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1. Introduction and summary. Associated with certain of the learning models
introduced by Bush and Mosteller [1] are random walks p; , p2, p3, - -+ on the
closed unit interval with transition probabilities of the form

(1) P[Pn+1 = DPn + 01(1 - pn) Ipn] = ‘P(pn)
and
(2) Plpay1 = pa — 0pa | Pu]l = 1 — o(pn)

where 0 < 61, 6, < 1 and ¢ is a mapping of the closed unit interval into itself.
In the experiments to which these models are applied, response alternatives 4,
and A, are available to a subject on each of a sequence of trials, and p, is the
probability that the subject will make response 4, on trial n. Depending on which
response is actually made, one of two events E; or E; ensues. These events are
associated, respectively, with the increment p, — p, + 6:(1 — p,) and the
decrement p, — p, — 63p, in A; response probability. The conditional proba-
bilities ;; of event E; given response 4A; do not depend on the trial number .
Thus (1) and (2) are obtained with ¢(p) = mup + 7u(1 — p).

Since the linearity of the functions ¢ which arise in this way is of no consequence
for the work presented in this paper, we will assume instead simply that

(3) ¢ & C*([0, 1]).

We impose one further restriction on ¢ which excludes some cases of interest in
learning theory:

(4) e = minpg,<10(p) > 0 and & = maxog,<1¢(p) < 1.

It follows from a theorem of Karlin ([5], Theorem 37) that under (1)-(4) the
distribution function F§),., of p, (which depends, of course, on the distribution
F of p;) converges as n approaches infinity to a distribution F, ,,, which does
not depend on F. It is with the distributions Fj, ,,, that the present paper is
concerned. v

Very little is known about distributions of this family, though some results
may be found in Karlin [5], Bush and Mosteller [1], Kemeny and Snell [6],
Estes and Suppes [3], and McGregor ancd Hui [8]. The only theorem in the litera-
ture directly relevant to the present work is one of McGregor and Zidek [9]
as a consequence of which, in the case 6; = 6, = 0, o(p) = 3,
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limeso limaae Pl (pe — 3) < 2] = ®(8%)

where ® denotes the standard normal distribution function; that is, the distribu-
tion Fy;(6% 4 %) converges to a normal distribution as the “learning rate”
parameter 6 tends to 0. We will prove, by means of another method, that this
phenomenon is of much greater generality. Theorem 1 below shows that, for
any positive constant ¢ and any ¢ with

maXo<p<1 ﬂol(p) < min (1) g‘)/max (1’ f)

there is a constant p such that Fy . ,(6'z + p) converges to a normal distribu-
tion as 6 — 0. A nonnormal limit is obtained if 6; approaches 0 while 6. remains
fixed as is shown in Theorem 2. In this case Flo, s,,,(612) converges to an infinite
convolution of geometric distributions.

If f(p, ) = p + 6(1 — p) then (1) and (2) can be written in the form

(5) Plpnys = f(pn, 61) | pa] = @(Pn)
and
(6) Ppar =1 — f(1 — pa, 05) | pa] = 1 — o(pa).

In Section 4 it is shown that the linearity of f(p, 6) in p and 6 is not essential to
the phenomena discussed above. Theorems 3 and 4 present generalizations of
Theorems 2 and 1, respectively, to “learning functions” f(p, 6) subject only to
certain fairly weak axioms.

A somewhat different learning model, Estes [2] N-element pattern model,
leads to a finite Markov chain p;, pz, ps, - -+ with state space Sy = {jN~ 1

j=0,1, ---, N} and transition probabilities

(7) Plpass = pn + N7 | pal = o(pa),

(8) Plpaa = P — N | pal = ¥(pn),

and

(9) Plpass = Pa| sl = 1 — @(pn) — ¥(pn)

where ¢(p) = cru(l — p), ¥(p) = cmzp, 0 < ¢ = 1, and for the sake of this
discussion we suppose that 0 < i3, 7 < 1. In this case a limiting distribution
Fr.p.y of P, asn — o exists and is independent of the distribution of p; by a
standard theorem on Markov chains. Estes [2] showed that the limit is binomial
over Sy with mean r = s/(ms + ma). It then follows from the central limit

theorem that

limyse iMpaw PN} (pa — 1) < 2] = ®le/(r(1 — ).
In Section 5 it is shown that our method permits an extension of this result to
much more general ¢ and ¢.

2. Lemma 1 and Theorem 1. The following lemma, is requisite to the proof of
Theorem 1.
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LemMma 1. Suppose that {p.} satisfies (1)~(4). Suppose, in addition, that { > 0
and that

(10) ¢'(p) < le(p) + (1 — o(p))1/[(1 — p) + p¢]
forall 0 < p < 1. Then for 6 > 0 the equation
(11) Epry1 — pn I Pn=p=0

has a unique root p = pr,, 10 (0, 1) and
J2a (p — £)* dFoz0.0(p) = 0(0).

Proor. Since ¢ and ¢ are fixed throughout the proof we may write

(12) Elpays — Pa| pa = p] = V(p, 0)
and Fyz9,, = Fo. We have V(p, 6) = 6W(p) where
(13) W(p) = (1 — ple(p) — ¢p(1 — o(p)).

Now W(0) = ¢(0) > 0, W(1) = —¢(1 — ¢(1)) < 0, and by (10)
(14)  W(p) = ¢ (P)(1 — p) + ¢p] — lo(p) + ¢(1 — o(p))] <0

for all0 < p < 1. Thus there is a unique p = p;,, in (0, 1) such that W(p) = 0.
This constant is obviously the unique root of (11).
To prove the second part of the lemma, we first develop a recursion relation

for E[(p. — p)?]. Thus
E[(patr — P)2]
(15) = El(ps — #)’] + 2E[(pn — p)(Pasts — P)] + El(Prsr — pa)?y
= El(pa — 0)’] + 2B[(pr — p)V(pn , )] + El(Pars — pa)’).

Now E[(pns1 — p»)’] £ max (1, )6, thus letting n — « in (15) we obtain
(16) 0 =2 [Z (p — p)V(p, 0) dFs(p) + O(F").
Expanding V(p, ) around p = p we obtain

2 [Zo (9 — 2)"(—(8/3p)V (9", 0)) dFs(p) = O(6)
where p* is between p and p so that

2 mitog, 1 (—(8/0p)V(p, 0)) [Zo (p — )’ dFo(p) = O(6)

or

2(mingg,1 — W'(p)) [Za (p — p)* dFe(p) = 0(0).

Since by (14) and (4) mingg,<1 — W' (p) > 0, the lemma is established.

This lemma is of some practical importance in its own right. To obtain an
approximation p to limu.. E[p,] learning theorists are often driven to treat
E[pns1 | pa] as though it were linear in p, thus permitting the replacementof the

equation
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limn—»eo E [pn+1] = limn-veo E [E [pn+f I pn]]

by

P = Blpasa | pn = )
The estimate p thus obtained is termed an expected operator approximation (Bush
and Mosteller [1]). Since 7 is precisely the p of Lemma 1, we see that the lemma
provides a justification for expected operator approximation when the learning
rates 6, and 6, are small.

We are now ready to prove
TrEOREM 1. Under the hypotheses of Lemma 1

limg.o Fop0,0(6%c + p) = &(z/0)

wheres” = N(p)/2 iW'(p)], W' (p) is given by (14), and N (p) by (23) below.
Proor. We begin by writing a recursion for the characteristic function of

67 (pn — p):
(17)  Elexp (4 (pns1 — p)1)]
= Blexp (7 (pa — p)t)Elexp (i87(pass — pa)0)] pall.
Defining Y (p, 6, t) by
(18) Y(p, 6,t) = Elexp (#7(Pasr — Pa)t)| pn = P)
and letting n — « we obtain
JZa exp (#87(p — p)1) dFo(p) = [Zuexp (87 (p — p)1)Y(p, 6, £) dFo(p)

or

(19) 2 €7 dGo(x) = [24 ™Y (6% + p, 0, t) dGo(z)
where

(20) Gi(z) = Fo(6'z + p).

Now

(21) Y(p,6,t) = 1+ a6 V(p, 6) — (£/2)67M(p, 6)
+ (/306 El|pas — al’ | p» = Pl

where
(22) M(p, 8) = El(pas1 — pn)* | Pa = p] = °N(p),
(23) N(p) = (1 — p)’(p) + P’(1 — o(p)),

and |yl = 1. Expanding W and N around p = p and noting that
El[pnys — pal’ | P = p] < max (1, {*)6°

we obtain
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(24) Y(0'z + 5,6, 1) = 1 + itxtW'(p) — (£/2)6N(p)

+ " (2*/2)W" (p*) — (£/2)6""2N"(p") + £0(6)
where p* and p’ are points in the unit interval. By Lemma 1 [2 2 dGs(z) and
thus also [2, |z| dGy(z) are bounded functions of 6. Thus substituting (24) into

(19), cancelling the first term on the right and the term on the left, and dividing
what remains by 0 (assuming ¢ % 0) we obtain

(25) W'(p) [Zwe™iz dGo(z) — (t/2)N(p) [20e™ dGo(z) = O(6h).

As a consequence of Lemma 1 the family Gy is completely compact, and
|e***iz| = || is uniformly integrable with respect to Gy . Suppose that 6, — 0 and
@y, converges completely to a distribution function G as k — . Then

(26) 2o |2| dG(z) < =,
and taking § = 6; in (25) and letting k — « we obtain
(27) W (p) [20 iz d@(x) = (t/2)N(p) [Zs ' dQ(x)

for ¢ % 0. Since, as a consequence of (26), both sides are continuous in ¢, (27)
must hold for all real ¢. Equation (26) permits us to rewrite (27) in the form
(d/dt) [Z, €™ dQ(z) = —to® [2 €™ dG ()
wheres® = —N(p)/2W'(p) = N(p)/2 |W'(p)|. The only characteristic function
satisfying this differential equation is
2o e d@(z) = exp [—(£/2)d).

Thus G(z) = &(z/s). From this it follows that Gs(z) — &(z/s) for all zasd— 0,
as was to be shown.

In the special case p(p) = p,0 < p < l,and ¢ = 1 (i.e, 6, = 6, = 0) the limit-
ing distribution Fs,,, of p, as n — « is the same as the distribution of

(28) 8 = 2 ief(1 —0)
where the ¢; are independent random variables with
(29) Ple;=1=p and Pl; =0 =1 — p.

This was first observed by Kemeny and Snell [6]. Consequently, Fy 4, ,(6'z + p)
is the distribution function of

(30) (8 — p)/6 = 2o

where 15,; = (¢; — p)6(1 — 6)’. Noting that 7,0, 70,1, To.2, - * - are independent
with
Elr] = 0,

Elr.5] = o(1 — p)o(1 — 6)%, and
Ellroill = p(1 — p)I(1 — p)* + 516**(1 — 6)¥
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so that
2= Elril = p(L = p)/(2—=0) = (1l —p)/2 as §—0
and
5 50 Ell7o,]"]
=p(1 =PI —p)"+ /L + (1 —0) + (1 —06)—0 as 60
the possibility is strongly suggested that the result of Theorem 1 can be obtained
in this case by a minor modification of a standard proof of the classical Liapounov
theorem. This is indeed the case. We omit the details since the method developed

in the proof of Theorem 1 can be applied to a much broader range of problems
of the type considered in this paper.

3. Lemma 2 and Theorem 2. If 6, > 0 is held fixed and 6, is permitted to
approach 0, the distribution dFj,,,, obviously concentrates at 0, and it is
intuitively clear that a limiting distribution obtained by suitable normalization
would be positively skewed. Thus we expect the limiting behavior of the dis-
tributions dFy, s,,, in this case to differ radically from that obtained in Section 2.
The full extent of the discrepancy between the two cases is revealed by the follow-

ing theorem.
TueoreMm 2. If (1)—(4) hold and 6, > 0, then

limg, 0 Fy, 6,,0(612) = Zo o (2/(1 — 6)™)

where Go(y) is the geometric distribution with saltus (1 — w)o* at y = k,
k=0,1,2, --- and * denotes convolution.

The proof of this theorem parallels that of Theorem 1, but is quite different in
many respects. First we require a lemma, analogous to Lemma 1, to the effect
that the normalization of F,,,, indicated in the statement of Theorem 2 is
correct. Note that neither the lemma nor the theorem of this section imposes a
restriction on ¢’ comparable to (10).

Lemma 2. Under the hypotheses of Theorem 2

2 p® dFoy0,.6(p) = O(617).

Proor. Taking p = 0in (15) we obtain
(31) Elpasl = Elpa'l + 2E[pV*(pa, 0] + EIM*(pn , 61)]
where
(32) V*(Pn,01) = Elpays — pa | Pal = 61(1 — pa)e(Da) — 0pa(1 — o(p4))
and
(33) M*(pn, 61) = E[(pass — pa)*| pal

= 0’(1 — pa)e(Pa) + 0P’ (1 — @(p4)).
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Letting n — « in (31) yields

(34) 0 = 2 [ pV*(p, ) dFa,(p) + [3 M*(p, 6:) dFs,(p)

where Fy, = Fo, 65, OF

(35) [36°(2 — 62)(1 — o(p)) dF5,(p) = 2 [i p6:(1 — p)e(p) dF%,(p)

+ [302(1 — p)e(p) dF5,(p).
Thus

(36) 0a(1 — &) [42° dF5.(p) < 20:6x([3 p° dF5,(p))} + 0'e

from which Lemma, 2 follows easily.
Proor or TarEoREM.2. Paralleling the derivation of (19) we obtain

(37) 2™ dHy (2) = [ €Y * (6, 6,) dHy,(x)
where Hy, (z) = F;‘,(Glx) and
(38) Y*(p, 61) = Elexp (9 (patr — Pa)t)| Pn = Pl
= exp (it(1 — p))e(p) + exp (—ith"0:p) (1 — ¢(p))
so that
(39) Y*(0uz, 61) = " "Pp(0,2) + ¢ (1 — o(6:))
= ¢“p(0) + ¢ *"*(1 — ¢(0)) + O(6xz).

Substituting (39) into (37) and noting that [Z, |z] dHy,(z) is a bounded func-
tion of 6, as a consequence of Lemma 2, we find that

(40)  [*o ™ dHy (z) = €"0(0) [ €™ dHo, ()
+ (1= ¢(0)) [0 ™7 dHiy (@) + 0(6),

It follows that Hs, converges as 6; — 0-to the distribution function H whose
characteristic function ey satisfies the functional equation

(41) ea(t) = [1 — ¢(0)]ea((1 — 6)t)/[1 — @(0)e"],
ie., or(t) = JIn=o[l — ¢(0))/[1 — ¢(0) exp (¢(1 — 65)"t)]. Thus as 6, — 0
Hoy,(2) — H(z) = n‘;go G (z/(1 — 62)™)

as claimed.
By applying Theorem 2 to the random walk 1 — pi, 1 — ps, 1 — ps, - -+ We
easily obtain

limg,»0 1 — Fioy0,,0(1 — O5x) = Zo Grpy(z/(1— 6:)™)

for 0, > b.
Since H is an infinite convolution of purely discrete distributions, it is either
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purely discrete or singular or absolutely continuous (Jessen and Wintner [4]),
and the first possibility is precluded in this case by a theorem of Lévy [7].

Asin the case of Theorem 1, a special method of proof is available for Theorem
2 when ¢(p) = p where 0 < p < 1. As this alternative derivation sheds light on
the origin of the geometric distributions from which H is built up, we sketch it
below. Let ¢; be a sequence of independent random variables satisfying (29) and
denote 8, by 6, for the time being. It is easily shown that the random variable

T =61 D 5o I1im0 (1 — 6,)

has the distribution function Fo, 4,,, 50 that T* = T/6, has the distribution func-
tion Hy, . But

p Y {CEH)

limp,o T* = D 70 e;(1 — 6o)
with probability 1
(42) = 2o (1 = 6)"X,
where .
X, = number of 1’s before the first 0 of {¢;}, and
X, = number if 1’s after the nth and before the (n + 1)st 0 of {¢;}, n = 1.

The X,’s are independently and identically distributed with the geometric dis-
tribution G, . It follows that H,, converges to the distribution function H of the
random variable (42) as 6, — 0.

4. Theorems 3 and 4. Let f(p, 6) be a function of two variables defined on a
rectangle B = [0, 1] X [0, 8], 8 > 0, such that

(43) feC*(R),

(44) 0<f(p,0) =1  throughout R,

(45) f(p,0) > p for 0=p<1l 0<K0=34, and
(46) f(1,8) =1 for 0 <6< 1.

Returning to the schematic description of a learning experiment given in the
introduction, suppose that if E; occurs on trial n, p, increases t0 pat1 = f(ps , 01),
while if E; occurs on trial n, 1 — p, increases to 1 — P41 = f(1 — pn, ) so that
pn decreases to ppya = 1 — f(1 — pn, 6;). In this way the function f determines a
two-parameter family of learning models for the experiment. We will subject f to
further axioms sufficient to obtain the asymptotic behavior of the preceding two
sections. To this end we require, informally speaking, that the second variable of
f be a “learning rate” parameter as is 6 in the linear models for which f(p, 6) =
p + 6(1 — p). Thus the increment in p following an occurrence of E; should be an
increasing function of 6, with 6§, = 0 corresponding to no increment. More
precisely, we require that
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(47) (9/96)f(p, 0) > 0, 0=p<1],
and

(48) f(p,0) = p, 0sp=s1
It is also natural to stipulate that f be strictly increasing in p,

(49) (8/0p)f(p, 8) > 0 throughout R.

Finally we require that

(50) (9/9p)f(p, 0) < 1, 0<6=s5 0=p=1.

This implies that f( -, 8) for 8 > 0 is strictly distance diminishing in the sense that,
for some v < 1 and all 0 < p < 1, |f(p, 8) — f(p', 0)| < v¢|p — p'|. This
property, in conjunction with (43), (3), and (4) insures that the stochastic
process {p.} associated with f, 6, > 0, 6, > 0, and ¢ has a limiting distribution
Fo,.0,,0.s a8 n — . The argument given by Karlin ([5], Section 6) for linear
models requires very little modification.

We can now assert the following: ‘

TuroreM 3. If f satisfies (43)—(50), and ¢ satisfies (3) and (4), then for
6, >0

limg, 0 Foy 05,0,1(012) = Eo G (z/ab™)

where a = (8/30)f(0,0) > 0and 0 < b = (3/3p)f(1, 6;) < 1.

Proor. The proofs in Sections 2 and 3 carry over almost immediately to the
theorems of this section so we need not present many details here. Writing
u(p, 0) = f(p,8) — p, we obtain the expressions

(51) f(p, 6) = p + u(p, 0)
1—f1—p,60) =p—u(l—np,0)

which imitate the expressions f(p,0) = p + 6(1 — p) and 1 — f(1 — p,0) =
p — 0p for the linear model and can be put to the same use in much mathematieal
work. Equations (25) and (26), for instance, go over into

(82) V(a0 = u(Pa, 0)¢(Pa) — u(l = pn, 02)(1 = ¢(p))

and
(53)  M*(pn,01) = u'(Da, 01)e(Pa) + u(1 = pa, 62) (1 — ¢(P4)).
Using the Taylor expansions
u(l — p, 6) = —p(3/3p)u(p*, 6:), 1—p=sp*=1
and
u(p, 6,) = 6,(3/30)u(p, 6%), 0<6*<6
in conjunction with (34) and (50) (from which it follows that
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(3/3p)u(p*, 0) < 0)
and defining F;‘l in an obvious way, we obtain
J50* 1(3/3p)u(p™, 82)1(2 — 1(8/3p)u(p™, 6:)]) (1 — o(p)) dFs.(p)
(54) = 20, [ p(3/30)u(p, 0%)e(p) dFs,(p)
+ 61" [1 ((8/90)u(p, 6%))’e(p) dF:,(p)
in place of (35). From (43), (49), and (50) we obtain
mio<, <1 [(9/0p)ulp, 6:)] > 0 and maxog,<1 [(3/9p)u(p, 6:)] < 1

which, in combination with (54), yields an analogue of (36). Thus the conclusion
of Lemma 2 holds with Fj,s,,, replaced by Fj,,e,.,.s . This permits the rest of
the proof of Theorem 2 to be carried over directly even though we now have

Y*(0x, 0;) = exp [ith; " u(O:z, 6:)]e(26:)

+ exp [—at8 u(l — 6ix, 6,)1(1 — o(26,))

exp [i1(9/360)u(0, 0)lp(0) + exp [itx(3/3p)u(1, 6:)](1 — ¢(0))
+ 0(6,) + 0(6:z) + O(6:2”)

instead-of (39).
The comparable result for 6, — 0 while 8, > 0 is fixed is

Hm"wo 1- F01.02,¢J(1 - 023’) = Eo Gl—qa(l)(x/a'l;)

where b = (8/0p)f(1, 61).

I have found it necessary to make further assumptions in order to prove the
analogue of Theorem 1 within the framework of this section. First, my analysis
requires that f be slightly smoother than was required previously. Specifically
it is assumed that

(55) feC¥R).

Note that as a consequence of (48) the distance diminishing property (50)
is lost in the limit as § — 0,i.e., (8/3p)f(p,0) = 1forall0 < p < 1. Our second
new assumption is that this loss does not occur too quickly, that is,

(56) lime..o [(3/3p)f(p, 8) — 11/6 = (8%/308p)(p, 0) < 0, 0<p=1.

For the linear models for instance 8%/008p = —1.
We can now state and prove the following generalization of Theorem 1.
THEOREM 4. Suppose that f satisfies (44)~(50), (55), and (56), while ¢ satisfies
(3), (4), and

2

80ap
9 1,00 + 2 11 — p, 0)¢
a0 ’ a0 ’

o(p) | f(p, 0)| + (1 — «(p)) f(1—p,0)¢

6031)

(57)  (p) <
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for all 0 < p = 1 where { > 0. Then the equation
(58) (8/90)E[Pass — Dn | Pal om0 = 0
has a unique root p, = p = pr,p,s tn (0, 1) and

Fogo,0.1(8% + p) — ®(z/0)
where :
o = (8%/96°) M (p, 0)/4|(8%/8138)V (p, 0)].

M (p, 8) is given by (61), and V(p, 0) by (59) below.
Proor. Defining V(p, 8) as in (12), we have

(59) V(p, 0) = o(p)u(p, ) — (1 — ¢(p))u(l — p, 60).
In view of (57) the argument on W at the beginning of the proof of Lemma 1 can
be applied directly to (8/860)V (p, 0) to yield the existence and uniqueness of the
root p of (58).
Much as in the proof of Lemma 1 we obtain (16) where Fy now is Fo,z,0,7 -

Writing

V(p,8) = 6(p — p)(5°V/3p36)(p*, 0) + O(6)
where p™* is between p and p and O is uniform in p we obtain

—JZa (p — )" (8V/3p38) (p*, 0) dFo(p) = 0(6).

But supo<,<1 (8°V/800p) (p, 0) < O as a consequence of (3), (55), and (57),
so this gives

(60) 2o (p — p)* dFs(p) = 0(0),

the conclusion of Lemma 1.
Defining M (p, 8) by the first equality in (22) , i.e.,

(61) M(p, 8) = w’(p, 0)e(p) + w*(1 — p, £8)(1 — o(p)),

Y(p, 8, t) by (18), and Gs by (20), we have (19) and (21) just as in the proof of
Theorem 1. Again we have

El|pass — pal’ | Pa = 2] = 0(6°)
uniformly in p. Substituting this and the expansions
V(p, 6) = 0(p — p)(3°/6p36)V (p, 0) + 6°0(I(p — p)6”'T) + O(6")
and
M(p, 0) = 6°(6*/96°) M (p, 0)/2 + 6"°0(|(p — p)07%) + 0O(F")

(0(6*) and O(6°) are uniform in p) into (19) and using (60) we obtain after
some manipulation
(62) (0°/0pad)V (p, 0) [Zw e*“ix dGs(z)

— (t/4)(8°/86%) M (p, 0) [2,, €™ dGo(z) = O(6*)
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for ¢ 5% 0. From this point the argument proceeds just like that following (25)
in the proof of Theorem 1. The quantity (8°/86°)M(p, 0) is positive as a con-
sequence of (47).

5. Theorem 5. Consider a one-parameter family of finite Markov chains

(x™}o, where xX™ = X;™, X,™, X,™, .-+ has state space {0, 1, -+, N}
and transition probabilities

(63) PIXP = X® + 1] Xa"] = o(X.™/N),

(64) PIX®: = X,™ — 1] X" = ¢(X./N),

(65)  PIXSP = X | X = 1 = o(X."/N) = Y(X.V/N)

which depend on the relative position of the present state within the state space.
Putting p, = p.™" = X,"/N, these equations yield the transition probabilities
(7), (8), and (9) for a corresponding chain @™ = p,, p,®, p®, - - with
state space {0, 1/N, ---, (N — 1)/N, 1} where now ¢ and , instead of having
the specific form which arises in the N-element pattern model, are subject only
to the following restrictions:

(66) 1=e(p) >0 forall0 < p < 1,¢(1) =0,
(67) 1=4y(p) >0 forall0 < p < 1,¢(0) = 0,
68) 12 e(p)+¥(p) forall0=<p=1,1> e(p) + ¥(m)
forsome 0 < po £ 1,

(69) o, ¥ £ C*([0, 1]), and
(70) o(p) <¥'(p) forall0 <p = 1.

Equations (66) and (67) insure that @ is irreducible. By (69) and the second
condition in (68) there is a subinterval I of [0, 1] of positive length e such that 1 >
o(p) + ¥(p) for p e I. For N > 1/e the chain @™ has a state which belongs
to I, hence- @™ is aperiodic. Thus

(71) liMpsw Plpa™ < 2] = Fu(2)

exists for all z and is independent of the distribution of 21", The condition (70)
(which is satisfied, for instance, in the interesting case ¢(p) <0,¢'(p) >0,
0 < p = 1) together with (66) and (67) implies that the equation

(72) e(p) = ¥(p)

has a unique root p in (0, 1).
We can now state the following theorem.
TaEOREM 5. If Conditions (66)—(70) hold, then

limye.e FN(N—}y + P) = Q(y/"')
where o = (o(p) + ¥(0))/2(¥ (p) — ¢ (p)). Equivalently,
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liMyeo liMasw P[(X™ — Np)/Nle < 4] = 3(y).

The proof is quite similar to that of Theorem 1, though somewhat simpler, so
we omit the details.
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