McDowell W.H.

When Wet Gets Wetter: Decoupling of Moisture, Redox Biogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil

Hall S. J., McDowell W.H., Silver W.L. When Wet Gets Wetter: Decoupling of Moisture, Redox Biogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil. Ecosystems. ISSN 1432-9840. DOI 10.1007/s10021-012-9631-2

Upland humid tropical forest soils are often characterized by fluctuating redox dynamics that vary temporally and spatially across the landscape. An increase in the frequency and intensity of rainfall events with climate change is likely to affect soil redox reactions that control the production and emissions of greenhouse gases. We used a 24-day rainfall manipulation experiment to evaluate temporal and spatial trends of surface soil (0–20 cm) redox-active chemical species and greenhouse gas fluxes in the Luquillo Experimental Forest, Puerto Rico. Treatments consisted of a high rainfall simulation (60 mm day-1), a fluctuating rainfall regime, and a control. Water addition generated high temporal and spatial variation in soil moisture (0.3–0.6 m3 m-3), but had no significant effect on soil oxygen(O2) concentrations. Extractablenitrate(NO3 -) concentrations decreased with daily water additions and reduced iron (Fe(II)) concentrations increased towards the end of the experiment. Overall, redox indicators displayed a weak, non-deterministic, nonlinear relationship with soil moisture. High concentrations of Fe(II) and manganese (Mn) were present even where moisture was relatively low, and net Mn reduction occurred in all plots including controls. Mean CO2 fluxeswere best explained by soil C concentrations and a composite redox indicator, and not water addition. Several plots were CH4 sources irrespective of water addition, whereas other plots oscillated between weak CH4 sources and sinks. Fluxes of N2O were highest in control plots and were consistently low in water-addition plots. Together, these data suggest (1) a relative decoupling between soil moisture and redox processes at our spatial and temporal scales of measurement, (2) the co-occurrence of aerobic and anaerobic biogeochemical processes inwell-drained surface soils, and (3) an absence of threshold effects from sustained precipitation on redox reactions over the scale of weeks. Our data suggest a need to re-evaluate representations of moisture in biogeochemical models.

Long‐term patterns and short‐term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed

Shanley, J. B., W. H. McDowell, and R. F. Stallard (2011), Long‐term patterns and short‐term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed, Water Resour. Res., 47, W07515, doi:10.1029/2010WR009788.

The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983–1987, 1991–1997, and 2000–2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual “boomerang” pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide‐prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long‐term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first‐order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long‐term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.

Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico

Zou X, Zucca CP, Waide RB & McDowell WH (1995)
Long-term influence of deforestation on tree species composition
and litter dynamics of a tropical rain forest in
Puerto Rico. Forest Ecology and Management 78:

Understanding the long-term impact of deforestation on ecosystem structure and function of tropical forests may aid in designing future conservation programs to preserve biodiversity and sustain ecosystem productivity. We examined forest structure, tree species composition, litterfall rate, and leaf litter decomposition in a mid-successional forest (MSF) and an adjacent mature tabonuco forest (MTF) in the Luquillo Experimental Forest of Puerto Rico. Whereas the MTF site received limited human disturbance, the MSF site had been cleared for timber production by the beginning of this century and was abandoned after hurricanes struck the Luquillo Mountains in the 1920s and 1930s. We found that the MSF was dominated by successional tree species 50 years after secondary succession, and did not differ in tree basal area and litterfall rate from the MTF. Leaf decomposition rate in the MSF was higher than in the MTF, but this differencew as small.O ur resultss how that deforestation has long-term (over 50 years) influence on tree species composition and that recovery of leaf decomposition processes in secondary forest is relatively faster than that of tree species composition.

Urban influences on the nitrogen cycle in Puerto Rico

Ortiz-Zayas, J. R., E. Cuevas, O. L. Mayol-Bracero, L.
Donoso, I. Trebs, D. Figueroa-Nieves, and W. H. Mcdowell.
2006. Urban influences on the nitrogen cycle in Puerto Rico.
Biogeochemistry 79:109–133.

Anthropogenic actions are altering fluxes of nitrogen (N) in the biosphere at unprecedented rates. Efforts to study these impacts have concentrated in the Northern hemisphere, where experimental data are available. In tropical developing countries, however, experimental studies are lacking. This paper summarizes available data and assesses the impacts of human activities on N fluxes in Puerto Rico, a densely populated Caribbean island that has experienced drastic landscape transformations over the last century associated with rapid socioeconomic changes. N yield calculations conducted in several watersheds of different anthropogenic influences revealed that disturbed watersheds export more N per unit area than undisturbed forested watersheds. Export of N from urban watersheds ranged from 4.8 kg ha)1 year)1 in the Rı´o Bayamo´ n watershed to 32.9 kg ha)1 year)1 in the highly urbanized Rı´o Piedras watershed and 33.3 kg ha)1 year)1 in the rural-agricultural Rı´o Grande de An˜ asco watershed. Along with land use, mean annual runoff explained most of the variance in fluvial N yield. Wastewater generated in the San Juan Metropolitan Area receives primary treatment before it is discharged into the Atlantic Ocean. These discharges are N-rich and export large amounts of N to the ocean at a rate of about 140 kg ha)1 year)1. Data on wet deposition of inorganic N (NHþ4 þ NO 3 ) suggest that rates of atmospheric N deposition are increasing in the pristine forests of Puerto Rico. Stationary and mobile sources of NOx (NO+NO2) and N2O generated in the large urban centers may be responsible for this trend. Comprehensive measurements are required in Puerto Rico to quantitatively characterize the local N cycle. More research is required to assess rates of atmospheric N deposition, N fixation in natural and human-dominated landscapes, N-balance associated with food and feed trade, and denitrification.

Do small-scale exclosure/enclosure experiments predict the eVects of large-scale extirpation of freshwater migratory fauna?

Do Small-Scale Exclosure/Enclosure Experiments Predict the Effects of Large-Scale Extirpation of Freshwater Migratory Fauna?
Effie A. Greathouse, Catherine M. Pringle and William H. McDowell
Vol. 149, No. 4 (Oct., 2006), pp. 709-717

A variety of theoretical and empirical studies indicate that the abilities of small-scale experiments to predict responses to large-scale perturbations vary. Small-scale experiments often do not predict the directions of large-scale responses, and relatively few empirical studies have examined whether small-scale experiments predict the magnitudes of large-scale responses. Here we present an empirical example of small-scale manipulations predicting not only the directions but also the magnitudes of the eVects of whole-catchment, decades-long decimation of migratory freshwater shrimp populations. In streams of Puerto Rico (USA), we used arena sizes of < 2 m2 in 1- to 4-week exclosure/enclosure experiments. EVects of small-scale experiments largely matched those of largescale shrimp loss above dams for a variety of response variables (abiotic and biotic factors including epilithic Wne sediments, algae and organic matter, and invertebrate grazers, detritivores, and predators). The results of our extrapolation contrast with studies of small- versus large-scale perturbations in the temperate zone. Our Wndings are likely explained by: a set of response variables that are more dominated by within-patch processes than exchange processes, an experimental manipulation that encompassed the characteristic scales of response variables, our use of open arenas lacking cage artifacts, and/or our combination of two distinct experimental approaches (exclosures and enclosures). Based on our study design, we suggest that extrapolation across experimental scales can be greatly enhanced by embedding open arenas within large-scale conditions that represent all treatment levels.

Linking Species and Ecosystems: Different Biotic Assemblages Cause Interstream Differences in Organic Matter

Linking Species and Ecosystems: Different Biotic Assemblages Cause Interstream Differences in Organic Matter
C. M. Pringle, Nina Hemphill, W. H. McDowell, Angela Bednarek and James G. March
Vol. 80, No. 6 (Sep., 1999), pp. 1860-1872

Here we test the hypothesis that differences in macrobiotic assemblages can lead to differences in the quantity and quality of organic matter in benthic depositional environments among streams in montane Puerto Rico. We experimentally manipulated biota over a 30–40 d period in two streams with distinctly different macrobiotic assemblages: one characterized by high densities of omnivorous shrimps (Decapoda: Atyidae and Xiphocarididae) and no predaceous fishes, and one characterized by low densities of shrimps and the presence of predaceous fishes. To incorporate the natural hydrologic regime and to avoid confounding artifacts associated with cage enclosures/exclosures (e.g., high sedimentation), we used electricity as a mechanism for experimental exclusion, in situ. In each stream, shrimps and/or fishes were excluded from specific areas of rock substrata in four pools using electric “fences” attached to solar-powered fence chargers. In the stream lacking predaceous fishes (Sonadora), the unelectrified control treatment was almost exclusively dominated by high densities of omnivorous shrimps that constantly ingested fine particulate material from rock surfaces. Consequently, the control had significantly lower levels of inorganic sediments, organic material, carbon, and nitrogen than the exclusion treatment, as well as less variability in these parameters. Tenfold more organic material (as ash-free dry mass, AFDM) and fivefold more nitrogen accrued in shrimp exclosures (10.6 g AFDM/m2, 0.2 g N/m2) than in controls (1.1 g AFDM/m2, 0.04 g N/m2). By reducing the quantity of fine particulate organic material and associated nitrogen in benthic environments, omnivorous shrimps potentially affect the supply of this important resource to other trophic levels. The small amount of fine particulate organic matter (FPOM) that remained in control treatments (composed of sparse algal cells) was of higher quality than that in shrimp exclosures. This is evidenced by the significantly lower carbon-to-nitrogen (C/N) ratio (an indicator of food quality, with relatively low C/N indicating higher food quality) in the control relative to the shrimp exclosure treatment. In contrast, the stream with predaceous fishes (Bisley) was characterized by very low numbers of shrimps, and macrobiota had no significant effect on benthic sediments, organic matter, C, N, and C/N. All parameters were highly variable through time, with levels and ranges in variability similar to the shrimp exclusion treatment in the Sonadora. Our experimental results are consistent with findings of an independent survey of six streams in four different drainages. Four streams that had an abundance of omnivorous shrimps, but lacked predaceous fishes, had extremely low levels of fine benthic organic and inorganic material. In contrast, two streams that had low densities of shrimps and contained predaceous fishes had significantly higher levels. Results show a strong linkage between species and ecosystem characteristics: interstream differences in the quantity and quality of fine benthic organic matter resources were determined by the nature of the macrobiotic assemblage. Furthermore, patterns in the distribution of shrimp assemblages reflected landscape patterns in the benthic depositional environment among streams.



Large dams degrade the integrity of a wide variety of ecosystems, yet direct downstream effects of dams have received the most attention from ecosystem managers and researchers. We investigated indirect upstream effects of dams resulting from decimation of migratory freshwater shrimp and fish populations in Puerto Rico, USA, in both high- and low-gradient streams. In high-gradient streams above large dams, native shrimps and fishes were extremely rare, whereas similar sites without large dams had high abundances of native consumers. Losses of native fauna above dams dramatically altered their basal food resources and assemblages of invertebrate competitors and prey. Compared to pools in high-gradient streams with no large dams, pool epilithon above dams had nine times more algal biomass, 20 times more fine benthic organic matter (FBOM), 65 times more fine benthic inorganic matter (FBIM), 28 times more carbon, 19 times more nitrogen, and four times more non-decapod invertebrate biomass. High-gradient riffles upstream from large dams had five times more FBIM than did undammed riffles but showed no difference in algal abundance, FBOM, or non-decapod invertebrate biomass. For epilithon of lowgradient streams, differences in basal resources between pools above large dams vs. without large dams were considerably smaller in magnitude than those observed for pools in highgradient sites. These results match previous stream experiments in which the strength of native shrimp and fish effects increased with stream gradient. Our results demonstrate that dams can indirectly affect upstream free-flowing reaches by eliminating strong top-down effects of consumers. Migratory omnivorous shrimps and fishes occur throughout the tropics, and the consequences of their declines upstream from many tropical dams are likely to be similar to those in Puerto Rico. Thus, ecological effects of migratory fauna loss upstream from dams encompass a wider variety of species interactions and biomes than the bottom-up effects (i.e., elimination of salmonid nutrient subsidies) recognized for northern temperate systems.

Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

Cusack DF, Silver W, McDowell WH (2009b) Biological nitrogen fixation
in two tropical forests: ecosystem-level patterns and effects of nitrogen
fertilization. Ecosystems, 12, 1299–1315.

Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata, including the soil, forest floor, mosses, canopy epiphylls, and lichens using acetylene (C2H2) reduction assays. BNF varied significantly among ecosystem compartments in both forests. Mosses had the highest rates of nitrogenase activity per gram of sample, with 11 ± 6 nmol C2H2 reduced/g dry weight/h (mean ± SE) in a lower elevation forest, and 6 ± 1 nmol C2H2/g/h in an upper elevation forest. We calculated potential N fluxes via BNF to each forest compartment using surveys of standing stocks. Soils and mosses provided the largest potential inputs of N via BNF to these ecosystems. Summing all components, total background BNF inputs were 120 ± 29 lg N/m2/h in the lower elevation forest, and 95 ± 15 lg N/m2/h in the upper elevation forest, with added N significantly suppressing BNF in soils and forest floor. Moisture content was significantly positively correlated with BNF rates for soils and the forest floor. We conclude that BNF is an active biological process across forest strata for these tropical forests, and is likely to be sensitive to increases in N deposition in tropical regions.

Controls on major solutes within the drainage network of a rapidly 3 weathering tropical watershed

Bhatt, M. P., and W. H. McDowell (2007), Controls on major solutes within the drainage network of a rapidly weathering
27 tropical watershed, Water Resour. Res., 43, XXXXXX, doi:10.1029/2007WR005915.

Surface water chemistry in the main stem and source points of the Rio Icacos basin 7 (Luquillo Experimental Forest, Puerto Rico) was studied to investigate the factors 8 regulating spatial variability in major solutes in a rapidly weathering landscape. We 9 sampled along the main stem as well as at small source points at high elevation where 10 fresh bedrock is frequently exposed, and at low elevation in the floodplain/colluvial 11 plain of the main stem. Concentrations of silicon, alkalinity, and the sum of base 12 cations were lower at the source points than in the main stem, and were lowest in low- 13 elevation source points. Calcium and sodium were the dominant cations at all sampling 14 points after sea-salt correction, reflecting the weathering of plagioclase feldspar 15 throughout the basin. The partial pressure of carbon dioxide (pCO2) tended to be higher, 16 and HCO3  concentrations were lower, in the low-elevation source points than at other 17 positions in the landscape. When coupled with the relatively low concentrations of Si and 18 base cations, this suggests that the availability of primary reactive minerals, rather than 19 carbonic acid concentrations, limits weathering in these low-elevation sources. 20 Mechanical denudation appears to enhance chemical weathering rates not only by 21 refreshing reactive mineral surfaces but also by contributing carbon dioxide from the 22 decomposition of organic-rich material in landslides, which occur frequently. The spatial 23 variability of major solutes appears to depend primarily on the availability of fresh primary 24 reactive minerals, carbon dioxide concentrations, and hydrolysis conditions.

Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams

Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams


Article first published online: 14 JUN 2010

DOI: 10.1111/j.1365-2427.2010.02461.x

1. Excretion of nitrogen (N) and phosphorus (P) is a direct and potentially important role for aquatic consumers in nutrient cycling that has recently garnered increased attention. The ecosystem-level significance of excreted nutrients depends on a suite of abiotic and biotic factors, however, and few studies have coupled measurements of excretion with consideration of its likely importance for whole-system nutrient fluxes. 2. We measured rates and ratios of N and P excretion by shrimps (Xiphocaris elongata and Atya spp.) in two tropical streams that differed strongly in shrimp biomass because a waterfall excluded predatory fish from one site. We also made measurements of shrimp and basal resource carbon (C), N and P content and estimated shrimp densities and ecosystem-level N and P excretion and uptake. Finally, we used a 3-year record of discharge and NH4-N concentration in the high-biomass stream to estimate temporal variation in the distance required for excretion to turn over the ambient NH4-N pool. 3. Per cent C, N, and P body content of Xiphocaris was significantly higher than that of Atya. Only per cent P body content showed significant negative relationships with body mass. C:N of Atya increased significantly with body mass and was higher than that of Xiphocaris. N : P of Xiphocaris was significantly higher than that of Atya. 4. Excretion rates ranged from 0.16–3.80 lmol NH4-N shrimp)1 h)1, 0.23–5.76 lmol total dissolved nitrogen (TDN) shrimp)1 h)1 and 0.002–0.186 lmol total dissolved phosphorus (TDP) shrimp)1 h)1. Body size was generally a strong predictor of excretion rates in both taxa, differing between Xiphocaris and Atya for TDP but not NH4-N and TDN. Excretion rates showed statistically significant but weak relationships with body content stoichiometry. 5. Large between-stream differences in shrimp biomass drove differences in total excretion by the two shrimp communities (22.3 versus 0.20 lmol NH4-N m)2 h)1, 37.5 versus 0.26 lmol TDN m)2 h)1 and 1.1 versus 0.015 lmol TDP m)2 h)1), equivalent to 21% and 0.5% of NH4-N uptake and 5% and <0.1% of P uptake measured in the high- and lowbiomass stream, respectively. Distances required for excretion to turn over the ambient NH4-N pool varied more than a hundredfold over the 3-year record in the high-shrimp stream, driven by variability in discharge and NH4-N concentration. 6. Our results underscore the importance of both biotic and abiotic factors in controlling consumer excretion and its significance for nutrient cycling in aquatic ecosystems. Differences in community-level excretion rates were related to spatial patterns in shrimp biomass dictated by geomorphology and the presence of predators. Abiotic factors also had important effects through temporal patterns in discharge and nutrient concentrations. Future excretion studies that focus on nutrient cycling should consider both biotic and abiotic factors in assessing the significance of consumer excretion in aquatic ecosystems.
Syndicate content