Larsen M.C.

Determination of predevelopment denudation rates of an agricultural watershed (Cayagua´s River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz

Brown, E. T., R. F. Stallard, M. C. Larsen, D. L. Bourlès, G. M. Raisbeck, and F. Yiou. 1998. Determination of predevelopment denudation rates of an agricultural watershed (cayaguas river, puerto rico) using in-situ-produced 10Be in river-borne quartz. Earth and Planetary Science Letters 160 (3-4): 723-8.

Abstract: 
Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayagua´s River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayagua´s. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayagua´s Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos.

Denudation rates determined from the accumulation of in situ-produced loBe in the Luquillo Experimental Forest, Puerto Rico

Brown, E. T., R. F. Stallard, M. C. Larsen, G. M. Raisbeck, and F. Yiou. 1995. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, puerto rico. Earth and Planetary Science Letters 129 (1-4): 193-202.

Abstract: 
We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of = 43 m Ma^-1, consistent with mass balance results.

Water, Sediment, and Nutrient Discharge Characteristics of Rivers in Puerto Rico, andtheir Potential Influence on Coral Reefs

Warne, A.G., Webb, R.M.T., and Larsen, M.C., 2005, Water, Sediment, and Nutrient Discharge Characteristics of Rivers in Puerto Rico, and their Potential Influence on Coral Reefs: U.S. Geological Survey Scientific Investigations Report
2005-5206, 58 p.

Abstract: 
Data from 29 streamflow-gaging stations, including 9 stations with daily suspended-sediment concentration, and data from 24 water-quality stations were compiled and analyzed to investigate the potential effects of river sediment and nutrient discharges on the coral reefs of Puerto Rico. The largely mountainous watersheds of the 8,711-square-kilometer island of Puerto Rico are small, channel gradients are steep, stream valleys tend to be well-incised and narrow, and major storms tend to be intense but brief; hence flooding is rapid with peak discharges several orders of magnitude above base discharge, and flood waters recede quickly. Storm runoff transports a substantial part of fluvial suspended sediment from uplands to the coast, as indicated by sediment data from a set of nine streamflow-gaging stations representative of runoff from watersheds considered typical of conditions in Puerto Rico. For example, the highest recorded daily sediment discharge is 1 to 3.6 times the annual suspended-sediment discharge, and runoff from major storms induces sediment transport 1 to 32 times the median annual sediment load. Precipitation associated with Hurricane Georges in September 1998 is estimated to have averaged 300 millimeters across the island, which is equivalent to a volume of about 2.6 billion cubic meters. Analysis of runoff and sediment yield from Hurricane Georges indicates that more than 1.0 billion cubic meters of water and at least 2.4 million metric tonnes of sediment (and as much as 5 to 10 million metric tonnes), were discharged to the coast and shelf as a result of this major storm. Because of their relatively small size, dams and reservoirs of Puerto Rico have relatively little effect on total discharge of water and sediment to the coastal marine waters during major storms. The presence of reservoirs, however, may be detrimental to coral reefs for two reasons: (1) coarse sediments deposited in the reservoir can be replaced by finer sediments scoured, if available, from the river channels and flood plains below the dam; and (2) the loads of phosphorus and ammonia reaching the coastal waters may increase as organic matter decomposes in the anoxic bottom waters of the reservoir. Rainfall, water discharge, sediment discharge, and sediment yield vary across the island. Mean annual runoff for the island is estimated to be 910 millimeters, about 57 percent of mean annual precipitation (1,600 millimeters). Mean annual suspended-sediment discharge from Puerto Rico into surrounding coastal waters is estimated to range from 2.7 to 9.0 million metric tonnes. Hydrologic and sediment data associated with Hurricane Georges indicate that sediment yield is generally proportional to the depth of storm runoff. Discharge and sediment-concentration data indicate that during this storm, river water and sediment that discharged into the marine environment generally formed hypopycnal plumes (buoyant suspension layers). Generally, hyperpycnal (density) plumes can develop in areas with high discharges and sediment concentrations. Both hypopycnal and hyperpycnal plumes distribute suspended sediment over broad areas of the Puerto Rico shelf and shelf slope. Comparison of long-term suspended-sediment discharge and watershed characteristics for Puerto Rico with those of other river systems around the world indicates that Puerto Rico rivers are similar to temperate and tropical upland river systems.

Tropical cyclones and the flood hydrology of Puerto Rico

Smith, J. A., P. Sturdevant-Rees, M. L. Baeck, and M. C. Larsen (2005), Tropical cyclones and the flood hydrology of
Puerto Rico, Water Resour. Res., 41, W06020, doi:10.1029/2004WR003530.

Abstract: 
Some of the largest unit discharge flood peaks in the stream gaging records of the U.S. Geological Survey (USGS) have occurred in Puerto Rico. Many of these flood peaks are associated with tropical cyclones. Hurricane Georges, which passed directly over the island on 21–22 September 1998, produced record flood peaks at numerous USGS stations in Puerto Rico. The hydrology and hydrometeorology of extreme flood response in Puerto Rico are examined through analyses of rainfall, based on Weather Surveillance Radar–1988 Doppler (WSR-88D) radar reflectivity observations and USGS rain gage observations and discharge from USGS stream gaging stations. Peak rainfall accumulations of more than 700 mm occurred in the central mountain region of the island. The largest unit discharge flood peaks, however, were located in the eastern portion of the island in areas with smaller storm total rainfall accumulations but markedly larger rainfall rates at 5–60 min timescale. Orographic precipitation mechanisms played an important role in rainfall distribution over the island of Puerto Rico. Amplification of rainfall accumulations was associated with areas of upslope motion. Elevated low-level cloud water content in regions of upslope motion played an important role in the maximum rainfall accumulations in the central mountain region of Puerto Rico. The largest unit discharge flood peaks, however, were produced by a decaying eye wall mesovortex, which resulted in a 30–45 min period of extreme rainfall rates over the eastern portion of the island. This storm element was responsible for the record flood peak of the Rı´o Grande de Lo´iza. The role of terrain in development and evolution of the eye wall mesovortex is unclear but is of fundamental importance for assessing extreme flood response from the storm. Hydrologic response is examined through analyses of rainfall and discharge from five pairs of drainage basins, extending from east to west over the island. These analyses point to the importance of short-term rainfall rates for extreme flood response. The hydrologic response of Puerto Rico is compared with two other extreme flood environments, the central Appalachians and Edwards Plateau of Texas. These analyses suggest that the high rainfall environment of Puerto Rico is linked to the development of a hydraulically efficient drainage system.

Map showing susceptibility to earthquake-induced landsliding, San Juan Metropolitan Area, Puerto Rico

Santiago Marilyn, Map showing susceptibility to earthquake-induced landsliding, San Juan Metropolitan Area, Puerto Rico, 2 plate.em>

Abstract: 
Analysis of slope angle and rock type using a geographic information system indicates that about 66 percent of the San Juan metropolitan area (SJMA) has low to no susceptibility to earthquake-induced landslides. This is at least partly due to the fact that 45 percent of the SJMA is constructed on slopes of 3 degrees or less, which are too gentle for landslides to occur. The areas with the highest susceptibility to earthquake-induced landslides account for 6 percent of the surface area. Almost one-quarter (23 percent) of the SJMA is moderately susceptible to earthquake-induced landslides. These areas are mainly in the southern portions of the SJMA where housing development pressures are currently high because of land availability and the esthetics of greenery and hillside views. The combination of new development and moderate earthquakeinduced landslide susceptibility may indicate that the southern portions of the SJMA may be at greatest risk.

predicting landslide vegetation in patches on landscape gradients in puerto rico

Myster, R.W., Thomlinson, J.R., and Larsen, M.C., 1997, Predicting landslide vegetation in patches on landscape gradients in Puerto Rico: Landscape Ecology, v. 12 p. 299-307.

Abstract: 
We explored the predictive value of common landscape characteristics for landslide vegetative stages in the LuquilloExperimental Forest of Puerto Rico using four different analyses. Maximum likelihood logistic regression showed that aspect, age, and substrate type could be used to predict vegetative structural stage. In addition it showed that the structural complexity of the vegetation was greater in landslides (1) facing the southeast (away from the dominant wind direction of recent hurricanes), (2) that were older, and (3) that had volcaniclastic rather than dioritic substrate. Multiple regression indicated that both elevation and age could be used to predict the current vegetation, and that vegetation complexity was greater both at lower elevation and in older landslides. Pearson product-moment correlation coefficients showed that (1) the presence of volcaniclastic substrate in landslides was negatively correlated with aspect, age, and elevation, (2) that road association and age were positively correlated and (3) that slope was negatively correlated with area. Finally, principal components analysis showed that landslides were differentiated on axes defined primarily by age, aspect class, and elevation in the positive direction, and by volcaniclastic substrate in the negative direction. Because several statistical techniques indicated that age, aspect, elevation, and substrate were important in determining vegetation complexity on landslides, we conclude that landslide succession is influenced by variation in these landscape traits. In particular, we would expect to find more successional development on landslides which are older, face away from hurricane winds, are at lower elevation, and are on volcaniclastic substrate. Finally, our results lead into a hierarchical conceptual model of succession on landscapes where the biota respond first to either gradients or disturbance depending on their relative severity, and then to more local biotic mechanisms such as dispersal, predation and competition.

Luquillo Mountains Puerto Rico A water energy and biogeochemical budgets program site

Larsen MC, Stallard RF. Luquillo Mountains, Puerto Rico–a water,
energy, and biogeochemical budgets program site. US geological
survey fact sheet. Washington, D.C.7 U.S. Geological
Survey; 2000. p. 163– 99.

Abstract: 
The Puerto Rico research site consists of the 113 square-kilometer Luquillo Experimental Forest (LEF), administered by the U.S. Forest Service, and the nearby Río Grande de Loíza drainage basin, an urbanized and agriculturally- developed watershed. This combined region serves as a terrestrial laboratory for the study of issues related to the global loss of tropical forest, and the associated changes in land-use practices. Findings from the WEBB research help scientists understand how vegetation, landscape, and people interact to affect the quantity and quality of water and the erosion of the landscape. The results of this work can be applied not only to Puerto Rico, but also to many other regions, where deforestation and rapid land-use change are issues.

The Frequency and Distribution of Recent Landslides in three MontaneTropical Regions of Puerto Rico

Larsen, Matthew C.; Torres-Sanchez, Angel J. 1998. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24 :309-331.

Abstract: 
Landslides are common in steep mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Average population density is high, 422 peoplerkm2, and is increasing. This increase in population density is accompanied by growing stress on the natural environment and physical infrastructure. As a result, human populations are more vulnerable to landslide hazards. The Blanco, Cibuco, and Coamo study areas range in surface area from 276 to 350 km2 and represent the climatologic, geographic, and geologic conditions that typify Puerto Rico. Maps of recent landslides developed from 1:20,000-scale aerial photographs, in combination with a computerized geographic information system, were used to evaluate the frequency and distribution of shallow landslides in these areas. Several types of landslides were documented— rainfall-triggered debris flows, shallow soil slips, and slumps were most abundant. Hillslopes in the study area that have been anthropogenically modified, exceed 128 in gradient, are greater than 300 m in elevation, and face the east-northeast, are most prone to landsliding. A set of simplified matrices representing geographic conditions in the three study areas was developed and provides a basis for the estimation of the spatial controls on the frequency of landslides in Puerto Rico. This approach is an example of an analysis of the frequency of landslides that is computationally simple, and therefore, may be easily transferable to other settings.

Landslides Triggered by Hurricane Hugo in Eastern Puerto Rico, September 1989

Larsen, M. C., and Torres-Sánchez, A. J., 1992, Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989: Caribbean Journal of Science, vol. 28, no. 3-4, p. 113-125.

Abstract: 
On the morning of September 18, 1989, a category-four hurricane struck eastern Puerto Rico with a sustained wind speed in excess of 46 m/s. The 24-h rainfall accumulation from the hurricane ranged from 100 to 339 mm. Average rainfall intensities ranging from 34 to 39 mm/h were calculated for 4 and 6 h periods, respectively, at a rain gage equipped with satellite telemetry, and at an observer station. The hurricane rainfall triggered more than 400 landslides in the steeply sloping, highly dissected mountains of eastern Puerto Rico. Of these landslides, 285 were mapped from aerial photography which covered 6474 ha. Many of the mapped landslides were on northeast- and northwest-facing slopes at the eastern terminus of the mountains, nearest the hurricane path. The surface area of individual landslides ranged from 18 m2 to 4500 m2, with a median size of 148 m2. The 285 landslides disturbed 0.11% of the land surface in the area covered by aerial photographs. An approximate denudation rate of 164 mm/1000 y was calculated from the volume of material eroded by landsliding and the 10-y rainfall recurrence interval.

A rainfall intensity duration threshold for landlisdes in a humid-tropical environment, puerto rico

A Rainfall Intensity-Duration Threshold for Landslides in a Humid-Tropical Environment, Puerto Rico
Matthew C. Larsen and Andrew Simon
Geografiska Annaler. Series A, Physical Geography
Vol. 75, No. 1/2 (1993), pp. 13-23

Abstract: 
Landslides are triggered by factors such as heavy rainfall, seismic activity, and construction on hill-slopes. The leading cause of landslides in Puerto Rico is intense and/or prolonged rainfall. A rainfall threshold for rainfall-triggered landsliding is delimited by 256 storms that occurred between 1959 and 1991 in the central mountains of Puerto Rico, where mean annual rainfall is close to or in excess of 2,000 mm. Forty one of the 256 storms produced intense and/or prolonged rainfall that resulted in tens to hundreds of landslides. A threshold fitted to the lower boundary of the field defined by landslide-triggering storms is expressed as I = 91.46 D-0.82 where I is rainfall intensity in millimeters per hour, and D is duration in hours. Landslide-producing storms occurred at an average rate of 1.2 per year. In general the landslides triggered by short-duration, high-intensity rainfall events were mainly shallow soil slips and debris flows, while the long-duration, low-intensity rainfall produced larger, deeper debris avalanches and slumps. For storms that had durations of up to 10 h, landsliding did not occur until rainfall intensity was as much as three times as high as the rainfall intensity reported as sufficient to trigger landsliding in temperate regions. As storm durations approach 100 h, the rainfall conditions necessary to initiate landsliding in Puerto Rico converge with those defined for temperate regions. A comparison of the Puerto Rico threshold with rainfall data from other humid-tropical regions suggests that the threshold developed for Puerto Rico may be applicable to other similar environments throughout the world.
Syndicate content