Fry B.

Food Web Structure in Exotic and Native Mangroves: A Hawaii-Puerto Rico Comparison

Demopoulos, Amanda W. J., Brian Fry, and Craig R. Smith. 2007. Food web structure in exotic and native mangroves: A hawaii-puerto rico comparison. Oecologia 153 (3) (SEP): 675-86.

Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0- \%of or <513Can d 2-3%c for Sl5N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-deriveddi et. Certainf auna,i n particulartu bificid oligochaetes, had Sl3C values consistent with the consumption of mangrove leaves, but they were depleted in 15N, suggesting their primary nitrogen source was low in 15N, and was possibly N2-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on nonmangroves ources, especially phytoplanktonin puts.M ixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundantin faunalc onsumers,n ematodes,i n the most mature systems.
Syndicate content