Bruijnzeel L.A.

Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

Holwerda F., Bruijnzeel L.A., Scatena F.N., Vugts H.F., Meesters A.G.C.A 2011. Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance. In press Journal of Hydrology

Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with complex topography for a one-year period using totalizing throughfall (TF) and stemflow (SF) gauges that were measured every 2–3 days. Measured values were then compared to evaporation under saturated canopy conditions (E) determined with the Penman-Monteith (P-M) equation, using (i) measured (eddy covariance) and (ii) calculated (as a function of forest height and wind speed) values for the aerodynamic conductance to momentum flux (ga,M). E was also derived using the energy balance equation and the sensible heat flux measured by a sonic anemometer (Hs). I per sampling occasion was strongly correlated with rainfall (P): I = 0.21P + 0.60 (mm), r2 = 0.82, n = 121. Values for canopy storage capacity (S = 0.37 mm) and the average relative evaporation rate (E/R = 0.20) were derived from data for single events (n = 51). Application of the Gash analytical interception model to 70 multiple-storm sampling events using the above values for S and E/R gave excellent agreement with measured I. For E/R = 0.20 and an average rainfall intensity (R) of 3.16 mm h-1, the TF-based E was 0.63 mm h-1, about four times the value derived with the P-M equation using a conventionally calculated ga,M (0.16 mm h-1). Estimating ga,M using wind data from a nearby but more exposed site yielded a value of E (0.40 mm h-1) that was much closer to the observed rate, whereas E derived using the energy balance equation and Hs was very low (0.13 mm h-1), presumably because Hs was underestimated due to the use of too short a flux-averaging period (5-min). The best agreement with the observed E was obtained when using the measured ga,M in the P-M equation (0.58 mm h-1). The present results show that in areas with complex topography, ga,M, and consequently E, can be strongly underestimated when calculated using equations that were derived originally for use in flat terrain; hence, direct measurement of ga,M using eddy covariance is recommended. The currently measured ga,M (0.31 m s-1) was at least several times, and up to one order of magnitude higher than values reported for forests in areas with flat or gentle topography (0.03–0.08 m s-1, at wind speeds of about 1 m s-1). The importance of ga,M at the study site suggests a negative, downward, sensible heat flux sustains the observed high evaporation rates during rainfall. More work is needed to better quantify Hs during rainfall in tropical forests with complex topography.

Climate is affected more by maritime than by continental land use change: A multiple scale analysis

Van der Molen, M. K., Dolman, A. J.,Waterloo, M. J. and Bruijnzeel, L.
A. 2006. Climate is affected more by maritime than by continental land
use change: A multiple scale analysis. Global and Planetary Change,
54, 128–149.

Tropical deforestation appears to have larger impacts on local, regional and global climate when it occurs under maritime conditions rather then under continental conditions. At the local scale, we compare results from a field experiment in Puerto Rico with other long-term studies of the changes in surface fluxes after deforestation. Changes in surface fluxes are larger in maritime situations because a number of feedback mechanisms appears less relevant (e.g. the dependency of soil moisture on recycling of water and the larger reduction of net radiation in the wet season due to clouds in continental regions). Pastures may evaporate at similarly high rates as forests when soil moisture is sufficient, which has a strong reducing effect on the sensible heat flux after deforestation. At the regional scale (∼102 km2), model simulations show that the meso-scale sea breeze circulation under maritime conditions is more effective in transporting heat and moisture to the upper troposphere than convection is in the continental case. Thus islands function as triggers of convection, whereas the intensity of the sea breeze-trigger is sensitive to land use change. At the global scale, using satellite-derived latent heating rates of the upper troposphere, it is shown that 40% of the latent heating associated with deep convection takes place in the Maritime Continent (Indonesia and surroundings) and may be produced mostly by small islands. Continents contribute only 20% of the latent heating of the upper troposphere. Thus, sea breeze circulations exert significant influence on the Hadley cell circulation. These results imply that, from a climate perspective, further deforestation studies would do well to focus more on maritime conditions.

Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico

Schellekens, J., L. A. Bruijnzeel, F. N. Scatena, N. J. Bink, and F. Holwerda (2000), Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico, Water Resour. Res., 36(8), 2183–2196, doi:10.1029/2000WR900074.

Evaporation losses from a watertight 6.34 ha rain forest catchment under wet maritime tropical conditions in the Luquillo Experimental Forest, Puerto Rico, were determined using complementary hydrological and micrometeorological techniques during 1996 and 1997. At 6.6 mm d−1 for 1996 and 6.0 mm d−1 for 1997, the average evapotranspiration (ET) of the forest is exceptionally high. Rainfall interception (Ei), as evaluated from weekly throughfall measurements and an average stemflow fraction of 2.3%, accounted for much (62–74%) of the ET at 4.9 mm d−1 in 1996 and 3.7 mm d−1 in 1997. Average transpiration rates (Et) according to a combination of the temperature fluctuation method and the Penman-Monteith equation were modest at 2.2 mm d−1 and 2.4 mm d−1 in 1996 and 1997, respectively. Both estimates compared reasonably well with the water-budget-based estimates (ET − Ei) of 1.7 mm d−1 and 2.2 mm d−1. Inferred rates of wet canopy evaporation were roughly 4 to 5 times those predicted by the Penman-Monteith equation, with nighttime rates very similar to daytime rates, suggesting radiant energy is not the dominant controlling factor. A combination of advected energy from the nearby Atlantic Ocean, low aerodynamic resistance, plus frequent low-intensity rain is thought to be the most likely explanation of the observed discrepancy between measured and estimated Ei.

Global and local variations in tropical montane cloud forest soils

Roman L, Scatena FN, Bruijnzeel LA. 2010. In Tropical Montane Cloud Forests: Science for Conservation and Management, Bruijnzeel LA, Scatena FN, Hamilton LS (eds).

Although soil resources are widely considered as a major factor that reduces the productivity, stature, and diversity of tropical montane cloud forests (TMCF), systematic comparisons of soil resources within and between TMCF are lacking. This study combines published reports on TMCF soils with new data on the soils and forest structure of the Luquillo Mountains in Puerto Rico to assess the current state of knowledge regarding global and local-scale variation in TMCF soils. At the global scale, soils from 33 TMCF sites and over 150 pedons are reviewed. Compared to soils in humid lowland tropical forests, TMCF soils are relatively acidic, have higher organic matter content, and are relatively high in total nitrogen and extractable phosphorus. Across all sites, significant correlations also exist between mean annual precipitation and soil pH and base saturation, but not between any soil chemical factor and canopy height, site elevation, or air temperature. Although comparisons between TMCF are limited by inconsistent sampling protocols, analysis of available data does indicates that lower montane cloud forests (LMCF) have taller canopies, higher soil pH, lower soil nitrogen, and higher C/N ratios than upper montane cloud forests (UMCF). Within an UMCF in NE Puerto Rico, the abundance of soil nitrogen, carbon, and potassium accounted for 25% to 54% of the variation in canopy height. However, as much as 68% of the variation in stand height could be accounted for when site exposure, slope gradient, and the percent coverage of surface roots were also included in the analysis.

Hydrometeorology of tropical montane cloud forests: emerging patterns

Bruijnzeel LA, Mulligan M, Scatena FN. 2010. Hydrometeorology of
tropical montane cloud forests: emerging patterns. Hydrological
Processes. DOI: 10.1002/hyp.7974.

altitudinal limits between which TMCF generally occur (800–3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ¾215 000 km2 or 6Ð6% of all montane tropical forests. Alternatively, on the basis of remotely sensed frequencies of cloud occurrence, fog-affected forest may occupy as much as 2Ð21 Mkm2. Four hydrologically distinct montane forest types may be distinguished, viz. lower montane rain forest below the cloud belt (LMRF), tall lower montane cloud forest (LMCF), upper montane cloud forest (UMCF) of intermediate stature and a group that combines stunted sub-alpine cloud forest (SACF) and ‘elfin’ cloud forest (ECF). Average throughfall to precipitation ratios increase from 0Ð72 š 0Ð07 in LMRF (n D 15) to 0Ð81 š 0Ð11 in LMCF (n D 23), to 1Ð0 š 0Ð27 (n D 18) and 1Ð04 š 0Ð25 (n D 8) in UMCF and SACF–ECF, respectively. Average stemflow fractions increase from LMRF to UMCF and ECF, whereas leaf area index (LAI) and annual evapotranspiration (ET) decrease along the same sequence. Although the data sets for UMCF (n D 3) and ECF (n D 2) are very limited, the ET from UMCF (783 š 112 mm) and ECF (547 š 25 mm) is distinctly lower than that from LMCF (1188 š 239 mm, n D 9) and LMRF (1280 š 72 mm; n D 7). Field-measured annual ‘cloud-water’ interception (CWI) totals determined with the wet-canopy water budget method (WCWB) vary widely between locations and range between 22 and 1990 mm (n D 15). Field measured values also tend to be much larger than modelled amounts of fog interception, particularly at exposed sites. This is thought to reflect a combination of potential model limitations, a mismatch between the scale at which the model was applied (1 ð 1 km) and the scale of the measurements (small plots), as well as the inclusion of near-horizontal wind-driven precipitation in the WCWB-based estimate of CWI. Regional maps of modelled amounts of fog interception across the tropics are presented, showing major spatial variability. Modelled contributions by CWI make up less than 5% of total precipitation in wet areas to more than 75% in low-rainfall areas. Catchment water yields typically increase from LMRF to UMCF and SACF–ECF reflecting concurrent increases in incident precipitation and decreases in evaporative losses. The conversion of LMCF (or LMRF) to pasture likely results in substantial increases in water yield. Changes in water yield after UMCF conversion are probably modest due to trade-offs between concurrent changes in ET and CWI. General circulation model (GCM)-projected rates of climatic drying under SRES greenhouse gas scenarios to the year 2050 are considered to have a profound effect on TMCF hydrological functioning and ecology, although different GCMs produce different and sometimes opposing results. Whilst there have been substantial increases in our understanding of the hydrological processes operating in TMCF, additional research is needed to improve the quantification of occult precipitation inputs (CWI and wind-driven precipitation), and to better understand the hydrological impacts of climate- and land-use change. Copyright  2010 John Wiley & Sons, Ltd.

Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest

Holwerda, F.; Bruijnzeel, L.A.; Scatena, F.N. 2010. Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest. Bruijnzeel, L.A.; Scatena, F.N.; Hamilton, L.S., eds. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge, UK: Cambridge University Press. p. 275-281.

Rates and amounts of fog interception by vegetation depend on wind speed, fog liquid water 4 content (LWC) and duration, as well as surface area and geometry of the vegetation 5 (Schemenauer, 1986). Information on the timing and duration of fog can be obtained with 6 passive fog gages, provided these are protected from rainfall and equipped with a recording 7 device (Bruijnzeel et al., 2005). Fog LWC may also be evaluated from collections by passive 8 gages when information on their collection efficiency and prevailing wind speeds is available 9 (e.g. Schemenauer and Joe, 1989). A variety of passive gages is available, and there has been 10 some discussion as to what is the most suitable type of gage to characterize local fog 11 conditions (Juvik and Nullet, 1995a; Schemenauer and Cereceda, 1995; cf. Delay and 12 Giambelluca, in press; Frumau et al., this issue). For example, a cylindrical gage is considered 13 superior to a flat screen, because it has uniform exposure to all wind directions (Juvik and 14 Nullet, 1995a; cf. García Santos and Bruijnzeel, this issue; Giambelluca et al., this issue). On 15 the other hand, a flat screen generally has a much larger collection area than a cylindrical 16 gage, and may thus measure fog when LWC or wind speeds are low (Schemenauer and 17 Cereceda, 1995).

Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest

Eugster, Werner ; Burkard, Reto; Holwerda, Friso; Scatena, Frederick N.; Bruijnzeel, L.A.(Sampurno) 2006. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest.. Agricultural and Forest Meteorology 139 :288-306.

The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes shape and influence these ecosystems. Our study focuses on the physical characteristics of fog and quantifies the fogwater input to elfin cloud forest using direct eddy covariance net flux measurements during a 43-day period in 2002.We used an ultrasonic anemometer–thermometer in combination with a size-resolving cloud droplet spectrometer capable of providing number counts in 40 droplet size classes at a rate of 12.5 times per second. Fog occurred during 85% of the time, and dense fog with a visibility <200 m persisted during 74% of the period. Fog droplet size depended linearly on liquid water content(r2 ¼ 0:89) with a volume-weighted mean diameter of 13.8 mm. Due to the high frequency of occurrence of fog the total fogwater deposition measured with the eddy covariance method and corrected for condensation and advection effects in the persistent upslope air flow, averaged 4.36 mm day1, rainfall during the same period was 28 mm day1. Thus, our estimates of the contribution of fogwater to the hydrological budget of elfin cloud forests is considerable and higher than in any other location for which comparable data exist but still not a very large component in the hydrological budget. For estimating fogwater fluxes for locations without detailed information about fog droplet distributions we provide simple empirical relationships using visibility data.

Stormflow generation in a small rain-forest catchment in the Luquillo Experimental Forest, Puerto Rico

Schellekens,J.; Scatena, F. N.; Bruijnzee, L.A.; van Dijk, A. I. J. M.; Groen, M. M. A.; van Hogezand, R. J. P. 2004. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico.. Hydrol. Process. 18, 505-530.

Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo-electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one-dimensional soil water model (VAMPS) and a three-component chemical mass-balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass-balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results

Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

Schellekensa, J.; Scatenab,F.N.; Bruijnzeela,L.A.; Wickela,A.J. 1999. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. Journal of Hydrology 225 :168-184.

Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman–Monteith based estimates for the wet canopy evaporation rate (0.11 mm h21 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies

Holwerda, F.; Scatena, F.N.; Bruijnzeel, L.A. 2006. Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology 327, :592- 602.

During a one-year period, the variability of throughfall and the standard errors of the means associated with different gauge arrangements were studied in a lower montane rain forest in Puerto Rico. The following gauge arrangements were used: (1) 60 fixed gauges, (2) 30 fixed gauges, and (3) 30 roving gauges. Stemflow was measured on 22 trees of four different species. An ANOVA indicated that mean relative throughfall measured by arrangements 1 (77%), 2 (74%), and 3 (73%) were not significantly different at the 0.05 level. However, the variability of the total throughfall estimate was about half as high for roving gauges (23%) as for fixed gauges (48–49%). The variability of stemflow ranged from 36% to 67% within tree species and was 144% for all sampled trees. Total stemflow was estimated at 4.1% of rainfall, of which palms contributed about 66%. Comparative analysis indicated that while fixed and roving gauge arrangements can give similar mean values, least 100 fixed gauges are required to have an error at the 95% confidence level comparable to that obtained by 30 roving gauges.
Syndicate content