Teh Y.A.

A decade of belowground reorganization following multiple disturbances in a subtropical wet forest

Teh, Y.A.; Silver, W.L.; Scatena, F.N. 2009. A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant and Soil. 323: 197-212.

Abstract: 
Humid tropical forests are dynamic ecosystems that experience multiple and overlapping disturbance events that vary in frequency, intensity, and spatial extent. Here we report the results of a 10-year study investigating the effects of forest clearing and multiple hurricanes on ecosystem carbon reservoirs, nutrient pools and vegetation. The aboveground plant community was most heavily affected by multiple disturbances, with the 9-year-old stands showing high rates of hurricane-induced mortality relative to surrounding forest. Belowground pools were less affected. Live fine root biomass fluctuated in response to multiple disturbances, but returned to pre-disturbance levels after 10 years. Soil C was resilient to clearing and hurricanes, probably due to the large pool size and high clay content. Soil P fluctuated over time, declining during periods of rapid plant recovery and growth. With the exception of K, base cations recovered within 2 years following clearing and showed little response to hurricane disturbance.

Suppression of methanogenesis by dissimilatory Fe(III)- reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux

Teh, Y.A., Dubinsky, E.A., Silver, W.L., and Carlson, C.M.
(2008) Suppression of methanogenesis by dissimilatory Fe
(III)-reducing bacteria in tropical rain forest soils: implications
for ecosystem methane flux. Glob Change Biol 14:
413–422.

Abstract: 
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)-reducing bacteria is one of the principal controls on CH4 flux in many Fe-rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (02) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)-reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process-based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)-reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of C-13-bicarbonate, C-13-methyl labeled acetate ((CH3COO-)-C-13), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)-reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of (CH3COO-)-C-13. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as C-13 partitioning did not vary significantly between (CH3COO-)-C-13 and (CH3COO-)-C-13 + Fe(III) treatments. This suggests that dissimilatory Fe(III)-reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.
Syndicate content