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The class of symmetric path-independent models with experimenter-
controlled events is considered in conjunction with two-choice probability
learning experiments. Various refinements of the notion of probability match-
ing are defined, and the incidence of these properties within this class is
studied. It is shown that the linear models are the only models of this class
that predict a certain phenomenon that we call stationary probability match-
ing. It is also shown that models within this class that possess an additional
property called marginal constancy predict approximate probability matching.

In this paper we are concerned with a class of models for two-choice
probability learning (binary prediction) experiments. On each trial in such
experiments the subject predicts which of two outcomes will occur. We denote
the outcomes O, and O, and the corresponding predictions 4; and A, . Simi-
larly O, , and A4, , denote, respectively, the occurrence of O, and A ; on trial n.
In the general case of coniingent reinforcement O, ,, follows A, , with probability
m; determined by the experimenter. The special case of noncontingeni rein-
forcement, in which the outcome probabilities do not depend on the subject’s
response (i.e., m, = 1 — m,), has received most experimental attention. Ex-~
periments using noncontingent reinforcement have generally yielded asymp-
totic proportions of A, responses consistent with
(1) lim P(A, ,) = ,
where =, the common value of 7, and 1 — =, , is the probability of O, , .
There is also some evidence that the corresponding phenomenon
2 lim P(4,,) = lim PO .)
obtains under contingent reinforcement conditions. We.will refer to condition
(1), and the more general condition (2), as simple probability matching. (Estes’
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recent review [2] provides a discussion of experimental variations that lead
to results consistent with (1) and (2).)

Let p, .. be the random variable that gives the probability of 4, . for a
single subject (so that P(4,,) = E[p:.]). It is well known that for each
0 < 8 < 1 the linear model

(3) p1 oy = {l;l.n + 0(1 - pl.ﬂ) if Ol,n
1,n — 5P1.,. if 02,11

predicts simple probability matching [1, 3], and in addition these models have
proved useful in accounting for fine grain sequential effects in binary prediction
experiments [6]. The linear models are members of the general class of “‘sym-
metric path-independent learning models with experimenter-controlled
events’” which will be defined and discussed in the next section. Each model
of this class is completely determined by the form of two operators on re-
sponse probabilities: the operator associated with O, and the operator as-
sociated with O, . We will refer to models of this class as ““two-operator”
models. The point of departure of the present research was an attempt to
determine whether the linear models are the only two-operator models that
predict simple probability matching, We will present some rather trivial
examples below to show that they are not. However, by broadening the scope
of our inquiry to take account of other predictions of the linear models we
have obtained a number of positive results. These give much information
about the constraints imposed on the form of a two-operator model by the
prediction of various probability matching phenomena. For instance in the
case of the linear models the convergence to 7 represented by (1) is monotonic.
In particular, if P(4,,) = = then P(A,,,) = = for all n. Theorem 1 below
shows that this property, which we call staifonary probability maiching, is
possessed by no two-operator models other than the linear models. In Theorem
2 a closely related but somewhat weaker property is shown to characterize
linear models within the subclass of two-operator models satisfying some
additional restrictions. In the latter part of the paper we show that another
property of the linear models, marginal constancy, permits an approach to the
question of which two-operator models predict approximate probability
matching. A learning model is said to predict marginal constancy if, in the
double reward situation where m;, = m, = 1 (i.e., the outcome always agrees
with the response) the marginal response probability P(4, ) does not depend
on n. In Theorem 3 an explicit bound is obtained for
llim P(4,.,) — lim P(0,..)]

for marginally constant two-operator models satisfying a few additional
conditions. The form of this bound makes it clear that models of this type
that are “close to0” a linear mode] in the form of their operators predict asymp-
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totic response probabilities close to probability matching. Theorem 4 is
concerned with families of two-operator models indexed by a ‘“learning rate”
parameter like the 6 of the linear models. It is shown that as the learning rate
becomes small probability matching and marginal constancy become in a
certain sense equivalent.

A Class of Models

The class of models discussed here has also been extensively investigated
for the double reward situation by Rose [10]. A more thorough discussion
of many of our assumptions is given by Sternberg [11].

We now delimit precisely the class of models to which our discussion
pertains by making certain general assumptions about the learning process
in the binary prediction experiment. We do not regard these assumptions as
necessary conditions for models for probability learning, and we will indicate
below how certain well-known models that have been proposed for this situa-
tion fail to satisfy them. We do believe, however, that each of these assump-
tions is plausible enough to be entertained, and that the class of models
satisfying all of these assumptions is sufficiently broad that our results may
be relevant to a variety of theoretical interpretations of the learning process
in binary prediction experiments.

Any model for the binary prediction experiment, regardless of what
unobservable processes it postulates, determines the (conditional) probabilities

(4) Pin = P(A.'.n | Oinyn1li i1 " Oi,.lAi,.1P4,1)

of response A; on trial n for a subject with the (observable) experimental
history O;,_, .1 **+ A;,,1 over the preceding trials and with probability
p:1 of A; on trial 1. These are the basic “response probabilities’”” in terms of
which our assumptions are formulated. This approach is suggested by the
treatment of linear models given by Estes and Suppes [3]. In our notation only
the bold-face type reminds the reader that p; ., depends on Oy, _, n-1 * =+ 4iy
and p;,; . Since models for binary prediction are typically applied to groups of
subjects with different probabilities of 4, ; , p;,, must in general be considered
a random variable.

Our first assumption is that the learning process is independent of path
in the sense that p; .., depends on responses and outcomes before trial n
and on p;, only through p, , . Thus p; .+ is a function only of p: . and the
response and outcome on trial n. We further assume that this function does
not depend on n. Thus

Al Foreach j, k (j =1, 2; k = 1, 2) there is a funclion f,; such that if A; .
and Oy, then Py ne1 = f1i(P1.n) or, equivalently,

Poae1 = 1 — fr;(D1.0)-
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A great many of the models proposed to date have this property (see
[1, 9, 11]), but some rather interesting ones do not. For instance, of
the “weighted outcomes” medels considered by Feldman and Newell [5]
Al holds only for the linear models, and it seems extremely unlikely that
stimulus sampling models in general satisfy Al. (However Estes and Suppes
[4] have proved a general approximation theorem which implies that there
exists a sequence of N-element stimulus sampling models that satisfies (3) in
the limit as N — «.)

Next we assume that the occurrence of outcome O, on trial n has the
same effect on the learning process regardless of which response occurs on
trial n. More precisely

A2 ful®) = fi.lp) and fuu(p) = fu(p) forall 0<p <1.

We will use the notation

@) = fup) and g@) = fa(p)

throughout the rest of the paper. Certainly it is to be expected that the oc-
currence of O, on trial n will increase or at least not decrease the probability of
A ; on subsequent trials regardless of which outcome the subject predicted on
trial n. We know of no completely convincing argument that the effect
“should be exactly the same in the two cases, but this assumption seems as
plausible as any other at this time, and it is quite convenient mathematically
as it reduces the number of possible effects of a learning trial to two: the effect
of O; for ¢ = 1, 2. In the terminology of Bush and Mosteller [1], A2 is the
assumption of experimenter-controlled events.

‘We next suppose that the experimental situation is symmetric in the sense
that the subject has no bias in his reaction to the two possible trial outcomes.
Thus the occurrence of O; has the same effect on the A, response probability
that the occurrence of O, has on the A, response probability. According to Al
and A2 the effect of O, on A; response probability is represented by the
transformation

i — f(D1.n)
while the effect of O, on A, response probability is represented by
Pen =1 — g(1 — Pa).
Thus the symmetry assumption can be expressed as f(p) = 1 — g(1 — p) or
A3 g@) =1—f1 —p for 0<p<1.

The function f, which completely determines the subject’s response to
his experimental environment, is subject to several constraints. Since f(p)
is a probability we must have 0 < f(p) < 1for 0 < p £ 1. And, since f
represents the effect of reinforcement we expect f(p) 2> p. In addition, how-
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ever, it seems unreasonable to suppose that there are special values of response
probability in the open unit interval such that if a subject happens to have
one of these values as his initial A, probability his state of learning will be
unchanged by an indefinitely long sequence of O, outcomes. Consequently we
require that

A4 f@ >p for 0<p<1.

Further it seems reasonable to expect that if two subjects begin a trial with
Al probabilities p and p’, and both receive an 0, outcome on that trial, the
new A, response probabilities f(p) and f(p’) will have the same ordering as
p and p’. Consequently we assume that

Ab f(p) is non-decreasing for 0 < p < 1.

Finally it is convenient to restrict ourselves to the case in which

A6 f(p) 7s continuous for 0 < p < 1.

For convenience we refer to models satisfying Al through A6 as fwo-
operator models rather than as symmetric path~independent models with experi-
menter-controlled events.

With these preliminaries behind us we can fulfill our promise to provide
examples of nonlinear two-operator models that predict simple probability
matching. Let 1 > 6 > % and let f(p) be any continuous non-decreasing func-
tion with 1 > f(p) forall 0 < p < 1,

fo)=p+61—-—p 0<p<1-—049, 6 <p<1,

and
fo) >p+61—p 1—-06<p<8.
Then, forany 0 < p < 1,
fp 26 and gp) =1~7f1—p <1— 6.

Thus the two-operator model determined by f has the property that
Piz,DPisyPi,a, - - are confined to [0, 1 — 6] U [6, 1]. But on this set the
transitions for this model agree with those of the linear model with parameter
6. Since the latter predicts simple probability matching it follows that the
former must also. Examples of this sort do not arise under the assumptions
of Theorems 1, 2, and 4. The reason for this is that Theorem 1 puts heavy
constraints on the transitions from p, , to p;.» , Theorem 2 requires that f
be analytic, and Theorem 4 is concerned with small learning rates.

The Implications of Stationary Probability Maiching
In the remainder of the paper we will denote by p. the A, response
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probability random variable p,,. , and by p, the expectation E[p,] of p, .
It follows from (4) that . is the unconditional probability of 4, , , i.e.,

Pn = P(41.1).

Under noncontingent reinforcement the linear model leads to the well-
known equation

(5) Po=m—@—P)A -0, n=12",

for any = and any distribution of p; . This implies simple probability match-
ing; moreover, it implies that the convergence of 7, is monotonic. In particular,
if the initial A; response probability random variable p; has mean = then p,
has mean = throughout the experiment. Thus the linear model predicts sta-
tionary probability matching in the sense of the following definition.

DErINITION. A model is said to predicl stationary probability matching
if, for all 0 < 7w < 1, P(A,,) = 7 implies P(A,,) = 7 for all n > 1 under
noncontingent reinforcement with O, probability =.

Clearly a model might have the property that for each 7 there is some
distribution of p, which has mean 7 and such that for this particular distribu-
tion of p, all of the #, would remain at = when P(0,) = =. However the sta-
tionary probability matching condition requires that for every distribution of
p, with p, = 7= we have §, = = for all n > 1 when P(0,) = =. Bearing this
in mind a simple inductive argument shows that for any model satisfying Al
stationary probability matching is equivalent to the requirement that p;, = =
and P(0,) = = imply p, = w. Theorem 1 below shows that stationary prob-
ability matching is predicted by no two-operator models other than the linear
models.

TrEOREM 1. A fwo-operator model predicts stationary probability matching
if and only of, for some 0 < 6 < 1

i) =p+ 61 —p)

forall0 < p < 1.

Proor. In view of (5) we need only show that the form of f(p) indicated
in the statement of the theorem is a necessary condition for stationary prob-
ability matching. Consequently we assume that §, = = and P(0,) = =
imply p. = .

If we define the function u(p) for 0 < p < 1 by

®) ulp) = 1@ — p
then we can write
) @ =p+u@ and g(p) =p — ul — p),

the latter in view of A3. For an arbitrary distribution of p, we have, under
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noncontingent reinforcement with O, probability ,
®) P2 = Elp] = E[E[p: | pi]]
= E[rf(p,) + 1 — mg@)]
= P + Blru(p) — 1 — nu — p)l.

One distribution of p, for which §, = = (and thus §, = =) is the distribution
. concentrated at . For this initial distribution (8) reduces to

9 ru(r) = (1 — Du(l — =).
Thusforall0 < p <1

up) = 1 = pu(l — p)/p.
Substituting this for u(p,) in (8) and assuming that P(p, = 0) = 0, we have

(10) P2 = P + El(x — pJu(l — p)/pil.
Other distributions of p, for which #, = = are those with

P(p1=7T+C)=P(p1=7T'—C)=%1

where 0 < |¢| < min (x, 1 — 7). For a distribution of this form (10) specializes
to

Wl — @ +9) _ul = —0)
(1) T+ c N T—C )

Let any 0 < z, ¥ < 1 be given, where z = y. Let r = (z + y)/2and ¢ =
(z — y)/2. Then 0 < |¢|] < min (m, 1 — ), (the latter since 1 — 7 =
Q=2+ A —y)/2, whilec = (1 — y) — (1 — x))/2). Thus (11) gives
u(l —y)/y = ul — z)/zforall0 < z,y < 1,ie., u(l — z)/z = 0 for some
constant # and all 0 < z < 1. Thus f(p) = p + 6(1 — p) forall0 < p < 1.
By continuity of f the equality holds at the endpoints also. Clearly f(0) =
6 < 1, and A4 implies § > 0. Q.E.D.

Theorem 1 shows that within the class of two-operator models the linear
model is characterized by stationary probability matching, which involves
arbitrary distributions of p, . It is natural to ask to what extent the linear
model is characterized by a comparable property, weak stationary probability
malching, that involves only distributions of p, concentrated at a single point.

DrrintTION. A model s said to predict weak stationary probability
matching #f, for all 0 < 7w £ 1, p, = 7 implies P(4,,) = mforalln > 1
under noncontingent reinforcement with O, probability =.

We use the term “weak” because this property is a consequence of sta-
tionary probability matching. The following theorem shows that within a
certain important subclass of the class of two-operator models only the linear
models predict weak stationary probability matching.
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TuEOREM 2. If a two-operator model with f(p) an analytic function for
0 < p < 1*and f(0) > O predicts weak stationary probability maiching then for
some0 < 6 <1

@ =p+ 61 —p)
forall0 < p < 1.

Proor. Suppose first that there are points 0 < p < p’ < 1 such that
f(p) = f(p"). Then by A5, f(p) is constant on the interval [p, p’], and thus,
by the identity theorem for analytic functions ([8], p. 87) f is constant on
[0, 1]. But A4 and A6 imply that f(1) = 1. Thus f(p) = 1for0 < p < 1,
and the conclusion of the theorem holds with § = 1. Thus we may assume
throughout the rest of the proof that f is strictly increasing on [0, 1] (and thus
fip) < 1for0<p<1).

Whenever f(p) has a finite derivative from the left at p = 1, the function
w(p) defined by

u(l_p—@ for 12p>0

(12) w(p) =

1—§(1) foor  p=0
is continuous on {0, 1]. In terms of w(p), (7) can be written
(13) ) =p+ (1 — puw — p),

gp) =p —pwlp), 0<p<1.

In the present case the analyticity of f(p) implies that w(p) is analytic for
0 < p <1 (see [8], p. 90).

Weak stationary probability matching has as a consequence that p, = = °
and P(0,) = = imply p, = = so the reasoning that led to (9) is valid. From (9)
we easily conclude that

(14) w(p) = w(l — p)

for 0 < p < 1 and thus, by continuity of w, for 0 < p < 1. This means that
w is symmetric about 3.

We will now show by induction that, for each 0 < = < 1, w(p,) has the
'same value w, . for all 4, probabilities p, that can arise on trial n when
‘P = 7. This is trivially true for n = 1. Suppose that it is true for some n > 1
and all 0 < = < 1. Let some 0 < =y, < 1 be given and assume that p, = =,
and that reinforcement is noncontingent with O, probability =, in what fol-
ilows. By the induction hypothesis, for any 4, probability p,., which can
.arise on trial n -+ 1 we have either w(p,.1) = Wa sy ({f P2 = f(p1) = f(m0)),
OF W(Pps1) = Wa,o(rey Af P2 = g(m)). Thus the induction will be complete

. *That is, f has a convergent power series expansion about every point of the
interval [0, 1].



M. FRANK NORMAN AND JOHN I. YELLOTT, JR. 51

if we can show that w, ;(zre) = Wa,o(re) - NOW

7o = E[pusz]l = ElE[Pass | Pasil]
Elwof(@ar1) + (1 — m0)g(Pasr)]
7o + El(T0 — Pass)w(Pnss)]

l

using (14). Thus
(15) 0 = El(mo — Pasn)w(Prs1)]
= E[E[(mo — Par)w(Pss1) | P:]]
= Wy, 10 BTo = Pasr | P2 = f(mwo)Imo
+ W s Elmo = Porr | P2 = g(md)l(1 — mo)

by the induction hypothesis. But weak stationary probability matching
implies that

0 = Elro — Poss] = E[E[ro — Pas1 | P:]]
= Efro = Pas1 | P2 = f@mo)lmo + Elro — Pura [ P2 = g(mo)]1 — m0o)
and, using A4 and the fact that f is strictly increasing
Elry = Pus1 | P2 = f(mo)] < Elmo — Pasa | P2 = m] = Elmo — p.] = 0.
Thus E[ms — D1 | D2 = f(m,)]mo can be cancelled out of (15) to obtain

Wn,r(re) = Wn,g(wa) =

We conclude that, forall 0 < = < 1, and all » > 1, w(p,) has the same value
for all p, which can arise on trial » when p, = =. In particular,

(16) w(f™ (@) = wig™ @)

foralln > 0and 0 < 7 < 1, where {* and ¢ are the nth iterates of f and
g respectively, i.e.,

fP) =z
@ = 10" @), n=0.

By continuity (16) holds for #=0 and ==1. But ¢’ (0) =0 for all n > 0, and
0 < Y0 < f®0) < --- < f”(0) < 1 by A4, Since

J(lim /(0)) = lim f*(0)

n—m n—ow
we must have

lim ™(0) = 1.

n—®
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Thus w(p) has the same value 6 = w(0) on an infinite set of points accurnulat-
ing at p = 1. By the identity theorem for analytic functions

a7 wlp) = 6

for0 < p < 1. From A4 it follows that 0 < 6, and since f(0) = 6 we must have
0 <1.QED.

The reader may have noticed that the assumption of analyticity in
Theorem 2 is used primarily as a means of “interpolating” the function w(p)
between those points which can arise as possible values of p, when p, = 0.
If we were to drop the analyticity assumption, and simply assume that f(p)
is strictly increasing we could still conclude that w(p,) is a constant w,,. over
the set of points that can be values of p, when p, = z. It might be supposed
that as n increases this set, for some z, would become sufficiently large that
w could be shown to be constant everywhere in [0, 1]. However the remarks
at the end of the previous section indicate that this is not feasible. It appears
that something like analyticity is required if we are to obtain a complete
characterization of w from conditions on the values of w(p,).

We will say that a model is ergodic if for every 0 < m;, m, < 1 thereisa
distribution #‘™*'"* (p) such that for every distribution of p, the distribution
of p, converges to F"*'"” as n approaches infinity under contingent rein-
forcement with P(0; , |4;.) = = . The weaker property of ergodicity under
noncontingent reinforcement is defined similarly. We mention that the argu-
ment given by Karlin ([7], sec. 6) need be modified very little to show ergodi-
city, not only for the linear models which he considers, but for any two-
operator model that is strictly distance diminishing in the sense that there is
some A < 1 such that

[f — f@)| < \Nlp —p’| forall 0 <p,p’ <1.

If a model that is ergodic under noncontingent reinforcement predicts weak
stationary probability matching then #"'*~™(p) must have mean = so that
simple probability matching under noncontingent reinforcement is also pre-
dicted. On the other hand if a model that is ergodic under noncontingent rein-
forcement predicts simple probability matching on such schedules then if
p: has the distribution F*"''"™ it follows that p, = = for all n > 1 under
noncontingent reinforcement with P(0,) = w. Thus for two-operator models
that are ergodic under noncontingent reinforcement simple probability match-
ing on this schedule and the two versions of stationary probability matching
are very closely related. It is interesting to ask how one might distinguish
experimentally between them.

To test for stationary probability matching over and above simple prob-
ability matching under noncontingent reinforcement with P(0,) = = it is
necessary to find a group of subjects.that has a distribution of p, with mean
m other than F*""'~™, Thus we cannot obtain subjects by running a prior non-
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contingent binary prediction experiment with P(0,) = w. However a suitable
group of subjects could be obtained by giving various subgroups previous
training on different P(0,)’s. For instance, half the subjects might receive
previous training under noncontingent reinforcement with P(0;) = = -+ ¢
and the rest with P(0,) = m — ¢ where ¢ < min (m, 1 — 7). A binary pre-
diction experiment with a group of subjects thus constituted could easily
lead to results that would cast doubt on stationary probability matching.

The Implications of Marginal Constancy

Weak stationary probability matching is not well adapted to direct
experimental test; in order to perform an appropriate experiment one would
have to be able to evaluate the initial 4, response probabilities of individual
subjects. However for two-operator models this property implies a condition
that has direct experimental implications. Consider the contingent reinforce-
ment situation in which the outcome always agrees with the subject’s response;
ie, m, = m, = 1. Under these conditions, which we call double reward con-
tingencies, we have

Eps | P =Dl =pf® + 1 — p)g®),

or using the representation given by (7),
(18) Epars | P =pl =p+ pul — (1 — pull — p).

Now if a two-operator model satisfies the functional equation (9), which is a
consequence of weak stationary probability matching, (18) simplifies to

19) Epei1 | Do = pl = p.

Consequently any two-operator model that satisfies (9) predicts marginal
constancy.

DeriNITioN. A model vs said to predict marginal constancy if P(4, ) =
P(A,,) for all n > 1 in the double reward situation.

For the class of two-operator models it is easily seen that (9) is a necessary
as well as a sufficient condition for marginal constancy.

Since marginal constancy is a property of the linear model that is subject
to direct experimental test it is of interest to examine asymptotic predictions
under contingencies other than double reward of two-operator models that share
this property. In this section we will relate lim,,.. §, for an important subclass
of the class of marginally constant two-operator models to the comparable
probability matching limits for linear models. Our basic tool will be the char-
acterization (9) of marginally constant two-operator models which does not
refer to any particular reinforcement contingency.

We will restrict our attention to two-operator models satisfying the regu-
larity condition
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A7 {(p) has a finite derivative from the left at p = 1.

Under A7 we have at our disposal the representation (13) where w(p) is the
continuous function (12). In terms of w(p) the functional equation (9) for
marginal constancy assumes the form (14).

We will also assume that

A8 : f(0) >0

i.e., reinforcement of 4, is effective, even when the probability of 4, is 0. In
view of (13) this implies that w(1) > 0. By (14) it follows that w(0) > 0 also
under marginal constancy. But A4 and (12) imply that w(p) > 0 for
0 < p < 1. Thus by the continuity of w(p) we have
/ min w(p) > 0
0<p<1
for marginally constant two-operator models satisfying A7 and AS.
Putting together (13) and (14) we obtain the representation

I {p,. +w@E)d ~p) i Ou.,
p" - w(pn)pn lf 02,n .

Comparing (20) with (3) we see that the class of marginally constant two-
operator models satisfying A7 and A8 may be regarded as a generalization of
the class of linear models, with the learning rate parameter 8 replaced by the
continuous positive function w(p). We pause here to show that there exist
nonlinear ergodic marginally constant two-operator models satisfying A7
and A8. Let

(20

fo,v, 8 =p+ 1 ~pwl —p,v, 8,
where
w(p, v, 8 = v(1 + ép(1 — p))

and 0 <y < %, 0 < 86 < & Clearly 1 > f(p, v, 8 and w(p, v, 8) =
w(l — p,v, 8) for0 < p < 1,and f(p,v, 8) > pif 0 < p < 1. Further

i)
a—pf(p,v, 8) =1—+~+ 61 — p)(1 — 3p).
From this it follows that
i)
and

0
a—pf(P,'y, H<1—v+y<Ll.
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The fact that |f'(p)| is bounded away from 1 implies that the model deter-
mined by j(p, v, 8) is strictly distance diminishing, hence ergodic.

In the next theorem, (22) shows how near-linearity in the sense of small
{max w — min w) implies approximate probability matching in the sense
of small |p. — &.| for ergodic marginally constant two-operator models that
satisfy A7 and A8. Equation (21) is a by-product of the proof of (22) which
we include in the statement of the theorem because it is interesting in its
own right.

THEOREM 3. For 0 < m, m, < 1 ergodic marginally constant two-operator
models having properties A7 and A8 satisfy

min w max w

and
@) po — 2] < VA = m)( = 22X~ Winw)

max w min w

under contingent reinforcement with

P(Oi.n l Ai.n) =

where
max w = max w(p), min w = min w(p),
0<p<1 0<p<1
P = lim P, , 2, = lim P(0,,,),
n—oo n—o
and

l_ 1_71'2

2—"71'1_71'2

18 the unigue value of P for which probability matching oblains, 1.e., for which
De = & . (The reader should note the extent to which this notation suppresses
dependence on m, and T, .)

Proor. For any function b(p) continuous for 0 < p < 1 we have

E[b@,.)] = E[ED@..) | pa]]
— EIM@b0®.) + (L — M@.))b(g(®.)]
where M(p) = mp + (I — m)(1 — p) = P(0,,./p. = p). Letting n - =

we obtain

@ [ o) dFe) = [ M@BIG) + A — MG dFG),
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where F = F‘"*'"* is the asymptotic distribution of p, when P(O; .|4;.) =
7; . For b(p) = p, (28) yields

249 0= f: ME)(A — pwd — p) — 1 — ME)pw®)] dF(p).

Since w(p) = w(l — p), (24) can be simplified to

@9 [ v are =1 [ vl arw).

It is worth pointing out that in the case of simple probability matching:
P = 1, (25) means that w(p) and p are uncorrelated with respect to the dis-
tribution F(p).

Equation (25) implies

1
minwf p dF(p) < I maxw
0
and
1
maxwf p dF(p) 2 l min w.
0

Since

1

P = [ pdF®),

0

(21) is proved. We next note that
P(Ol.n) = mP. + (1 - 7T2)(1 - ﬁn)

Consequently
(26) Po— 8o = (2 —m — m)Po — (1 — m5).

This means that $.. — &. is small when and only when $.. — [ is small. From
(26) and (21) it follows that

@7 min w — max w max w — min w

max w I =m) <P~ & < min w (1 = m).

As a consequence of the symmetry assumption A3 the same argument applied
to the probabilities of 4, and O, will yield

min w — max w max w — min w

max L™ S0 =p.) —(1—2) < Ty L —m)

max w — min w
- 1 - L Py — b < ——————— (1 — ).
min w ( ™) <P bo = max w ( )
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If po — & < 0 the product of the lower inequalities in (27) and (28) leads to
the same conclusion. Q.E.D.

The fact that estimates of the parameter 6 of the linear model are usually
small in binary prediction experiments leads us to examine two-operator
models that predict slow learning. We do this by considering certain one-
parameter families of two-operator models depending on a ‘learning rate”
parameter e like the 8 of the linear models, and focusing our attention on the
predictions of the family as ¢ becomes small. Just as a single two-operator
model is determined by a function f(p) of one variable a one-parameter family
of two-operator models is determined by a function f(p, €) of two variables.
We first impose the following restriction on the dependence of f(p, €) on p for
fixed e:

If P > &. the produet of the upper inequalities in (27) and (28) yields (22).

F1 For some p > 0 and each 0 < € < pu, {(p, €), regarded as a function of
p, determines an ergodic two-operator model satisfying A7, A8, and

0
p fd,e < 1.
Under F1, f(p, ) has the representation

f(p, 6) =P + w(]- - D 6)(1 - p)y

where w(p, €) is positive and continuousin pfor0 < p < 1,0 < ¢ < u. Since
the magnitude of w(p, ¢) is positively related to the rate of learning, our inter-
pretation of € as a learning rate parameter requires that w(p, €) decrease to
0 as e decreases to 0. To make this precise we first assume that
F2 lim w(p, ¢ = 0, 0<p<1.

0
This suggests that we extend the domain of w(p, €) by defining w(p, 0) to be
0 for 0 < p < 1. We further assume that

F3 w(p, €) is continuous and (8/3e)w(p, €) and (8°/3)w(p, €) exist and are
continuous for 0 < p £ 1,0 < e < .

To insure that w(p, €) decreases as e decreases, at least for sufficiently
small ¢, it is sufficient to assume

F4 aiew(p,0)>0 0<p<l.

Examples of families of models satisfying F1 — F4 are the linear family
w(p, ) = 6,0 < 0 < 1, and, more generally, the families determined by the
functions w(p, v) = y(1 + (1 — p)), 0 < v < i, for any fixed value of
5,063
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We wish to give a definition of approximate probability matching for
small learning rates that will be applicable to families of models satisfying
F1 — F4. In view of (26) we might consider requiring only that

' lim g, = .

€~0

However it turns out to be useful to require somewhat more.

DEerintrioN. A family of models salisfying F1 — F4 4s said to predict
approximate probability matching for small learning rates if and only if

(29) lim p, = 1
-0
and
(30) lim lim var p, = 0

e—~0 n—oo
for all contingent reinforcement schedules with 0 < m , mp < 1.

It is easily shown that the condition

1
(31) lim [ (@ — D*dF(») =0
0 0
is equivalent to (29) and (30) where F, = F,"*'"* is the asymptotic dis-
tribution of p, when P(O; , |4;.) = =, and the learning rate parameter has
the value e. For the linear family under noncontingent reinforcement we have
the formula

4
2—9

var p. = 7(l — )

[3] which shows that var p. — 0 as § — 0. The same is true for the linear family
under contingent reinforcement as a consequence of Theorem 4 below.

Our previous work suggests that approximate marginal constancy for
small learning rates, appropriately defined, will be closely related to approxi-
mate probability matching in the above sense. We might think of requiring
only that

IH? (ﬁn+1 - ﬁn) =0
for all n under double reward. However it is easily shown that for any family
of models satisfying F1 — F4
Posr — Pn = O(9)

under double reward. Since the term ‘“approximate marginal constancy”
suggests that p,., is especially close to 5, we are led to the following definition.
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DrrFINITION. A family of models satisfying F1 — F4 s said to predict
approximate marginal constancy for small learning rates if and only if
ﬁn+1 - ﬁn = 0(62)
Sfor all m > 1 under double reward.
Using the Taylor expansion
2 2
€ d

(32) W@, ) = e wlp, 0) + 5 5 0, &)

where 0 < € < ¢, it is easily shown that the condition

(33 (e, 0) = 5wl —p,0)

for 0 £ p < 1 is equivalent to approximate marginal constancy for small
learning rates, just as (14) is equivalent to marginal constancy for a single
model. We can now state and prove the following theorem.

TaEOREM 4. For any family of models satisfying F1 — F4 approximate
probability malching for small learning rales and approximate marginal con-
stancy for small learning rates are equivalent.

Proor. Suppose that (31) is satisfied forsome0 < m =7=1—m < 1.
Since 7 = land M(p) = 7 (24) and (32) yield

@ 0= [ [s0 = 2t = p,0) = 1 = 9p & 00,0 | P9 + 0.
Shrinking e to 0, (31) implies ‘
O0==1—m %’w(l — 7,0 — (1 — w)w%’w(w, 0)

which gives (33) for p = #. Thus approximate probability matching for small
learning rates implies approximate marginal constancy for small learning
rates.

To prove the opposite implication we take b(p) = (p — 1)* in (23) to
obtain

[@-vare = [ vio@ -+ -p 90 - 9y
+ (= ME)@ — D ~ wlp, 90°] dF.0)

or

0=2 [ @ DM@ —p, 90 — ) = (1 — MG)e(p, 9p] dF.()

+ [ M@~ p, 90 — 2 + 0 — M@, 9] dF. G-
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Thus, using (32) and (33) and noting that M(p) — p = @ — m, — m)({ — D)
we find that

[ =05 00,00 - 0.

Consequently
1
0 < min < w(p, 0) f (o — D* dF(p) < 0.
0<ps1 € 0
Since
min 9 wip,0) >0
0gp<1 O€ '

by F3 and F4, (31) follows. Q.E.D.
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