Scholl M.A.

The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

Scholl, Martha A., James B. Shanley, Jan Paul Zegarra, and Tyler B. Coplen. 2009. The stable isotope amount effect: New insights from NEXRAD echo tops, luquillo mountains, puerto rico. Water Resources Research 45 (DEC 11): W12407.

Abstract: 
The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for d18O and d2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

Scholl, M. A., T. W. Giambelluca, S. B. Gingerich, M. A. Nullet, and L. L. Loope (2007), Cloud water in windward
and leeward mountain forests: The stable isotope signature of orographic cloud water, Water Resour. Res., 43, W12411,
doi:10.1029/2007WR006011.

Abstract: 
Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume-weighted average cloud water and rain samples was 1.4% d18O and 12% d2H for the windward site and 2.8% d18O and 25% d2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end-member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

Scholl MA, Shanley JB, Zegarra JP, Coplen TB. 2009. The stable isotope
amount effect: new insights from NEXRAD echo tops, Luquillo
Mountains, Puerto Rico. Water Resources Research 45: W12407, DOI:
10.1029/2008WR007515.

Abstract: 
The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December-May) and was associated with a weather pattern of trade-wind showers and frontal systems. During the summer rainy season (approximately June-November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29 % of rain input to the Luquillo Mountains was trade-wind orographic rainfall, and 30 % of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.
Syndicate content