Lugolobi F.

Germanium–silicon fractionation in a tropical, granitic weathering environment

Lugolobi, Festo, Andrew C. Kurtz, and Louis A. Derry. 2010. Germanium-silicon fractionation in a tropical, granitic weathering environment. Geochimica Et Cosmochimica Acta 74 (4) (FEB 15): 1294-308.

Abstract: 
Germanium–silicon (Ge/Si) ratios were determined on quartz diorite bedrock, saprolite, soil, primary and secondary minerals, phytolith, soil and saprolite pore waters, and spring water and stream waters in an effort to understand Ge/Si fractionation during weathering of quartz diorite in the Rio Icacos watershed, Puerto Rico. The Ge/Si ratio of the bedrock is 2 lmol/ mol, with individual primary mineral phases ranging between 0.5 and 7 lmol/mol. The ratios in the bulk saprolite are higher (3 lmol/mol) than values measured in the bedrock. The major saprolite secondary mineral, kaolinite, has Ge/Si ratios ranging between 4.8 and 6.1 lmol/mol. The high Ge/Si ratios in the saprolite are consistent with preferential incorporation of Ge during the precipitation of kaolinite. Bulk shallow soils have lower ratios (1.1–1.6 lmol/mol) primarily due to the residual accumulation of Ge-poor quartz. Ge/Si ratios measured on saprolite and soil pore waters reflect reactions that take place during mineral transformations at discrete depths. Spring water and baseflow stream waters have the lowest Ge/Si ratios (0.27–0.47 lmol/mol), reflecting deep initial weathering reactions resulting in the precipitation of Ge-enriched kaolinite at the saprolite–bedrock interface. Massbalance calculations on saprolite require significant loss of Si and Al even within 1 m above the saprolite–bedrock interface. Higher pore water Ge/Si ratios (1.2 lmol/mol) are consistent with partial dissolution of this Ge-enriched kaolinite. Pore water Ge/Si ratios increase up through the saprolite and into the overlying soil, but never reach the high values predicted by mass balance, perhaps reflecting the influence of phytolith recycling in the shallow soil.

Germanium-silicon as a flow path tracer: Application to the Rio Icacos watershed

Kurtz, A. C., F. Lugolobi, and G. Salvucci (2011), Germanium‐silicon as a flow path tracer: Application to the Rio
Icacos watershed, Water Resour. Res., 47, W06516, doi:10.1029/2010WR009853.

Abstract: 
We use dissolved silicon together with its “geochemical twin” germanium for the first time as a hydrologic tracer to study water delivery to the stream during storm events in the Rio Icacos watershed, Puerto Rico. Ge and Si were measured on base flow, stormflow, springwater, and soil water samples. Compositions of all of these waters appear to reflect varying contributions from three components, which we attribute to solutes released from bedrock weathering (groundwater), from short-term soil-water interaction (quick soil water), and longer-term soil-water interaction (matrix soil water). Base flow stream waters have high Si and moderate Ge (Ge/Si ratio ∼0.29 μmol/mol), consistent with a predominantly bedrock weathering source as indicated by their similarity with water sampled from springs emerging from the saprolite-bedrock boundary on a hillslope landslide scar. During storm events there is a shift toward more dilute compositions (but higher Ge/Si ratios) similar to those measured on water samples from temporary depression storage and overland flow (quick soil water). Geochemical mass balance shows that 80%–90% of the stream chemistry can be explained by mixing groundwater with this quick soil water composition, which we infer to reflect new water traveling as shallow throughflow. Stream water δ18O values decrease to more negative values typical of precipitation supporting rapid delivery of rainwater to the stream channel during stormflow. The third component, with a Ge-rich composition characteristic of soil matrix water sampled by tension lysimeters, is required to explain higher stream water Ge/Si ratios measured during hydrograph recession. We infer from this an additional, slower, and less dominant pathway for delivery of soil water to the stream channel.
Syndicate content