Larsen M.C.

Mass Wasting and Sediment Storage in a Small Montane Watershed: an Extreme Case of Anthropogenic Disturbance in the Humid Tropics

LARSEN, M.C. and SANTIAGO-ROMA´ N, A., 2001. Mass wasting and
sediment storage in a small montane watershed: an extreme case
of anthropogenic disturbance in the humid tropics. In: DORAVA,
J.M.; FITZPATRICK, F.; PALCSAK, B.B., and MONTGOMERY, D.R.
(eds.), Geomorphic Processes and Riverine Habitat. American Geophysical
Union Monograph, pp. 142–170.

Abstract: 
By the peak of land-use conversion for subsistence cropping and plantation agriculture in Puerto Rico in the 1940's, 94 percent of the original forest cover had been eliminated. In a small (26.4 km2) upland watershed that typifies this land-use history, field surveys and examination of aerial photographs indicate that more than 2,000 landslides have occurred since about 1820 when forest clearing began. The landslides are attributable to a combination of three factors: a highly weathered bedrock (Cretaceous granodiorite), episodic heavy rainfall, and almost two centuries of intense land-use practices. On average, landslide scars number 140/km2 in the Cayaguás watershed, equal to 80 landslide scars/km2/100 y. The volume of hillslope material eroded by landsliding is estimated at 660,000 m3/km2 (870,000 Mg/km2). If all colluvium was transported from the catchment, then the volume is equivalent to a mean surface lowering of the entire watershed by 660 mm, or 3.8 mm/y. Soil augering, field observations at construction sites, road cuts and stream banks, mapping from aerial photographs, and GIS-based estimates of the surface area of footslopes, indicate that colluvium may total 149,000 Mg/km2. If mobilized, this would be sufficient stored material to supply the annual average fluvial sediment yield for as long as 129 years. The great availability of colluvial and alluvial sediment on footslopes, floodplains, and in channels will maintain high sediment yield well into the 21st century in spite of government efforts to reforest hillslopes and institute other hillslope soil conservation measures.

WATER BUDGETS OF FORESTED AND AGRICULTURALLY-DEVELOPED WATERSHEDS IN PUERTO RICO

WATER BUDGETS OF FORESTED AND AGRICULTURALLY-DEVELOPED WATERSHEDS IN PUERTO RICO

Abstract: 
Accurate assessment of water budgets is critical for effective management of water resources, especially on small, densely-populated islands with extremely limited storage capacity such as Puerto Rico. A water budget defines a balance between inputs, outputs, and storage. The water budgets described herein provide a generalized summary of the inputs, extractions, and outputs from four watersheds in and near the Luquillo mountains using rainfall, runoff, and public-supply extraction data as well as estimates of groundwater losses and inputs such as cloud drip and infiltration from septic tanks. Mean annual rainfall accumulation during a 7-year study (1991 to 1997) ranged from 1,722 mm in the Canóvanas watershed, to 4,235 mm in the Icacos and Mameyes watersheds; the Cayaguás watershed had 2,172 mm. Combined runoff, groundwater flow and withdrawals ranged from 47 to 73 percent of inputs (combined rainfall, cloud drip and septic tank infiltration). Evapotranspiration, calculated as the water budget residual, amounted to 27, 40, 44, and 53 percent of total moisture inputs in the Icacos, Cayaguás, Mameyes, and Canóvanas watersheds, respectively.

Evaluation of temporal and spatial factors that control the susceptibility to rainfall-triggered landslides

Larsen, M.C., 2001, Evaluation of temporal and spatial factors that control the susceptibility to rainfall-triggered landslides, in Gruntfest, E., and Handmer, J., eds., Coping with Flash floods: Kluwer Academic Publishers, p. 277-288.

Research plan for the investigation of water, energy, and biogeochemical budgets in the Luquillo mountains, Puerto Rico

Larsen, M.C., Collar, P.D., and Stallard, R.F., 1993, Research plan for the investigation of water, energy, and biogeochemical budgets in the Luquillo mountains, Puerto Rico: U.S. Geological Survey Open-file Report 92-150, 19 p.

Abstract: 
The Luquillo mountains of eastern Puerto Rico are the site of U. S. Geological Survey (USGS) research into biogeochemical and geomorphic processes that control the movement and transformation of water, energy, bedrock weathering products, and nutrients in the earth-surface environment. This study was begun in 1990 and is scheduled to last three years, with the possibility of being extended for further data collection. The study area for this research effort includes the 113 square kilometers Luquillo Experimental Forest (LEF) that is administered by the U. S. Forest Service. The LEF has been the site of ongoing research since 1988 as part of the National Science Foundation's Long Term Ecological Research program. In addition, comparative studies are being conducted in the Río Grande de Loíza basin (Loíza basin), an urban and agriculturally developed 600 square kilometers watershed located immediately to the west of the LEF. The principal elements of the study described in the report are as follows: Determination of biogeochemical budgets: water, energy, carbon, nutrient, ion, sediment, and gas budgets will be calculated in two LEF watersheds instrumented with meteorologic, soil, hydrologic, and ground-water monitoring equipment. A biweekly time series of samples is being collected. In addition, intensive sampling is undertaken during selected storms. Study of weathering, erosion, and mass-wasting processes in undeveloped watersheds of contrasting lithology: chemical-weathering, erosion, and mass-wasting processes in watersheds underlain by the two dominant rock types, volcaniclastic and quartz diorite, are being compared. The effects of mass wasting on biogeochemical cycling in each rock type will be evaluated through a compilation of physical, chemical, and mineralogic properties for a chronosequence of landslides. Water and sediment budgets will be used to develop a conceptual model of hillslope hydrology and landform evolution. Comparison of weathering and gas flux in developed and forested watersheds: paired basins were selected and gaged in the relatively undisturbed LEF and in the agriculturally developed Loíza basin. Budgets of all aqueous constituents will be compared and contrasted in the developed and forested basins of similar lithology. Gas-flux differences (carbon dioxide, nitrogen dioxide, methane) between developed and undeveloped areas will be evaluated using chamber techniques and the results related to land-use differences. Measurement of reservoir and agricultural pond gas fluxes: methane production is being measured in selected reservoirs and agricultural ponds in and near the Loíza basin and LEF. A regional methane budget will be calculated.

NATURAL HAZARDS ON ALLUVIAL FANS: THE VENEZUELA DEBRIS FLOW AND FLASH FLOOD DISASTER

Larsen, M.C., Wieczorek, G.F., Eaton, L.S., Morgan, B.A., Torres-Sierra, H., 2001,
Natural Hazards on Alluvial Fans: the Venezuela debris-flow and flash-flood disaster: U.S. Geological Survey Fact Sheet, FS 103-01, 4 p.

Abstract: 
In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, northern Venezuela. Rainfall on December 2-3 totaled 200 millimeters (8 inches) and was followed by a major storm (911 millimeters, or 36 inches) on December 14 through 16. Debris flows and flash floods on alluvial fans inundated coastal communities, caused severe property destruction, and resulted in a death toll estimated at 19,000 people. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans are the only areas where slopes are not too steep to build. Rebuilding and reoccupation of these areas requires careful determination of potential hazard zones to avoid future loss of life and property.

THE RAINFALL-TRIGGERED LANDSLIDE AND FLASH FLOOD DISASTER IN NORTHERN VENEZUELA, DECEMBER 1999

Larsen M.C., Wieczorek G.F., Eaton L.S., Torres-Sierra H. (2001) – The rainfall-triggered landslide and flash-flood disaster in northern Venezuela, December 1999. Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, IV, 9-16.

Abstract: 
A combination of climatologic, geologic, and demographic factors makes the Caribbean coast of Venezuela in the state of Vargas highly susceptible to episodic debris flows and flash floods. An extremely steep, tectonically active mountain front forms the boundary with a tropical sea. Easterly tradewinds can force moist air masses upslope and precipitate large rainfall volumes, creating conditions for high-magnitude debris flows and flash floods. The population of several hundred thousand people that reside at the base of the mountains is inevitably vulnerable to hydrologic disasters that seem to recur once or twice per century. The flash flood-debris flow process combination is highly destructive in populated areas. Without careful planning of human settlements, the impacts of these types of disasters are likely to increase in the future.

Venezuela debris-flow and flash-flood disaster of 1999 studied

Larsen, M.C., Wieczorek, G.F., Eaton, L.S., Morgan, B.A., Torres-Sierra, H., 2001, Venezuela debris-flow and flash-flood disaster of 1999 studied: EOS, Transactions: American Geophysical Union, v. 82, no. 47, p. 572-573.

Abstract: 
Alluvial fans in urban and rural areas are sites of episodic, rainfall-induced natural hazards [Garner, 1959; Campbell, 1975; Wieczorek et al., 2001;]. Debris flows, hyper-concentrated flows, and flash floods that occur episodically in these alluvial fan environments place many communities at high risk during intense and prolonged rainfall. Although scientists have become better able to define areas of high natural hazard, population expansion and development pressures in such areas have put more people at risk than ever before. Recognition of the magnitude and distribution of debris -flow and flash-flood hazards is therefore a critically important area of natural hazard research. In December 1999, rainstorms induced thousands of landslides in such an area along the Cordillera de la Costa, Vargas, located north of Caracas, Venezuela; an area of dense human settlement located at the base of steep mountains. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. Rainfall accumulation on December 2 and 3 totaled 293 mm and was followed by a major storm that dropped 911 mm of rain from December 14 through 16. More than 8000 individual residences and 700 apartment buildings were destroyed or damaged and roads, telephone, electricity, water, and sewage systems were severely disrupted [Salcedo, 2000]. Total economic losses are estimated at US$1.79 billion [Salcedo, 2000]. The debris flows and floods inundated coastal communities and resulted in a catastrophic death toll of as many as 19,000 people [USAID, 2000]. The landslides and flash floods also changed hill slopes, stream channels, and alluvial fan morphology. The alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea—rising to elevations in excess of 2,600 m--the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property.

NATURAL HAZARDS ON ALLUVIAL FANS: THE DEBRIS FLOW AND FLASH FLOOD DISASTER OF DECEMBER 1999, VARGAS STATE, VENEZUELA

Larsen, M.C., Wieczorek, G. F., Eaton, L.S., and Torres-Sierra, H., 2001, Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela: in W.F. Sylva (ed.), Proceedings of the Sixth Caribbean Islands Water Resources Congress, Mayagüez, Puerto Rico, February 22 and 23, 2001, unpaginated CD

Abstract: 
Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property.

SLOPEWASH, SURFACE RUNOFF, AND FINE-LITTER TRANSPORT IN FOREST AND LANDSLIDE SCARS IN HUMID-TROPICAL STEEPLANDS, LUQUILLO EXPERIMENTAL FOREST, PUERTO RICO

Larsen, M.C., Torres-Sánchez, A.J., and Concepción, I.M., 1998, Slopewash, surface runoff, and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico [abs] EOS, Transactions American Geophysical Union, vol. 80.

Abstract: 
Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport at humid-tropical steepland sites in the Luquillo Experimental Forest, Puerto Rico (18? 20' N, 65? 45' W) were measured from 1991 to 1995. Hillslopes underlain by: 1) Cretaceous tuffaceous sandstone and siltstone in subtropical rain (tabonuco) forest with vegetation recovering from Hurricane Hugo (1989); and underlain by 2) Tertiary quartz diorite in subtropical lower montane wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24? to 43?) was only 0.2 to 0.5 percent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m-2 a-1) than in silty-clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m-2 a-1. Annual slopewash of 100 to 349 g m-2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m-2 a-1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m-2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2.5 g m-2 on the two landslide scars.

CONTINUOUS AUTOMATED SENSING OF STREAMFLOW DENSITY AS A SURROGATE FOR SUSPENDED-SEDIMENT CONCENTRATION SAMPLING

Larsen, M. C., Alamo, C. F., Gray, J. R., and Fletcher, W. (2001).
„Continuous automated sensing of streamflow density as a
surrogate for suspended-sediment concentration sampling.‰
Proceedings of the 7th Federal Interagency Sedimentation
Conference, March 25–29, 2001, Reno, Nevada, Vol. I, pp. III-
102–III-109.

Abstract: 
A newly refined technique for continuously and automatically sensing the density of a water-sediment mixture is being tested at a U.S. Geological Survey streamflow-gaging station in Puerto Rico. Originally developed to measure crude oil density, the double bubbler instrument measures fluid density by means of pressure transducers at two elevations in a vertical water column. By subtracting the density of water from the value measured for the density of the water-sediment mixture, the concentration of suspended sediment can be estimated. Preliminary tests of the double bubbler instrument show promise but are not yet conclusive.
Syndicate content