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Incremental Learning on Random Trials1 

M. FRANK NORMAN 

Stanford University, Stanford, California 

When a subject is required to learn to make a certain response in the course of a 
sequence of consistently corrected trials, and when it is not clear which of success or 
failure is more efficacious for learning, the possibility suggests itself that acquisition 
might sometimes proceed incrementally but with a certain probability, constant over 
trials, that no learning occurs on a trial. In this paper many of the properties which 
one would expect acquisition of this type to possess if the incremental process were 
linear in the response probabilities are derived, and details of an application of this 
model to a paired-associate experiment are presented. 

In a previous paper (Norman, 1963) an attempt was made to interpolate between 
the all-or-none model (see Bower, 1961) and the single-operator linear model (see 
Bush and Sternberg, 1959) by means of a “two-phase” model. In this model a random 
number of trials on which no change in response probability occurred preceded the 

beginning of the linear incremental learning process described by the single-operator 
model. In the present paper an interpolation of a slightly different kind is discussed; 
all applications of a linear operator to response probabilities are preceded by a random 
number of trials on which no learning occurs. This model will be referred to below 
as the random-trial incremental model. Many of its mathematical properties will be 
derived, and data from a paired-associate learning experiment will be presented to 
illustrate its usefulness. 

A delightful feature of the single-operator and all-or-none models is their mathe- 
matical simplicity. It will emerge from the development below that this simplicity 

is shared in significant measure by the random-trial incremental model. 

THE MODEL 

Let us assume that a subject’s probability pa of making the A, (error) response on 
trial 71 satisfies the stochastic difference equation 

P n+l = aY+s n = 1, 2, **a, (1) 

i The preparation of this report was supported by Air Force Contract AF 49(638)-1253. 
The data analysis for this paper was partially supported by Contract USPHS-MH-6154. 
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and the initial condition 

Pl =P 

where {y,} is a sequence of identically and independently distributed random variables 
with 

P(y, = 1) = c (2) 
and 

P(y, = 0) = 1 - c. 

It follows immediately that, for n > 1, 

pn = .=,-1p (3) 
where 

Yk =$Yi for k>,l 
i=l 

and 
Y, = 0. 

For k >, 1, Y, clearly has the binomial distribution with parameters k and c. 
We must, of course, have 0 < a, c, p < 1. The reader will note that, when a = 0, 

the random-trial incremental model reduces to the all-or-none model, whereas, if 

c = 1, it reduces to the single-operator linear model. I f  the sequence {y,} is interpreted 
as the sequence of reinforcement indicator random variables for a noncontingent 
reinforcement schedule such that the probability of reinforcement of A, is c on every 
trial then the random-trial incremental model is just the identity-operator model 
(see Bush and Mosteller, 1955) used with such a schedule. Some of the mathematical 
results obtained below are new in this context and it is hoped that they will be useful 
in this connection even though this was not the motivation for the research discussed 
in this paper. While the mathematical work was being done I was thinking of the 

sequence (y,} as unobservable, and I was not able to identify the random process 
embodied in this sequence with any general psychological process or observable aspect 
of the experimental situation in the application of the model to be presented below. 

THE BASIC THEOREM 

Most of the properties of the random-trial incremental model which I will discuss 
in this paper are readily obtained from the following fundamental result: 

Let k be a positive integer and let ir , ia , ***, ik be a strictly increasing finite sequence 

of positive integers. Then 

P(Xi, = 1, xi, = 1, . . . . xi, = 1) = pk fi .~$-j+l-~+j 
j=l 
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where 
bj = ajc + (1 - c) for j = 1, 2, a**, 

i,, = 1, and x, is the error indicator random variable for trial m. 
The following proof proceeds by induction on k. 

(lo) If R = 1, (4) reduces to 

P(x, = 1) = pbf-‘. (5) 

That this is correct is seen as follows: 

i-l 

P(Xi = 1) = z P(Xi = 1 1 Yi-i = n, P(y<-i = ‘) 
TWO 

= gay (i ; 1) p(l - C)i-l-n 

= p(ac + (1 - c))~-~ = @i-l 

by the binomial theorem. 

(20) Suppose that (4) is correct for any collection of k indices 1 < m, < 
m2 < a+* < mk and all parameter values 0 < a, c, p < 1. (In what follows, I will 
indicate the dependence of P on the initial error probability explicitly by means of a 
subscript.) Let some set 1 < ii < iz < *** < &+i of K + 1 indices and some para- 
meter values a, c, and p be given. Then 

p&G, = 1, a*‘) xi* = 1, xi,,, = 1) 

= 2 Pp(X<, = 1, .“, xik+l = 1 1 Y+i = m) P(Yi,-l = m) 

Wl=O 

= ;C Pams(Xl = 1, X+i,+l = 1, ***, xik+,i,+l = 1) p(Yi,-r = m) 
?TZ=O 

for it is a property of the random-trial incremental model that after the error probability 
on trial ii has been specified the sequence xi, , xilfl , xi,+% is stochastically identical to 
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the sequence x1 , x2 , xa with the specified error probability on trial 1. Noting next 
that x1 is independent of the xi’s with i > 1 we obtain 

P&G, = 1, . . . . xj, = 1, xik+l = 1) 

i,-1 
= 2 Ppp(xl = 1) Pamn(xi,++l = 1, a.., xi,+,i,+r = 1) P(Y,,-l = 171) 

,n=O 

iI- 

= z. amp(amp)k (fl b:X--i+l-zk--i) (i' i ' j ~'~(1 - c)il-lern 

j=l 

by the induction hypothesis where 

Zk = ihfl - i, + 1 

k-cl 
= pktl JJ bjk+l-j+l-ik+l-je 

j=l 

An application of the principle of induction completes the proof of (4). 

COROLLARIES OF THE BASIC THEOREM 

Let J be the number of errors before the first success. Then J is nonnegative and 
for k > 1, P(J > k) = P(x, = 1, s.0, xlc = 1). Therefore, 

k-l 

For k > 1 let 

P(J>k)=p”rl[b,. 
j=l 

(6) 

be the total number of k tuples of consecutive errors in an infinite sequence of trials. 
Then 

E(u,) = f$ P(x, = 1, ‘**, x,+k+l = 1) 
n=1 
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E(Uk) = p” ff bj/( 1 - b,) 
j=l 

(7) 

(where II!=, bj is defined to be 1; ul , the total number of errors in an infinite sequence 
of trials will also be denoted by T in what follows). 

For K 3 1, let 

be the autocovariance of errors of lag k (clearly c1 = ua). Then 

E(‘&) = i, &i, = 1, x,+k = 1) 
It=1 

Therefore 

Clearly 

E(c,) = gg. 
2 

T2 =&: +2~l$lxnxntk =T+2gl cks 

Thus 

E(T2) = E(T) + 2 2 E(Ck) 
k=l 

=~(T)+@3- 
2 

by (8) 

= E(T) + 2p2 ‘l - - = -W) + (&-) (;) (&y) - 1 - b, 1 - b,, 

We conclude that 

E(T2) = E(T) + $ E(T) E(u,). 

Similar computations yield the formulas 

(9) 

E(Tu,) = E(T) E(u,) [$ (1 - b,) + b2(: Ih,b”) + “(ll Ibb,)] (10) 
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and 

E(U2,) = E(u2) + W%) + j+ E(ud 
2 

which we will use in evaluating our estimation procedure below. 
For n > 1 denote by T(“) the total number of errors after the nth trial in an infinite 

sequence of trials, i.e., 

Then 

‘I’(n) = 
k=?Nl 

cc 
E(T(“) 1 x, = 1) = 2 

P(xl, = 1, x, = 1) 

k=n+l qx, = 1) 

= 2 p2bf-“b;-l 

k-n+1 PY’ 

Thus 

E(T’“’ 1 x, = 1) = E(T) b, (+)+‘a 

From the derivations given above, it is clear how one would go about deriving 
from (4) the expectation of any statistic which can be defined as a sum of finite products 
of q’s. In this connection it should be noted that formula (4) does not require for its 
validity an infinite sequence of trials. 

THE DISTRIBUTIONS OF THE TOTAL NUMBER OF ERRORS 
AND THE TRIAL OF THE LAST ERROR 

I will now derive the probability generating function2 of T, i.e., the function g, 
given by 

gT(s) = 2 P,(T = 12) sk. 
k=O 

We can write T as 

2 The reader may consult Chaps. 11 and 12 of Feller (1957) for the properties of generating 
functions used in this section. 
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where T, is the number of errors made when the error probability is amp. The T, 
are obviously mutually independent. Thus, if grm is the probability generating func- 
tion of T,,, , we have 

g&) = fi gT,w. (13) 
m=O 

But we can write T, as 

where x,,~ is the error indicator random variable for the jth trial on which the error 
probability is a”p and S, is the number of trials on which the error probability is 
amp. Since the x.,,,~ for j = 1,2, *a., S, are identically distributed, mutually inde- 
pendent, and independent of S, it follows that 

gT,w = &J&J49 (14) 

where gsm and gxm 1 are the probability generating functions of the subscripts random 
variables. Since ‘S, has the geometric distribution with parameter c (thus 
gs,(u) = cu/l - (1 - c) U) and x,,i has the binomial distribution with parameters 1 
and amp (thus gxm,,(s) = amps + (1 - amp)), we obtain from (13) and (14) 

In particular, 

(15) 

(16) 

The distribution of N, the trial number of the last error in an infinite sequence of 
trials, is easily obtained from (16). For n 3 0 

P,(N < n) = PD(x,+l = 0, x,+$ = 0, ***) 

= 2 PD(x,+l = 0, x,+z = 0, --a ( Y, = k) PP(YTL = k) 
k=O 

= 2 P&(X1 = 0, x2 = 0, -.a) (3 c”(1 - c)n-k. 
k=O 
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SO 

APPLICATION TO PAIRED-ASSOCIATE LEARNING 

In a recent experiment3 conducted by Patrick Suppes and Madeleine S&lag-Rey, 
each of 40 college students learned a 12 item list of paired-associates (this part of the 
experiment will be referred to as “the first session” or Sl below) and then learned 
another such list 7 days later, on the average (during the “second session” or S2). The 
stimuli were CVC nonsense syllables and the appropriate response to each was a press 
on one of three keys available before the subject. (Thus the present experiment 
differs from conventional paired-associate learning experiments both in the number 
and nature of the response alternatives available to the subject.) The order of presenta- 
tion of the 12 stimuli was randomized over successive presentations. The steps of the 
experimental routine were as follows: A nonsense syllable was displayed before a 
subject. As soon as he wished (the average latency was 1.2 sec.) the subject pressed a 
key. A light immediately flashed over one of the keys indicating which key was correct. 
Four seconds later the next stimulus appeared. Each session began with three practice 
items after which the list to be learned was presented 25 times. 

In the analyses to follow all 40 x 12 = 480 subject-items within each session are 
assumed to be stochastically independent and identical. Predictions of the random- 
trial incremental model for an infinite sequence of trials will be compared with data 
for the 25 trials of each experimental session. According to the model (consider Eq. 5 
for i > 2.5 and the parameter values used below) the error thus introduced is quite 
small. 

Learning was noticeably faster in S2 than in Sl (the mean total numbers of errors 
for the two sessions, for instance, were 3.26 and 4.37, respectively) so the model was 
applied separately to the data from the two sessions. I will complete most of my 
discussion of the data from S2 before turning to that from Sl. 

The a priori estimate 0.6667 of p was used in analyzing the data from S2. Defining 
the functions a(x, y) and c(x, y) by 

a(x, y) = &-A _ 1 
Y 

4x, y) = (2 - p(L p)/y) x 

(18) 

(19) 

3 The data needed for the analysis presented below were generously supplied by Professor 
Suppes. 

9 
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it can be shown by elementary computations that 

and 
@(T), -W,)) = a (20) 

Therefore the statistics 
c@(T), &I,)) = c. (21) 

and 

I = a@, ii,) (22) 

e = C(T, ii,) (23) 

(where T and ii, are the sample average total numbers of errors and pairs of errors) are 
moments estimators of a and c. For the data from S2, (22) and (23) give Zi = 0.1655 
and e = 0.2454. The small value of a is satisfying since one would not expect too 
much difference between two and three response paired-associate learning, and the 
success of the all-or-none model in predicting the course of two response paired- 
associate learning (see Bower, 1961) indicates that the value of a appropriate for the 
random-trial incremental model in such learning is very small. Estimators like 1 and c 
are well understood mathematically and reasonably well behaved at least in the large 
sample case.4 Specifically (see Wilks, 1962, Theorem 9.3. la p. 260), these estimators 
are asymptotically normally distributed with asymptotic means a and c and asymptotic 
variances 

and 

asy. var. 1 = i (a: var (T) + u”, var (us) + 2u,a, cov (T, us)) (24) 

asy. var. e = $ (c$ var (T) + c”, var (ur) + 2cgU cov (T, uz)) (25) 

where the partial derivatives are evaluated at (E(T), E(u,)) and 7~ is the number of 
subject-items. The number of subject-items in the present experiment is sufficiently 
large to justify consideration of asymptotic means and variances. Replacing all moments 
in (24) and (25) by the corresponding predictions of the model using the parameter 
estimates 2 = 0.1655 and e = 0.2454 and replacing n by 480, we obtain 

2/asy. var. I = 0.0297 and Z/asy. var. e = 0.0145 

as approximations to the asymptotic standard deviations of 1 and 2 for the data 
from S2. Certainly these values are larger than one might desire. On the other hand, 
they are not so large that I will feel too many qualms when I use them below. 

An extensive set of comparisons of the model with the S2 data is presented in 
Table 1. The fit is generally excellent, though not uniformly so. The mild bimodality 

4 The comment about two similar estimators on p. 182 of Norman (1963) should be ignored. 
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in the observed distribution of N (the same phenomenon appears in the data from the 
first session) is certainly not predicted by the random-trial incremental model (or any 
other model that I know of).5 Also, all of the predicted E(c,), 71 > 2 are smaller than 
the corresponding observations (this was also observed in Sl) and the effect is mode- 
rately large for TZ = 4, 5, and 6. 

TABLE 1 

SESSION 2 DATA AND PREDICTIONS OF THE RANDOM-TRIAL INCREMENTAL MODEL 
(p = 0.6667, a = 0.1655, c = 0.2454) 

Data Model 

P(x, = 1) n=l 0.6666 0.6667 
2 0.48 0.53 
3 0.43 0.42 
4 0.37 0.34 
5 0.25 0.27 
6 0.22 0.21 
7 0.18 0.17 
8 0.14 0.13 
9 0.11 0.11 

10 0.09 0.08 
11 0.08 0.07 
12 0.05 0.05 
13 0.03 0.04 

P(x, = 1, x,+1 = 1) 

P(x, = 1, Xnfl = I, x,+2 = 1) 

?Z=l 0.34 0.35 
2 0.26 0.27 
3 0.23 0.20 
4 0.14 0.16 
5 0.10 0.12 

n=l 0.19 0.18 
2 0.16 0.14 
3 0.10 0.10 
4 0.06 0.08 

E(T) 3.2562 (I 

4T) 2.90 2.67 

L A referee has pointed out that this bimodality may be indicative of a violation of the assump- 
tion of homogeneity of subject-items. 
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TABLE 1 (continued) 

Data Model 

E(ud k=2 1.4812 a 

3 0.12 0.73 
4 0.35 0.37 
5 0.18 0.19 
6 0.10 0.09 

k=2 1.22 1.18 
3 0.97 0.94 
4 0.82 0.74 
5 0.70 0.59 
6 0.54 0.47 

k=O 0.33 0.33 
1 0.33 0.31 
2 0.15 0.17 
3 0.08 0.09 
4 0.05 0.04 
5 0.02 0.02 

26 0.03 0.02 

n=l 2.91 2.59 
2 2.86 2.48 
3 2.60 2.31 
4 2.09 2.21 
5 2.06 2.17 
6 2.37 2.08 
I 2.15 1.99 
8 1.78 1.91 
9 2.10 1.83 

k=O 0.13 0.07 
1 0.12 0.13 
2 0.09 0.12 
3 0.09 0.10 
4 0.12 0.09 
5 0.09 0.08 
6 0.06 0.07 

>7 0.29 0.34 

a Used to estimate parameters. 
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The reader may have noticed earlier that the theoretical expressions in the model for 
P(x, = l), E(c,), and E(T(“) ( x, = 1) are exponential functions of 71 (see Eqs. 5, 8, 
and 12). It is easily seen directly from (4) that the same is true of P(x, = 1, x,+i = 1) 
and P(x, = 1, x,+i = 1, x,+~ = 1). It is therefore particularly interesting to plot the 
logarithms of these quantities, which are linear in 11, and the logarithms of the cor- 
responding sample averages as functions of n. Such plots appear in Fig. 1. 

-1.00 

i 

0 0 

\ -1.10 log lo Plx”=l,x,+*=1,x”+~‘1~ 

-1.20 
t 

0 

-1.30’ 1 I I I I I I I 

1 2 3 4 5 6 7 a 
n 

FIG. 1. log,, of E(T’“’ 1 x, = l), E(c,), P(x~ = l), P(x, = 1, x,+~ = 1) and P(x, = 1, 
X “+I = 1, X,+2 = 1): predictions of the random-trial incremental model and data for session 2. 

Two analyses were made of the data from the first session, one using the estimate 
0.6667 of p as above and the other using the estimate 0.6937, the proportion of the 
subject-items which had an error on trial 1. While the qualitative conclusions to be 
reached below would have been the same under the two analyses, only the second 
will be discussed below since it yielded a somewhat better fit. The results are presented 
in Table 2. 
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TABLE 2 

SFZSSION 1 DATA AND PREDICTIONS OF THE RANDOM-TRIAL INCREMENTAL MODEL 

(@ = 0.6937, a = 0.1215, c = 0.1805) 

Data Model 

P(x, = 1) 

P(x, = 1, x,+1 = 1) 

P(x, = 1, x,+1 = 1, x,+2 = 1) 

E(cd 

?I=1 0.6937 a 

2 0.56 0.58 
3 0.50 0.49 
4 0.44 0.41 
5 0.41 0.35 
6 0.30 0.29 
7 0.29 0.25 
8 0.21 0.21 
9 0.19 0.17 

10 0.14 0.15 
11 0.14 0.12 
12 0.11 0.10 
13 0.08 0.09 

n=I 0.42 0.40 
2 0.35 0.33 
3 0.31 0.27 
4 0.24 0.22 
5 0.20 0.18 

n=l 0.26 0.23 
2 0.22 0.19 
3 0.17 0.16 
4 0.13 0.13 

k=2 2.2770 (1 

3 1.26 1.28 
4 0.71 0.73 
5 0.40 0.41 
6 0.24 0.24 

k=2 1.94 1.92 
3 1.64 1.61 
4 1.44 1.36 
5 1.19 1.14 
6 0.97 0.96 

4.3749 

3.40 

a 

3.64 
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TABLE 2 (continued) 

Data Model 

P(J = k) k=O 0.31 0.31 
1 0.28 0.29 
2 0.16 0.17 
3 0.09 0.10 
4 0.08 0.06 
5 0.04 0.03 

>6 0.05 0.04 

E(T’“’ 1 x, = 1) n= 1 3.86 3.68 
2 3.61 3.60 
3 3.40 3.51 
4 3.17 3.43 
5 2.90 3.36 
6 3.03 3.28 
7 2.85 3.20 
8 2.62 3.13 
9 2.66 3.06 

P(N = k) k=O 0.08 0.05 
1 0.10 0.10 
2 0.07 0.10 
3 0.06 0.09 
4 0.09 0.08 
5 0.10 0.07 
6 0.06 0.06 

>7 0.42 0.45 

o Used to estimate parameters. 

Though the over-all fit is not bad in the sense that the absolute values of the dis- 
crepancies between the model and the data are small in most cases, these discrepancies 
form a pronounced pattern. Examination of Table 2 shows that the model predicts 
too few errors, pairs of consecutive errors, and triples of consecutive errors early in 
learning. (Thus, as a consequence of the fact that the model predicts the total number 
of errors and pairs of consecutive errors throughout Sl exactly because of the way 
the parameters were estimated, it predicts too many errors and pairs of consecutive 
errors late in learning.) This generalization leads us to expect that the random-trial 
incremental model will overestimate the average number of errors following an error 
on trial n for tl not too large. The denominator in the prediction will tend to be smaller 
than the comparable quantity in the data, while the deficiencies of the model on the 
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earlier and later trials will tend to cancel in the numerator (see the first line in the 
derivation of Eq. 12). From Table 2 we see that this effect was obtained on trials 3-9.” 

Such a pattern of errors would be expected if the random-trial incremental model 
were correct, but for the fact that its parameters were changing as learning proceeded. 
The average total number of errors in S2 was in fact a good bit smaller than the 

comparable statistic for Sl. A natural inference is that the subjects were learning to 
learn gradually throughout the experiment. I f  such second order learning were negati- 
vely accelerated, a seemingly reasonable assumption, then its effects might have been 
negligible in S2. But under the further assumption that our parameter estimates for 
Sl were appropriate for approximately the middle of the session, and there is no reason 
to doubt the validity of this as a first order approximation, we would expect the model 

to predict too few errors early in learning and too many later in learning, just as was 
observed. 
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6 P(x, = l), n = 1, 2, ..., 14 and E(T’“’ I x, = I), n = 1, 2, ..., 8 have been computed for the 
random-trial incremental model (parameter estimation as with the data from S2) for Bower’s 
four response verbal discrimination learning experiment described in Norman (1963), and the 
same pattern is observed: the model predicts too few errors on the first few trials and too many 
on later trials while badly overestimating the average number of errors after an error on trial n 
for n = 3, 4, .m., 8. 


