policy

function for capital. The dashed line shows the 45 degree line. k̃′(k) intersects with the 45 degree

line at k̃max ≈ 30. 25

The minimum norm interpretation of the solutions of the minimization problem described in

25In this figure the solutions that violate the transversality condition (i.e., k̃′(k)) are generated by transforming
the sequences of capitals that solve the sequential problem and violate the transversality condition.
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Figure 13: Comparison between the value function iteration and approximate solution using
a deep neural network for the recursive neoclassical growth model with growth in total factor
productivity (i.e., g = 0.02). We use X̂ = [0.8, 3.5] × [0.8, 1.8]. The left panels show the
median of the approximate capital and consumption paths, denoted by k̂(t) and ĉ(t). The dashed
curves, denoted by k(t) and c(t), show the capital and consumption paths obtained by the value
function iteration method. The right panels show the median of the relative errors between the
approximate paths and the paths obtained by the value function iteration method. The shaded
regions show the 10th and the 90th percentiles. The dashed curves in the right panels show the
relative errors for the parts of the approximate capital path that lie outside of the interpolation
regions.

(62) for the limiting case of T → ∞ can be written as

min
k′(·;θ)∈H(Θ)

∥k′(·; θ)∥S (65)

s.t. u′
(
c
(
k; k′(·; θ)

))
= βu′

(
c
(
k′(k); k′(·; θ)

))[
f ′(k′(k; θ)

)
+ (1− δ)

]
for k ∈ X̂ (66)

k′(k; θ) ≥ 0 for k ∈ X̂ (67)

0 = lim
t→∞

βTu′ (cT (k0)) k′T (k0) for all k0 ∈ X. (68)
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Since the total factor productivity is constant and is always equal to one, we replace k′(k, z; θ)

by k′(k; θ) and X̂ is defined as

X̂ ≡ {k1, . . . , kNk
}. (69)

H(Θ) is a space of over-parameterized functions and ∥ · ∥S satisfies Assumption 1.
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10 k′(k): Violating TVC
k ′(k)
45 degree line

Figure 14: Comparison between the optimal solution, denoted by k′(k), and a solution that violate
the transversality condition, denoted by k̃′(k), in the recursive neoclassical growth model. The
solution that violates the transversality equation intersects with the 45 degree line at k̃max ≈ 30.

As evident in Figure 14, k̃′(k) has bigger derivatives than k′(k). More specifically, for an

arbitrary compact space of the form [kmin, kmax]

∫ kmax

kmin

∣∣∣∣∣dk̃′

dk

∣∣∣∣∣
2

dk >

∫ kmax

kmin

∣∣∣∣dk′

dk

∣∣∣∣2 dk. (70)

Therefore, by Assumption 1

∥k′∥S < ∥k̃′∥S. (71)

Since the solutions that violate the transversality condition have bigger semi-norms, the over-

parameterized interpolation eliminates those solutions. Therefore, the optimization problem

described in (63) is enough to find the optimal policy function for capital k′(k, z; θ) without

imposing any explicit regularity regarding the long run behavior, such a finite approximation of

the transversality condition.
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5 Are Euler and value function residuals enough?

In dynamic models where there is multiplicity of solutions and some boundary conditions at

infinity is required, finding the root of the functional operators such as Euler or value function

residuals is not enough. Due to multiplicity, very low levels of residuals can be misleading and

the interpolating solutions might represent non-optimal ones.

Minimizing the Euler residuals is not enough: For instance, in the recursive neoclassi-

cal growth model, we want to have a solution that minimizes the Euler residuals and satisfy

the transversality condition. Equivalently, the optimal policy function for capital k′(k) has to

minimize the Euler residuals and have a fixed point at the steady state k∗. As illustrated in

Section 4.3, when we approximate the policy function for capital k′(k) with a deep neural net-

work, the implicit bias automatically picks the optimal solution. This happens because the policy

functions for capital that violate the transversality condition have bigger derivatives.

Due to the trade off between the consumption function c(k) and the policy function for capital

k′(k) through the feasibility condition, if k′(k) has a bigger semi-norm then c(k) has smaller semi-

norm. Therefore, if one decides to approximate the consumption function instead of the policy

function for capital they get solutions that violate the transversality condition. Equivalently, the

corresponding policy function for capital k′(k) has a fixed point at k̃max instead of the steady

state k∗. We focus on the case constant total factor productivity (i.e., g = 0 and z0 = 1) and

in the notation drop the total factory productivity as an input. The optimization we solve for

approximating the consumption function for capital can be written as

min
θ∈Θ

1

|X̂|

∑
k∈X̂

(
u′(c(k; θ))

u′
(
c
(
k′(k; c(·; θ)); θ

)) − β

[
f ′
(
k′(k; c(·; θ)))+ (1− δ)

])2

, (72)

where for a given consumption function c(k; θ) ∈ H(Θ), the policy function for capital is defined

as

k′(k; c(·; θ)) ≡ f(k) + (1− δ)k − c(k; θ), (73)

The policy function for capital is defined exactly and not approximated. The consumption

function c : R → R+ is approximated by a deep neural network. Similar to the previous cases

the grid for capital is defined as X̂ ≡ {k1, . . . , kNk
}.

Figure 15 shows the comparison between approximating the policy function for capital k′(k)

versus approximating the consumption function c(k) with a deep neural network. The economic

parameters are the same as before. The solid curve in top-left panel shows the median of the Euler

residuals squared over 100 different initialization of the parameters of the deep neural network
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(seeds) when k′(k) is approximated with a deep neural network.26 In this case, the Euler residual

is defined as

εkE(k; θ) ≡
u′(c(k; k′(·; θ)

))
u′
(
c
(
k′(k; θ); k′(·; θ)

)) − β
[
f ′(k′(k; θ)

)
+ (1− δ)

]
, (74)

where the superscript k denotes the Euler residuals when the policy function for capital is ap-

proximated with a deep neural network. The shaded region around the solid curve shows the 10th

and the 90 percentiles of the Euler residuals squared. The bottom-left panel shows the median

of the approximate policy functions for capital, when k′(k) is approximated with a deep neural

network. The figure also contains the 10th and the 90 percentiles of the approximate policy

functions for capital. However, they are so close to each other that they are visible in the plot.

In this case the approximate policy function for capital has a fixed point at k∗ ≈ 2.0. The solid

curve in top-right panel shows the median of the Euler residuals squared over 100 seeds when

c(k) is approximated with a deep neural network. In this case, the Euler residual is defined as

εcE(k; θ) ≡
u′(c(k; θ))

u′
(
c
(
k′(k; c(·; θ)); θ

)) − β
[
f ′(k′(k; c(·; θ)))+ (1− δ)

]
, (75)

where the superscript c denotes the Euler residuals when the consumption function is approxi-

mated with a deep neural network. The shaded region shows the 10th and the 90 percentiles of

the Euler residuals squared. The bottom-right panel shows the median of the approximate policy

functions for capital, when c(k) is approximated with a deep neural network. The shaded region

shows the 10th and the 90 percentiles of the approximate policy functions for capital. In this

case the approximate policy function for capital has a fixed point at k̃max ≈ 30.

These results show that when the policy function for capital is approximated with a deep

neural network, k̂(k) has a fixed point at k∗ ≈ 2.0 and it does not violate the transversality

condition (bottom-left panel). However, when the consumption function is approximated with a

deep neural network, the policy function for capital has a fixed point at k̃max ≈ 30 and it violates

the transversality condition (bottom-right panel). As shown in the bottom-right panel, this

result is robust to changing different random initialization of the parameters of the deep neural

network. Most importantly, the Euler residuals for the solutions that violate the transversality

condition (top-right panel) are systematically and substantially lower than the solution that does

not violate the transversality condition. Therefore, having low Euler residuals is not sufficient

for convergence to the optimal solution and can be very misleading.

From a theoretical perspective, a variation of the transversality condition is required to guar-

antee the value function is the unique solution of the Bellman formulation of the neoclassical

growth model, see Le Van and Morhaim (2002) and Stokey et al. (1989).

26We solve the minimization problem described in (72) for 100 times, each time with a differen random initial-
ization of the parameters of the deep neural networks. We report the median, 10th, and 90th percentiles of these
solutions.

47



1.0 1.5 2.0 2.5
capital(k)

10 10

10 9

10 8

10 7

10 6

Euler residuals2: NN = k ′(k)

1.0 1.5 2.0 2.5
capital(k)

10 10

10 9

10 8

10 7

10 6

Euler residuals2: NN = c(k)

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5
k ′(k): NN = k ′(k)

k ′(k)
45 degree line

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5
k ′(k): NN = c(k)

k ′(k)
45 degree line

Figure 15: Comparison between approximating the policy function for capital k′(k) versus the
consumption function c(k) with a deep neural network. The left panels show the median of
Euler residuals and policy functions for capital when k′(k; θ) is approximated with a deep neural
network. The right panels show the median of Euler residuals squared and policy functions for
capital when c(k) is approximated with a deep neural network. The solid curves show the medians
and the shaded regions show the 10th and the 90th percentiles over 100 different seeds.

Can explicit regularization solve the problem? As shown in Figure 15 approximating the

consumption function c(k) instead of policy function for capital leads to solutions that violate the

transversality condition. One natural question that arises is whether explicit regularization of the

parameters of the deep neural network can fix this problem. One of the most common methods

of explicit regularization is L2 regularization. This regularization is achieved by penalizing the

48



L2 norm of the parameters of the neural networks (i.e.,
∑

θi∈Θ θ2i ).
27 Therefore, the minimization

takes the following form

min
θ∈Θ

[
1

|X̂|

∑
k∈X̂

(
u′(c(k; θ))

u′
(
c
(
k′(k; c(·; θ)); θ

)) − β
[
f ′(k′(k; c(·; θ)))+ (1− δ)

])2

+ λ
∑
θi∈Θ

θ2i

]
, (76)

where λ is the penalization coefficient. We solve this minimization, with and without the explicit

regularization, for 100 times. Each time with a different random initialization of the parameters

of the deep neural network. We report the median, the 10th, and 90th percentiles of the results.

Figure 16 shows the results for approximating the consumption function with and without

regularization. The left panels show the results without regularization. The right panels show the

results with L2 regularization with penalization coefficient λ = 10−9. The solid curve in the top

panels shows the median of the Euler residuals squared defined in equation (75), and the shaded

regions show the 10th and the 90th percentiles of the Euler residuals squared. The solid curves

in the bottom panels shows the median of the policy functions for capital, i.e., k′ (k; c(·; θ)) and
the shaded regions show the 10th and the 90th percentiles of the approximate policy functions

for capital.

These results show that explicit regularization cannot lead to solutions that do not violate the

transversality condition. However, this regularization reduces the variation of the Euler residuals

and policy functions for capital.

Minimizing the Bellman residuals is not enough: Similarly, for the sequential models

such as linear asset pricing low residual errors can be misleading. As noted before the solutions

can be written as

p(t) = pf (t) + ζβ−t.

From the theoretical perspective, given that the dividends are positive, prices should be non-

negative for every time period. Therefore, negative values of ζ are not allowed and as showed in

Proposition 1 the price based on the fundamentals has the lowest semi-norm for all non-negative

values of ζ. However, when X̂ = {t1, . . . , tN} only contains small values, negative values of ζ

can leak into the interpolating solutions. It is important to note that they are still interpolating

solutions and solve the optimization problem accurately. This is because when tN is small the

solutions with negative ζ have smaller semi-norms.

We solve the minimization problem described in (12) for 100 times. Each time with a different

random initialization of the parameters of the deep neural network. We report the median, the

10th, and the 90th percentiles of the results.

Figure 17 shows the results for the sequential asset pricing model for X̂ = {0, 1, . . . , 14}.
27This is also called weight decay, and it is very easy to implement in PyTorch and TensorFlow.
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Figure 16: The effect of the L2 explicit regularization on the solutions, when the consumption
function c(k) is approximated with a deep neural network. The left panels show the results
without regularization. The right panels show the results with L2 regularization with penalization
coefficient λ = 10−9. The solid curves in the top panels show the median of the Euler residuals
squared. The solid curves in the bottom panels show the median of the approximate policy
functions for capital, i.e., k′ (k; c(·θ)). The shaded regions show the 10th and the 90th percentiles.

The parameters and the deep neural network is the same as before. The dashed curve in the

left panel shows the price based on the fundamentals and the solid curve shows the median

of the approximate prices. The shaded region shows the 10th and the 90th percentiles of the

approximate prices. The solid curve in the right panel shows the median of the relative errors.

The shaded region shows the 10th and the 90th percentiles of the relative errors.

These results show the leakage of negative value of ζ into the interpolating solutions. Since ζ
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Figure 17: Comparison between the accurate and approximate solution using a deep neural net-
work for the sequential linear asset pricing model for small tN . The dashed vertical lines separate
the interpolation from the extrapolation region. In the left panel the solid curve shows the me-
dian of th approximate prices. The dashed curve shows the price based on the fundamentals.
The solid curve in the right panel shows the median of relative errors between the approximate
price and the price based on the fundamentals. The shaded regions show the 10th and the 90th
percentiles of the relative errors.

is negative and non-negativity of p(·; θ) is built into H(Θ), the approximate solutions are always

bounded between 0 and pf (t).

Figure 18 is the result of the same experiment with X̂ = {0, 1, . . . , 9}. The black solid curve,

denoted by p̂(t), shows the median of the approximate price paths. The shaded region shows the

10th and the 90th percentiles of the approximate price paths. The dashed curve, denoted by pf (t)

shows the price based on the fundamentals. The solid curve in the right panel shows the median

of the relative errors between the approximate prices and the price based on the fundamentals.

The shaded region shows the 10th and the 90th percentiles of the relative errors.

Since the approximate prices solve the interpolation problem accurately, then each of them

can be written as

p̂(t) = pf (t) + ζ̂β−t.

By setting t = 0 we can find the corresponding ζ̂ as

ζ̂ = p̂(0)− pf (0). (77)

The solid blue line shows the median of p̂(t) − ζ̂β−t. If each solution solves the interpolation

problem accurately, then p̂(t)− ζ̂β−t must be very close to pf (t). The blue shaded region shows

the 10th and the 90th percentiles for p̂(t)− ζ̂β−t .
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Figure 18: Analyzing the approximate solutions of the sequential linear asset pricing model
for small tN. In this experiment X̂ = {0, 1, . . . , 9}. The dashed vertical lines separate the
interpolation from the extrapolation region. In the left panel the black solid curve, denoted by
p̂(t), shows the median of the approximate prices. The dashed curve, denoted by pf (t), shows

the price based on the fundamentals. The blue solid curve shows the median of p̂(t)− ζ̂β−t over.
The right panel shows the difference between the approximate prices and the price based on the
fundamentals. The shaded regions show the 10th and the 90th percentiles.

These results confirm that when tN is small (in this example tN = 9) the approximate solution

accurately solves the interpolation problem. This is evident from observing that pf (t) ≈ p̂(t) −
ζ̂β−t very accurately in X̂. The 10th and the 90th percentiles for p̂(t) − ζ̂β−t are very close to

each other. This happens because the variations in the approximate prices are caused by very

small variations in ζ̂. Moreover these results confirm that the leakage of negative values of ζ

gets more severe for smaller values of tN . However, the approximate solutions are still bounded

between 0 and pf (t). Therefore, the bias is always downward.

6 Implicit bias of deep neural networks

For a given space of over-parameterized functions H(Θ), a residual ℓ(·, ·), and a grid X̂ the

interpolation problem can be written as

min
Ψ(·;θ)∈H(Θ)

1

|X̂|

∑
x∈X̂

ℓ(Ψ(·; θ), x)2. (78)

Since in over-parameterized interpolation problems, such as interpolation with deep neural net-

works, the number of parameters is larger than the number of grid points there are many inter-
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polating solutions that can achieve 1

|X̂|

∑
x∈X̂ ℓ(Ψ(·; θ), x)2 = 0.

Discussion regarding the validity of Assumption 1: Over-parameterized function approx-

imation, specially deep learning, has shown an incredible generalization power, see Zhang et al.

(2021). Given that they typically have many more parameters than data points, they are capable

of achieving exact interpolation. One might expect this exact interpolation leads to over-fitting

and hence poor generalization power. However, in many empirical settings it has been shown

that is not the case, to name a few see Belkin et al. (2019), Neyshabur et al. (2014).

One approach to avoid over-fitting in over-parameterized problems is to use explicit regu-

larization. The two most common methods are L1 and L2 regularization. L1 regularization

corresponds to penalizing the sum of the absolute values of the parameters in the approximating

function (similar to Lasso regression). L2 regularization corresponds to penalizing the sum of the

squared of parameters (similar to ridge regression). Surprisingly, it has been shown that, even

without any explicit regularization, they can still achieve good generalization.

These two observations have led researches to believe that the optimization methods used

in over-parameterized interpolation posses an intrinsic implicit bias toward a specific class of

solutions, for example see Neyshabur et al. (2017), Arora et al. (2019), and Smith et al. (2021).

Understanding the nature of this implicit bias is still an active field of research in computer

science, optimization theory, and statistics. However, it is mostly believed that the implicit

bias is caused by the first order optimization methods such as gradient descent and stochastic

gradient descent, which are widely used in over-parameterized interpolation problems. It has

been established that the first order optimization methods favor flat minima in the space of

parameters. In this context the flatness/sharpness of the minima is characterized by the trace of

the Hessian matrix of the objective function. For instance, in regression problems, Damian et al.

(2021) show that the stochastic gradient descent minimizes

∥Ψ(·; θ)∥S ≡ −1

η
tr log

(
I − η

2

1

X̂

∑
x∈X̂

∇2
θℓ(Ψ(·; θ), x)2

)
,

where I is the M ×M identity matrix, η is the size of the optimization step (learning rate), and

∇2
θℓ(Ψ(·; θ), x)2 is the Hessian of the objective function. In the interpolation regime, where zero

of the objective function (i.e., the objective function defined in (78)) is reached, there is a tight

connection between the trace of the Hessian and the gradient of the interpolating function with

respect to its parameters. Blanc et al. (2020) show that the stochastic gradient descent minimizes

∥Ψ(·; θ)∥S ≡ 1

|X̂|

∑
x∈X̂

∥∇θΨ(x; θ)∥22,

which is the L2 norm of the the gradient of the interpolating function with respect to the param-
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eters.

Convergence to a flat minima in the space of parameters does not provide enough information

about the properties of the function with respect to its inputs such as smoothness and small

derivatives. Due to the multiplicative structure of deep neural networks, Ma and Ying (2021)

observe that there is a tight connection between the flatness of a minima and the norm of the

gradient of the function with respect to its inputs. More specifically, in an interpolation regime,

stochastic gradient descent as an optimization algorithm implicitly minimizes the Sobolev semi-

norm of the approximating function. In other words deep neural networks along with their

optimizers have a tendency to find approximating functions that have small derivatives (in our

case not explosive).

Here we provide the mathematical definition of Sobolev 1 − 2 semi-norm for a univariate

function

Definition 1 (Sobolev 1-2 seminorm). Let Ψ be a univariate function from a compact space in

X ⊂ R to R, Sobolev 1-2 semi-norm is defied as

∥Ψ∥1,2,X ≡
(∫

X

∣∣∣∣dΨdx
∣∣∣∣2 dx) 1

2

.

Therefore, among two differentiable interpolating functions Ψ1 and Ψ2 such that

(∫
X

∣∣∣∣dΨ1

dx

∣∣∣∣2 dx) 1
2

>

(∫
X

∣∣∣∣dΨ2

dx

∣∣∣∣2 dx) 1
2

,

there is an implicit bias toward Ψ2.

It is worth mentioning that Maennel et al. (2018) study the case of a one hidden layer neu-

ral network with ReLU activation function (ReLU(x)= max{0, x}) with low-dimensional data

points. They show, when the initial parameters are set to have small values, the gradient descent

converges to a data dependent (as opposed to network size dependence) linear interpolation which

is an indication of an implicit bias toward low Sobolev semi-norms.

Remark All the theoretical and empirical results in the literature regarding the implicit bias

of over-parameterized interpolation focus on regression and classification problems. The inter-

polation problems we solve in theoretical equilibrium models have a different nature and the

objective functions (such as Bellman or Euler residuals) are slightly different from regression

problems. However, as verified in the result sections of this paper, we strongly believe the same

results can be proved for the sort of problems we solve.
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7 Conclusion

Dynamic models of forward-looking agents in economics require conditions on long-run behav-

ior (e.g, transversality and no-bubble condition). These conditions rule out explosive solutions.

In this paper, we show that how deep learning approximations automatically satisfy these con-

ditions without explicitly imposing them through calculating the steady-state even in models

with steady-state multiplicity. What makes deep learning approximations special is its inherent

implicit bias toward functions with small derivatives that match the class of solutions we are

interested in dynamic models. These results suggest that deep learning may let us calculate

accurate transition dynamics with high-dimensional state spaces without directly solving for the

boundary conditions at infinity.
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Appendix A Sequential linear asset pricing

A.1 Learning the growth rate
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Figure 19: The distribution of the approximated growth rate of the dividends in the sequential
linear asset pricing model. The dashed vertical line shows the actual value of g.

Figure 19 shows the distribution for the approximated growth rate for the sequential linear

asset pricing model. The approximated growth rate is defined as

ĝ ≡ eϕ − 1, (A.1)

This figure shows the approximate growth rate for 100 seeds, the red vertical line shows the true

growth rate, g = 0.02. The approximation is slightly biased to the right. However, given the

optimization problem is extremely non-convex, the accuracy of approximation is impressive. This

results shows that the algorithm can separate the growth path from the stationary solution.

A.2 Misspecification of growth in prices

In this experiment we use a linear function to approximate the solution of the sequential linear

asset pricing model with growing dividends

p̂(t; θ) = tNN(t; θ1) + ϕ,

where θ ≡ {ϕ, θ1}, NN(·; θ1) is a deep neural network, and ϕ is a parameter that needs to be

found in the optimization process.
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Figure 20: Comparison between the price based on the fundamentals and the price approximated
by a deep neural network for the sequential linear asset pricing model with growing dividends
(g = 0.02) in the presence of functional misspecification of the growth. The solid curve in the left
panel shows the median of the approximate price paths, the dashed curve shows the price based
on the fundamentals. The solid curve in the right panel shows the median of the relative errors.
The shaded regions show the 10th and the 90th percentiles. The dashed vertical lines separate
the interpolation from the extrapolation region.

Figure 20 shows the results for sequential linear asset pricing model with growing dividends

(i.e., c = 0, g = 0.02) and a misspecification of the functional form of the growth. We use the

same neural network we utilize in the correctly specified form. The only difference is the linear

term. In the left panel, the solid curve, denoted by p̂(t), shows the median of the approximate

price paths, the dashed curve, denoted by pf (t) shows the solution based on the fundamentals.

The shaded region shows the 10th and the 90th percentiles of the approximate price paths. The

right panel shows the median of the relative errors. The shaded region shows the 10th and the

90th percentiles of the relative errors. The dashed vertical lines separate the interpolation from

the extrapolation region.

These results show that even in the presence of misspecification the long run errors do not

impair the accuracy of short and medium run dynamics (at most 2% relative error after 10

periods). However, the misspecification can reduce the generalization power of the solution.
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Appendix B Sequential neoclassical growth

B.1 Zero as a fixed point for capital

As discussed before k = 0 is a repulsive fixed point for the neoclassical growth model. In

experiment we investigate whether the approximate solutions utilizing deep neural networks pick

a capital path that converges to the repulsive fixed point due to numerical errors.
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Figure 21: Comparison between the value function iteration and approximate solution using a
deep neural network for the sequential neoclassical growth model for a small level of initial capital
k0 = 0.01. The solid curve, in the left panel, shows the approximate capital path and the dashed
curve shows the solution obtained by the value function iteration method. The right panel shows
the relative errors for the capital paths. The dashed vertical lines separate the interpolation from
the extrapolation region.

Figure 21 shows the results for the sequential neoclassical growth model for a small level of

initial capital. In this experiment we use the same parameters and deep neural network as the

sequential neoclassical growth model with no total factor productivity growth, except the initial

condition for capital. We use k0 = 10−2. In the left panel the solid curve shows the approximate

capital path and the dashed curve shows the solution obtained by the value function iteration

method. The right panel shows the relative errors between the approximate capital path and the

solution obtained by the value function iteration method. The dashed vertical lines separate the

interpolation from the extrapolation region.

This result shows that even for a small levels of initial capital the solutions do not converge

to k = 0. Therefore, the solutions can detect that k0 is a repulsive fixed point. Moreover, the

short and medium run solutions are accurate and are not impaired by the long run errors (at

most 0.6%).
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B.2 Solutions violating the transversality condition: Initial capital

above the steady state

The blue curves in Figure 22 show a set of paths for capital, consumption and marginal utility

of consumption (shadow prices), denoted by k̃(t), c̃(t), and u′(c̃(t)), that satisfy the Euler equation

and feasibility condition, and violate the transversality condition.28 The black curves, denoted by

k(t), c(t), and u′(c(t)), show the optimal paths for capital, consumption and marginal utility of

consumption. These paths satisfy the Euler equation, feasibility condition and the transversality

condition. The steady states for capital and consumption in the optimal solution are denoted by

k∗ and c∗.

0 50 100
Time(t)

5

10

15

20

25

30

Capital

k(t)
k(t)
k *

kmax

0 50 100
Time(t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Consumption

c(t)
c(t)
c *

0 50 100
Time(t)

100

101

102

103

104

105

106

Marginal utility of consumption

u′(c(t))
u′(c(t))
u′(c * )

Figure 22: Comparison between the optimal solution and the solutions that violate the transver-
sality condition for k0 > k∗. The blue curves denoted by k̃(t), c̃(t), and u′(c̃(t)) show a set of
capital, consumption, and marginal utility of consumption paths that violate the transversality
condition. The black curves denoted by k(t), c(t), and u′(c(t)) show the capital, consumption,
and marginal utility of consumption paths for the optimal solution. The steady states for capital
an consumption are denoted by k∗ and c∗.

As evident in Figure 22 the capital path that violate the transversality condition has higher

derivatives over its domain. More formally, let k̃(t) be a capital path violating the transversality

condition and k(t) be the optimal solution, then in a compact space of the form [0, T ]

∫ T

0

∣∣∣∣∣dk̃dt
∣∣∣∣∣
2

dt >

∫ T

′

∣∣∣∣dkdt
∣∣∣∣2 dt. (B.1)

28The parameters we used are k0 = 10, β = 0.9, α = 0.33, and δ = 0.1.
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Therefore, by Assumption 1

∥k∥S < ∥k̃∥S. (B.2)

B.3 An alternative way of approximating the optimal solution

Another approach to solve the sequential neoclassical growth model is to simultaneously ap-

proximate consumption and capital functions. In this case we pick a space of over-parameterized

functions H(Θ), and a grid X̂ = {t1, . . . , tN} and find the the capital and consumption function

[k(·; θ), c(·; θ)] ∈ H(Θ) by solving the following optimization problem

min
θ∈Θ

[
1

|X̂|

∑
t∈X̂

(
β
[
z(t+ 1)1−αf ′(k(t+ 1; θ)) + 1− δ

]
− u′(c(t; θ))

u′(c(t+ 1; θ))

)2

+

1

|X̂|

∑
t∈X̂

(
z(t)1−αf(k(t; θ)) + (1− δ)k(t; θ)− c(t; θ)− k(t+ 1; θ)

)2
+ (k(0; θ)− k0)

2

]
,

where z(t) is evaluated by the law of motion for z

z(t) = (1 + g)tz0 for t ∈ X̂.

Non-negativity of capital and consumption can be built into H(Θ). Here we omit the results

because they are identical to the results illustrated in Section 3.2.

B.4 Being far from the steady state

Figure 23 shows the results for the sequential neoclassical growth model with X̂ = {0, 1, . . . , 4}.
The dashed vertical lines separate the interpolation from the extrapolation region. The solid curve

in the top-left panel shows the median of the approximate capital paths, the dashed curve shows

the capital path obtained by the value function iteration method, and the shaded regions shows

the 10th and the 90th percentiles of the approximate capital paths. The solid curve in top-right

panel shows the median of the relative errors between the approximate capital paths and the

capital path obtained by the value function iteration method, the shaded region shows the 10th

and the 90th percentiles of the relative errors. The solid curve in the bottom-left panel shows the

median of the approximate consumption paths, the dashed curve shows the consumption path

obtained by the value function iteration method, and the shaded region shows the 10th and the

90th percentiles of the approximate consumption paths. The solid curve in bottom-right panel

shows the median of the relative errors between the approximate consumption paths and the

consumption path obtained by the value function iteration method, the shaded region shows the

10th and the 90th percentiles of the relative errors.
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Figure 23: Comparison between the value function iteration and approximate solution using a
deep neural network for the sequential neoclassical growth model with a short time horizon (i.e.,
X̂ = {0, 1, . . . , 4}). The solid curves in the left panels show the median of the approximate capital
and consumption paths. The dashed curves show the capital and consumption paths obtained by
the value function iteration method. The solid curves in the right panels show the median of the
relative errors between the approximate solutions and solutions obtained by the value function
iteration. The shaded regions show the 10th and the 90th percentiles. The dashed vertical lines
separate the interpolation from the extrapolation region.

Theses results show that the approximate solutions are robust to using short time horizons in

X̂. The long run errors do not impair the accuracy of short run dynamics (less than 1% relative

errors in capital in the first three periods).
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B.5 Misspecification of growth in capital and consumption paths

In this experiment we use a different functional form to approximate the solution of the

sequential neoclassical growth model with growing total factor productivity

k̂(t; θ) = tNN(t; θ1) + ϕ, (B.3)

where θ ≡ {ϕ, θ1}, NN(·; θ1) is a deep neural network, and ϕ is a parameter that needs to be

found in the optimization process.

Figure 24 shows the results for the sequential neoclassical growth model with non-stationary

total factor productivity (i.e., g = 0.02) in the presence of functional misspecification of the

growth. We use the same deep neural network as before for NN(·; θ1). The only difference is the

linear term.

The solid curve in the top-left panel shows the median of the approximate capital paths and

the dashed curve shows the capital paths obtained by the value function iteration method. The

shaded region shows the 10th and the 90th percentiles of the approximate capital paths. The

solid curve in the top-right panel shows the median of the relative errors between the approximate

capital paths and the capital path obtained by the value function iteration method. The shaded

region shows the 10th and the 90th percentiles of the relative errors. The solid curve in the

bottom-left panel shows the median of the approximate consumption paths, the dashed curve

shows the consumption path obtained by the value function iteration method, and the shaded

region shows the 10th and the 90th percentiles of the approximate consumption paths. The solid

curve in bottom-right panel shows the median of the relative errors between the approximate

consumption paths and the consumption path obtained by the value function iteration method.

The shaded region shows the 10th and the 90th percentiles of the relative errors.

These results show that the long run errors do not impair the accuracy of the short and

medium run dynamics even in the presence of functional misspecification of growth in total

factor productivity. Moreover, the approximate solutions generalize well in the extrapolation

region (less than 5% relative errors after 50 periods).

B.6 Analysis of the approximate solution in the vicinity of the bifur-

cation point

Figure 25 shows the capital and consumption paths for a grid of initial conditions k0 ∈ [0.5, 4]

for the sequential neoclassical growth model with the convex-concave production function. The

top panel shows the capital paths and the bottom panel shows the consumption paths. The

dashed horizontal lines show the steady states of capital k∗
1 and k∗

2 and the corresponding steady

states for consumption c∗1 and c∗2. The red trajectories show the approximate solutions near the
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Figure 24: Comparison between the value function iteration and approximate solution using a
deep neural network for the sequential neoclassical growth model with growth in total factor pro-
ductivity in the presence of functional misspecification of the growth. The solid curves in the left
panels show the median of the approximate capital and consumption paths. The dashed curves
show the capital and consumption paths obtained by the value function iteration method. The
solid curves in the right panels show the median of the relative errors between the approximate
solutions and solutions obtained by the value function iteration method. The shaded regions
show the 10th and the 90th percentiles. The dashed vertical lines separate the interpolation from
the extrapolation region.

critical point. The non-monotonicity of the red consumption paths (or equivalently the inflection

points in red capital paths) indicates that these approximate solutions are not correct. However,

the algorithm detects there is a critical point in the space of initial levels of capital around k ≈ 2.5.

Due to the discontinuity in the derivative of the production function it is cumbersome to confirm
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Figure 25: The approximate capital and consumption paths for the sequential neoclassical growth
model with convex-concave production function. The grid for the initial condition of capital is
from [0.5, 4]. The top panel shows the capital paths and the bottom panel shows the consumption
paths. The red trajectories show the capital and consumption in the vicinity of the bifurcation
point. The dashed horizontal lines show the steady states of capital k∗

1 and k∗
2 and their cor-

responding steady states for consumption c∗1 and c∗2. The dashed vertical line separates the
interpolation from the extrapolation region.

whether algorithm finds the right critical point and it is beyond the scope of this paper.
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Appendix C Recursive neoclassical growth

C.1 Robustness of the solution to the initial condition of capital

As stated in the recursive formulation of the neoclassical growth problem, the optimality of

the solution requires that all the capital consumption paths generated by the policy function to

satisfy the transversality condition.

Figure 26 shows the approximate capital and consumption paths and the relative errors for a

range of initial conditions of capital (in this case of g = 0 and z0 = 1). The solid curves in the top-

left panel, denoted by k̂(t), show the approximate capital paths from three initial conditions for

capital outside of the interpolation region, k0 ∈ {0.5, 3.25, 4.0}. The dashed curves, denoted by

k(t), show the capital paths obtained by the value function iteration method. The gray rectangle

shows the interpolation region. The top-right panel shows the full range of the relative errors

between the approximate capital paths and the capital paths obtained by the value function

iteration method for 70 initial levels of capital in [0.4, 4]. The solid curves, denoted by ĉ(t), in

the bottom-left panel shows the approximate consumption paths from three initial conditions for

capital k0 ∈ {0.5, 3.25, 4.0}. The dashed curves, denoted by c(t), show the consumption paths

obtained by the value function iteration method. The bottom-right panel shows the full range

of the relative errors between the approximate consumption paths and the consumption path

obtained via the value function iteration method for 70 initial levels of capital in [0.4, 4].

These results show that the policy function for capital satisfies the transversality condition in

the interpolation and the extrapolation regions.

Figure 27 shows the result of the recursive neoclassical growth problem for a range of initial

conditions of capital in the presence of non-stationary total factor productivity (i.e., g = 0.02).

The solid curves in the top-left panel, denoted by k̂(t)), show the approximate capital paths

from three initial conditions for capital k0 ∈ {0.5, 3.25, 4.0} and z0 = 1. The dashed curves,

denoted by k(t), show the capital paths obtained by the value function iteration method. The

top-right panel shows the full range of the relative errors between approximate capital paths and

the capital path obtained by the value function iteration method for 70 initial levels of capital

k0 ∈ [0.4, 4]. The solid curves in the bottom-left panel, denoted by ĉ(t) show the approximate

consumption paths from three initial conditions for capital k0 ∈ {0.5, 3.25, 4.0} and z0 = 1.

The bottom-right panel shows the full range of the relative errors between the approximate

consumption paths and consumption path obtained by the value function iteration method for

70 initial levels of capital k0 ∈ [0.4, 4].

These results show that even in the presence of non-stationary, the approximate policy func-

tion for capital satisfies the transversality condition inside and outside of the interpolation regions.
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Figure 26: Comparison between the value function iteration and approximate solution using a
deep neural network for the recursive neoclassical growth model for a wide range of initial levels
of capital. The left panels show the approximate capital and consumption paths from three initial
levels conditions outside of X̂, k0 ∈ {0.5, 3.25, 4.0}. The dashed curves, denoted by k(t) and c(t),
show the capital and consumption paths obtained by the value function iteration method. The
right panels show the full range of the relative errors for capital and consumption paths for 70
initial conditions of capital in [0.4, 4].
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Figure 27: Comparison between the value function iteration and approximate solution using a
deep neural network for the recursive neoclassical growth model with growth in total factor pro-
ductivity (i.e., g = 0.02) for a wide range of initial levels of capital. The left panels show the ap-
proximate capital and consumption paths from three initial levels conditions k0 ∈ {0.5, 3.25, 4.0}.
The dashed curves, denoted by k(t) and c(t), show tha capital and consumption paths obtained
by the value function iteration method. The right panels show the full range of the relative errors
for capital and consumption paths for 70 initial conditions of capital in [0.4, 4].
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