Lodge D.J.

Nitrogen Immobilization by Decomposing Woody Debris and the Recovery of Tropical Wet Forest from Hurricane Damage

Nitrogen Immobilization by Decomposing Woody Debris and the Recovery of Tropical Wet Forest from Hurricane Damage
J. K. Zimmerman, W. M. Pulliam, D. J. Lodge, V. Quiñones-Orfila, N. Fetcher, S. Guzmán-Grajales, J. A. Parrotta, C. E. Asbury, L. R. Walker and R. B. Waide
Oikos
Vol. 72, No. 3 (Apr., 1995), pp. 314-322

Abstract: 
Following damage caused by Hurricane Hugo (September 1989) we monitored inorganic nitrogen availability in soil twice in 1990, leaf area index in 1991 and 1993, and litter production from 1990 through 1992 in subtropical wet forest of eastern Puerto Rico. Experimental removal of litter and woody debris generated by the hurricane (plus any standing stocks present before the hurricane) increased soil nitrogen availability and above-ground productivity by as much as 40% compared to unmanipulated control plots. These increases were similar to those created by quarterly fertilization with inorganic nutrients. Approximately 85% of hurricane-generated debris was woody debris >5 cm diameter. Thus, it appeared that woody debris stimulated nutrient immobilization, resulting in depression of soil nitrogen availability and productivity in control plots. This was further suggested by simulations of an ecosystem model (CENTURY) calibrated for our site that indicated that only the large wood component of hurricane-generated debris was of sufficiently low quality and of great enough mass to cause the observed effects on productivity. The model predicted that nutrient immobilization by decaying wood should suppress net primary productivity for 13 yr and total live biomass for almost 30 yr following the hurricane. Our findings emphasize the substantial influence that woody debris has upon nutrient cycling and productivity in forest ecosystems through its effects on the activity of decomposers. We suggest that the manner in which woody debris regulates ecosystem function in different forests is significantly affected by disturbance regime.

Hurricane Effects on Soil Organic Matter Dynamics and Forest Production in the Luquillo Experimental Forest, Puerto Rico: Results of Simulation Modeling

Hurricane Effects on Soil Organic Matter Dynamics and Forest Production in the Luquillo Experimental Forest, Puerto Rico: Results of Simulation Modeling
Robert L. Sanford, Jr., William J. Parton, Dennis S. Ojima and D. Jean Lodge
Biotropica
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 364-372

Abstract: 
The forests and soils at Luquillo Experimental Forest (LEF), Puerto Rico, are frequently disturbed by hurricanes occurring at various frequencies and intensities. We have derived a forest version of the Century soil organic matter model to examine the impact of hurricanes on soil nutrient availability and pool sizes, and forest productivity in the tabonuco forest at Luquillo. The model adequately predicted aboveground plant production, soil carbon, and soil nitrogen levels for forest conditions existing before Hurricane Hugo. Simulations of Hurricane Hugo and of an historical sequence of hurricanes indicated a complex pattern of recovery, especially for the first 10 yr after the hurricanes. After repeated hurricanes, forest biomass was reduced, while forest productivity was enhanced. Soil organic matter, and phosphorus and nitrogen mineralization stabilized at higher levels for the LEF than for hurricane-free tabonuco forest, and organic soil phosphorus was substantially increased by hurricanes. Results from these simulations should be regarded as hypotheses. At present there is insufficient data to validate the results of hurricane model simulations.

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico
D. Jean Lodge, F. N. Scatena, C. E. Asbury and M. J. Sanchez
Biotropica
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 336-342

Abstract: 
On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m$^2$, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m$^2$ of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine litterfall. The concentrations of N and P in the hurricane leaf litter ranged from 1.1 to 1.5 and 1.7 to 3.3 times the concentrations of N and P in normal leaffall, respectively. In subtropical wet forest, fine litterfall from the hurricane contained 1.3 and 1.5-2.4 times the mean annual litterfall inputs of N and P, respectively. These sudden high nutrient inputs apparently altered nutrient cycling.

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico
D. Jean Lodge, F. N. Scatena, C. E. Asbury and M. J. Sanchez
Biotropica
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 336-342

Abstract: 
On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m$^2$, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m$^2$ of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine litterfall. The concentrations of N and P in the hurricane leaf litter ranged from 1.1 to 1.5 and 1.7 to 3.3 times the concentrations of N and P in normal leaffall, respectively. In subtropical wet forest, fine litterfall from the hurricane contained 1.3 and 1.5-2.4 times the mean annual litterfall inputs of N and P, respectively. These sudden high nutrient inputs apparently altered nutrient cycling.
Syndicate content